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1 IntrodutionLet � be a olletion of n pseudolines in the plane, whih we de�ne to be graphs of ontinuoustotally-de�ned funtions, eah pair of whih interset in exatly one point, and the urves ross eahother at that point. In what follows we assume general position of the pseudolines, meaning that nothree pseudolines pass through a ommon point, and that the x-oordinates of any two intersetionpoints of the pseudolines are distint. Let E be a subset of the verties of the arrangement A(�).E indues a graph G = (�; E) on � (in what follows, we refer to suh a graph as a pseudolinegraph). For eah pair (; 0) of distint pseudolines in �, we denote by W (; 0) the double wedgeformed between  and 0, that is, the (open) region onsisting of all points that lie above one ofthese pseudolines and below the other. We also denote by W (; 0) the omplementary (open)double wedge, onsisting of all points that lie either above both urves or below both urves.De�nition 1.1 We say that two edges (; 0) and (Æ; Æ0) of G form a diamond if the point  \ 0is ontained in the double wedge W (Æ; Æ0), and the point Æ \ Æ0 is ontained in the double wedgeW (; 0).De�nition 1.2 We say that two edges (; 0) and (Æ; Æ0) of G form an anti-diamond if the point \ 0 is not ontained in the double wedge W (Æ; Æ0), and the point Æ \ Æ0 is not ontained in thedouble wedge W (; 0); that is,  \ 0 lies in W (Æ; Æ0) and Æ \ Æ0 lies in W (; 0).De�nition 1.3 (a) A olletion S of x-monotone bounded Jordan ars is alled a olletion ofpseudosegments if eah pair of ars of S interset in at most one point, where they ross eahother.(b) S is alled a olletion of extendible pseudosegments if there exists a set � of pseudolines, withj�j = jSj, suh that eah s 2 S is ontained in a unique pseudoline of �.See [7℄ for more details onerning extendible pseudosegments. Note that not every olletion ofpseudosegments is extendible, as shown by the simple example depited in Figure 1.
Figure 1: Three pseudosegments that are not extendible.De�nition 1.4 (a) A drawing of a graph G = (�; E) in the plane is a mapping that maps eahvertex v 2 � to a point in the plane, and eah edge e = uv of E to a Jordan ar onneting theimages of u and v, suh that no three ars are onurrent at their relative interiors, and the relativeinterior of no ar is inident to a vertex.(b) If the images of the edges of E form a family of extendible pseudo-segments then we refer tothe drawing of G as an (x-monotone) generalized geometri graph.(The term geometri graphs is usually reserved to drawings of graphs where the edges are drawnas straight segments.)In this paper we prove the following results. 2



Duality between pseudoline graphs and generalized geometri graphs. The �rst mainresult of this paper establishes an equivalene between pseudoline graphs and geometri graphsdrawn in the plane so that their edges form a olletion of extendible pseudosegments.We �rst derive the following weaker result, whih has an easy and self-ontained proof.Theorem 1.5 Let � and G be as above. Then there is a drawing of G in the plane suh that twoedges e and e0 of G form a diamond if and only if their orresponding drawings ross eah other anodd number of times.After the original preparation of this paper, Agarwal and Sharir [4℄ established a duality trans-formation in arrangements of pseudolines, whih has several useful properties and other applia-tions. Using their tehnique, we obtain the following stronger result:Theorem 1.6 (a) Let � and G be as above. Then there is a drawing of G in the plane, with theedges onstituting a family of extendible pseudosegments, suh that, for any two edges e, e0 of G, eand e0 form a diamond if and only if their orresponding drawings ross eah other.