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Abstract

We present an algorithm for computing the discrete 2-center of a set P of n points in
the plane; that is, computing two congruent disks of smallest possible radius, centered
at two points of P, whose union covers P. Our algorithm runs in time O(n*/?log® n).

1 Introduction

Problem statement and previous results. Let P be a set of n points in the plane.
The discrete 2-center problem for P is to cover P by (the union of) two congruent closed
disks whose radius is as small as possible, and whose centers are two points of P. This is a
restricted version of the standard 2-center problem, where the centers of the two covering
disks can be any pair of points in the plane. This latter problem has been studied extensively,
where the best algorithm, due to Sharir [14] and slightly improved by Eppstein [6], runs in
randomized expected O(nlog?n) time.

The discrete 2-center problem has been studied in [7], where a near-quadratic algorithm
is proposed (such an algorithm is briefly described later in this introduction). Before dis-
cussing it further, we note that the discrete 1-center problem, seeking the smallest disk
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centered at a point of P and containing P, is much easier to solve, in time O(nlogn), using
the furthest-neighbor Voronoi diagram of P. That is, the diagram allows us to find, in
O(nlogn) time, the furthest neighbor f(p) of each point p € P. The point p that minimizes
the distance between p and f(p) is the center of the desired smallest enclosing disk.

The discrete 2-center appears to be more difficult than the standard 2-center problem.
Both problems involve a ‘decision procedure’ that, given a fixed radius r, aims to determine
whether P can be covered by two disks of radius . As an informal explanation of the
additional difficulty of the discrete 2-center problem, suppose that we have already guessed
one center p. The second center must then lie in (‘pierce’) each of the disks of radius r
centered at the points of P and not containing p. In the standard 2-center problem we
simply need to determine whether the intersection of all these disks is nonempty, whereas
in the discrete 2-center problem we need to determine whether this intersection contains a
point of P, which is a harder task.

Main results and the overall approach. In this paper we obtain an efficient solution to
the discrete 2-center problem that runs in time O(n*/3 log® n). This is the first subquadratic
algorithm for solving the problem. We note that a near-quadratic solution is rather easy:
It suffices to show a near-quadratic solution to the fixed-size problem, and then follow (a
simpler version of) the binary-search technique (on the radius r) that is described below
in Section 5, to find the optimal solution. The fixed-size problem, for a given radius r,
determines whether there exist p,q € P so that P C D(p,r) U D(q,r), where D(z,r)
denotes the closed disk of radius r centered at x. We try each point p € P as the first
center and obtain the set N, C P of points not contained in D(p,r). By computing the
farthest-point Voronoi diagram of N,, we can determine in O(nlogn) time whether there
exists a point ¢ € P so that N, C D(¢,r). The running time of the fixed-size procedure is
therefore O(n?logn).

In order to improve the running time of the fixed-size problem, we proceed as follows:
For each p € P, let K, be the intersection of all the disks D(q,r) centered at the points of
P and not containing p. If any set K, contains a point ¢ of P, then we are done: p and ¢
are centers of two disks of radius r whose union covers P. Conversely, if p, ¢ € P are centers
of two such disks, then p € K, and ¢ € K. In other words, we need to compute the union
U of all the K},’s, and determine whether U N P # (). The difficult step is to compute U in
time close to n*/3.

We consider a more general problem: Let P be a set of m points and D a set of n
congruent disks. For each p € P, define D, = {D € D | p ¢ D}, K, = ﬂDer D,
K={K,|peP},and U = UpEP K. In Section 2 we present some important properties
of I, which we believe to be of independent interest. The main property is that I is a
collection of convexr pseudo-disks; i.e., these sets are compact and convex, and for any pair
K,, K, of such sets, both K, \ K, and K, \ K, are connected.

In Section 3 we show that the combinatorial complexity of U is O(m?/3n?/3 logl/ Sn+
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nlogn). While this bound is non-trivial, and ‘consistent’ with the running time we are
aiming at, we have so far been unable to exploit this bound to obtain an alternative simpler
solution, of comparable complexity, of the discrete 2-center problem. The reasons for this
are technical, and will be noted below.

In Section 4 we present an O(n*/?log*n)-time algorithm for computing U (and for
testing whether U N P # () for the case in which D = {D(p,r) | p € P}. The algorithm
constructs and searches in U in a semi-implicit manner, using appropriate range-searching
data structures and techniques similar to those used in parametric searching, for performing
various primitive operations on the semi-implicit representation of U. Finally, we describe
the overall algorithm for the discrete 2-center in Section 5. As mentioned, its running time
is O(n*3log®n).

