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Abstract

Let P be a set of n points in R
3, not all of which are in a plane and no

three on a line. We partially answer a question of Scott (1970) by showing that
the connecting lines of P assume at least 2n− 3 different directions if n is even
and at least 2n − 2 if n is odd. These bounds are sharp. The proof is based
on a far-reaching generalization of Ungar’s theorem concerning the analogous
problem in the plane.

1 Introduction

Erdős [7] pointed out the following immediate consequence of the celebrated Gallai-
Sylvester theorem on ordinary lines (see Borwein and Moser [4] for a survey): n non-
collinear points in the plane determine at least n different connecting lines. Equality
is attained if and only if all but one of the points are collinear.

In the same spirit, Scott [16] posed two similar questions in 1970:

1. Is it true that the minimum number of different directions assumed by the
connecting lines of n ≥ 4 non-collinear points in the plane is 2bn/2c?
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2. Is it true that the minimum number of different directions assumed by the
connecting lines of n ≥ 6 non-coplanar points in 3-space is 2n − 3 if n is even
and 2n − 2 if n is odd?

Twelve years later, the first question was answered in the affirmative by Ungar
[18]. His proof is a real gem, a brilliant application of the method of allowable se-
quences invented by Goodman and Pollack [9], [10]. Moreover, it solves the problem
in an elegant combinatorial setting, for “pseudolines”, as was suggested independently
by Goodman and Pollack and by Cordovil [6]. For even n, Ungar’s theorem gener-
alizes Erdős’s above mentioned result. However, in contrast to Erdős’s result, here
there is an overwhelming diversity of extremal configurations, for which equality is
attained. Four infinite families and more than one hundred sporadic configurations
were catalogued by Jamison and Hill [14] (see also [13] for an excellent survey).

Progress on the second question of Scott has been much slower. As Jamison [13]
noticed, unless we impose some further restriction on the point set, for odd n, the
number of directions determined by n points in 3-space can be as small as 2n − 5.
Indeed, equality is attained, e.g., for the n-element set obtained from the vertex
set of a regular (n − 3)-gon Pn−3 (or from any other centrally symmetric extremal
configuration for the planar problem) by adding its center c and two other points
whose midpoint is c and whose connecting line is orthogonal to the plane of Pn−3.

Blokhuis and Seress [3] introduced a natural condition excluding the above con-
figurations: they assumed that no three points are collinear. Under this assumption,
they proved that every non-coplanar set of n points in 3-space determines at least
1.75n − 2 different directions.

The aim of the present paper is to answer Scott’s second question in the affirma-
tive, using the same assumption as Blokhuis and Seress.

Theorem 1.1. Every set of n ≥ 6 points in R
3, not all of which are on a plane and

no three are on a line, determine at least n + 2dn/2e − 3 different directions. This
bound is sharp.

Removing the center c from the configuration described above that determines
2n − 5 directions, we obtain a set of even size n′ = n − 1 with 2n′ − 3 directions and
no three collinear points (see Figure 1(a)). If the number of points is even, then this
construction provides the only known infinite family for which Theorem 1.1 is sharp.
In addition, there are four known sporadic extremal configurations, each of which is
a subset of the 14-element set depicted in Figure 1(b).

According to a beautiful result of Motzkin [15], Rabin, and Chakerian [5] (see
also [1]), any set of n non-collinear points in the plane, colored with two colors red
and green, determines a monochromatic line. Motzkin and Grünbaum [11] initiated
the investigation of biased colorings, i.e., colorings without monochromatic red lines.
Their motivation was to justify the intuitive feeling that if there are many red points
in such a coloring and not all of them are collinear, then the number of green points
must also be rather large. Denoting the sets of red and green points by R and G,
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Figure 1: Two examples of sets with an even number n of points, not all on a plane
and no three coplanar, that determine 2n − 3 different directions.

respectively, it is a challenging unsolved question to decide whether the “surplus”
|R|− |G| of the coloring can be arbitrarily large. We do not know any example where
this quantity exceeds 6 [12].

