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Figure 1: A set with n = 7 points that determines 2n� 5 = 9 diretions.In 1982, after some initial results by Burton and Purdy [3℄, Ungar [18℄ solved the�rst problem, by verifying Sott's onjeture that in the plane the above minimumis equal to 2bn=2, for any n > 3. For even n, this result is onsiderably strongerthan the orollary of the Gallai-Sylvester theorem mentioned above. Ungar's proofis a real gem, a brilliant appliation of the method of allowable sequenes inventedby Goodman and Pollak [8℄, [9℄. Moreover, it solves the problem in an elegantombinatorial setting, for \pseudolines", as was suggested independently by Goodmanand Pollak and by Cordovil [4℄. Interestingly, there is an overwhelming diversity ofextremal on�gurations, for whih equality is attained. Four in�nite families andmore than one hundred sporadi on�gurations were ataloged by Jamison and Hill[11℄. See also [10℄ for an exellent survey by Jamison, and the monograph of Aignerand Ziegler [1℄, where Ungar's proof and some of its relatives are reprodued.In lak of a natural ordering of all diretions in 3-spae, Ungar's method doesnot seem to generalize. This explains why until reently there had not been muhprogress onerning Sott's seond question. Sott's onstrution of a double pyramidwhose base is a regular polygon with an even number of edges, inluding the enterof the base (see Figure 1), shows that the number of diretions determined by n non-oplanar points an be as small as 2n� 5 if n is odd. This bound was onjetured tobe tight. Under the additional assumption that no three points of the set are ollinear,Blokhuis and Seress [2℄ proved that the number of diretions determined by n � 6non-oplanar points in 3-spae is at least 7n=4 � 2. Using the same ondition, wehave reently sueeded in proving the tight bound 2n� 2 if n is odd and 2n� 3 if nis even [14℄.In the present paper we solve Sott's seond problem in full generality (for thease of n odd), by removing the assumption that no three points are ollinear.Theorem 1.1. Every set of n � 6 points in R3 , not all of whih are on a plane,determines at least 2n� 5 di�erent diretions if n is odd, and at least 2n� 7 di�erentdiretions if n is even. This bound is sharp for every odd n � 7.The ase where n is even is handled by removing one point and applying the bound2



non-onvergent onvergentFigure 2: Convergent and non-onvergent segments.for odd n. Therefore, from this point on we assume that n is odd. Nevertheless, webelieve that the bound for even n an be improved. We note that the double-pyramidonstrution in Figure 1, without the enter, yields an upper bound of 2n � 3 for neven.The idea of the proof is outlined in Setion 2. A key new ingredient of ourargument is Theorem 3.1, proved in Setion 3, whih is a far reahing \bipartite"variant of Ungar's aforementioned theorem.De�nition 1.2. Two losed segments in Rd are alled onvergent if (i) they do notbelong to the same line, and (ii) their supporting lines interset, and the intersetionpoint does not belong to any of the segments. See Figure 2.An alternative de�nition is that two segments are onvergent if and only if theyare disjoint and their onvex hull is a planar quadrilateral. Two parallel segments thatlie on distint lines are also onsidered to be onvergent (by regarding their lines tomeet at in�nity, or aording to the alternative de�nition). Note also that ondition(ii) rules out pairs of segments with a ommon endpoint.Instead of Theorem 1.1, in Setion 4 we establish the following signi�antlystronger result.Theorem 1.3. Every set of n � 6 points in R3 , not all of whih are on a plane,determine at least 2n � 5 segments if n is odd, and at least 2n � 7 segments if n iseven, no two of whih are onvergent and no two ollinear. This bound is sharp forevery odd n � 7.We apply Theorem 1.3 in Setion 5 to partially settle in the aÆrmative a onjetureof Blokhuis and Seress [2℄, showing (in Theorem 5.1) that any set P of n points inR4 , not ontained in a hyperplane and not having three ollinear points, determine atleast 3n� 8 di�erent diretions, if n is even, and at least 3n� 10 di�erent diretionsif n is odd. The bound is sharp for every even n � 8.R�edei's monograph on launary polynomials [15℄ was the starting point of manyinvestigations related to algebrai variants of the above problem. For instane, itwas proved in [15℄ that if n is a prime, then any set of n points in the aÆne planeAG(2; n) determines at least (n + 3)=2 di�erent diretions. Lov�asz and Shrijver3



[13℄ haraterized all sets for whih equality is attained. In the �nite projetiveplane PG(2; N), a set P of n > 4 points, no three of whih are ollinear, is knownto determine at least n di�erent diretions if N is odd and at least n � 1 if N iseven. Equality is attained here if and only if P spans a (properly de�ned) aÆnelyregular n-gon (see [7, 12℄). The last theorem, due to Wettl [19℄ answers a questionof Gus Simmons in ryptography. For many similar results and appliations in �nitegeometry, algebrai number theory, and group theory, onsult the survey of Sz}onyi[17℄.2 PreliminariesLet P be a set of n points in R3 suh that not all of them lie in a ommon plane.Let p0 be an extreme point of P , i.e., a vertex of the onvex hull of P . Consider asupporting plane to P at p0, and translate it to the side that ontains P . Let � denotethe resulting plane. Projet from p0 all points of P n fp0g onto �. We obtain a setR of points in �, not all on a line, so that eah point is the image of some points ofP . We regard R as a set of weighted points, where the weight w(r) of a point r 2 Ris the number of points of P n fp0g that projet onto it.1 The sum of the weights isn� 1. For a subset A � R, we de�ne w(A) :=Pq2A w(q).We assume that n is odd, thus w(R) = n� 1 is even. We attempt to partition Rinto two subsets R+; R�, so that w(R+) = w(R�) = (n � 1)=2 and all points of R+lie to the left of every point of R� with respet to some generi oordinate frame in�, in whih no two elements of R have the same x-oordinate.For the hoie of the oordinate frame and the partition, we begin with the fol-lowing elementary geometri fat. Reall that a ommon inner tangent to two onvexsets with disjoint interiors is a line that is tangent to both sets and separates betweenthe interiors of the sets.Lemma 2.1. Let R be a set of non-ollinear weighted points in the plane, with a totaleven weight m. Let r be any vertex of the onvex hull of R whose weight is smallerthan m=2. Then one of the following properties holds:(i) There exists a partition of R into two subsets, R� and R+, eah of overall weightm=2, whose onvex hulls are disjoint and whih have a ommon inner tangent m0passing through r.(ii) There exists a point q 2 R and a partition of Rnfqg into two subsets, R�0 and R+0 ,eah of overall weight < m=2, so that the onvex hulls of R�0 [fqg and R+0 [fqg meetonly at q, whih is a ommon vertex of both hulls, and the line m0 passing throughr and q is an inner ommon tangent to the two hulls (supporting one of them in theedge qr).1In the preeding paper [14℄, where it was assumed that no three points of P are ollinear, R wasa set, or, rather, the weight of eah point was 1. 4
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(ii)Figure 3: The primal onstrution of R� and R+: Case (i) (left) and Case (ii) (right).Proof: See Figure 3. Rotate a direted line ` ounterlokwise about r, starting withall the points of R n frg lying to the left of `, until the losed halfplane to the rightof ` ontains for the �rst time points with overall weight larger than m=2. Let R�0denote the set R0 of points in the open halfplane to the right of `, plus the largest setof initial points of ` \ R along ` (in their order along ` starting at r) whose overallweight does not exeed m=2� w(R0).If the overall weight of R�0 is exatly m=2, we are in ase (i). We de�ne R� := R�0 ,and R+ := R n R�0 . See Figure 3(i). It is lear that the onvex hulls of R+ and R�are disjoint, and that the �nal position of ` is the desired ommon inner tangent m0.If the overall weight of R�0 is less than m=2, we are in ase (ii). Let q be the nextpoint of `\R along `, and de�ne R+0 := R n (R�0 [ fqg). See Figure 3(ii). It is easilyseen that the properties asserted in (ii) hold, with m0 being the �nal position of `. �We apply Lemma 2.1 to our set R � �, with m = n�1. In ase (ii), we split q intotwo o-loated points q�; q+, and distribute the weight w(q) between them, so thatw(q�) = (n�1)=2�w(R�0 ) and w(q+) = (n�1)=2�w(R+0 ). We set R� := R�0 [fq�gand R+ := R+0 [ fq+g. We refer to q as the entral bihromati point of R.Let m1 denote the other inner tangent of the onvex hulls of R� and R+. In ase(ii), m1 also passes through q and through at least one other point of one of the twosets. Now hoose in � an orthogonal (x; y)-oordinate system whose y-axis is eithera line that stritly separates R� and R+ in ase (i), or a line through q that stritlyseparates R�0 and R+0 in ase (ii). We an arry out the onstrution so that (a)R+ and R� are to the left and to the right of the y-axis, respetively, (b) r 2 R�,and () m0 is oriented from r away from the other ontat point(s), and the positivey-diretion lies ounterlokwise to it. See Figure 3. This still leaves us with somefreedom in �xing the oordinate frame. We will later impose further onstraints onit to failitate ertain steps in our analysis.The presene of q adds an extra level of ompliation to the proof. We note that5
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Figure 4: The sets P+h and P�h . (a) The ase where the entral bihromati point q(if it exists at all) does not lie on `. (b) The ase where q exists and lies on `.in the on�guration shown in Figure 1, hoosing p0 to be any vertex of the hull, say,the lowest point, the weighted set R has a entral bihromati point q, as shown inFigure 31(ii). As will follow from our analysis, the bounds in both Theorems 1.1 and1.3 improve to 2n� 2, for n odd, when q does not exist.Let P+ (resp., P�) denote the set of points of P n fp0g that projet from p0 topoints of R+ (resp., R�). Points projeting to q are split between P+ and P�. Thisan be best visualized by a plane �0 that separates P+ and P�. If q does not exist, �0is the plane spanned by p0 and the y-axis in �. If q exists, �0 uts the line ontainingthe preimages of q into two piees, one of whih ontains w(q+) preimages and theother ontains w(q�) preimages. Without loss of generality, we may assume that thew(q+) preimages losest to p0 belong to P+.A brief overview of the proof of Theorem 1.3. In Setion 4, we onstrut a setF of mutually non-onvergent segments in �, whose endpoints belong to R. With fewexeptions, the segments in F onnet points of R+ to points of R�. Observe that asegment in � onneting two points r1 and r2 of R is in fat a projetion to � (throughp0) of a segment onneting two points of P whih projet to r1 and r2, respetively.Moreover, if e0 and f 0 are two segments in R3 whose respetive projetions onto � aree and f , and if e and f are non-onvergent, then so are e0 and f 0, as is easily heked.This is more or less the strategy used in our preeding study [14℄. In the setupassumed there, eah point of R was the image of a unique point of P n fp0g, and thenumber of segments in F was roughly jRj. Then the segments in 3-spae that projetto the segments of F , together with the segments onneting p0 to eah of the otherpoints of P , yielded the desired set of mutually non-onvergent segments determinedby P .However, the ruial di�erene between the setup in Theorem 1.3 and that in themain theorem of [14℄ is that now the entral projetion from p0 of P onto R may be6