2 Structure of K

In this section we prove some interesting properties of K. These properties, besides being
of independent interest, are crucial for making our algorithm efficient.

Theorem 2.1 Let D be a finite set of congruent disks in the plane, and let P be a finite set
of points. Let IC be the same as defined in the introduction. Then K is a family of convex

pseudo-disks; that is, each K, is a compact convex set, and for each pair of distinct sets
K,, K, both sets K, \ K, and K, \ K, are connected.

We prove the theorem by a sequence of lemmas.

Lemma 2.2 For a point p, two distinct disks D1, Dy € D that do not contain p and another
disk D € D that contains p, the set D\ (D1 N Dg) is connected.

Proof: Suppose to the contrary that D\ (D; N D2) is disconnected. Since p € D and
p & Dy, Do, all three disks D, Dy, Dy are distinct. Since D \ (D1 N Dy) is disconnected, 0D
and 0(D1N Ds) must cross at exactly 4 points, all lying on the boundary of E = DND;NDs.
This however is impossible, since the intersection of three congruent disks can have at most
three such intersection points on its boundary. O

Corollary 2.3 For a point p € P and a disk D € D that contains p, the set K, \ D is
connected.

Proof: Suppose to the contrary that K, \ D is disconnected. Since D ¢ D,, it is distinct
from any of the disks that form K, so any intersection of 0D with 0K, must be a proper
crossing. Moreover, since K, \ D is disconnected, the boundaries of D and of K}, must cross
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at least four times. This, however, implies that D \ K, is also disconnected (this follows
from the convexity of K,). But

D\K,=D\ (] D'=Dn |J (D)= |J (D\D.

D'eD, D'eD, D'eD,

If a union of a collection of sets is disconnected, then either one of the sets is disconnected,
or there exist two disjoint sets in the collection. In our setting, D\ D’ is always connected,
and the second case contradicts Lemma 2.2 (because for D', D" € D, (D\ D')U(D\D") =
D\ (D' nD")). Hence, K, \ D is connected. O

Lemma 2.4 For a point p, two distinct disks D1, Ds € D that do not contain p and two
other distinct disks D3, Dy € D that contain p, the set (D1 N Dy) \ (D3N Dy) is connected.

Proof: Suppose again to the contrary that (D;NDs2)\ (D3NDy) is disconnected. Lemma 2.2
implies (using the argument in the proof of Corollary 2.3) that (D; N D)\ D3 is connected,
and so is (D1 N D) \ Dy. It follows that (D1 N D) and 0D3 intersect at most twice, and
the same holds for 9(D; N Dy) and 0Dy4. These conditions, along with our assumption,
imply that d(Dy N Dy) and 9(D3 N Dy) intersect exactly 4 times. Moreover, put E =
Dy N Dy N D3N Dy, fix a point o in the interior of E, and consider the boundaries of
Dq,...,D4 and E as graphs of functions r = Dy(6),... ,» = E(f) in polar coordinates
about o. Let u, v, w, z be the four points of intersection between 9(D1NDy) and (D3N Dy),
appearing in this circular counter-clockwise order along OF. Let 0, < 0, < 0, < 6, be the
polar orientations of u, v, w, z, respectively. Since Dy, ... , D4 are congruent disks, each 0D;
appears along OF in a single connected arc. Hence, with no loss of generality, we may assume
that OF is attained by 0D over [0,,6,], by 0D3 over [0,,60,], by dDs over [6,,6.], and by
0Dy over [0,,60,]. See Figure 1. Let 6, be the polar orientation of ¢p. It is impossible that

Figure 1: The proof of Lemma 2.4

6, lies in [6,,6,,], for otherwise, since p € D3, we have |op| < D3(6,) < D;(6,), implying
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that p € D;, contrary to assumption. Similarly, 6, cannot lie in [f,,0,]. (We use the
notation [, 6] to denote the angular interval extending counter-clockwise from 6 to €'.)
Suppose then that 6, € [0,,6,]. Let F = D3N D, and regard it too as a graph r = F(6).
Since p € F but p ¢ Dy, we have Dy(6,) < F(6,), and this inequality is reversed over
the intervals [0,,60,] and [0,,6,]. It follows that OF and 0D, intersect at least twice over
the interval [6,,0,], which, together with w and z, yields 4 points of intersection between
these boundaries, all lying along d(D2 N D3 N Dy4). This is impossible for congruent disks
(cf. the proof of Lemma 2.2). A similar contradiction occurs when 6, € [6,,,6,]. All these
contradictions establish the lemma. O