(b) Conversely, for any graph G = (V;E) drawn in the plane with its edges onstituting a familyof extendible pseudosegments, there exists a family � of pseudolines and a 1-1 mapping ' from Vonto �, so that eah edge uv 2 E is mapped to the vertex '(u) \'(v) of A(�), suh that two edgesin E ross eah other if and only if their images are two verties of A(�) that form a diamond.Appliations. As an immediate orollary of Theorem 1.6 (whih an also be derived from The-orem 1.5), we obtainTheorem 1.7 Let � and G be as above. If G is diamond-free then G is planar and thus jEj � 3n�6.Theorem 1.7 has been proven by Tamaki and Tokuyama [20℄, using a more involved argument.This was the underlying theorem that enabled them to extend Dey's improved bound of O(n4=3)on the omplexity of a single level in an arrangement of lines [9℄, to arrangements of pseudolines.Note that the planarity of G is obvious for the ase of lines: If we dualize the given lines intopoints, using the duality y = ax+ b 7! (a; b) and (; d) 7! y = �x+ d, presented in [11℄, and mapeah edge (; 0) of G to the straight segment onneting the points dual to  and 0, we obtain arossing-free drawing of G. Hene, Theorem 1.7 is a natural (though harder to derive) extension ofthis property to the ase of pseudolines.We note also that the onverse statement of Theorem 1.7 is trivial: Every planar graph anbe realized as a diamond-free pseudoline graph (in fat, in an arrangement of lines): We draw thegraph as a straight-edge graph (whih is always possible [12℄), and apply the inverse duality to theone just mentioned.In more generality, we an take any theorem that involves generalized geometri graphs (whoseedges are extendible pseudosegments), and that studies the rossing pattern of these edges, and`transport' it into the domain of pseudoline graphs. As an example of this, we have:Theorem 1.8 Let � and G be as above. (i) If G ontains no three edges whih form pairwisediamonds then G is quasi-planar (in the terminology of [1℄; see below), and thus its size is O(n).(ii) If G ontains no k edges whih form pairwise diamonds (for k � 4) then the size of G isO(n log n) (with the onstant of proportionality depending on k).In its appropriate reformulation in the ontext of generalized geometri graphs, Theorem 1.8(i)orresponds to a result of Agarwal et al. [1℄ on quasi-planar graphs. A quasi-planar (respetively,3



k-quasi-planar) graph is a graph that an be drawn in the plane suh that no three (respetively,k) of its edges are pairwise rossing. It was shown in [1℄ that the size of a quasi-planar graph isO(n). This result was extended by Valtr [21℄ to the ase k � 4 and our Theorem 1.8(ii) is a similarinterpretation of Valtr's bound in the ontext of pseudoline graphs. Our reformulations are valid,for both parts of the theorem, sine both the results of [1, 22℄ hold for graphs whose edges areextendible pseudosegments.De�nition 1.9 A thrakle is a drawing of a graph in the plane so that every pair of edges eitherhave a ommon endpoint and are otherwise disjoint, or else they interset in exatly one pointwhere they ross eah other.The notion of a thrakle is due to Conway, who onjetured that the number of edges in athrakle is at most the number of verties. Two reent papers [16℄ and [6℄ obtain linear bounds forthe size of a general thrakle, but with onstants of proportionality that are greater than 1. Theonjeture is known to hold for straight-edge thrakles [17℄, and, in Setion 5, we extend the result,and the proof, to the ase of graphs whose edges are extendible pseudosegments. That is, we show:Theorem 1.10 Let � and G be as above. If every pair of edges onneting four distint verties(that is, urves of �) in G form a diamond, then the size of G is at most n.Pseudoline graphs without anti-diamonds. We now turn to study pseudoline graphs thatdo not have any anti-diamond. We show:Theorem 1.11 Let � and G be as above. If G is anti-diamond-free then jEj � 2n� 2.Theorem 1.11 is an extension, to the ase of pseudolines, of a (dual version of a) theorem ofKathalski and Last [13℄, re�ned by Valtr [22℄. The theorem states that a straight-edge graph onn points in the plane, whih does not have any pair of parallel edges, has at most 2n � 2 edges.A pair of segments e; e0 is said to be parallel if the line ontaining e does not ross e0 and the lineontaining e0 does not ross e. (For straight edges, this is equivalent to the ondition that e and e0are in onvex position.) The dual version of a pair of parallel edges is a pair of verties in a linearrangement that form an anti-diamond. Hene, Theorem 1.11 is indeed an extension of the resultof [13, 22℄ to the ase of pseudolines. The proof, for the ase of straight-edge graphs, has beenreently simpli�ed by Valtr [23℄. Our proof, obained independently, an be viewed as an extensionof this new proof to the ase of pseudolines.Note that Theorem 1.11 is not diretly obtainable from [13, 22, 23℄, (a) beause Theorem 1.6does not ater to anti-diamonds, and (b) beause the analysis of [13, 22, 23℄ only applies to straight-edge graphs.Inidenes and many faes in pseudoline arrangements. Finally, as an appliation of The-orem 1.7, we provide yet another simple proof of the following well-known result:Theorem 1.12 (a) The maximum number of inidenes between m distint points and n distintpseudolines is �(m2=3n2=3 +m+ n).(b) The maximum number of edges bounding m distint faes in an arrangement of n pseudolinesis �(m2=3n2=3 + n). 4