many-to-one, beause P may have many points that are ollinear with p0, in whihase they all projet to a single point of R. As a result, the set R may onsist of muhfewer than jP j � 1 points, and hene the set F may not ontain the desired numberof mutually non-onvergent segments. (In the extreme ase, R might onsist of onlytwo points and F of just one segment!)To resolve this issue, we take advantage of the fat that many points in P projetto the same point in �, and use it to map eah segment f 2 F to a set E(f)of pairwise non-onvergent segments in 3-spae, determined by P , and lying in theplane h spanned by p0 and f . The sum of the sizes jE(f)j, over f 2 F , is at leastequal to the desired bound on the number of di�erent diretions.In more detail, let f 2 F be one of the segments we olleted on �. Let ` be theline in � that ontains f , and let h be the plane spanned by ` and p0. Put Ph = P \h,and de�ne P+h = P+ \ h and P�h = P� \ h. Note that any segment that onnetstwo points in Ph projets to a segment in � that is ollinear with f , and thus f isthe only segment in F that an be obtained in suh a way. To ompensate for this\waste", we apply Theorem 3.1 (stated and proved in Setion 3), whih implies theexistene of a (suÆiently large) set E(f) of pairwise non-onvergent segments in Ph.Eah segment e 2 E(f) either onnets a point of P+h to a point of P�h , or onnets p0to some point in Ph, suh that the projetion e� of e from p0 on the line ` supportingf either fully ontains f , or is a point, outside the interior of f ; see Figure 4(a).We note that the proof of Theorem 3.1 itself, whih is a far-reahing bipartitevariant of Ungar's theorem, is rather intriate, and oupies a signi�ant portion ofthe paper. Although the proof bears some \syntati" similarities to the proof ofour main Theorem 1.3, it deals with a ompletely di�erent senario, and is thereforepresented separately, as a stand-alone result (whih we believe to be of independentinterest).Finally, we let E denote the union of all the sets E(f). Using a fairly intriateanalysis, based on the properties of the onstrution in Theorem 3.1 noted above,we show (assuming that n is odd) that (a) E onsists of at least 2n � 5 segments(Setion 4.4), and (b) every pair of distint segments in E are non-onvergent andtherefore non-parallel (Setion 4.5). One (a) and (b) are established, Theorems 1.3and 1.1 follow, beause the diretions of the segments in E are all di�erent.We emphasize one again that Theorem 1.3 is onsiderably stronger than Theo-rem 1.1. Besides being of independent interest, we expet this strengthening to beuseful for extending our results to higher dimensions, using indution on the dimen-sion; see the onluding setion for more details.3 A Bipartite Ungar-type TheoremA ruial ingredient of our analysis is the following variant of Ungar's theorem, whihwe believe to be of independent interest. 7
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Figure 5: An example where Theorem 3.1 does not hold.Theorem 3.1. Let X+ and X� be two �nite sets of points in the plane, and let p0be a point in the plane, suh that p0 is an extreme point of X+ [ X� [ fp0g, andthere is a line through p0 that stritly separates X+ and X�. We also assume that0 < jX�j � jX+j and that the innermost ray from p0 to a point of X+ (forming thesmallest angle with the separating line) ontains more than jX+j� jX�j points. Thenone an selet at least jX+j + jX�j + 1 pairwise non-onvergent and non-ollinearsegments onneting points of X+ [ fp0g to points of X� [ fp0g.We remark that the \+1" term in the above bound is ruial for our analysis, andthat we may lose this term if the assumption on the points in the innermost ray doesnot hold, as is illustrated in Figure 5, where jX+j + jX�j + 1 = 5 but at most fourpairwise non-onvergent segments an be seleted.Corollary 3.2. Assume the onditions of Theorem 3.1, with the di�erene that theinnermost ray from p0 to a point of X+ ontains exatly jX+j�jX�j points. Then onean selet at least jX+j + jX�j pairwise non-onvergent and non-ollinear segmentsonneting points of X+ [ fp0g to points of X� [ fp0g.We note that Ungar's theorem \almost" follows from Theorem 3.1 and its orol-lary. That is, let P be a set of n non-ollinear points in the plane, where n is even.Pik an extreme point p0 of P , and �nd a line that passes through p0 and splitsP n fp0g into two subsets X+; X� whose sizes are as equal as possible. Suppose thatjX+j � jX�j. Then the innermost ray from p0 to points of X+ must ontain atleast jX+j � jX�j points, for otherwise we ould have transferred these points to X�and get a split with a smaller size di�erene. If the number of points on the inner-most ray is larger than jX+j � jX�j, then Theorem 3.1 applies, and yields at leastjX+j � jX�j+ 1 = jP j pairwise non-onvergent segments onneting the points of P ,whih implies (and is muh stronger than) Ungar's theorem. However, if the numberof points on the innermost ray is equal to jX+j� jX�j, then only Corollary 3.2 an beapplied, and it only yields jX+j � jX�j = jP j � 1 pairwise non-onvergent segmentsonneting the points of P , one shorter of what Ungar's theorem gives. We leave itas an open problem to determine whether Ungar's theorem an always be deduedfrom Theorem 3.1 and Corollary 3.2.Proof of Corollary 3.2: Remove one point from X+ whih is not on the innermost8



Figure 6: Two possible kinds of onvergent double wedges.ray from p0 to a point of X+ (note that X+ is not fully ontained in that ray, sinejX�j > 0), and apply Theorem 3.1 to the resulting set of points. �Proof of Theorem 3.1: Fix an (x; y)-oordinate system in the plane. We apply astandard duality transform that maps a point p = (p1; p2) to the line p� with equationy + p1x + p2 = 0. Vie versa, a non-vertial line l with equation y + l1x + l2 = 0 ismapped to the point l� = (l1; l2). Consequently, any two parallel lines are mappedinto points having the same x-oordinate. It is often onvenient to imagine that thedual piture lies in another, so-alled dual, plane, di�erent from the original one,whih is referred to as the primal plane.The above mapping is inidene and order preserving, in the sense that p liesabove, on, or below ` if and only `� lies above, on, or below p�, respetively. Thepoints of a non-vertial segment e = ab in the primal plane are mapped to the set ofall lines in the losed double wedge e�, whih is bounded by a� and b� and does notontain the vertial diretion. All of these lines pass through the point q = a� \ b�,whih is alled the apex of the double wedge e�. All double wedges used in this paperare assumed to be losed, and they never ontain the vertial diretion.We all two double wedges onvergent if their apies are distint and the apex ofneither of them is ontained in the other. See Figure 6.It is easy to see that, aording to this de�nition, two non-ollinear segments inthe primal plane are onvergent if and only if they are mapped to onvergent doublewedges.Without loss of generality, we assume that p0 is the origin, that X+ lies to theleft of the y-axis, that X� lies to its right, and that both sets lie below the x-axis;see Figure 7(a). The duality maps p0 into the x-axis, whih we denote as `0, the linesonneting p0 to points in X+ (resp., X�) to points on the negative (resp., positive)x-axis, and the points of X+ (resp., X�) to lines with positive (resp., negative) slopes;see Figure 7(b). Let �+, �� denote the set of lines dual to the points of X+, X�,respetively. Enumerate the points dual to the lines onneting p0 to the points ofX+ as q1; : : : ; qk in this left-to-right order, and the points dual to the lines onnetingp0 to the points of X� as q01; : : : ; q 0̀ in this right-to-left order; thus q1 is the leftmostpoint and q01 is the rightmost. Put n+ = j�+j = jX+j, n� = j��j = jX�j.De�ne �� := �� [ f`0g. Let �e denote the set of n+ � n� lines of �+ that pass9