The problem of biased colorings was rediscovered by Erdős and Purdy [8], who
formulated it as follows: What is the smallest number m(n) of points necessary to
represent (i.e., stab) all lines spanned by n non-collinear points in the plane, if the
generating points cannot be used. An Ω(n) lower bound follows from the “weak Dirac
conjecture” proved by Szemerédi and Trotter [17] and Beck [2], according to which
there is a point that lies on Ω(n) different connecting lines. Each of these connecting
lines has to be represented by a different point.

In Section 2, we reduce Theorem 1.1 to a statement (Theorem 2.2) showing that
under some further restrictions the surplus is indeed bounded. More precisely, if there
is no connecting line whose leftmost and rightmost points are both red, then we have
|G| ≥ 2b|R|/2c, so in particular |R| − |G| ≤ 1.

Another way of rephrasing Ungar’s theorem is that from all closed segments whose
endpoints belong to a non-collinear set of n points in the plane, one can always select
at least 2bn/2c such that no two of them are parallel. Unless we explicitly state it
otherwise, every segment used in this paper is assumed to be closed. Our proof of
Theorem 2.2 is based on a far-reaching generalization of Ungar’s result. To formulate
this statement, we need to relax the condition of two segments being parallel.
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Figure 2: Avoiding and non-avoiding segments.

Definition 1.2. Two segments belonging to distinct lines are called avoiding if one
of the following two conditions is satisfied (see Figure 2):

(i) they are parallel, or

(ii) the intersection of their supporting lines does not belong to any of the segments.

An alternative definition is that two segments are avoiding if and only if they are
disjoint and their convex hull is a quadrilateral.

The main result of this paper, which implies Theorem 1.1 and Theorem 2.2 (stated
in the next section), is the following strengthening of Ungar’s theorem, which is of
independent interest.

Theorem 1.3. From all closed segments determined by a set of n non-collinear points
in the plane, one can always select at least 2bn/2c pairwise non-avoiding ones, lying
on distinct lines.

Theorem 1.3 is established in Sections 3 and 4.

This paper leaves open the problem of extending Theorem 1.1 to the general case,
where the given point set may contain triples of collinear points.

2 Reduction of Theorem 1.1 to a Planar Problem

Let P be a set of n points in R
3 such that not all of them lie in a common plane

and no three of them are collinear. Let p0 be an extreme point of P , i.e., a vertex of
the convex hull of P . Consider a supporting plane to P at p0, and translate it into a
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Figure 3: Proving the existence of a green point on `, in extreme position.

new position π so that P lies in the slab bounded by these two planes. Note that no
translate of π can fully contain the non-coplanar set P . project from p0 all points of
P \ {p0} onto π. We obtain a set R of n − 1 distinct points in π, not all on a line,
and we will refer to the elements of R as red points. Each red point corresponds to a
direction determined by p0 and some other point of P .

For each pair of elements p, p′ ∈ P \ {p0}, take a line parallel to pp′ that passes
through p0. Color with green the intersection point of this line with π, unless it has
already been colored red. The set of all green points is denoted by G. By definition,
we have R ∩ G = ∅.

We need the following simple property of the sets R and G, which implies that
along every line passing through at least two red points either the leftmost or the
rightmost point belonging to R ∪ G is green.

Lemma 2.1. Every line connecting two red points r, r′ ∈ R passes through at least
one green point g ∈ G that does not belong to the (closed) segment rr′.

Proof: Let ` be a line in π passing through at least two red points r, r′ ∈ R. Assume
without loss of generality that r and r′ are the leftmost and rightmost red points
along `. Let p and p′ denote those elements of P whose projections to π are r and
r′, respectively. Observe that in the plane induced by p0 and `, the direction of pp′

does not belong to the convex cone enclosed by the rays p0p and p0p
′, so the line

through p0 parallel to pp′ will cross ` in a green point g meeting the requirements.
See Figure 3. 2

To establish Theorem 1.1, it is sufficient to verify the following result.