The proof is in some sense `dual' to the proofs based on Sz�ekely's tehnique [10, 19℄.The proof of Theorem 1.12(b) an be extended to yield the following result, reently obtainedin [2℄, where it has been proved using the dual approah, based on Sz�ekely's tehnique.Theorem 1.13 The maximum number of edges bounding m distint faes in an arrangement of nextendible pseudo-segments is �((m+ n)2=3n2=3 + n).2 Drawing Pseudoline GraphsIn this setion we prove Theorems 1.5 and 1.6. Both proofs use the same drawing rule for realizingpseudoline graphs as geometri graphs. The di�erene is that the stronger properties of Theorem 1.6follow from the more sophistiated mahinery of point-pseudoline duality, developed in [4℄. On theother hand, the proof of Theorem 1.5 is simple and self-ontained.Proof of Theorem 1.5: Let ` be a vertial line suh that all verties of the arrangement A(�) lieto the right of `. Enumerate the pseudolines of � as 1; : : : ; n, ordered in inreasing y-oordinatesof the intersetion points pi = ` \ i. We onstrut a drawing of G in the plane, using the setP = fp1; : : : ; png as the set of verties.For eah edge (i; j) 2 E, we onnet the points pi and pj by a y-monotone urve ei;j aordingto the following rules. Assume, without loss of generality, that i > j. If i = j+1 (so that pi and pjare onseutive intersetion points along `) then ei;j is just the straight segment pipj (ontained in`). Otherwise, ei:j is drawn very lose to `, and generally proeeds upwards (from pj to pi) parallelto ` either slightly to its left or slightly to its right. In the viinity of an intermediate point pk, theedge either ontinues parallel to `, or onverges to pk (if k = i), or swithes to the other side of `,rossing it before pk. The deision on whih side of pk the edge should pass is made aording tothe followingDrawing rule: If the pseudoline k passes above the apex of W (i; j) then ei;j passesto the left of pk, otherwise ei;j passes to the right of pk.This drawing rule is a variant of a rule reently proposed in [3℄ for drawing, and proving theplanarity, of another kind of graphs related to arrangements of pseudoirles or pseudo-parabolas.Note that this rule does not uniquely de�ne the drawing.We need the following tehnial lemma:Lemma 2.1 Let x1 < x2 < x3 < x4 be four real numbers. (i) Let e1;4 and e2;3 be two x-monotoneJordan ars with endpoints at (x1; 0); (x4; 0) and (x2; 0); (x3; 0), respetively, so that e1;4 does notpass through (x2; 0) or through (x3; 0). Then e1;4 and e2;3 ross an odd number of times if and onlyif e1;4 passes around the points (x2; 0) and (x3; 0) on di�erent sides. See Figure 2(a).(ii) Let e1;3 and e2;4 be two x-monotone Jordan ars with endpoints at (x1; 0); (x3; 0) and(x2; 0); (x4; 0), respetively, so that e1;3 does not pass through (x2; 0) and e2;4 does not pass through(x3; 0). Then e1;3 and e2;4 ross an odd number of times if and only if e1;3 passes below (x2; 0) ande2;4 passes below (x3; 0), or e1;3 passes above (x2; 0) and e2;4 passes above (x3; 0). See Figure 2(b).Proof: In ase (i), let f1 and f2 be the two real (partially de�ned) ontinuous funtions whosegraphs are e1;4 and e2;3, respetively. Similarly, for ase (ii), let f1 and f2 be the funtions whosegraphs are e1;3 and e2;4, respetively.Consider the funtion g = f1 � f2 over the interval [x2; x3℄. By the mean-value theorem, g(x2)and g(x3) have di�erent signs if and only if g vanishes an odd number of times over this interval.This ompletes the proof of the Lemma. 25



(a) (b)x1 x2 x3 x4 x1 x2 x3 x4