(a)`
p0X+ X� q1 q2 q3 q02q03 q01v2

(b) ���+ o `0 2 ��v3v1
Figure 7: The setup in Theorem 3.1. (a) The primal on�guration. (b) The dualon�guration. Sine jX+j = 8 and jX�j = 6, we have two exess lines, shown asdashed.through q1 and have the shallowest (smallest in absolute value) slopes; we refer tothese lines as exess lines. De�ne �+ = �+n�e. We have j��j = j�+j+1 = n�+1. Wenote that by an appropriate hoie of the oordinate frame in the duality transform,we may assume that the slopes of the exess lines are the smallest among all lines in�+.Construting juntions. We apply an iterative pruning proess that onstrutsa sequene of verties (\juntions") v1; : : : ; vm whih are intersetion points of linesfrom �� and lines from �+, and sets of intermediate verties (\stations") betweensuessive juntions, as well as a set of \termini" to the right of the rightmost juntion.The sequene J of juntions hv1; v2; : : : ; vki is onstruted as follows.Step 1: Set i := 1 and �+1 := �+, ��1 := ��.Step 2: If �+i = ;, the onstrution of J terminates. Otherwise, as guaranteedby the onstrution, neither set is empty. Let vi be the leftmost intersetion pointbetween a line in �+i and a line in ��i . Let d+i (and d�i ) denote the number of linesof �+i (and ��i , respetively) inident to vi, and put di := minfd+i ; d�i g. De�ne �+i+1(resp., ��i+1) as the set of lines obtained from �+i (resp., ��i ) by deleting from it thedi lines that are inident to vi and have the largest (resp., smallest) slopes amongthose inident lines. (That is, if d+i = d�i , then all lines inident to vi are deleted;otherwise, if, say, d+i > d�i , we are left with d+i � d�i lines through vi that belong to�+i and separate the deleted elements of �+i from the deleted elements of ��i . SeeFigure 8, where di = d�i = 2, d+i = 3, and the dashed lines, two from �+i and twofrom ��i , are removed at vi.) Set i := i + 1, and repeat Step 2.Note that, due to the speial struture of the arrangement, we have v1 = q1 andd1 = 1. See Figure 7(b). Reall also that the exess lines do not partiipate in thejuntion onstrution proess. 10
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Figure 8: Construting the juntion vi in J . The dashed lines, two from �+ and twofrom ��, are removed at vi. The next juntion vi+1 is also shown.It is easy to verify the following properties of this onstrution.Claim 3.3. (i) j��i j = j�+i j+ 1, for eah i = 1; : : : ; k; �+k+1 = ; and j��k+1j = 1.(ii) For every 1 � i < j � k, the juntion vi lies in the left unbounded fae fj ofA(�+j [ ��j ) whih separates �+j and ��j at x = �1 (and whose rightmost vertex isvj). vi lies in the interior of fj if d+i = d�i ; otherwise it may lie on the boundary offj.(iii) Pki=1 di = j�+j = n�: �Colleting stations. Next, between any two onseutive juntions vi and vi+1, for1 � i < k, we speify di + di+1 � 1 further verties of A(�+ [ ��), alled stations(thus, the exess lines are still kept out of the onstrution).Fix an index 1 � i < k, and onsider the vertial slab between vi and vi+1. ByClaim 3.3 (ii), vi lies inside or on the boundary of the fae fi+1 of A(�+i+1 [ ��i+1),whose rightmost vertex is vi+1. See Figure 9. Hene, the segment e = vivi+1 isontained in the losure of fi+1. Now at least one of the following two onditions issatis�ed: (a) all the di lines removed from �+i and all the di+1 lines removed from��i+1 pass stritly above e (exept possibly for its endpoints), or (b) all the di linesremoved from ��i and all the di+1 lines removed from �+i+1 pass stritly below e.Indeed, if vi lies in the interior of fi+1 then the di+1 lines of �+i+1 (resp., of ��i+1)that are removed at vi+1 pass stritly below (resp., above) vi. In this ase, the validityof either (a) or (b) follows by onsidering the position of vi among the lines of �+i [��ithat are removed at vi. If vi lies on the boundary of fi+1 (as shown in Figure 9), thenit has to lie on a line of �+i+1 [ ��i+1, say it lies on a line ` of �+i+1 (as shown in the�gure). Then all the di+1 lines removed from ��i+1 pass stritly above vi and e. Nowthe line ` belongs to �+i and passes through vi. Sine it was not removed at vi, all the11
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Figure 9: Colleting stations between vi and vi+1. We have di = di+1 = 2. Thelines removed at vi are drawn as dashed, and those removed at vi+1 are drawn asdashed-dotted.di lines of �+i that were removed pass stritly above e, by onstrution, so (a) holds.If vi lies on a line of ��i+1, a symmetri argument shows that (b) holds.Assume, by symmetry, that (a) holds. Denote the lines removed from �+i by`+1 ; : : : ; `+di, listed aording to inreasing slopes, and those removed from ��i+1 by`�1 ; : : : ; `�di+1, listed aording to dereasing slopes. See Figure 9. De�ne the set ofstations Si in the vertial slab between vi and vi+1 as the olletion of all intersetionpoints of `+di with the lines `�1 ; : : : ; `�di+1 , and all intersetion points of `�di+1 with thelines `+1 ; : : : ; `+di. Clearly, we have jSij = di + di+1 � 1 suh points; see Figure 9.We refer to the grid-like rossing pattern between the lines `+1 ; : : : ; `+di and the lines`�1 ; : : : ; `�di+1, as the upper grid between vi and vi+1. The olleted stations lie onthe \upper rim" of that grid. In omplete analogy, when ase (b) applies, we olletstations along the \lower rim" of the lower grid between vi and vi+1.The desription so far mathes the one given in [14℄. We now desribe the newfeatures of the present olletion proess. They involve (a) olleting \exess stations"for the exess lines, and (b) olleting verties (that we refer to as \termini") to theright of vk.Colleting exess stations. The olletion of exess stations proeeds as follows.As we ollet the juntions vi, we maintain a subset �ei of `surviving' exess lines. Foreah i, the lines in �ei satisfy the property that they pass below or through eah of thejuntions v1; : : : ; vi. Initially, �e1 = �e, all of whose lines learly satisfy this property(they pass through v1). When we reah a new juntion vj, we remove ertain linesfrom �ej�1. When an exess line is removed, we assoiate with it a new exess stationthat lies somewhere to the left of vj. Typially, but not always, it will be a grid12
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Figure 10: Charging exess lines of �ej�1 that pass above vj to exess stations in theupper grid between vj�1 and vj.vertex between vj�1 and vj. To disambiguate between the two kinds of stations, wewill sometimes refer to the previously onstruted stations as standard stations. Theremoval of exess lines and the onstrution of exess stations proeed aording tothe following rule:(i) Our default option is to use the upper grid for olleting intermediate (standard)stations between vj�1 and vj. Reall that, for this to be possible, all lines of ��inident to vj and removed there have to pass stritly above vj�1, and all lines of �+inident to vj�1 and removed there have to pass stritly above vj. If the �rst onditionis violated then the shallowest line of �� inident to vj and removed there also passesthrough vj�1 (by Claim 3.3(ii), it annot pass below vj�1), and if the seond onditionis violated then the shallowest line of �+ inident to vj�1 and removed there passesthrough or below vj. Thus, if none of the two latter onditions arise, we use the uppergrid.Assuming this to be the ase, we remove eah surviving exess line that passesabove vj. The removed exess lines meet the steepest line of �� inident to vj at pointsthat lie along the upper grid and are further to the right of all the other grid points(and thus to the right of all the standard stations in Sj�1). This latter property is aonsequene of the fat that all these exess lines pass below or through vj�1 and haveslopes smaller than those of the lines of �+ that are inident to vj�1; see Figure 10.In onlusion, eah removed exess line is assoiated with a new upper grid vertexof the arrangement, and these are the exess stations that we have promised to ollet.We set �ej to be the set of surviving exess lines, whih still pass through or below vj(so the invariant ontinues to hold), and ontinue the proess with j := j + 1.(ii) Suppose that we have to use the lower grid for olleting intermediate stations13
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Figure 11: Using the lower grid between vj�1 and vj.between vj�1 and vj. As just mentioned, the lower grid has to be used either when (a)vj lies on or above at least one of the dj�1 lines of �+ inident to vj�1 and removedthere, or when (b) vj�1 lies on the shallowest of the dj lines of �� inident to vj andremoved there.In ase (a), let ` denote the shallowest line in �+ through vj�1 that is removed atvj�1. Refer to Figure 11(a), and note that vj lies on or above `. In this ase, eahexess line in �ej�1 must pass below vj, beause it passes below or through vj�1 andits slope is smaller than that of `. Hene, in this ase we do not remove any exessline, and thus set �ej := �ej�1. In partiular, the invariant property holds for �ej inthis ase, and we ontinue the olletion proess with j := j + 1.In ase (b), whih is depited in Figure 11(b), let ` denote the shallowest line in�� through vj that is removed at vj. ` passes also through vj�1. We use the lowergrid to onstrut exess stations for the exess lines of �ej�1 that pass above vj. Thesewill be the intersetion points of these lines with the steepest line of �� inident tovj�1. Beause of the slope onditions, these points lie to the left of all the standardstations between vj�1 and vj. However, if there exists an exess line � through vj�1,this proedure will fail to produe an additional exess station for �. To gain suh astation elsewhere, we observe that j � 1 6= 1 (sine `0 is the only line of �� throughv1, so that it is deleted there and does not belong to ��2 ), and that we must have usedthe upper grid between vj�2 and vj�1. This holds beause vj�2 must lie on or below `and on or above �. Hene, all the lines of �+ inident to vj�2 must pass stritly abovevj�1 (sine they have slopes larger than that of �), and all the lines of �� inident tovj�1 and removed there must pass stritly above vj�2 (sine they are all steeper than`). Note that the number of lines of �� through vj�1 is greater than dj�1, beausethis set also ontains `, whih has not been removed at vj�1. Using that extra line,we an therefore gain one additional intersetion point as the required exess stationin the upper grid between vj�2 and vj�1. 14
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Figure 12: Handling the modi�ed ase (b), where ` passes through additional vertiespreeding vj�1.However, one suh extra grid station may fail to exist if vj�2 also lies on `. Referto Figure 12.In this ase, it is easily seen that, as far as the olletion of standard stations goes,we an use the lower grid between vj�2 and vj�1 instead of the upper grid. Indeed, allthe lines of �� inident to vj�2 and removed there pass below vj�1 (beause ` passesthrough vj�1 and is not removed there), and all the lines of �+ inident to vj�1 andremoved there pass below vj�2 (beause � passes through vj�1 and below vj�2). Ifvj�2 is not inident to an exess line, then all exess lines in �ej�2 that pass throughor above vj�1 (inluding �) determine exess stations on the lower grid between vj�2and vj�1. Hene in this ase we obtain on the lower grid one additional exess station,formed by �, and an therefore quit this proess. If vj�2 is inident to an exess line,we attempt to ollet an extra exess station in the upper grid between vj�3 and vj�2,exploiting, as above, the exess of lines of �� at vj�2. Again, this may fail if vj�3 alsolies on `, so we move to the lower grid between vj�3 and vj�2, and we keep applyingthis baktraking proess until we reah a juntion vs that lies stritly below `. Thiswill happen, if not earlier, when we reah v1, sine the only line of �� inident to v1is `0, whih is di�erent from `.To reap, this proess reates an exess station for eah exess line removed atvj. Note that if the onstrution had to baktrak from vj through several preedingjuntions, then ` is the shallowest line of ��j that passes through vj. Hene, if bak-traking will also be required at some later juntion vj0, for j 0 > j, then the proesswill have to terminate at a juntion to the right of vj (beause no surviving line of��j passes through vj). That is, the baktraking proesses are independent of eahother, and none of them a�ets any of the preeding ones.15
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`0`0Figure 13: Colleting termini.Colleting termini. Finally, onsider the last juntion vk and the �nal set �ek ofsurviving exess lines. There are dk lines of �� as well as dk lines of �+ that passthrough vk, and there is another surviving line ` of ��, whih passes through or abovevk. Our goal is to ollet dk + j�ekj+ 1 additional verties of A(�) to the right of vk,to whih we refer as termini.If ` passes above vk, then we obtain on it the distint intersetion points with `0,with the exess lines in �ek, and with the dk lines of �+ through vk (it is easy to verifythat all these intersetion points are indeed distint); see Figure 13(a). Altogether,we ollet dk + j�ekj+ 1 termini.If ` passes through vk (see Figure 13(b)), let `0 denote the steepest line of ��inident to vk. We harge eah of the dk+1 lines of �� inident to vk to its intersetionwith `0. In addition, eah exess line in �ek, with the exeption of the exess line �0that passes through vk (if there is suh a line), meets `0 at a vertex, and we add theseverties to the set of olleted termini; their x-oordinates are all distint, and lie tothe right of vk and to the left of any point q0j harged by the lines of �� inident tovk. Altogether we ollet at least dk+ j�ekj termini. The only ase in whih we do notobtain dk+ j�ekj+1 termini is when there is an exess line �0 through vk. In this asewe must have used the upper grid between vk�1 and vk, whih is argued as in ase(ii) of the preeding analysis. As above, we an gain an extra exess station in thisupper grid, beause the number of lines of �� through vk is in fat at least dk + 1.Again, the same tehnial diÆulty that we faed earlier may arise here as well, whenvk�1 also lies on `. We resolve this exatly as before, baktraking to the left throughjuntions vj that lie on `, swith to lower grids between them without dereasing thenumber of olleted stations, and gaining the desired extra station when we reah ajuntion vj that lies stritly below ` or that is not inident to an exess line.In both ases, we have managed to harge an extra terminus for every exess lineleft in �ek, and an additional terminus for the extra surviving line ` of ��. Note thatall termini, or all but one, lie to the right of vk.Adding these termini to the juntions and stations, we obtain, exluding the exess16



stations and termini, and realling that d1 = 1, a total of(d1 + d2 � 1) + (d2 + d3 � 1) + � � �+ (dk�1 + dk � 1) + k + (dk + 1) =1 + 2 kXi=1 di = 2n� + 1verties. Hene, sine we manage to ollet one additional vertex for eah exess line,we obtain a total of 2n�+1+(n+�n�) = n++n�+1 verties. Observe that all theolleted verties are either on `0 or are intersetion points of lines of (the original)�+ with lines of (the original) ��. In other words, eah of the olleted vertiesrepresents a segment in the primal plane, onneting a point of X+ [ fp0g to a pointof X� [ fp0g.Let Q denote the set of all olleted juntions, stations, and termini. Assoiatewith eah element q 2 Q the maximal double wedgeW (q) (not ontaining the vertialline through q), whih is bounded by a pair of lines passing through q.To omplete the proof of the theorem, we show that the olleted wedges arepairwise non-onvergent.Claim 3.4. The set fW (q) j q 2 Qg of n double wedges has no two onvergentelements.Proof: Let u; v 2 Q with u lying to the left of v. Realling the de�nition of onvergentdouble wedges, we need to show that either u 2 W (v) or v 2 W (u). We distinguishbetween several ases:Case A: Both u and v are juntions.Put u = vi and v = vj, with i < j. Then W (v) is bounded by a line ` 2 �+j andby a line `0 2 ��j . By Claim 3.3(ii), vi lies between these two lines, and thus belongsto W (v).Case B: u is a juntion and v is a (standard or exess) station to the left of vk.Put u = vi and let Sj be the set of stations that ontains v, where i � j < k.Then W (v) is bounded by two lines `; `0, where either ` 2 �+j [ �ej and `0 2 ��j+1 (ifv lies on the upper grid), or ` 2 �+j+1 [ �ej and `0 2 ��j (if v lies on the lower grid).By onstrution, we have, in both ases, ` 2 �+j [ �ej and `0 2 ��j . If ` 2 �+j , theanalysis is ompleted as in Case A. If ` 2 �ej, it passes through or below vi, so thesame analysis applies here as well.Case C: u is a (standard or exess) station to the left of vk and v is a juntion or astation to the left of vk.Let Si be the set of stations ontaining u; i.e., u lies in the upper or lower gridbetween vi and vi+1. The arguments in Case A and Case B imply that vi 2 W (v). If vis also a station in Si or v = vi+1 then it is easy to verify, by onstrution, that W (u)17



and W (v) are non-onvergent (see Figure 9); this also holds if u and/or v are exessstations. Suppose then that v lies to the right of vi+1. Consider �rst the ase whereu is a standard station. Then both vi and vi+1 lie in the left wedge of W (v), and u isinident to a line � that passes through vi and to a line �0 that passes through vi+1.If u =2 W (v) then a boundary line of W (v) must separate u from vi and vi+1, in whihase v 2 W (u); see Figure 14(a).Suppose next that u is an exess station on the upper grid between vi and vi+1.If u =2 W (v) then u must lie above W (v). In this ase u is inident to a line � (anexess line) that passes through or below vi and to a line �0 that passes through vi+1.As above, it is easily seen that the line through v that bounds the left wedge of W (v)from above must ross � to the left of u and �0 to the right of u and to the left of v,again implying that v 2 W (u); see Figure 14(b).A fully symmetri argument applies when u is an exess station on the orre-sponding lower grid.Note that ases B and C also apply to exess stations onstruted in the bak-traking proesses, starting either from some juntion that preedes vk or from vkitself.Case D: u is a juntion and v is a terminus to the right of vk.Refer to Figure 13 to reall the types of termini that we onstrut. Consider �rstthe ase where v is the intersetion point of an exess line � that passes through orbelow vk, with either the line ` (in the ase depited in Figure 13(a)), or the line `0(in the ase depited in Figure 13(b)). By onstrution, � passes through or below uand ` or `0 passes through or above u, so u 2 W (v).Consider next the ase where v is the intersetion of ` with some line � in �+k .Here too it is easily veri�ed that u lies between the two lines, so u 2 W (v). The sameargument applies to the last possible ase, where v is the intersetion of `0 with someline of ��k .Case E: u is a station and v is a terminus to the right of vk.Let Si be the set of stations ontaining u. The arguments in Case D imply thatvi; vi+1 2 W (v). If u =2 W (v) then, arguing as in ase C, we must have v 2 W (u).Case F: Both u and v are termini to the right of vk.This ase follows from a diret inspetion of all the possible types of pairs oftermini; see Figure 13.This ompletes the proof of the laim, and thus of Theorem 3.1. �
18
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Figure 14: Illustrating Case C of the proof thatW (u) andW (v) annot be onvergent.(a) u is a standard station. (b) u is an exess station on the upper grid.4 Construting the Sets of Segments F and E inthe Plane � and in 3-SpaeConsider the projeted set R of non-ollinear points in the plane �, as de�ned inSetion 2, and reall that we assume that its total weight w(R) = n�1 is even. Reallalso that we have partitioned R into two sets, R+ and R�, by some vertial line whihwe hoose to be the y-axis. Instead of seleting the suitable set of segments F in �, itwill be more onvenient to work in the dual plane, using the same duality transformas in the proof of Theorem 3.1, where segments orrespond to double wedges. First,we will de�ne the apies v of these double wedges W (v), that are verties in thearrangement of lines dual to the elements of R, and then we speify the boundarylines of eahW (v), whih are the duals of the endpoints of the orresponding segmentf(v) in the `primal' plane �.The main part of the seletion algorithm is an iterative pruning proess that ol-lets two types of di�erent rossing points v, so-alled juntions and stations, betweenthe lines dual to the points of R. This proess has many aspets similar to the onedisussed in [14℄, and to the one given in the preeding setion, but here the analysisis onsiderably more involved, beause we have to handle weighted lines, and beausethe potential presene of the entral bihromati point q further ompliates ertainsteps of the analysis.After assoiating eah olleted vertex v with a ertain double wedge W (v) thathas v as an apex, we onsider the set F of segments f(v) in the primal plane � that or-respond to these double wedges, by duality. Eah segment f(v) onnets two elementsof R in �, and we show that these segments are pairwise non-onvergent. Eah seg-ment f(v) 2 F spans with p0 a plane h(v) in R3 , and we apply Theorem 3.1 to olletsegments that onnet pairs of points of P within h(v). We denote by E(f(v)) = E(v)(and sometimes also by E(f)) the set of segments in R3 that are spanned by P andare determined (in this manner) by f(v), and we set E := Sf2F E(f).19