Following the same argument as in the proof of Corollary 2.3, we obtain:

Corollary 2.5 For a point p € P and two disks D,D' € D that contain p, the set K, \
(DN D') is connected.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1: Suppose to the contrary that there exist p,q € P such that
K, \ K, is disconnected. As in the proof of Corollary 2.3, we can express K, \ K, as

K,\K, = K,\ (| D=K,n |J D°

DED, DED,
= U(KP\D): U (KP\D)'
DeD, DEDG\Dy

(The last equality follows from the fact that the disks in D, N D, contribute empty sets to
this union.) Again, as in the proof of Corollary 2.3, if K, \ K, is disconnected, then either
there exists a disk D € D, \ D, so that K, \ D is disconnected, or there exists two disks
Di,Dy € D, \ D, so that K, \ (D1 N Dy) is disconnected. The first condition contradicts
Corollary 2.3 and the second contradicts Corollary 2.5. Hence, K, \ K, is connected (and
sois K, \ Kp). O

Theorem 2.1 fails for non-congruent disks, as is illustrated in Figure 2. Nevertheless,
the following variant of the theorem holds in even more generality:

Theorem 2.6 Let D be a finite set of convex pseudo-disks in the plane; that is, each D € D
is a compact convex set, and for each pair of distinct sets D, D' € D, both sets D\ D' and
D'\ D are connected; we also assume that 9D and OD' cross each other transversally at
any point of intersection. Let P be a finite set of points. For each p € P, let D), denote the
set of pseudo-disks in D that do not contain p, and let K, denote their intersection. Then,
for any p,q € P, 0K, and 0K, can cross each other at most twice.

(Note that for the sets K, and K, in Figure 2, their boundaries do not cross at all.)
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%

p

Figure 2: K, \ K, (the shaded region) consists of two connected components.

Proof: We partition D into four subsets: the subset D, N D, of pseudo-disks that contain
neither p nor ¢, the subset D, \ D, of pseudo-disks that contain ¢ but not p, the subset
D, \ D, of pseudo-disks that contain p but not ¢, and the subset D\ (D,UD,) of pseudo-disks
that contain both p and ¢. We can ignore the last subset since the pseudo-disks in this set
have no effect on K, or K,. Let T = (D, N Dy). Clearly, both K, and K, are contained
in Z, so any crossing between their boundaries must be interior to Z. In particular, if such
a crossing occurs between a pseudo-disk D € D, and a pseudo-disk D' € D, then we must
have D € D, \ D, and D' € D, \ D, (that is, ¢ € D and p € D').

Now suppose that 0K, and 0K, cross each other three times, at points u, v, and w. By

the above argument, there exist six (not necessarily all distinct) pseudo-disks, Dq(f’ ), DI(LQ),

p¥) D DI, DY, such that D), DP, and DY are in D, \ D,, DY, D, and DY
are in Dy \ Dy, Dl(bp ) and Dl(bq) cross at u, DQ(,p ) and Dq(,Q) cross at v, and Dq(f ) and Dq(l?) Cross

at w.

Let o be a point in the interior of K, N K,;. There must exist two of the crossing points,
say u and v, such that p and g appear between v and v in counter-clockwise angular order
about 0. Without loss of generality, assume that u, p, ¢, and v appear in this counter-
clockwise order about o, and let 6, < 6, < 6, < 6, be the orientations of the vectors o,
op, 0g, and ob, respectively.

Figure 3: Proof of Theorem 2.6.
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Now consider the two pseudo-disks D&q) and Dl(,]’J ), and regard their boundaries as func-

tions r = DY (0) and r = DY (@) in polar coordinates about 0. Then we have (see Figure 3):

D?(6,) < DP(9,)
D{P(6,) > D) (6,)
ngq)(gq) < Dz(;p)(oq)
D?(6,) > DP(6,).

These inequalities follow from the convexity of K, and K, from the fact that u and v lie
on their boundaries, and from the fact that DY) € D, \ Dy and DY ¢ D, \ D,. However,

this implies that D&q) and D£” ) intersect at least three times, contradicting the assumption
that D is a set of pseudo-disks. This completes the proof. O

The following corollary is an immediate consequence of the results of [10]:

Corollary 2.7 In the setting of Theorem 2.6, if P has m points, then the boundary of
UpEP K, consists of O(m) connected portions of the boundaries of the individual K,’s.