Figure 2: Two instanes where a pair of drawn edges have an odd number of rossings. (a) Thenested ase. (b) The interleaving ase.Let e1 = ex;y, e2 = ez;w be the drawings of two distint edges in G that do not share a vertex.We onsider two possible ases:Case (i): The intervals pxpy and pzpw (on the line `) are nested. That is, their endpoints areordered, say, as pz; px; py; pw in y-inreasing order along the line `. By Lemma 2.1, e1 and e2 rossan odd number of times if and only if e2 passes around the points px and py on di�erent sides. Onthe other hand, it is easily heked that the drawing rule implies that e1 and e2 form a diamondin G if and only if e2 passes around the points px and py on di�erent sides. Hene, in this ase wehave that e1 and e2 form a diamond if and only if they ross an odd number of times. See Figure 3for an illustration.Case (ii): The intervals pxpy and pzpw `interleave', so that the y-order of the endpoints of e1and e2 is, say, px; pz; py; pw, or a symmetrially similar order. By Lemma 2.1, e1 and e2 ross anodd number of times if and only if e1 passes around the point pz on the same side that e2 passesaround the point py. On the other hand, the drawing rule for e1 and e2 easily implies that e1 ande2 form a diamond if and only if e1 passes around the point pz on the same side that e2 passesaround the point py. See Figure 4 for an illustration.It is also easily heked that, in the ase where the intervals pxpy and pzpw are disjoint, theedges e1 and e2 do not form a diamond, nor an their drawings interset eah other. This ompletesthe proof of the theorem. 2Proof of Theorem 1.6: The drawing rule used in the proof of Theorem 1.5 is in fat a speialase of the duality transform between points and (x-monotone) pseudolines, as obtained reentlyby Agarwal and Sharir [4℄. Spei�ally, we apply this result to � and to the set G of the givenverties of A(�). The duality of [4℄ maps the points of G to a set G� of x-monotone pseudolines,and maps the pseudolines of � to a set �� of points, so that a point v 2 G lies on (resp., above,below) a urve  2 � if and only if the dual pseudoline v� passes through (resp., above, below) thedual point �. Finally, in the transformation of [4℄, the points of �� are arranged along the x-axisin the same order as that of the interepts of these urves with the vertial line ` de�ned above.We apply this transformation to � and G. In addition, for eah vertex v 2 G, inident to twopseudolines 1; 2 2 �, we trim the dual pseudoline v� to its portion between the points �1 , �2 .This yields a plane drawing of the graph G, whose edges form a olletion of extendible pseudo-segments. The drawing has the following main property:Lemma 2.2 Let v = 1 \ 2 and w = 3 \ 4 be two verties in G, de�ned by four distint urves.Then v and w form a diamond if and only if the orresponding edges of the drawing ross eahother. 6



Proof: The proof is an easy onsequene of the proof of Theorem 1.5 given above. In fat, itsuÆes to show that the duality transformation of [4℄ obeys the drawing rule used in the aboveproof, with an appropriate rotation of the plane by 90 degrees. So let i; j ; k 2 � suh that kpasses above (resp., below) i\j, and suh that k meets the vertial line ` at a point between i\`and j \ `. Our drawing rule then requires that the edge pipj pass to the left (resp., to the right) ofpk. On the other hand, the duality transform, preserving the above/below relationship, makes theedge �i �j pass below (resp., above) �k. Hene the two rules oinide, after an appropriate rotationof the plane, and the lemma is now an easy onsequene of the preeding analysis. 2Lemma 2.2 thus implies Theorem 1.6(a). To prove the onverse part (b), let G = (V;E) be agraph drawn in the plane so that its edges form a olletion of extendible pseudo-segments, and let� denote the family of pseudolines ontaining the edges of E. Apply the point-pseudoline dualitytransform of [4℄ to V and �. We obtain a family V � of pseudolines and a set �� of points, so thatthe inidene and the above/below relations between V and � are both preserved. It is now routineto verify, as in the ase of point-line duality, that two edges u1v1 and u2v2 of E ross eah other ifand only if the orresponding verties u�1 \ v�1 , u�2 \ v�2 of A(V �) form a diamond. This ompletesthe proof of Theorem 1.6. 2The immediate impliations of these results, namely Theorems 1.7 and 1.8, follow as well, asdisussed in the introdution.