4.1 Colleting juntions in the dual planeDenote by L the set of lines dual to the elements of R. By hoosing the diretions ofthe oordinate frame suÆiently generi, we may assume that no two lines in L areparallel. (In the primal plane �, this would orrespond to the requirement that notwo points of R have the same x-oordinate.) Eah line ` 2 L has a weight w(`) equalto the weight of its dual point, soP`2L w(`) = n�1. Let L+, L� denote respetivelythe sets of lines dual to R+ and R�. Sine we have assumed in Setion 2 that R+lies to the left of the y-axis and R� lies to its right, it follows that all lines in L�have negative slopes and all lines in L+ have positive slopes. The entral bihromatipoint q, when it exists, is mapped to a horizontal line q�, whih we assume to be thex-axis. This line appears as two oinident opies, (q+)� 2 L+ and (q�)� 2 L�, withorresponding weights w(q+), w(q�).We begin by onstruting a sequene J = hv1; v2; : : : ; vki of verties of A(L), alledjuntions.Step 1: Set i := 1 and L+i := L+, L�i := L�.Step 2: If L+i = L�i = ;, the onstrution of J terminates. Otherwise, as we willsee, neither set is empty. Let vi be the leftmost intersetion point between a line inL+i and a line in L�i . Let d+i , d�i denote the overall weight of those lines of L+i , L�i ,respetively, that are inident to vi, and put di := minfd+i ; d�i g. Suppose, withoutloss of generality, that di = d+i . Remove from L+i all its lines inident to vi, and pruneL�i as follows. Remove as many of the steepest lines of L�i (those with the smallestslopes) inident to vi as possible, so that their overall weight i does not exeed di.If this weight is equal to di, we are done. Otherwise, we take the next steepest line` and redue its weight by di � i. The line ` is not removed from L�i . Note thateah of the remaining lines of L�i inident to vi separates the removed lines of L+ifrom the removed lines of L�i . See Figure 15. Set L+i+1 and L�i+1 to be the sets ofsurviving weighted lines of L+i and L�i , respetively, where the line `, if exists, has itsnew redued weight. Set i := i+ 1 and repeat Step 2.Sine m1 is the line with the largest slope onneting a point of R+ and a pointof R�, our duality implies that m�1, the dual of m1, is the leftmost intersetion pointbetween a line of L+ and a line of L�. Hene, we have v1 = m�1.If q exists, then v1 = m�1 is the leftmost vertex along the line q� (see Figure 3(ii)).At least one of the oinident opies (q+)�, (q�)� of q� ontributes its full weight tod1. Consequently, at least one of these opies is removed at v1, whih implies thatq� belongs from this point on to only one of the sets L+i , L�i . In other words, thepresene of q will only a�et the onstrution \in the viinity" of v1; see below fordetails.As our onstrution sweeps the dual plane from left to right, we ollet juntions(and stations) whose dual lines rotate lokwise from m1 onwards (see Figure 3).As in the proof of Theorem 3.1, it is easy to verify the following properties of the20



v2v12 1 23 4`
L�
L+Figure 15: Choosing the �rst juntion v1. Lines are labeled with their weight. Wehave d1 = 5. The dashed lines, two from L+ and two from L�, are removed, andthe remaining line ` has its weight redued by 2 at v1. The double wedge W (v1) isshaded. The next juntion v2 is also shown.above onstrution (onsult Figure 15):Claim 4.1. (i) w(L+i ) = w(L�i ), for eah i = 1; : : : ; k.(ii) For every 1 � i < j � k, the juntion vi lies in the left unbounded fae fj ofA(L+j [L�j ) that separates L+j and L�j at x = �1, and whose rightmost vertex is vj.The point vi lies in the interior of fj if d+i = d�i ; otherwise it may lie on the boundaryof fj.(iii) Pki=1 di = (n� 1)=2. �(iv) At the time when vi is onstruted, the weights of all lines that are removed orweight-redued at vi, are equal to their original weights (i.e., before being redued atany preeding juntion), with the only possible exeption of the two shallowest linesin their respetive sets, whose weights ould have been earlier redued.To see (iv), let `+ be a line of L+i that is removed at vi and is di�erent from theshallowest suh line `+a . Then, by property (ii), `+ must pass stritly below eah of thepreviously onstruted juntions, so it did not partiipate in any preeding pruningstep. The argument for L�i is fully symmetri. �We de�ne, for eah 1 � i � k, the set of lines of L+i (resp., L�i ) that are inidentto vi and are either removed at vi or have their weight redued there, by D+i (resp.,D�i ). We also put Di := D+i [D�i .We assoiate with eah juntion vi the double wedge W (vi) bounded by the shal-lowest lines in D+i and D�i , respetively. See Figure 15.
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4.2 Construting segments in E from the juntionsIn the primal plane �, eah juntion vj, for j = 1; : : : ; k, orresponds to some line v�jin �, whih ontains projetions (from p0) of some points of P . Let h denote the planespanned by v�j and p0. We apply Theorem 3.1 to a ertain subset of P \ h, therebyobtaining a set of pairwise non-onvergent segments determined by the points in thatsubset.The presene of the entral bihromati point q may fore us to modify the analysisat v1. We �rst desribe the analysis under the assumption that q does not exist(we sometimes refer to this situation as the standard ase), and then disuss themodi�ations needed at v1 when q exists.The ase where q does not exist. Fix an index 1 � i � k. Let `+1 ; : : : ; `+a denotethe lines of D+i , and let `�1 ; : : : ; `�b denote the lines of D�i . We enumerate the lines inthe order of their slopes, so that `+a and `�b are the shallowest lines of D+i and D�i ,respetively. Consider the line v�i dual to vi, and let h be the plane spanned by v�iand p0. Let X+ (resp., X�) denote the set of points of P n fp0g whose projetionfrom p0 is one of the duals of `+1 ; : : : ; `+a (resp., `�1 ; : : : ; `�b ) on �. By onstrution,jX+j; jX�j � di; either of jX+j and jX�j may onsist of more than di points, in thease when either L+i or L�i has a line whose weight is redued (at vi or in some earlierjuntion). By Claim 4.1(iv), only `+a and `�b (whih are the shallowest lines of D+i andD�i ) may have redued weight. By onstrution, the sets X+ and X� are separatedby a line in h (onsult with Figure 7(a)).Clearly, jX+j = Paj=1w(`+j ) and jX�j = Pbj=1w(`�j ), where the w(`)'s denotethe original weights of the orresponding lines `. We laim that Theorem 3.1 anbe applied to the set X = X+ [ X� within the plane h. Indeed, assume withoutloss of generality that jX+j � jX�j. It follows from the onstrution that the pointsprojeting to (`+a )� lie on the innermost ray from p0 to X. Sine `+a is either deletedat vi or has its weight redued there, it follows that Pa�1j=1 w(`+j ) < Pbj=1w(`�j ).Therefore jX+j � jX�j = aXj=1 w(`+j )� bXj=1 w(`�j ) < w(`+a ):Theorem 3.1 an thus be applied to the set X = X+[X� within the plane h, andit yields a total of at least jX+j+ jX�j+1 pairwise non-onvergent segments, eah ofwhih onnets a point ofX+[fp0g to a point of X�[fp0g. However, there may existone segment that has to be exluded beause of potential ollinearity with segmentsgenerated at other juntions: This is a segment e along the ray from p0 to the dualof the unique line ` among `+a ; `�b whose weight is redued at vi but whih is notremoved there, if suh a line exists. (Note that this ray is the innermost among thoserays onneting p0 to points of the orresponding set X+ or X�.) In that ase, ` willalso ontribute weight to another subsequent juntion vi0 , where a segment ollinearwith e may be generated in the primal plane, and these two segments annot both be22



inluded in the output set E (whose elements have to be pairwise non-onvergent).Reduing the ount due to this potential double ounting, we are therefore left withat least w(D+i ) + w(D�i ) + 1� �i = aXj=1 w(`+j ) + bXj=1 w(`�j ) + 1� �ipairwise non-onvergent segments, where �i = 1 if there is a line whose weight hasbeen redued at vi but whih was not removed there, and �i = 0 otherwise. Herew(D+i ), w(D�i ) denote the total original weight of these sets.Handling the entral bihromati point q. As noted, the presene of q mayfore us to modify the analysis at the �rst juntion v1, beause the dual line q� appearsthere as two oinident lines (q�)� 2 L�1 and (q+)� 2 L+1 . Let d+0 (resp., d�0 ) denotethe total weight of all the lines of D+1 n f(q+)�g (resp., of D�1 n f(q�)�g); reall thatat least one of the sets D+1 ; D�1 inludes the respetive opy of q� with its full weight.We have d1 = minfd+0 +w(q+); d�0 +w(q�)g; assume, without loss of generality, thatd1 = d+0 + w(q+) � d�0 + w(q�).Suppose �rst that d�0 � d+0 + w(q+). Refer to Figure 16. Then (q�)� =2 D�1 . LetX� denote the set of all points p 2 P n fp0g that projet to the points dual to thelines of D�1 . If D�1 ontains a line ` whose weight is only redued at v1, let b1 > 0denote the surviving weight of `; otherwise, put b1 = 0. We have jX�j = d1 + b1.Let X+ denote the set of all points p 2 P n fp0g that projet to the points dual tothe lines of D+1 , inluding q (with its full weight w(q) = w(q�) + w(q+)). We havejX+j = d1 + w(q�). If b1 � w(q�), then jX+j � jX�j = w(q�) � b1 < w(q); theright-hand side is the number of points on the innermost ray from p0 to the pointsof X+ (see Figure 16). If b1 > w(q�), then jX�j � jX+j = b1 � w(q�) < w(`); theright-hand side is the number of points on the innermost ray from p0 to the pointsof X�. Hene, in either ase, Theorem 3.1 is appliable to X+ [ X� [ fp0g, and ityields a set E(v1) of at leastw(D�1 ) + w(D+1 n fqg) + w(q) + 1 = w(D�1 ) + w(D+1 ) + w(q�) + 1pairwise non-onvergent segments, where, as above, eah line in D�1 [ D+1 is takenwith its full original weight. Compared with the ount in the standard ase, we olletw(q�) additional segments in this ase.Suppose next that d�0 < d+0 + w(q+) � d�0 + w(q�). See Figure 17. In this ase,D�1 ontains (q�)� and D+1 ontains (q+)�. We let X+0 (resp., X�0 ) denote the setof all points of P n fp0g that projet to the points dual to the lines of D+1 n f(q+)�g(resp., the lines of D�1 n f(q�)�g). We have jX+0 j = d+0 and jX�0 j = d�0 .First, assume further that d+0 6= d�0 , say d+0 > d�0 . In this ase we set X+ := X+0and take X� to be the union of X�0 with the set of all points of P n fp0g that projetto q. We have jX�j = d�0 +w(q) > jX+j, and jX�j � jX+j = d�0 � d+0 +w(q) < w(q).A symmetri argument holds when d+0 < d�0 . Hene, Theorem 3.1 is again appliable,23