We now return to the assumption that D is a set of congruent disks. For a point p € P,
we say that p lies above (resp. below) K, if the downward-directed (resp. upward-directed)
vertical ray from p intersects K, and p lies to the left (resp. right) of K, if p and K, are
separated by a vertical line, so that p lies to the left (resp. right) of the line. To facilitate
our solution to the fixed-size decision problem, presented in Section 4, we need the following
stronger property of the K,’s: Define

Pr = {pe€ P|plies above K},
Pg = {p€ P|p lies below K},
P, = {pe€ P|p lies to the left of K},

Pr = {p e P|p lies to the right of K,}.

Theorem 2.8 Let p,q be two distinct points in Pr. Then the top boundaries of K, and
K, cross at most once, and the same holds for the bottom boundaries. The same properties
hold for each of the other three sets Pg, Pr, and Pg.

Proof: Suppose that the top boundaries of K, and K, cross at two points v and v. The
intersection v must be witnessed by two disks DI(,u) and D,(]u) with « on the top boundaries
of these disks, D,(,u) N{p,q} = {q} and D,gu) N{p,q} = {p}. Similarly, there exist witness
disks Dév) and D,(]U), with similar properties, for the intersection v.

Let us first prove that two such intersections are not possible if p,q € Pr.
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Figure 4: Impossible crossings between the top boundaries: (i) p,q € Pr; (ii) p,q € Pp.

We call the top boundary of a disk D extended by vertical rays downwards at its
endpoints the top curve of D. Since we are dealing with disks of equal radius, the top curves
of D,(,u) and D((Iu) intersect in exactly one point (they have to intersect, since otherwise K,
and K, are disjoint). Since p is above D]S,u), and not above D((]u), and vice versa for g, the
z-coordinate of this unique intersection has to lie between the z-coordinates of p and ¢. So
we have shown that the z-coordinate of v has to lie between p and ¢, and the same is true
for v. We may assume that the z-coordinates of p, u, v, and ¢ appear in this increasing
order.

Now consider the top curves 7,(,U) and %gu) of disks Dév) and D,(]u), respectively, and refer

to Figure 4 (i). The curve 'y,(,v) lies below p (since p ¢ D,(,U) and p lies above K,)), lies above
u or passes through u (otherwise u cannot lie on the boundary of K)), passes through v,
and lies above ¢ (since g € D]S,U)). The curve %gu) lies above p, passes through u, continues
above v and lies below ¢. It follows that the two curves switch sides three times: between
p and u, between u and v, and between v and ¢g. (This also covers the case where, say,
’y,(,v) passes through u, because the curves 'y;,(,v) and ’y,gu) must cross at this point, as is easily
verified.) This gives three intersections of these curves, a contradiction, which concludes

the argument for the case in which p,q € Pr.

Suppose next that p,q € Pg. Let Dz(,u), D,(Iu), Dz(,v), and D,gv) be four respective witness

disks, defined as above. We exploit now the previously proved fact that K;) = D,(,U) N D]S,u)

and K := D((IU) N D((Iu) behave like pseudo-disks and thus their boundaries do not cross at
any point other than u and v. Let us assume that the top boundary of K('I lies above the
top boundary of K;J in the range between the z-coordinates of u and v. Now recall that
p must lie in K} \ K,,, and thus it lies below the top boundary of K and above the top
boundary of K;J, in contradiction to the fact that p lies below K, which is contained in K]’J;
see Figure 4 (ii).

We now switch to the case of Pr, where p and ¢ lie to the left of their regions K, and
K,. Without loss of generality, suppose that p lies to the left of ¢. Since K, is to the right
of g, any intersection of the boundaries of K, and K, must lie to the right of g. So let us
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assume that two such intersections u and v exist, both between the top boundaries of K,
and K, and that the z-coordinates of p, ¢, v, and v appear in this increasing order. Let

D,(,u), D,gu), DI(,U), and D((IU) be four respective witness disks, defined as above.

First consider the top boundary of the disk D((IU). It must lie above p and » and pass

through v. Let us assume that it lies below ¢ (which we will lead to a contradiction) and

refer to Figure 5(i). The top boundary of D,(,u) lies above ¢, goes through u and lies above

(or passes through) v, and so it must intersect the top boundary of D((IU) twice, once between
g and u, and once between u and v; a contradiction (as in a preceding argument, this also

(v) (v)

covers the case where 0D; ' passes through u). So the top boundary of Dy’ must lie above
q, which implies that the whole disk D,(]U) must lie above ¢, since ¢ € D,(]U). This implies that
D((Iu) must also lie above ¢, for otherwise it must lie entirely below ¢, and so the vertical line
through ¢ is disjoint from the intersection of D((IU) and D,(Iu). But this intersection contains
p to the left of this line, and the point u to the right of this line, which is a contradiction,
since this intersection has to be connected.