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Figure 3: A diamond, and the resulting rossing in the ase that the segments pxpy and pzpw arenested.
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Figure 4: A diamond, and the resulting rossing in the ase that the segments pxpy and pzpw areinterleaved.3 Yet Another Proof for Inidenes and Many Faes in PseudolineArrangementsIn this setion we provide yet another proof of the well-known (worst-ase tight) bounds given inTheorem 1.12.We will prove only part (b) of the theorem; part (a) an then be obtained by a simple andknown redution (see, e.g., [8℄); alternatively, it an be obtained by a straightforward modi�ationof the proof of (b), given below.Let � be the given olletion of n pseudolines, and let f1; : : : ; fm be the m given faes of thearrangement A(�). Let E denote the set of all verties of these faes, exluding the leftmost andrightmost vertex, if any, of eah fae. Sine every bounded fae has at least one vertex that isnot leftmost or rightmost, and sine the number of unbounded faes is O(n), it follows that thequantity that we wish to bound is O(jEj + n). Theorem 1.6 and the rossing lemma of [5, 14℄imply that if jEj � 4n then the graph G(�; E) has 
(jEj3=n2) diamonds. Indeed, after applyingTheorem 1.6, we obtain a drawing of G as a generalized geometri graph, in whih edge-rossingsorrespond to diamonds in G, and the laim then follows diretly from the rossing lemma. Let(p; p0) be a diamond, where p is a vertex of some fae f and p0 is a vertex of another fae f 0. (Itis easily veri�ed that if p and p0 bound the same fae then they annot form a diamond.) Then,using the Levy Enlargement Lemma [15℄, there exists a urve 0 that passes through p and p0, suhthat � [ f0g is still a family of pseudolines. In this ase 0 must be ontained in the two doublewedges of p and p0, and thus it avoids the interiors of f and of f 0; that is, 0 is a `ommon tangent'of f and f 0. As in the ase of lines, it is easy to show that a pair of faes an have at most fourommon tangents of this kind. Hene, the number of diamonds in G annot exeed 2m2. Puttingeverything together, we obtain jEj = O(m2=3n2=3 + n). 2Remark: This proof is, in a sense, dual to that of Sz�ekely [19℄ for inidenes, or to its extensionby Dey and Pah [10℄ for many faes. These former proofs interhange the roles of points and(pseudo)lines: they apply the rossing lemma to a di�erent graph, whose verties are the points8



involved in the inidenes or marking points, one in eah of the given faes.The proof of Theorem 1.13 is proved in a similar manner. The main di�erene is that thegiven faes need not be x-monotone, beause their boundaries may ontain endpoints of the givenpseudo-segments. In this ase two verties of the same fae may form a diamond, and the numberof diamonds formed between two distint faes may be arbitrarily large. To overome this issue,we partition, as in [2℄, any suh fae into x-monotone subfaes, by vertial segments ereted fromendpoints of the pseudo-segments. The number of new subfaes is O(m+n), and any pair of theman indue only O(1) diamonds, whih an be argued exatly as in the ase of pseudolines. Thepreeding arguments then yield the asserted bound.4 Graphs in Pseudoline Arrangements without Anti-DiamondsSo far, the paper has dealt exlusively with the existene or nonexistene of diamonds in graphs inpseudoline arrangements. We now turn to graphs in pseudoline arrangements that do not ontainany anti-diamond. Reall that the notion of an anti-diamond is an extension, to the ase ofpseudolines, of (the dual version of) a pair of edges in (straight-edge) geometri graphs that are inonvex position (so-alled `parallel' edges). Using Theorem 1.6 (and the analysis in its proof), oneobtains a transformation that maps an anti-diamond-free pseudoline graph (�; G) to a generalizedgeometri graph, whose edges form a olletion of extendible pseudo-segments, with the propertythat, for any pair e; e0 of its edges, de�ned by four distint verties, either the pseudoline ontaininge rosses e0 or the pseudoline ontaining e0 rosses e.We present a muh shorter and simpler proof of Theorem 1.11 than those of [13, 22℄, that appliesdiretly in the original pseudoline arrangement, and is similar in spirit to the reent simpli�ed proofof Valtr [23℄ for the ase of straight-edge geometri graphs.