�0
hv�1

X�X+
p0

33 v1 (q+)�(q�)�1
423

Figure 16: Colleting segments in E(v1) when q exists. Here (q�)� 62 D�1 . We haved1 = 6, jX�j = 7 and jX+j = 9. The lines (q�)� and (q+)� are oinident, but aredrawn as separate lines for the purpose of illustration.
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123Figure 17: Colleting segments in E(v1) when q exists. Here (q�)� 2 D�1 , d1 = 6,jX�j = 5, jX+j = 9, and Theorem 3.1 an be applied.
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and yields a set E(v1) of at leastd�0 + d+0 + w(q) + 1 � w(D+1 ) + w(D�1 ) + 1pairwise non-onvergent segments, where, as above, eah line in D�1 [ D+1 is takenwith its full original weight. Here the lower bound is the same as the one yielded inthe standard ase.The �nal, problemati ase arises when d+0 = d�0 . See Figure 18. In this ase, thepoints of P n fp0g that projet to q an be added to either set X�0 , X+0 , say we addthem to X�0 . Then the resulting sets X�; X+ satisfy jX+j = d+0 , jX�j = d�0 + w(q),and jX�j � jX+j = w(q). In this ase Theorem 3.1 is not appliable, and we an onlyapply Corollary 3.2, to obtain a set E(v1) with at leastd�0 + d+0 + w(q) � w(D+1 ) + w(D�1 )pairwise non-onvergent segments. That is, we lose one segment in E(v1), as om-pared with the standard situation. (Note that in this ase all lines through v1 areremoved, exept perhaps for (q�)�.)In addition, as in the standard ase, we need to subtrat 1 from any of the boundsobtained above, in ase D+1 or D�1 has a line whose weight is only redued at v1, toaommodate the potential double ounting due to ollinear segments generated atsubsequent juntions.The double wedge W (v1) assoiated with v1 is de�ned as in the standard ase,exept that in some of the above ases it may degenerate to the single line q� (italways has (q�)� or (q+)� as one of its bounding lines). In this ase, we still onsiderW (v1) to have its apex at v1. In the primal plane, the orresponding segment f(v1)degenerates to the singleton point q, but it is still onsidered to lie along the line v�i .Wrapping up. We repeat this olletion proess to eah of the juntions vi, andsum up the resulting bounds. This sum an be rearranged as follows. Let `1; : : : ; `tdenote an enumeration of all the lines in L, and put wj = w(`j) (the original weight),for j = 1; : : : ; t. (In ase q exists, the lines (q+)� and (q�)� appear as two separatelines in this enumeration, with their respetive weights.) For eah j, let �j denotethe number of juntions vs that are inident to `j, suh that `j 2 Ds. Observe that if�j > 1, then in the �rst �j�1 of these juntions vs, the weight of `j is redued at vs but`j is not removed there. Hene �s = 1 at eah of these juntions vs, and we \blame"this redution in the ount on `j, making its e�etive weight ontribution at vs equalto wj�1. `j is removed only at the last (i.e., the �j-th) of these juntions. Therefore,the overall number of segments in E generated at all the juntions v1; : : : ; vk is atleast k + tXj=1(�j � 1)(wj � 1) + tXj=1 wj � "0 = k + t+ tXj=1 �j(wj � 1)� "0; (1)where "0 = 1 if q exists and the problemati ase d�0 = d+0 arises at v1, and "0 = 0 inall other ases. 25
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Figure 19: Colleting stations (shown highlighted) between vi and vi+1. The dashedlines are those removed at vi, and the dashed-dotted ones are those removed at vi+1.4.3 Colleting stations in the dual plane and orrespondingsegments in EIn the next step we ollet additional verties, alled stations, between pairs of su-essive juntions vj, vj+1. We �rst handle the standard ase, in whih either q doesnot exist, or q exists and j � 2, and then present a modi�ed analysis for the asewhere q exists and j = 1.The standard ase. Fix an index 1 � i < k, and onsider the vertial slab betweenvi and vi+1. By Claim 4.1(ii), vi lies inside or on the boundary of the fae f = fi+1of A(L+i+1 [ L�i+1) whose rightmost vertex is vi+1; see Figure 19. Hene, the segmente = vivi+1 is ontained in (the losure of) f . We distinguish two ases:Case 1: e is ontained in the interior of f (exept for its right endpoint).This implies that the lines of D�i+1 (resp., of D+i+1) pass stritly above (resp.,below) e. Moreover, either all the lines of D�i pass below e, or all the lines of D+i passabove e. Suppose, without loss of generality, that the seond ase arises. Denote thelines of D+i by `+1 ; : : : ; `+�i, ordered aording to inreasing slope, and those of D�i+1by `�1 ; : : : ; `��i+1, ordered aording to dereasing slope. See Figure 19 (whih depitsthis on�guration, even though it illustrates the following Case 2).Eah of the lines `+s intersets every line `�t in the slab between vi and vi+1, beause`+s passes through the left endpoint of e, `�t passes through the right endpoint of e, andthey both lie above e. We refer to the points of intersetion between these two setsof lines as the upper grid between vi and vi+1; the lower grid is de�ned analogously.Consider the verties of A(L) where `+�i intersets the lines `�1 ; : : : ; `��i+1, and the26



u� (`+s )� (`�t )�
�+ �� hp0Figure 20: The set E(u) of segments (drawn dashed-dotted) spanned by P that aredetermined by a station u.verties where `��i+1 intersets the lines `+1 ; : : : ; `+�i. There are �i + �i+1 � 1 distintverties of this kind (see Figure 19), and we let the set of stations Si onsist of allthese verties. We assoiate with eah station u the double wedge W (u) between thetwo lines from D+i and D�i+1 that meet at u.Eah station u generates a set E(u) of segments spanned by P in R3 , as follows.Suppose that u is inident to some line `+s through vi and to some line `�t throughvi+1 (where either s = �i or t = �i+1). Consider the primal line u� dual to u, andlet h denote the plane in 3-spae spanned by p0 and u�. The plane h ontains twosegments that onnet p0 to the two respetive dual points (`+s )�, (`�t )�, both lyingon u�. The �rst segment �+ ontains w(`+s ) points of R+, and the seond segment ��ontains w(`�t ) points of R�. We an easily ollet here as many as w(`+p )+w(`�q )�1segments into E(u), no two of whih are onvergent; for example, one an get thatmany distint segments by taking all segments one of whose endpoints is either thenearest point to p0 on �+ or the nearest point to p0 on ��; See Figure 20.These segments onstitute the set E(u). Hene, the total number of segmentsthat are olleted in this manner for all the new stations u is����� [u2SiE(u)����� = �i+1Xt=1�w(`+�i) + w(`�t )� 1�+ �i�1Xs=1�w(`+s ) + w(`��i+1)� 1�:Note that the sum P�is=1w(`+s ) is at least di; it may exeed di if it involves anon-deleted line with redued weight, beause in the sum we use the full weight ofthat line. Similarly, P�i+1t=1 w(`�t ) � di+1. Therefore, the total number of segmentsthat we ollet this way is at least di + di+1 � 1: (2)We note that this estimate is rather onservative. In general, if the weights of thelines are greater than 1 and �i; �i+1 > 1, we get a larger lower bound.Case 2: e is an edge of f . 27



In this ase, e is ontained in a line ` whih is inident to vi but whih was notremoved when vi was onstruted (it ould have been the one whose weight has beenredued there). Assume �rst that ` is not the line whose weight has been redued atvi. By onstrution, it then follows that the lines of D�i pass stritly below e, andthe lines of D+i pass stritly above e. Now either all the lines of D�i+1 pass above e,or all the lines of D+i+1 pass below e. We an now repeat the preeding arguments,and obtain, as above, a set Si of stations of A(L) along either the upper or the lowergrid, whih generate a total of at least di + di+1 � 1 segments spanned by P , whihare added to E. Figure 19 depits this ase of the analysis.Suppose next that the line ` ontaining e is the (unique) weight-redued line atvi. If ` does not belong to Di+1, then the �rst ase of the analysis applies, and yieldsthe same lower bound of di + di+1 � 1 on the number of olleted segments that areadded to E. We thus assume that ` does belong to Di+1.Let ai and ai+1 denote the ontribution of ` to di and di+1, respetively. Thatis, the overall weight of the lines from the same family of ` (i.e., L+ or L�) that areremoved at vi (resp., at vi+1) is i = di � ai (resp., i+1 = di+1 � ai+1).Claim 4.2. In this ase one an onstrut stations along either the upper or the lowergrid between vi and vi+1, from whih at leasti + i+1 = di + di+1 � (ai + ai+1) (3)new segments an be olleted in E (in the same manner as before).Indeed, suppose, without loss of generality, that ` 2 L+. Then the total weight ofthe lines of L� that are inident to vi (resp., to vi+1) is di (resp., di+1), and the totalweight of the lines of L+ that are inident to vi (resp., to vi+1) and are removed thereis i (resp., i+1). See Figure 21.If both i and i+1 are 0, the laim is trivial, so assume that, say, i > 0 (seeFigure 21). In this ase, the upper grid between vi and vi+1 exists, and generates,arguing as above, at leasti + di+1 � 1 = di + di+1 � ai � 1 � di + di+1 � (ai + ai+1)new segments in E, as laimed. The ase where i+1 > 0 (and i = 0) is fullysymmetri, exept that in this ase we use the lower grid (see Figure 21). Thisestablishes our laim. �We denote by E(Si) the set of segments in E that are onstruted from the stationsolleted between the two onseutive juntions vi and vi+1.We have thus showed that jE(Si)j � di+di+1�1, if there is no line that ontributesweight to both juntions. If on the other hand there is a line ` that ontributes aweight of ai � 1 to vi and a weight of ai+1 � 1 to vi+1, then jE(Si)j � di + di+1 �ai � ai+1. 28
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diFigure 21: Illustrating the proof of Claim 4.2.The ase where q exists and j = 1. Suppose next that the entral bihromatipoint q exists, and onsider the onstrution of S1. If q� does not pass through v2,then the analysis proeeds in essentially the same manner as in the standard ase. Forthe sake of ompleteness, we repeat the details. Suppose, without loss of generality,that q� passes below v2. The ase where v1v2 is interior to the fae f2 is handled inexatly the same way as above: One an use the lower grid between v1 and v2, andonstrut stations that ontribute a total of at least d1 + d2 � 1 segments to E; seeFigure 22. The same holds for the ase where there is a line (di�erent from q�) thatpasses through both v1 and v2 but it belongs to at most one of the sets D1; D2 (in thisase, one of the upper or lower grids will generate stations with jE(S1)j � d1+d2�1).Consider then the ase where there exists suh a line ` whose weight has been reduedat both juntions (it may have been removed at v2). Sine the entire L�-weight of qmust have been removed at v1 (beause no surviving line of L� an pass below v2),it follows that ` 2 L+1 . Again, this ase an be handled as in Claim 4.2, and yields atleast d1+d2�a1�a2 in E, aording to the preeding notation. In summary, we analways ollet from the stations in S1 at least either d1 + d2 � 1 or d1 + d2 � a1 � a2segments into E, depending on the ases onsidered above. (Note that in some ofthese ases we may atually gain w(q+) additional segments in E(S1).)Assume then that q� passes through v2. Without loss of generality assume that(q+)� is fully removed at v1. The following ases an arise:Case 1. (q�)� 2 D�2 .Let a1 (resp., a2) denote the weight removed from (q�)� at v1 (resp., at v2). (Itis possible that a1 = 0.) We laim that one an ollet at least d1 + d2 � (a1 + a2)segments into E(S1) in either the upper or lower grid between v1 and v2. This isargued in muh the same way as in the ase where q does not exist. Spei�ally, let29



v2v1 q�
Figure 22: Colleting stations in S1 when q� passes below v2.1 = d1� a1 (resp., 2 = d2� a2) denote the L�-weight removed at v1 (resp., v2) fromthe lines in L� other than (q�)�.If both 1 and 2 are 0, then there is nothing to prove. If 1 > 0, then, exeptfor (q�)�, all other lines of D�1 pass stritly below v2, and have total weight at least1 = d1 � a1. By assumption, all lines of D+2 pass stritly below v1, and have totalweight at least d2. Therefore the lower grid between v1 and v2 an be used to produeat least 1 + d2 � 1 = d1 + d2 � 1� a1 � d1 + d2 � (a1 + a2) segments in E(S1).If 1 = 0 and 2 > 0, then, exept for (q�)�, all other lines of D�2 pass stritlyabove v1, and have total weight at least 2 = d2 � a2. As 1 = 0, there are no linesfrom L� through v1 other then (q�)�, and therefore at least one additional line (otherthan (q+)�) of L+ must pass through v1 (or else v1 would not be a vertex of thearrangement). Therefore, the upper grid between v1 and v2 exists, and we may use itto ollet at least 1+ 2� 1 = 2 = d2� a2 = (d1� a1)+ d2� a2 = d1+ d2� (a1+ a2)segments into E(S1).Case 2. (q�)� =2 D�2 (but it still passes through v2).In this ase, depited in Figure 23, the sets D+2 , D�2 are both nonempty, and alllines of D+2 (resp., D�2 ) pass stritly below (resp., above) v1; the total weight of eitherset is d2. Set w+ = w(q+), w� = w(q�). There must exist either lines of L+ or linesof L� (other than q�) that pass through v1 and are removed there. In the formerase, the total removed L+-weight of these lines is d1�w+, and we may use the uppergrid between v1 and v2 (whih neessarily exists), to ollet at least d1 + d2�w+� 1segments into E(S1). In the latter ase, arguing in an essentially symmetri manner,we may use the lower grid between v1 and v2 (whih neessarily exists), to olletat least d1 + d2 � w�1 � 1 segments into E(S1), where w�1 is the weight that (q�)�ontributes at v1.As will follow from the later ounting phase, given in Setion 4.4, we need toompensate for the loss of either w+ or w�1 segments in E(S1), whih we do byinluding the points on the ray p0q in the set X+ when we onstrut E(v2), eventhough neither (q+)� nor (q�)� belongs to D2. Before doing so, the size of X+ isexatly d2, and the size of X� is at least d2; it an be larger if there is a negativeline whose weight is only redued at v2. We add the points on the ray p0q to X+.30