Theorem 2.2. Let R be a set of n red points in the plane, not all collinear, and let
G be a set of m green points such that R∩G = ∅ and every line ` connecting at least
two red points in R passes through a green point g ∈ G that does not belong to any
segment rr′, for r, r′ ∈ R ∩ `.

Then we have m ≥ 2bn/2c.

Indeed, to prove Theorem 1.1 it is enough to notice that in our setting we have
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|R| = n − 1 and that the number of different directions determined by P is equal to

|R| + |G| ≥ n − 1 + 2

⌊

n − 1

2

⌋

= n + 2
⌈n

2

⌉

− 3.

Thus, applying Theorem 2.2, Theorem 1.1 immediately follows.

It is interesting to note that Theorem 2.2 also implies Ungar’s above-mentioned
theorem. To see this, regard the elements of our given planar point set as red, and
the directions determined by them as green points on the line at infinity, and apply
Theorem 2.2. (If we wish, we can perform a projective transformation and avoid the
use of points at infinity.)

It remains to prove Theorem 2.2. However, as mentioned in the introduction,
this result can be easily deduced from Theorem 1.3, which is a further extension of
Ungar’s theorem:

Proof of Theorem 2.2 (using Theorem 1.3): Applying Theorem 1.3 to the set R,
we obtain 2bn/2c segments with red endpoints that lie in distinct lines and no pair
of them are avoiding. By the condition in Theorem 2.2, the continuation of each
of these segments passes through a green point. Assign such a green point to each
segment. Observe that these points are all distinct. Indeed, if we can assign the same
green point to two different segments, then they must be avoiding, by definition. This
completes the proof of Theorem 2.2 and hence of Theorem 1.1. 2

3 Junctions and Stations –

Proof of Theorem 1.3

The aim of this and the next section is to establish an equivalent dual version of
Theorem 1.3. Fix an (x, y)-coordinate system in the plane. We apply a standard
duality transform that maps a point p = (p1, p2) to the line p∗ with equation y +
p1x+p2 = 0. Vice versa, a non-vertical line l with equation y+ l1x+ l2 = 0 is mapped
to the point l∗ = (l1, l2). Consequently, any two parallel lines are mapped into points
having the same x-coordinate. It is often convenient to imagine that the dual picture
lies in another, so-called dual, plane, different from the original one, which is referred
to as the primal plane.

The above mapping is incidence and order preserving, in the sense that p lies
above, on, or below ` if and only `∗ lies above, on, or below p∗, respectively. The
points of a segment e = ab in the primal plane are mapped to the set of all lines in
the closed double wedge e∗, which is bounded by a∗ and b∗ and does not contain the
vertical direction. All of these lines pass through the point q = a∗∩b∗, which is called
the apex of the double wedge e∗. All double wedges used in this paper are assumed
to be closed, and they never contain the vertical direction.

Definition 3.1. We call two double wedges avoiding if their apices are distinct and
the apex of neither of them is contained in the other (see Figure 4).
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Figure 4: Two possible kinds of avoiding double wedges.

It is easy to see that, according to this definition, two non-collinear segments in the
primal plane are avoiding if and only if they are mapped to avoiding double wedges.

Switching to the dual plane, Theorem 1.3 can now be reformulated as follows.

Theorem 3.2. Let L be a set of n pairwise non-parallel lines in the plane, not all
of which pass through the same point. Then the set of all double wedges bounded by
pairs of lines in L has at least 2bn/2c pairwise non-avoiding elements with different
apices.

Note that the definition of double wedges depends on the choice of the coordinate
system, so a priori Theorem 3.2 gives a separate statement in each coordinate frame.
However, each of these statements is equivalent to Theorem 1.3, and that result does
not depend on coordinates. Therefore, we are free to use whatever coordinate system
we like. In the final part of the analysis (given in Section 4), we will exploit this
property. But until then, no restriction on the coordinate system is imposed.