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Figure 5: A subsequene � � � a � � � b � � � of A to the left of pa;b and the resulting anti-diamond.Proof of Theorem 1.11: We onstrut two sequenes A and B whose elements belong to �, asfollows. We sort the intersetion points of the pseudolines of � that orrespond to the edges of Gin inreasing x-order, and denote the sorted sequene by P = hp1; : : : ; pmi. For eah element pi of9



P , let i and 0i be the two pseudolines forming (meeting at) pi, so that i lies below 0i to the leftof pi (and lies above 0i to the right). Then the i-th element of A is i and the i-th element of B is0i.Lemma 4.1 The onatenated yli sequene C = AkB does not ontain a subyle of alternatingsymbols of the form a � � � b � � � a � � � b, for a 6= b.Proof: Assume to the ontrary that C does ontain suh a subyle. Consider the point pa;b ofintersetion of the urves a and b. There are two ases to onsider:Case (i): a lies below b to the left of pa;b. We laim that there is no subsequene a � � � b in A tothe left of pab (that is, involving elements whose assoiated intersetion points have x-oordinatessmaller than that of pa;b). Indeed, if suh a subsequene exists, then there are urves a0 and b0 in� suh that (a; a0) and (b; b0) are edges in G, a0 is above a to the left of p = a \ a0, b0 is above bto the left of q = b \ b0, and p lies to the left of q. It is easily seen that in suh a ase the twoedges (a; a0), (b; b0) form an anti-diamond in G (see Figure 5), ontrary to assumption. Symmetriarguments show that there is no subsequene b � � � a of A to the right of pa;b, no subsequene b � � � aof B to the left of pa;b, and no subsequene a � � � b of B to the right of pa;b.These arguments imply that A annot ontain a subsequene a � � � b � � � a, for otherwise A wouldhave to ontain either a � � � b to the left of pa;b, or b � � � a to the right of pa;b, both of whih areimpossible. Similarly, B annot ontain a subsequene b � � � a � � � b, for that would imply that Bwould have to ontain either b � � � a to the left of pa;b or a � � � b to the right of pa;b, both of whihare impossible.Hene, if the onatenated sequene C ontains an a � � � b � � � a � � � b then, sine A annot ontainan a � � � b � � � a and B annot ontain a b � � � a � � � b, the only ase to onsider is that A ontains ana � � � b, where b is (neessarily) to the right of pa;b, and B ontains an a � � � b, where a is (neessarily)to the left of pa;b. In that ase, the two intersetion points that orrespond to the element b of A andto the element a of B in the above subsequene form an anti-diamond (see Figure 6), ontraditingour assumption that G is anti-diamond free.Case (ii): b lies below a to the left of pa;b. There are three subases to onsider.In the �rst subase, A ontains an a � � � b � � � a and B ontains b. Reversing the roles of a; b inthe analysis of Case (i), we onlude that A does not ontain b � � � a to the left of pa;b, and a � � � b toits right. Hene, there is an intersetion point of G labeled a in A to the left of pa;b, and anothersuh point labeled a in A to the right of pa;b. It is easily veri�ed that the edge (intersetion point)e of G labeled by b in B and that edge labeled by a in A that lies on the side of pa;b opposite to eform an anti-diamond (see Figure 7), a ontradition that rules out this subase.A symmetri argument exludes the ase where A ontains a single a and B ontains b � � � a � � � b.The third possible ase is that A ontains an a � � � b and B also ontains an a � � � b. But againthe �rst a (that belongs to A) must be to the left of pa;b and the seond b (that belongs to B) mustbe to the right of pa;b and in that ase those two are labels of edges that form an anti-diamond; seeFigure 8 for an illustration. This ompletes the proof of the lemma. 2Suppose to the ontrary that the number of edges of G is at least 2n � 1. A run in C is amaximal ontiguous subsequene of identially labeled elements. If we replae eah run by a singleelement, the resulting sequene C� is a Davenport-Shinzel yle of order 2 on n symbols, as followsfrom Lemma 4.1. Hene, the length of C� is at most 2n� 2 [18℄.Note that it is impossible to have an index 1 � i � 2n � 2 suh that the i-th element of A isequal to the (i+ 1)-st element of A and the i-th element of B is equal to the (i+ 1)-st element ofB. Indeed, if these elements are a and b, respetively, then we obtain two verties of A(�) (the one10



a
b pa;b

Figure 6: The anti-diamond arising in the seond part of Case (i).