In general, we an apply Theorem 3.1 to the modi�ed sets X�; X+, exept whenjX�j = jX+j = d2, in whih ase we an only apply Corollary 3.2. The modi�ed E(v2)thus onsists of at least w(D+2 ) + w(D�2 ) + w(q) + 1 = 2d2 + w(q) + 1 pairwise non-onvergent segments, if jX�j 6= jX+j, or of at least w(D+2 )+w(D�2 )+w(q) = 2d2+w(q)pairwise non-onvergent segments, if jX�j = jX+j. In the most pessimisti senario,we an only apply Corollary 3.2, whereas, when q was not inluded, we ould haveapplied Theorem 3.1 to ollet 2d2 + 1 segments in E(v2). We thus gain at leastw(q) � 1 additional segments. However, we may have to subtrat 1 extra segmentfrom the ount, beause (q�)� may ontribute weight to a further juntion. Thus, inthe worst ase, we an only guarantee w(q)� 2 = w+ +w� � 2 additional segments.In general, these suÆe to ompensate for the loss of maxfw+; w�1 g a E(S1), unlessminfw+; w�1 g = 1. In this speial ase, we lose one segment in our ount.The prie that we pay for inluding q is that the double wedgeW (v2) has to shrink,and be bounded by q� and by the shallowest line in D�2 . However, as we will latershow, in Setion 4.5, the olleted double wedges will remain pairwise non-onvergent.
v1 v2w(q�)w(q+)

d2 d1 � w+

d2d1 (q�)� = (q+)�
� d1 � w�1Figure 23: The problemati ase in the onstrution of S1 in the presene of a entralbihromati point q: Here d1 = d+1 , so (q+)� is removed at v1. We also assumethat (q�)� 62 D�2 . In this ase we an only guarantee the generation of at leastd1+d2�maxfw+; w�1 g�1 segments in E, and we lose maxfw+; w�1 g segments in thebound.

Colleting stations to the left of v1 and to the right of vk. We next de�nethe last set of stations Sk, whih are stations that lie to the right of vk or to the leftof v1. Reall the spei� partition of R into R+ and R�, as presented in Setion 2.We will exploit ertain features of this partition in the onstrution of Sk, and will�nd it onvenient to \ip" between the primal and dual settings as we go. For theonveniene of the reader, we reprodue here Figure 3 as Figure 24.31
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(ii)Figure 24: Reproduing the primal onstrution of R� and R+: Case (i) (left) andCase (ii) (right).Claim 4.3. At least one of the following two onditions will be satis�ed:(i) The last juntion, vk, is idential to m�0, the dual of m0.(ii) r�, the dual of r 2 R�, passes through vk and is the unique element of L�deleted during the proedure at vk.Proof: Suppose that during the proedure r� is deleted at a juntion vj, for somej � k. Clearly, v�j passes through r and at least one point t 2 R+, whose dual line isalso deleted, or has its weight redued, at v�j .If, in the primal plane �, v�j passes through another point r0 6= r of R�, thenv�j = m0 (otherwise it has to lie lokwise to m0 and then it annot meet any point ofR+). In this ase, in the dual plane there annot be any intersetion point between aline of L� and a line of L+ to the right of vj, so that j = k. That is, we have v�k = m0,and (i) holds.Suppose then that, in the primal plane �, v�j does not pass through any elementr0 2 R� other than r. If j = k, then ondition (ii) is satis�ed. So we an assumethat j < k and v�k 6= m0. Refer to Figure 25). Take any two lines `� 2 L� and`+ 2 L+ in the dual plane that are deleted during the proedure at the last juntionvk. By assumption and onstrution, we have `�� 6= r, and the slope of the segment`�+`�� � v�k onneting their duals in the primal plane (i.e., the slope of v�k) is smallerthan that of the segment tr. We laim that the two segments `�+`�� � v�k and tr � v�jare onvergent. Indeed, sine m0 (weakly) separates R+ and R�, the losed segment`�+`�� must meet m0, and this must happen at a point to the left of (and above) r,or else r would not be an extreme point of R (see Figure 25). For a similar reason,`�� must lie above v�j . These fats, together with the slope relationship between v�jand v�k, imply that the two segments are onvergent. This, in turn, implies thatthe double wedges dual to tr and to `��; `�+ are onvergent. Sine W (vk) and W (vj)32



rR+t `�+ R�`��v�kv�jm0Figure 25: The segments tr and `�+`�� must be onvergent.are ontained in these respetive double wedges, they are also onvergent. However,W (vk) is bounded by a line of L+k and by a line of L�k , and Claim 4.1(ii) implies thatvj lies between these lines, and hene in W (vk), showing that W (vj) and W (vk) arenon-onvergent.2 This ontradition ompletes the proof of the laim. �The above argument is valid for any oordinate system whose y-axis stritly sepa-rates the sets R� and R+, or, in ase q exists, passes through q and stritly separatesR�0 and R+0 . We speify a oordinate system with this property as follows.Choose the y-axis to be very lose to m0, so that, in the dual plane, the slope ofevery line of L passing through m�0 has smaller absolute value than the slope of anyother line of L; that is, the x-oordinates of the points ofm0\R have smaller absolutevalues than those of any other point of R. See Figures 26(a), 27(a), and 28(a). Inaddition, if q exists, we make the y-axis pass through q, as already stated.Now we are in a position to de�ne the set of stations Sk. The reason for hoosingthe spei� way of partitioning R, and the oordinate frame, is to fore the stations inSk to lie to the left of v1, whih will be useful when establishing the non-onvergeneof the segments in F and in E. With one possible exeption, all stations in Sk doindeed lie to the left of v1.Pass to the dual plane. The �rst juntion, v1, lies inside or on the boundary ofthe fae fk of A(L�k [L+k ), whose rightmost vertex is vk, so that the segment e = v1vkis ontained in the losure of fk. We distinguish the following ases:Case A: Suppose �rst that vk = m�0 and that the point  := m0 \m1 does not belongto R�.Let `�1 ; : : : ; `��1 and ��1 ; : : : ; ���k denote the lines ofD�1 and all the lines of L�k = D�k ,respetively, listed in the dereasing order of their slopes. By the speial hoie of ouroordinate system, eah line `�i intersets every line ��j to the left of v1. Indeed, allthe lines of L�k pass above or through v1, by Claim 4.1(ii), but no line passes through2This is a speial ase of a more general argument, given in Lemma 4.4 below.33



both vk and v1, beause suh a line is dual to the point m0 \ m1, whih we haveassumed not to belong to R�. The slope of the primal segment (��j )�(`�i )� is largerthan that of m1, beause, by what has just been argued, (��j )� 2 m0 lies below m1and to the left of (`�i )� 2 m1; see Figure 26(a). Hene the dual intersetion point liesto the left of v1. De�ne the last set of stations, Sk, as the olletion of all intersetionpoints of `��1 with the lines ��1 ; : : : ; ���k , and all intersetion points of ���k with thelines `�1 ; : : : ; `��1 . See Figure 26(b). Clearly, we have jSkj = �k + �1 � 1 suh stations,all lying to the left of v1. Sine the total (original) weight of the lines `�1 ; : : : ; `��1 isat least d1, and the total (original) weight of the lines ��1 ; : : : ; ���k is at least dk, itfollows, as in the onstrution of the other sets of stations, that the stations in Skgenerate in this ase at least d1 + dk � 1 segments in E(Sk).Case B: Suppose next that vk = m�0 and that the point  := m0 \m1 does belong toR�.Note that if q exists it must oinide with . We �rst onsider the ase whereq does not exist, and then disuss the modi�ations that are needed when q exists.The dual line � passes through both v1 and vk. Sine we assume for now that q doesnot exist,  does not belong to R+. We thus swith to R+, and ollet stations usingthe dual lines in L+, in a manner similar to that in ase A. All lines in D+k = L+kpass stritly below v1, and the lines of D+1 pass stritly above vk. Arguing exatlyas in ase A, let `+1 ; : : : ; `+�1 and �+1 ; : : : ; �+�k denote the lines of D+1 and the lines ofD+k = L+k , respetively, listed in the inreasing order of their slopes. The speialhoie of our oordinate system implies that eah line `+i intersets every line �+j tothe left of v1. Indeed, the slope of the primal segment (�+j )�(`+i )� is larger than thatof m1, beause (�+j )� 2 m0 lies above m1 and to the right of (`+i )� 2 m1. Hene thedual intersetion point lies to the left of v1. In this ase we de�ne Sk as the olletionof all intersetion points of `+�1 with the lines �+1 ; : : : ; �+�k , and all intersetion pointsof �+�k with the lines `+1 ; : : : ; `+�1. Clearly, we have jSkj = �k + �1 � 1 suh stations, alllying to the left of v1, and they generate, as above, at least d1 + dk � 1 segments inE(Sk).Case C: Suppose �nally that vk 6= m�0.In this ase, aording to Claim 4.3, vk lies on r� and �k = 1. Refer to Figure 28.Again, let `�1 ; : : : ; `��1 denote the lines of D�1 , listed in the dereasing order of theirslopes. In the dual plane, the line r� passes above v1 and, by the hoie of theoordinate system, it intersets every `�i to the left of v1, with the possible exeptionof `�1 . The intersetion r� \ `�1 an lie to the right of v1 (and of vk) only if the point := m0 \m1 belongs to R� and is dual to a line in D�1 , in whih ase that line mustbe `�1 = �. Note that in this ase r�\ `�1 = r�\ � is idential to the point m�0 dual tom0, and the hoie of the oordinate system implies that this is the rightmost vertexof A(L) on r�. We de�ne Sk to be the set of intersetion points between the lines`�1 ; : : : ; `��1 and r�. Thus, either all points of Sk, or all but one (namely, m�0) lie tothe left of v1. Clearly, we have jSkj = �1 = �k + �1 � 1, and, as above, these stationsgenerate at least d1 + dk � 1 segments in E.34
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v1 vk t� ��1��2 = r�`�1`�2
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R+ (���k )�r = (��1 )�
Figure 26: Case A of the onstrution of Sk, where vk = m�0 and m0 \m1 62 R�. (a)The primal struture. (b) The stations in Sk (highlighted to the left of v1).We assoiate with eah station u 2 Sk the double wedge W (u) formed by the twolines `�i ; ��j (or `+i ; �+j ) that meet at u.Construting Sk when q exists. Suppose now that the entral bihromati pointq exists. Examining the three ases in the onstrution of Sk, we note that Case Aannot arise, beause in this ase the point m0 \m1, whih has to be equal to q, doesnot belong to R�, ontraditing the de�nition of q. In Case C we an proeed exatlyas above, and ollet at least d1 + dk � 1 segments in E(Sk). (In fat, sine we usethe full weight of q, we get w(q+) additional segments in E(Sk).)It therefore remains to onsider Case B, in whih vk = m�0 and q = m0 \m1. Inthe dual plane, q� passes through both v1 = m�1 and vk = m�0. Suppose, without lossof generality, that (q+)� was removed at v1. See Figure 29.We onsider two subases. In eah of them the analysis beomes simpler if (q�)� 2D�k . Moreover, we assume in what follows that k > 2. The ase k = 2 will be treatedseparately later.Case 1. Suppose �rst that D+1 n f(q+)�g is nonempty.In this ase, we use the lower grid, to the left of v1, formed by the lines of D+1 nf(q+)�g and the lines of L+k (whih, by assumption, do not inlude (q+)�). Clearly,L+k is not empty. Sine D+1 ontains lines other than (q+)�, the lower grid an indeedbe used. The lines of L+k ontribute the full weight dk, but the lines of D+1 n f(q+)�gontribute only d1�w+ overall weight, so the grid generates (at least) d1+dk�w+�1segments in E(Sk).If (q�)� 2 D�k , the loss of w+ segments in E(Sk), as ompared with the analysisin the standard ase, will be automatially ompensated in the onstrution of E(vk),35
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R+ � `+2 `+1 �+2�+1r�vkv1
Figure 27: Case B of the onstrution of Sk, where vk = m�0 and  = m0 \m1 2 R�.(a) The primal struture. (b) The stations in Sk (highlighted to the left of v1).sine this analysis gains \for free" the weight w+ of (q+)� when it handles the line(q�)�. The ase (q�)� =2 D�k will be handled shortly.Case 2. (q+)� is the only line in D+1 .In this ase, the lower grid does not exist, and we have d1 = w+. Clearly, theremust exist lines of L�1 through v1 other than (q�)�. Moreover, the line r� passesby onstrution through vk = m�0 (see Figure 27). If (q�)� 2 L�k , then r� must alsobelong to L�k , for otherwise it would have to pass through some preeding juntion vj,so (q�)� would pass below vj, whih is impossible for lines of L�k . If (q�)� 62 L�k , thenall the lines of L�k (whih is a nonempty set) pass above v1. Hene we may use in thisase the upper grid, whih generates at least d1�w�1 +dk�w�k �1 segments in E(Sk),where w�1 ; w�k are the weights that (q�)� ontributes at the respetive juntions v1; vk.If w�1 = w�k = 0, we obtain the standard bound d1 + dk � 1.If w�1 > 0 and w�k = 0, we are in a symmetri version of the situation in Case 1that still needs to be treated. Both versions will be treated together below.If w�1 = 0 and w�k > 0, we automatially ompensate for the loss of w�k segmentsin the ount, in the onstrution of E(v1), whih, similar to the argument in Case 1,gives us w(q�) � w�k extra segments \for free".If w�1 > 0 and w�k > 0, we interpret the bound in the ontext of Claim 4.2, exeptthat our bound is 1 smaller than what the Claim guarantees.It remains to analyze the subases where (q�)� =2 D�k , and where we still need toompensate for the loss of maxfw+; w�1 g segments in E(Sk).Note that this loss is idential to the potential loss at E(S1), disussed above. Weompensate for it in the same way|by inluding q in the onstrution of E(vk). The36
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Figure 28: Case C of the onstrution of Sk, where vk 6= m�0. (a) The primal struture.(b) The dual piture. v1 vk(q+)�(q�)�dk d1 � w+Figure 29: Construting Sk in the presene of q�.same analysis shows that we an always ompensate for the loss, unless minfw+; w�g =1, in whih ase we lose one segment in the ount.(Note that, for this analysis to work, it is ruial that k > 2. Otherwise we needto ompensate twie for the loss of maxfw+; w�1 g segments, one in E(S1) and onein E(Sk), but if v2 = vk we an ompensate for it only one.)As in the ase of S1, here too we pay the prie of replaingW (vk) by the narrowerdouble wedge bounded by q� and by the shallowest lineof the set among D�k , D+k towhih q� was not adjoined. Nevertheless, we will show in Setion 4.5 that this doesnot a�et the pairwise non-onvergene of the segments in F .
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4.4 Counting the Number of Segments in EThe standard ase. Let us �rst onsider the standard ase, where q does not exist.Combining the ontributions in (2) and (3) with the ontribution in (1), we obtainthat E onsists of a total of at leastk + t + tXj=1 �j(wj � 1) + 2 kXi=1 di �Xi2I1(ai + ai+1)�Xi2I2 1 (4)segments, where I1 is the set of indies i for whih there exists a (unique) line whihontributes to both di and di+1 (or to d1 and dk, for i = k), and I2 is the omplemen-tary set.Assume �rst that there is no line that ontributes to all the k weights d1; : : : ; dk.Then eah line `j an ontribute to at most �j � 1 pairs of suessive weights di; di+1,and eah of the orresponding terms (ai + ai+1) is at most wj. Even if there existsa line that ontributes to all k weights di, it does not a�et the onstrution ofthe segments from the stations of Sk, whih always produes at least d1 + dk � 1segments (when q does not exist). That is, we an always pretend that k 2 I2,so the analysis proeeds in the same way in this ase, too. The remaining pairs ofsuessive weights ontribute �1 to the expression above (in the summation overi 2 I2). Therefore, an overestimate of the (absolute value of the) negative terms in(4) is Ptj=1(�j � 1)wj + (k �Ptj=1(�j � 1)).Using the fat that 2Pki=1 di =Ptj=1wj = n� 1, the bound in (4) is greater thanor equal tok + t+ tXj=1 �j(wj � 1) + tXj=1 wj � k � tXj=1(�j � 1)(wj � 1) = 2 tXj=1 wj = 2n� 2:
The ase where q exists. The di�erenes between this ase and the standard aseare:(i) We may lose one segment in E(v1).(ii) We may lose one segment in E(S1). Even if we do not lose the segment, we mayollet there only d1 + d2 � (a1 + a2) segments, where one of a1; a2 is 0.(iii) A similar situation may our for Sk.(iv) It is possible that (q�)� or (q+)� ontributes weight to all juntions v1; : : : ; vk,whih may ause the set I1 to onsist of all indies 1; : : : ; k, and I2 to be empty.Assume �rst that the situation in (iv) does not arise. Then the analysis proeeds asin the standard ase, sine, as is easily veri�ed, it is not a�eted by having some of the38