Suppose that a set of 2bn/2c double wedges meets the conditions in Theorem 3.2.
Clearly, we can replace each element of this set, bounded by a pair of lines `1, `2 ∈ L,
by the maximal double wedge with the same apex, i.e., the double wedge bounded by
those lines through `1 ∩ `2 which have the smallest and largest slopes. If every pair of
double wedges in the original set was non-avoiding, then this property remains valid
after the replacement.

It is sufficient to prove Theorem 3.2 for the case when n is even, because for odd
n the statement trivially follows.

The proof is constructive. Let A(L) denote the arrangement of L, consisting of
all vertices, edges, and faces of the planar map induced by L. We will construct a set
of n vertices of A(L) with distinct x-coordinates, and show that the maximal double
wedges whose apices belong to this set are pairwise non-avoiding.

We start by defining a sequence J of vertices v1, v2, . . ., which will be referred to
as junctions. Let L− (resp., L+) denote the subset of L consisting of the n/2 lines
with the smallest (resp., largest) slopes. If we wish to simplify the picture, we can
apply an affine transformation that keeps the vertical direction fixed and carries the
elements of L− and L+ to lines of negative and positive slopes, respectively (whence
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L+

L−

v2
v1

Figure 5: Choosing the first junction v1 in J . The dashed lines, two from L− and two
from L+, are removed. The next junction v2 is also shown.

the choice of notation). However, we will never use this property explicitly (although
the figures will reflect this convention).

The construction proceeds as follows.

Step 1: Set i := 1 and L−

1 := L−, L+
1 := L+.

Step 2: If L−

i = L+
i = ∅, the construction of J terminates. Otherwise, as we will

see, neither set is empty. Let vi be the leftmost intersection point between a line in
L−

i and a line in L+
i . Let d−

i (and d+
i ) denote the number of elements of L−

i (and
L+

i , respectively) incident to vi, and put di = min{d−

i , d+
i }. Define L−

i+1 (and L+
i+1) as

the set of lines obtained from L−

i (resp., L+
i ) by deleting from it the di elements that

are incident to vi and have the smallest (resp., largest) slopes among those incident
lines. (That is, if d−

i = d+
i , then all lines incident to vi are deleted; otherwise, if, say,

d−

i > d+
i , we are left with d−

i −d+
i lines through vi that belong to L−

i and separate the
deleted elements of L−

i from the deleted elements of L+
i . See Figure 5.) Set i := i+1,

and repeat Step 2.

Let J = 〈v1, v2, . . . , vk〉 denote the resulting sequence.

It is easy to verify the following properties of this construction.

Claim 3.3. (i) |L−

i | = |L+
i |, for each i = 1, . . . , k.

(ii) For every 1 ≤ i < j ≤ k, the junction vi lies in the left unbounded face fj of
A(L−

j ∪ L+
j ) which separates L−

j and L+
j at x = −∞ (whose rightmost vertex is vj).

vi lies in the interior of fj if d−

i = d+
i ; otherwise it may lie on the boundary of fj.

(iii)
∑k

i=1 di = n/2. 2

Next, between any two consecutive junctions vi and vi+1, for 1 ≤ i < k, we specify
di + di+1 − 1 further vertices of A(L), called stations.
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L−
i

`

fi+1
vi+1

vi

L+
i

Figure 6: Collecting stations (shown highlighted) between vi and vi+1. The dashed
lines are those removed at vi, and the dashed-dotted ones are those removed at vi+1.
The figure depicts the subcase where a line ` that has been removed at vi+1 also passes
through vi. In this case the lines of L−

i deleted at vi and the lines of L+
i+1 deleted at

vi+1 do not generate enough stations.