pa;ba

bFigure 7: The anti-diamond arising in the �rst subase of Case (ii).enoded by the i-th elements of A and B and the one enoded by the (i+ 1)-st elements) that areinident to both a and b, whih is impossible. In other words, for eah i = 1; : : : ; jGj� 1, a new runmust begin either after the i-th element of A or after the i-th element of B (or after both). Sinethe number of runs is at most 2n� 2 and the number of indies is, by assumption, at least 2n� 2,it follows that the number of runs and the number of indies must both be exatly 2n� 2, and thatexatly one run starts after eah index, either in A or in B, and this exhausts all runs.However, this means that the last element of A must be equal to the �rst element of B (wehave run out of runs to start there a new run at this plae in the onatenated C), and, similarly,the last element of B must be equal to the �rst element of A. This however is impossible, beauseit means that the leftmost vertex and the rightmost vertex in G are both inident to the same pairof pseudolines. This ontradition shows that the size of G is at most 2n� 2, and thus ompletesthe proof of Theorem 1.11. 2
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pa;ba
bFigure 8: The anti-diamond arising in the third subase of Case (ii).5 Pseudolines and ThraklesLet G be a thrakle with n verties, whose edges are extendible pseudo-segments. We transform G,using the pseudoline duality, to an intersetion graph in an arrangement of a set � of n pseudolines.The edge set of G is mapped to a subset E of verties of A(�), with the property that every pairof verties of E, not sharing a ommon pseudoline, form a diamond.Theorem 5.1 jEj � n.Proof: The proof is an extension, to the ase of pseudoline graphs (or, rather, generalized geometrigraphs drawn with extendible pseudo-segments), of the beautiful and simple proof of Perles, asreviewed, e.g., in [17℄.Fix a pseudoline  2 � and onsider the verties in E \. We say that v 2 E \ is a right-turn(resp., left-turn) vertex with respet to  if, to the left of v,  lies above (resp., below) the otherpseudoline inident to v.If  ontains three verties v1; v2; v3 2 E, appearing in this left-to-right order along , suhthat v1 and v3 are right-turn verties and v2 is a left-turn vertex, then all verties of E must lieon , beause the intersetion of the three (open) double wegdes of v1; v2; v3 is empty, as is easilyheked. In this ase jEj � n� 1 and the theorem follows. A similar argument holds when v1 andv3 are left-turn and v2 is a right-turn vertex.Hene we may assume that, for eah  2 �, the left-turn verties of E \  are separated fromthe right-turn verties of E \  along .For eah  2 �, we delete one vertex of E \ , as follows. If E \  onsists only of left-turnverties, or only of right-turn verties, we delete the rightmost vertex of E \ . Otherwise, thesetwo groups of verties are separated along , and we delete the rightmost vertex of the left group.We laim that after all these deletions, E is empty. To see this, suppose to the ontrary thatthere remains a vertex v 2 E, inident to two pseudolines 1; 2 2 �, suh that 1 lies below 2 tothe left of v. Clearly, v is a left-turn vertex with respet to 1, and a right-turn vertex with respetto 2.The deletion rule implies that, initially, E \ 1 ontained either a left-turn vertex v�1 that liesto the left of v, or a right-turn vertex v+1 that lies to the right of v. Similarly, E \ 2 ontainedeither a right-turn vertex v�2 that lies to the left of v, or a left-turn vertex v+2 that lies to the right12



of v. It is now easy to hek (see Figure 9) that, in eah of the four possible ases, the respetivepair of verties, (v�1 ; v�2 ), (v+1 ; v�2 ), (v�1 ; v+2 ), or (v+1 ; v+2 ), do not form a diamond, a ontraditionthat shows that, after the deletions, E is empty. Sine we delete at most one vertex from eahpseudoline, it follows that jEj � n. 2
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