q� v2 = vkL+1 L+kL�kL�1
(a) (b) m0

m1q rv1 R�R+ W+1 W�1W+2 W�2
Figure 30: The ase of only two juntions in the presene of q�: (a) The dual on�g-uration. (b) The primal on�guration (in �).ai's vanish, exept that we need to subtrat 3 from the overall ount, to aommodatethe potential losses in (i){(iii). Hene, in this ase we have jEj � 2n� 5.If the situation in (iv) arises, say, with (q�)� being the line that ontributes weightto all juntions, then Pi2I1(ai + ai+1) = 2w�, and all lines `j 6= (q�)� have �j = 1.The total number of segments in E is therefore at least (without loss of generality,we assume that (q�)� is the t-th line)k(w� � 1) + t�1Xj=1(wj � 1) + n� 1� 2w� + k + t� 3 =(k � 2)w� + (n� 1) + t� (t� 1) + (n� 1� w�)� 3 = (k � 3)w� + 2n� 4:Hene, if k � 3, we have jEj � 2n � 4. (Reall that the ount so far atually reliedon the assumption that k � 3.)It thus remains to onsider the ase where only two juntions are generated. Inthis ase, by onstrution, all the lines of L must pass either through v1 or throughv2; see Figure 30(a). Hene, in the primal plane, all points of R must lie on the linesm0 and m1, with q lying on both lines; see Figure 30(b).In this very degenerate ase, we onstrut E expliitly, working in the primalplane �, as follows. Denote by W+1 ;W�1 ;W+2 ;W�2 the overall weight of all points ofR+ \m1, R� \m1, R+ \m0, R� \m0, respetively, exluding q in all four ases.(i) Apply Theorem 3.1 or Corollary 3.2 in the planes de�ned by m0 and m1, respe-tively, and by p0 (or, equivalently, at the dual juntions m�1 = v1 and m�0 = v2). Tobe on the safe side, we assume that only Corollary 3.2 an be used at either jun-tion, and, as usual, we subtrat 1 from the bound at v1 to allow for potential doubleounting of a segment. This yields a total of at least(W+1 +W�1 + w(q)� 1) + (W+2 +W�2 + w(q)) =39
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Figure 31: (i) The set of Figure 1 with n = 7 points that determines 2n � 5 = 9diretions. (ii) The weighted set R in the primal plane �, obtained by projetingfrom p0, with the entral bihromati point q of weight 2. (iii) The dual onstrutionof juntions and stations. We ollet 4 segments in E(v1) (using Corollary 3.2), 3 inE(v2) (using Corollary 3.2 and subtrating 1), 1 in E(S1), and 1 in E(S2), for a totalof 9 pairwise non-onvergent segments.(W+1 +W�1 +W+2 +W�2 + w(q)) + w(q)� 1 = (n� 1) + w(q)� 1segments in E.(ii) Suppose, without loss of generality, that W�2 � W+2 . We then generate segmentsin F , in addition to those lying on m0; m1, as shown in Figure 30(b). That is, weonnet the point of R+ \ m0 farthest from q to all the points on m1, exluding q,and onnet the two points of R+ \ m1, R� \ m1 farthest from q to all the pointsof R+ \m0. Here it is easy to verify diretly that all these segments, inluding thesegments f(v1) � m1, f(v2) � m0 (where the �rst may degenerate to the singletonpoint q, but is still onsidered to lie along m1), are pairwise non-onvergent. TheF -segments that we have onstruted are dual to the stations in S1 [ S2. The totalnumber of segments in E that are generated from these stations, in the standardmanner, is at least(W�1 +W+2 � 1)+ (W+1 +W+2 � 1) � W+1 +W�1 +W+2 +W�2 � 2 = n� 1�w(q)� 2:Adding the bounds from (i) and (ii), we get jEj � 2n� 5. We note that the on�gu-ration in Figure 31 falls into this ase.4.5 Pairwise Non-onvergene of the Colleted SegmentsTo omplete the proof, we have to show that no pair of segments in E are onvergent.We �rst show:Lemma 4.4. Let Q denote the set of all juntions and stations that we have olleted.For any u; v 2 Q, the segments f(u) and f(v) assoiated with these verties are non-onvergent in the primal plane �. 40



Proof: Let us �rst onsider the standard ase, where q does not exist. Let u; v 2 Qwith u lying to the left of v. The property that f(u) and f(v) are non-onvergent isdual to the property that W (u) and W (v) are non-onvergent, that is, either u liesin (the losure of) W (v) or v lies in (the losure of) W (u). We distinguish betweenseveral ases:Case A: Both u and v are juntions.Put u = vi and v = vj, with i < j. Then W (v) is bounded by a line ` 2 L+j andby a line `0 2 L�j . By Claim 4.1(ii), u = vi lies between these two lines, and thusbelongs to W (vj) = W (v).Case B: u is a juntion and v is a station not in Sk.Put u = vi and let Sj be the set of stations that ontains v, where i � j < k. ThenW (v) is bounded by two lines `; `0, where either ` 2 L+j and `0 2 L�j+1, or ` 2 L+j+1and `0 2 L�j . By onstrution, we have in both ases ` 2 L+j and `0 2 L�j , and theanalysis is ompleted as in Case A.Case C: u is a station not in Sk and v is a juntion or a station not in Sk.Let Si be the set of stations ontaining u. The arguments in Case A and Case Bimply that vi 2 W (v). If v is also a station in Si or v = vi+1 then it is lear from theonstrution of Si that W (u) and W (v) are non-onvergent (see Figure 19). Supposethen that v lies to the right of vi+1. Then both vi and vi+1 lie in the left wedge ofW (v), and u is inident to a line ` that passes through vi and to a line `0 that passesthrough vi+1. If u =2 W (v) then a boundary line of W (v) must separate u from vi andvi+1, in whih ase v 2 W (u); ompare with Figure 14(a).Case D: u is a station in Sk to the left of v1 and v is a juntion or station.If both u and v belong to Sk, then the laim follows easily from the onstrutionof Sk. We thus suppose that v 62 Sk. Then we have v 2 fvig [ Si [ fvi+1g, for some1 � i < k.We start with the ase vk = m�0. Refer to Figure 32. Suppose that u 2 Sk is theintersetion point of two lines `; �, passing through v1 and vk, respetively, whih,without loss of generality, we assume to belong to L�. If v is ontained in the doublewedge bounded by ` and �, then v 2 W (u), so W (v) and W (u) are non-onvergent.Otherwise, sine u lies to the left of v1, v lies either above � or below `. If v is above �,then it is not a juntion, so it must be the rossing point of a line `+ 2 D+i and a line`� 2 D�i+1. See Figure 32(a). Both vi and vi+1 lie on or below �, so the left portionof the double wedge bounded by `� and `+ ontains u. Thus, we have u 2 W (v).If, on the other hand, v is below `, as in Figure 32(b), then it is either a juntion ora station, and it is the rossing point of a line `� 2 L� and a line `+ 2 L+ whihbound W (v), suh that either both `+ and `� are in Di (if v = vi is a juntion), or`� 2 D�i and `+ 2 D+i+1 (if v 2 Si is a station). Now `� must pass above (or through)v1 and hene above u, while `+ must pass below u. Again we an onlude that theleft portion of the double wedge bounded by `� and `+, and thus W (v), ontains u.41
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Figure 32: The proof that W (u) and W (v) are non-onvergent when u is a station tothe left of v1. (a) v lies above W (u). (b) v lies below W (u).The ase where u lies on two lines of L+ is handled in a fully symmetri manner.If vk 6= m�0, the above argument an be repeated verbatim for stations u 2 Sk tothe left of v1. If v = m�0, the sole station to the right of vk, the laim is immediatefrom the onstrution of Sk. Hene, Case D of the Claim holds in either ase.Case E: u is a juntion or station not in Sk and v is a station in Sk (to the right ofvk).Case E an arise only when v = m�0 2 Sk. Now it is simplest to establish the laimin the primal plane, by noting that the segment dual to W (v) lies on the line m0, andthat, by onstrution (sine u =2 Sk), the segment dual to W (u) must onnet a pointof R� to a point of R+, and thus must interset m0, showing that these two segmentsare non-onvergent.Consider next the ase where the entral bihromati point q exists, whih requiresa few modi�ations in the preeding analysis. First, if both (q�)� and (q+)� belongto D1, the double wedge W (v1) degenerates to the single line q�. (We still onsiderit to have v1 as an apex. In the primal plane, the segment f(v1) degenerates to thesingleton point q, but it is still onsidered to lie along the line v�1 .) It is easily veri�ed,though, by speializing Cases A,B,D,E to this on�guration, that W (v1) and anyother wedge W (v) in our olletion are still non-onvergent.The presene of q does not a�et any other ase in the preeding analysis, as longas we were not fored to inlude q in the onstrution of E(v2) or E(vk). Supposethen that we had to inlude q in the onstrution of E(v2) (even though neither (q+)�nor (q�)� belonged to D2). In Case A, v2 is ontained inW (vj) for any j > 2 (the asewhere W (vk) was also shrunk will be treated below), so it only remains to onsiderthe ase u = v1, v = v2, whih still works, sine v1 2 q�, and thus v1 still lies in themodi�ed W (v2). Case B is not a�eted by the shrinking of W (v2). In Case C, weonly need to onsider the subase when u 2 S1, and the property ontinues to holdsine v2 2 W (u). In Case D, we have v2 2 W (u), whih easily follows from the fatthat v2 2 q�; see Figure 33. Case E is argued as in the standard ase.Suppose �nally that we had to inlude q in the onstrution of E(vk) (even though42