Fix an index 1 ≤ i < k, and consider the vertical slab between vi and vi+1. By
Claim 3.3 (ii), vi lies inside or on the boundary of the face fi+1 of A(L−

i+1 ∪ L+
i+1),

whose rightmost vertex is vi+1. See Figure 6. Hence, the segment e = vivi+1 is
contained in the closure of fi+1. Now at least one of the following two conditions is
satisfied: (a) all the di lines removed from L+

i and all the di+1 lines removed from L−

i+1

pass above e, or (b) all the di lines removed from L−

i and all the di+1 lines removed
from L+

i+1 pass below e. When e belongs to the boundary of fi+1, say its containing
line belongs to L+

i+1, case (b) cannot arise, but case (a) does arise: Since ` ∈ L+, all
lines of L−

i pass below it, and since ` was not removed at vi (it was removed at vi+1),
all the removed lines pass above it.

Assume, by symmetry, that (a) holds. Denote the lines removed from L+
i by

`+
1 , . . . , `+

di
, listed according to increasing slopes, and those removed from L−

i+1 by
`−1 , . . . , `−di+1

, listed according to decreasing slopes. Define the set of stations Si in the

vertical slab between vi and vi+1 as the collection of all intersection points of `+
di

with
the lines `−1 , . . . , `−di+1

, and all intersection points of `−di+1
with the lines `+

1 , . . . , `+
di

.
Clearly, we have |Si| = di + di+1 − 1 such points; see Figure 6.

Finally, we consider the portions of the plane to the left of v1 and to the right of
vk and collect there a set Sk of dk + d1 − 1 additional stations. Actually, exploiting
the fact that we can (almost) freely select the coordinate system used for the duality
transform, we will be able to select dk + d1 − 1 suitable stations, so that all of them,
or all but one, lie to the left of v1. The proper choice of the coordinate system as well
as the details of the construction of Sk are described in the next section.

Let Q = J ∪
(

∪k
i=1Si

)

. In view of Claim 3.3 (iii), the total number |Q| of junctions
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and stations equals

|Q| = |J | +
k

∑

i=1

|Si|

= k +
k−1
∑

i=1

(di + di+1 − 1) + (dk + d1 − 1)

= 2

k
∑

i=1

di = n.

To complete the proof of Theorem 3.2 (and hence of Theorem 1.3), we need to
verify

Claim 3.4. Associate with each element q ∈ Q the maximal double wedge W (q) (not
containing the vertical line through q), which is bounded by a pair of lines passing
through q. Then the resulting set of n double wedges has no two avoiding elements.

We close this section by verifying the last claim for the set of wedges {W (q)|q ∈
Q \ Sk}. The extension to the general case is postponed to the last section, where Sk

is defined.

Let u, v ∈ Q \ Sk with u lying to the left of v. We distinguish three cases:

Case A: Both u and v are junctions.

Put u = vi and v = vj, with i < j. Then W (v) is bounded by a line ` ∈ L−

j and
by a line `′ ∈ L+

j . By Claim 3.3(ii), vi lies between these two lines, and thus belongs
to W (v).

Case B: u is a junction and v is a station not in Sk.

Put u = vi and let Sj be the set of stations that contains v, where i ≤ j. Then
W (v) is bounded by two lines `, `′, where either ` ∈ L−

j and `′ ∈ L+
j+1, or ` ∈ L−

j+1

and `′ ∈ L+
j . By construction, we have in both cases ` ∈ L−

j and `′ ∈ L+
j , and the

analysis is completed as in Case A.

Case C: u is a station not in Sk and v is a junction or a station not in Sk.

Let Si be the set of stations containing u. The arguments in Case A and Case B
imply that vi ∈ W (v). If v is also a station in Si or v = vi+1 then it is easy to verify,
by construction, that W (u) and W (v) are non-avoiding (see Figure 6). Suppose then
that v lies to the right of vi+1. Then both vi and vi+1 lie in the left wedge of W (v),
and u is incident to a line λ of positive slope that passes through vi and to a line λ′ of
negative slope that passes through vi+1. If u /∈ W (v) then a boundary line of W (v)
must separate u from vi and vi+1, in which case v ∈ W (u); see Figure 7.
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Figure 7: Illustrating Case C of the proof that W (u) and W (v) cannot be avoiding.

r

m0

m1

y

R+ R−

Figure 8: The primal construction of R− and R+.

4 Wrapping Up – The End of the Proof

In this section, we define the missing set of stations Sk, and extend the proof of
Claim 3.4 to handle also elements of Sk. We need an elementary geometric fact that
is easier to formulate in the primal setting.

Lemma 4.1. Let R be a set of n non-collinear points in the plane, let n be even, and
let r be any vertex of the convex hull of R. Then there exists a partition of R into two
n/2-element subsets, R− and R+, whose convex hulls are disjoint and which have a
common inner tangent m0 passing through r.

Proof: Rotate a directed line ` counterclockwise about r, starting with all the points
of R \ {r} lying to the left of `, until the closed halfplane to the right of ` contains
for the first time more than n/2 points. Define R− to be the set R0 of points in the
open halfplane to the right of `, plus the first n/2 − |R0| points of ` ∩ R along `. m0

coincides with the final position of `. See Figure 8. 2
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Let m1 denote the other inner tangent of the convex hulls of R− and R+. Now
choose an orthogonal (x, y)-coordinate system whose y-axis is a line strictly separating
R− and R+. Suppose without loss of generality that

(a) R+ and R− are to the left and to the right of the y-axis, respectively,

(b) r ∈ R−, and

(c) m0 is oriented from r away from the other contact point(s), and the positive
y-direction lies counterclockwise to it. See Figure 8.

In the dual picture, R− and R+ become n/2-element sets of lines, L− and L+,
having negative and positive slopes, respectively. Applying the construction described
in the previous section to L := L− ∪ L+, we obtain a sequence of junctions J =
〈v1, v2, . . . , vk〉 and sets of stations S1, . . . , Sk−1.

Since m1 is the line with the largest slope connecting a point of R+ and a point
of R−, our duality implies that m∗

1, the dual of m1, is the leftmost intersection point
between a line of L+ and a line of L−. Hence, we have v1 = m∗

1. As our construction
sweeps the dual plane from left to right, we collect junctions and stations whose dual
lines rotate clockwise from m1 onwards.

Claim 4.2. At least one of the following two conditions will be satisfied:

(i) The last junction, vk, is identical to m∗

0, the dual of m0.

(ii) r∗, the dual of r ∈ R−, passes through vk and is the unique element of L−

deleted during the procedure at vk (so that dk = 1).

Proof: Suppose that during the procedure r∗ is deleted at a junction vj , for some
j ≤ k. Clearly, v∗

j passes through r and through at least one point t ∈ R+.

If in the primal plane v∗

j passes through another point r′ 6= r of R−, then v∗

j = m0

(otherwise it has to lie clockwise to m0 and then it cannot meet any point of R+). In
this case, in the dual plane there cannot be any intersection point between a line of
L− and a line of L+ to the right of vj, so that j = k. That is, we have v∗

k = m0, and
(i) holds.

If in the primal plane v∗

j does not pass through any element r′ ∈ R− other than
r, then we have dj = 1. If j = k, then condition (ii) is satisfied. Let us assume, by
contradiction, that j < k and v∗

k 6= m0. Take any two lines `− ∈ L− and `+ ∈ L+

in the dual plane that are deleted during the procedure at the last junction vk. By
assumption and construction, we have `∗

−
6= r, and the slope of the segment `∗+`∗

−
⊂ v∗

k

connecting their duals in the primal plane (i.e., the slope of v∗

k) is smaller than that
of the segment tr. By duality, these slopes appear in the reverse order of the x-
coordinates of vk and vj .