` �vkv1 v2 q�u
Figure 33: Case D of the analysis when W (v2) is shrunk: v2 2 q� lies above ` andbelow � and thus v2 2 W (u).neither (q+)� nor (q�)� belonged to Dk). Reall that this an arise only in Case B ofthe onstrution of Sk, where vk = m�0. Now, exept for the stations in Sk, for anyother vertex u 2 Q, f(u) onnets a point of R+ and a point of R�, and thus the lineontaining f(vk), namely m0, must ross f(u), so f(u) and f(v) are non-onvergent.If u is a station in Sk, then vk 2 W (u), by onstrution.Hene the lemma also holds when q exists. �Non-onvergene of the elements of E. Reall that, for eah v 2 Q, the points ofP that span the segments in E(v) are those points that projet to the line ontainingf(v) in �, so that their projetions are dual to lines in L that either were removed atv or had their weights redued there (if v is a juntion), or are the two lines inidentto v (if v is a station).Moreover, eah segment e in E(v) has the property that either its projetion on� ontains the segment f(v) or it is a point not in the interior of f(v); the latter asearises when e is ontained in a ray emanating from p0, a situation that an arise whenwe apply Theorem 3.1 or Corollary 3.2 at one of the juntions v1; : : : ; vk.Let e1 and e2 be two segments in E. For i = 1; 2, let ui denote the vertex in Qfor whih ei 2 E(ui), and set fi = f(ui). It suÆes to onsider the ase u1 6= u2.The segments f1 and f2 are non-onvergent in �. If the projetions �e1, �e2 on� from p0 of e1 and e2, respetively, are segments (so that they ontain f1 and f2,respetively), then �e1 and �e2 are non-onvergent in �, whih is easily seen to implythat e1 and e2 are non-onvergent in R3 . If the projetions of both e1; e2 are pointson �, then e1 and e2 share p0 as an endpoint and therefore are non-onvergent.We are left with the ase in whih, without loss of generality, e1 projets from p0to a point x 2 � (whih is on the line ontaining f1 but not in the interior of f1),whereas e2 projets to a segment e02 ontaining f2. See Figure 34. The point x maybe assumed to lie on the line ontaining f2, for otherwise e1 and e2 are non-oplanar,and therefore non-onvergent. If x 2 e02 then learly e1 and e2 are non-onvergent,so we may assume that x =2 e02. It follows that x =2 f2 and sine f1 and f2 are non-onvergent, x must be an endpoint of f1 (otherwise f1 and f2 would be onvergent,43
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Figure 34: Non-onvergene of e1 and e2: An impossible on�guration.beause the lines on � that ontain them meet at x whih lies outside both segments).We laim that this ase is impossible. Indeed, we have already noted that if x isan endpoint of f1, then the vertex u1 dual to f1 must be a juntion vi. The line ` dualto x passes through both verties u1 = vi and u2, and it is the shallowest line in eitherD+i or D�i . If the entral bihromati point q exists, and u2 is not a station in Sk,then ` annot be equal to q�, i.e., x annot be equal to q, beause, by onstrution,q must lie inside f2, whih is delimited by a point of R+ and a point of R�. Hene,we may assume, without loss of generality, that ` 2 L+ n f(q+)�g. The ase where qexists and u2 is a station in Sk will be onsidered later.Case 1: u1 = vi lies to the left of u2.Sine x lies outside f2, the endpoint of f2 nearer to x is dual to a line `0 2 L+i thatpasses through u2 and has smaller slope than that of `. (Sine u2 is onstruted afteru1, the lines that de�ne W (u2) must belong to Li.) But then `0 must pass above viwhih is a ontradition sine all the lines in L+i must pass through or below vi. SeeFigure 35(a).Case 2: u1 = vi lies to the right of u2.Assume �rst that u2 is not a station in Sk. Let 1 � j < i be the index suh thateither u2 = vj or u2 is a station in Sj. Sine x lies outside f2, the R+-endpoint off2 (the one nearer to x) is dual to a line `0 2 D+j [ D+j+1, whih is shallower than` (sine x lies outside f2). If u2 = vj then `0 2 D+j , and, by onstrution, ` musthave also been removed at vj or at an earlier juntion, and thus it annot be dual toan endpoint of f1 (beause suh a point must be the dual of some line in L+i ). SeeFigure 35(b). Hene this ase is impossible. Suppose then that u2 is a station in Sj.Regardless of whether `0 2 D+j or `0 2 D+j+1, sine ` is steeper than `0, vj+1 lies below`. Hene, we must have i > j + 1, and, sine ` 2 L+i , we obtain a ontradition toClaim 4.1(ii); see Figure 35().Finally, assume that u2 is a station in Sk to the left of v1. Suppose �rst that u2lies on a line `� 2 D�1 and a line �� 2 D�k = L�k . In this ase, `0 = �� and ` passes44



(a) (b) ()
` = x�u1 = vi`0u2 = vju2` = x�`0u1 = vi u2 `0` = x�vj vj+1

u1 = vi
Figure 35: Showing the impossibility of the on�guration in Figure 34. (a) u1 is tothe left of u2. (b) u2 is a juntion to the left of u1. () u2 is a station to the left of u1.

(a) (b) ()
` = x�u2 u1 = viv1 vk�� = `0`� u2 v1 vku1 = vi ` = x�`+ �+ = `0 u2 v1 vku1 = vi

` = x�
`+ = `0 �+

Figure 36: Showing the impossibility of the on�guration in Figure 34 when u2 is astation of Sk to the left of v1, and ` 2 L+. (a) u2 is formed by two lines of L�. (b)u2 is formed by two lines of L+, and ` is shallower than both of these lines. () u2 isformed by two lines of L+, and ` is steeper than both of these lines.above v1, whih is impossible, sine ` 2 L+1 ; see Figure 36(a). Suppose next that u2lies on a line `+ 2 D+1 and a line �+ 2 D+k = L+k . Sine x lies outside f2, ` is notontained in W (u2). If ` is shallower than �+ (see Figure 36(b)), then `0 = �+, andvi lies below �+ 2 L+k , whih is impossible. If ` is steeper than `+ (see Figure 36()),then `0 = `+, and v1 lies below `, whih is impossible, sine ` 2 L+1 . (Note that in allthree ases, ` annot be equal to q�, beause q� passes through v1 and ` does not.)All these ontraditions show that Case 2 is also impossible.This establishes the non-onvergene of the segments in E, and thus, at long last,ompletes the proof of Theorem 1.3. �As mentioned earlier, we an get a better bound when q does not exist:Theorem 4.5. Let P be a set of n � 6 non-oplanar points in R3 , suh that n isodd, and there exists an extreme point p0 of P , suh that the projetion of P fromp0 produes a set R without a entral bihromati point. Then P determines at least2n� 2 segments, no two of whih are onvergent.45



This strengthens the bound 2n� 3 in Conjeture 1 of Blokhuis and Seress [2℄ forn odd.5 Extensions and Open ProblemsIn this setion we onsider several extensions of our results, prove some of them, andleave the others as open problems.The most obvious open problem is to obtain the exat worst-ase bound for neven. Currently there is a small gap between our lower bound 2n � 7 and the bestknown onstrution, whih gives 2n� 3 pairwise non-onvergent segments.Theorem 1.3 yields the following extension to four dimensions. It settles Conje-ture 9 of Blokhuis and Seress [2℄ in the aÆrmative for d = 4 and for even n.Theorem 5.1. Let P be a set of n points in R4 , not ontained in a hyperplane and nothaving three ollinear points. Then P determines at least 3n� 8 di�erent diretions,if n is even, and at least 3n� 10 di�erent diretions if n is odd. The bound is sharpfor every even n � 8.Proof: Let p0 be the lowest point of P (in the x4-diretion). Let H be a horizontalhyperplane (parallel to the x1x2x3-spae) far above all the points of P . Applying asmall rotation to P , we may assume that H is not parallel to any segment determinedby P .Projet the points of P n fp0g entrally from p0 onto H, and olor the projetedimages red. For eah diretion  determined by P , let L denote the line parallel to and passing through p0. If a diretion , determined by P , is not obtained throughp0, let b denote the intersetion point of L with H. Color all suh points b green.Clearly, every red or green point on H gives rise to a di�erent diretion determinedby P , and all these points are distint. The number of red points on H is n� 1.Sine P is not ontained in a hyperplane, the red points on H are not oplanar.Therefore, by Theorem 1.3, they determine at least 2(n � 1) � 5 = 2n � 7 pairwisenon-onvergent segments, if n� 1 is odd, and at least 2(n� 1)� 7 = 2n� 9 pairwisenon-onvergent segments, if n� 1 is even.We laim that along eah line L in H passing through two or more red pointsthere is a green point that lies outside the onvex hull of the red points on L. Indeed,onsider the 2-plane through p0 and L. The diretion  in 4-spae, determined bythe two points of P that projet to the two extreme red points on L, is not obtainedthrough p0, and thus yields the desired green point outside the onvex hull of the redpoints on L. See Figure 37. Therefore, every olletion of m pairwise non-onvergentsegments determined by the red points on H gives rise to m distint green points onH, formed in the manner just desribed. No two suh green points an oinide, forthat would make the orresponding red segments onvergent.46
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Figure 37: The green point determined by a red segment in H.It follows that the number of points on H is at least n� 1+ 2n� 7 = 3n� 8, if nis even, and at least n� 1 + 2n� 9 = 3n� 10, if n is odd.We next show that the bound is sharp for even n � 8. The onstrution extendsthe one depited in Figure 1. Spei�ally, let P be the set of the verties of a regular(n� 4)-gon Q in the x1x2-plane, entered at the origin, and of the four points �e3 =(0; 0;�1; 0), �e4 = (0; 0; 0;�1). It is easy to see that P determines exatly 3n � 8di�erent diretions: n � 4 diretions in the x1x2-plane, n � 4 diretions obtained byonneting the verties of Q to e3, n�4 diretions obtained by onneting the vertiesof Q to e4, and 4 diretions determined by �e3, �e4. �A major generalization of Theorem 5.1, still in four dimensions, would be toestablish the following onjeture:Conjeture A: Any set P of n points in R4 , not ontained in a single hyperplane,determines at least 3n �  pairwise non-onvergent segments, for some onstant (that might be larger than those in the theorem).This onjeture would imply, by an appropriate extension of the preeding proof,that any set of n points in R5 , not ontained in a hyperplane, and not having threeollinear points, determines at least 4n� (+ 4) di�erent diretions.The �nal grand hallenge is to establish the following onjeture, whih strength-ens Conjeture 9 of Blokhuis and Seress [2℄:Conjeture B: Any set P of n points in Rd , for d � 4, not ontained in a singlehyperplane, determines at least (d� 1)n� d pairwise non-onvergent segments, forsome onstant d that depends (probably quadratially) on the dimension d.Referenes[1℄ M. Aigner and G. Ziegler, Proofs from The Book, 2nd ed. Springer-Verlag, Berlin,2001. 47
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