We claim that the two segments `∗+`∗
−

⊂ v∗

k and tr ⊂ v∗

j are avoiding. Indeed,
`∗+`∗

−
must meet m0 to the left of r, or else r would not be an extreme point of R (it

would lie in the relative interior of the segment connecting `∗+`∗
−
∩ m0 to a point in

R+∩m0; see Figure 9). Since the slope of `∗+`∗
−

is larger than that of the inner tangent
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R+ R−

r v∗k

v∗j

t

`∗−

`∗+

m0

Figure 9: The segments tr and `∗+`∗
−

must be avoiding.

m0, this implies that `∗
−

lies above m0, and that r lies below `∗+`∗
−
. Now if `∗

−
lied

below v∗

j , which is the line supporting tr, then it would have to lie in the right wedge
determined by v∗

j and m0, with apex at r, which implies that r cannot be extreme
in R; see Figure 9(b). We thus conclude that `∗

−
must lie above v∗

j . These facts,
together with the slope relationship between v∗

j and v∗

k, imply that the two segments
are avoiding. This, in turn, implies that the wedges W (vk) and W (vj) are avoiding,
contradicting Claim 3.4 (Case A). 2

The above argument is valid for any coordinate system whose y-axis strictly sep-
arates the sets R− and R+. We specify a coordinate system with this property as
follows.

Choose the y-axis to be very close to m0, so that, in the dual plane the slope of
every line of L passing through m∗

0 has smaller absolute value than the slope of any
other line of L; that is, the x-coordinates of the points of m0∩R have smaller absolute
values than those of any other point of R. See Figures 10(a) and 11(a).

Now we are in a position to define the set of stations Sk. Pass to the dual plane.
The first junction, v1, lies inside or on the boundary of the face fk of A(L−

k ∪ L+
k ),

whose rightmost vertex is vk, so that the segment e = v1vk is contained in the closure
of fk.

Suppose first that vk = m∗

0. We can assume by symmetry that in the dual plane
all the d1 lines removed from L−

1 = L− during the procedure pass below e, and all the
dk lines of L−

k pass above e (as in the preceding section, this statement is not totally
obvious when e lies on the boundary of f). Let `−1 , . . . , `−d1

and λ−

1 , . . . , λ−

dk
denote the

removed lines of L−

1 and of L−

k , respectively, listed in the decreasing order of their
slopes. By the special choice of our coordinate system, each line `−i intersects every
line λ−

j to the left of v1. Indeed, the slope of the primal segment (λ−

j )∗(`−i )∗ is larger
than that of m1, because (λ−

j )∗ ∈ m0 lies below m1 and to the left of (`−i )∗ ∈ m1;
see Figure 10(a). (We note that the assumption that all lines in L−

1 pass strictly
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Figure 10: The case vk = m∗

0 of the construction of Sk. (a) The primal structure. (b)
The stations in Sk (highlighted to the left of v1).

below vk implies that c := m0 ∩m1 is not dual to any line in L−

1 , implying that each
(λ−

j )∗ does indeed lie to the left of every (`−i )∗.) Define the last set of stations, Sk,
as the collection of all intersection points of `−d1

with the lines λ−

1 , . . . , λ−

dk
, and all

intersection points of λ−

dk
with the lines `−1 , . . . , `−d1

. See Figure 10(b). Clearly, we
have |Sk| = dk + d1 − 1 such points, all lying to the left of v1.

Suppose next that vk 6= m∗

0. In this case, according to Claim 4.2, vk lies on r∗

and dk = 1. Refer to Figure 11. Again, let `−1 , . . . , `−d1
denote the lines removed from

L−

1 = L− at v1, listed in the decreasing order of their slopes. In the dual plane, the
line r∗ passes above v1 and, by the choice of the coordinate system, it intersects every
`−i to the left of v1, with the possible exception of `−1 . The intersection r∗ ∩ `−1 can lie
to the right of v1 (and of vk) only if the point c := m0 ∩m1 belongs to R− and is dual
to a line removed at v1, in which case that line must be `−1 = c∗. Note that in this
case r∗ ∩ `−1 = r∗ ∩ c∗ is identical to the point m∗

0 dual to m0, and the choice of the
coordinate system implies that this is the rightmost vertex of A(L) on r∗. We define
Sk to be the set of intersection points between the lines `−1 , . . . , `−d1

and r∗.1 Thus,
either all points of Sk, or all but one (namely, m∗

0) lie to the left of v1. Clearly, we
have |Sk| = d1 = dk + d1 − 1, as required.

We have to complete the proof of Claim 3.4. It remains to show the following:

Claim 4.3. For any u ∈ Q and any v ∈ Sk, the maximal wedges W (u) and W (v)
associated with them are non-avoiding.

Proof: If both u and v belong to Sk, then the claim is obviously true. From now on
suppose that u 6∈ Sk. Then we have u ∈ {vi} ∪ Si ∪ {vi+1}, for some 1 ≤ i < k.

1Note the assymmetry between this case, where the stations are constructed using lines in L−

only, and the previous case, where the stations can be constructed using either lines of L− or lines
of L+, depending on the relative position of the lines incident to v1 and vk.
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Figure 11: The case vk 6= m∗

0 of the construction of Sk. (a) The choice of the
coordinate frame. (b) The dual picture.

We start with the case vk = m∗

0. Let v ∈ Sk be the intersection point of two lines,
` and λ, passing through v1 and vk, respectively, which, without loss of generality,
we assume to belong to L−. If u is contained in the double wedge bounded by ` and
λ, then u ∈ W (v), so that W (u) and W (v) are non-avoiding. Otherwise, since v lies
to the left of v1, u lies either above λ or below `. If u is above λ, then it is not a
junction, so it must be the crossing point of a line `+ ∈ L+ and a line `− ∈ L− which
are removed during the procedure at junction vi and at junction vi+1, respectively.
See Figure 12(a). Both vi and vi+1 lie on or below λ, so that the left portion of the
double wedge bounded by `− and `+ contains v. Thus, we have v ∈ W (u). If, on the
other hand, u is below `, as in Figure 12(b), then it is either a junction or a station,
and it is the crossing point of a line `− ∈ L− and a line `+ ∈ L+, each of which is
removed at junction vi or at junction vi+1. Now `− must pass above (or through) v1

(as do all lines of L−, by construction), and hence above v, while `+ must pass below
(or through) v1 (again, by construction). This, combined with the fact that ` passes
through v1 and that `+ has positive slope whereas ` has negative slope, imply that
`+ passes below v (see Figure 12(b)). Again we can conclude that the left portion of
the double wedge bounded by `− and `+, and thus W (u), contains v.

If vk 6= m∗

0, the above argument can be repeated verbatim, unless m∗

0 ∈ Sk and
v = m∗

0; so assume this to be the case. Now it is simplest to establish the claim in
the primal plane, by noting that the segment dual to W (v) lies on the line m0, and
that, by construction (since u /∈ Sk), the segment dual to W (u) must connect a point
of R− to a point of R+, and thus must intersect m0, showing that these two segments
are non-avoiding. 2

By verifying the last claim, we have completed the proof of Claim 3.4 and hence
of Theorem 3.2. This was our last debt.
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Figure 12: The proof that W (u) and W (v) are non-avoiding when v is a station to
the left of v1.
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[3] A. Blokhuis and Á. Seress, The number of directions determined by points in the
three-dimensional Euclidean space, Discrete Comput. Geom. 28 (2002), 491–494.

[4] P. Borwein and W. O. J. Moser, A survey of Sylvester’s problem and its general-
izations, Aequationes Math. 40 (1990), 111–135.

[5] G. D. Chakerian, Sylvester’s problem on collinear points and a relative, Amer.
Math. Monthly 77 (1970), 164–167.

[6] R. Cordovil, The directions determined by n points in the plane, a matroidal
generalization, Discrete Math. 43 (1983), 131–137.
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