Dy

Dy

Figure 5: The proof of p,q € Pr: (i) D,(]U) lies below ¢; (ii) the other situation.

(u)

Now we investigate the interplay between Dy~ and D;,(,U). Their top boundaries intersect
between u and v. Since the top boundaries of two congruent disks intersect at most once,

the top boundary of D,(,U) lies above the top boundary of D(gu) at the z-coordinate of ¢, which

in turn lies above ¢, as just proved. Now the bottom boundary of D((]u) must lie above ¢,

while the bottom boundary of D,(,U) must lie below (one disk must not contain ¢, the other
has to). So either the boundaries of these two disks intersect twice to the left of ¢ (which
yields at least three intersections between these boundaries, including the one between u
and v), or they do not intersect there, which implies that D,(,U) contains D((]u) to the left
of the vertical line through ¢; see Figure 5 (ii). But p € D(gu), which implies p € D;,(,U); a
contradiction.

The cases of bottom boundaries, and of Pr, are symmetric, which concludes the proof
of the theorem. O
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Remark: Two top boundaries (or two bottom boundaries) of two sets K, K, for two
points p, g in, say Pr, may also interact in somewhat more involved manners. First, we can
have a weak crossing between two such top boundaries, in which the two boundaries have
an overlapping portion, so that the top portion of 0K, lies below the top portion of 0K,
to the left of the overlap, lies above it to the right of the overlap. See Figure 6(i) for an
illustration. Another possibility is that these top boundaries meet twice, without crossing,
and overlap between these two meeting points, as is illustrated in Figure 6(ii). Situations
of the second type will not affect our algorithm, and we will have to exercise some care to
accommodate situations of the first type in the algorithm; see Section 4 for details.

oK, o’

@ (ii)

Figure 6: Counter-examples for Theorem 2.8 if we just consider intersection points (includ-
ing noncrossings).

3 Complexity of K

Let D be a set of n congruent disks and P a set of m points in the plane. Let X and U be the
same as defined in the introduction. In this section we obtain a bound on the combinatorial
complexity of K, which is defined as follows. Let V (D, P) be the set of intersection points
of disks in D that lie on the boundary of some K. Set x(D, P) = |V(D, P)| and k(n,m) =
max (D, P), where the maximum is taken over all sets of n congruent disks and over all
sets of m points in the plane. Note that if a vertex appears on the boundaries of several sets
in IC, we count it only once. If we count the vertices with multiplicity, then x(n,m) > mn
— take n congruent disks all of whose boundaries appear on their common intersection and
choose m points in their common exterior. The main result of this section is the following
theorem.

Theorem 3.1 (n,m) = O(m*3n2/31og"/3n + nlogn).

The proof of the theorem is based on the random-sampling technique, and proceeds
along the same lines as the proof by Clarkson et al. [4] for the bound on the complexity of
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many faces in an arrangement of lines in the plane. We first prove a technical lemma and
a weaker bound on x(n,m), and then prove the theorem.

Figure 7: Proof of Lemma 3.2.

Lemma 3.2 Let Dy, Ds, ..., Dy be a set of congruent disks, all of whose boundaries appear
on their common intersection I. Assume that 0D1,0Ds, ... 0Dy appear in this clockwise
order along OZ. Then the sets D; \ D11, for 1 < i < k (where we put Dy, 1 = D1), are
pairwise disjoint, and the same holds for the sets D1 \ D;.

Proof: Suppose that there exist a pair of indices 1 < i < j < k so that D; \ D;;; and
D; \ Dj; intersect. Note that j must be at least ¢ + 2, and ¢ must be at least j +2 — k;
without loss of generality, we can assume that ¢ = 1, j = 3, and k£ > 4. Consider the
arrangement A({D1, Dy, D3, D4}), and let 7' = ﬂ?zl D;. Let us assume that the origin,
o, lies in the interior of Z'. Let v; be the (unique) intersection point of dD; and 9D;q
that appears on 7', and let o; be the other intersection point of these circles. Let 6; (resp.
«;) denote the orientation of v; (resp. 0;). We will regard 0D; as the graph of a univariate
function D;(#) in polar coordinates. We will denote by (61, 62) the (open) counter-clockwise
circular interval from 6y to 6.

By construction, Dy (0) > D2(0) for 6 € (01, 1), and therefore D \ D is nonempty only
for 0 € (61,c1). Similarly, D3(8) > D4(6) for 6 € (03, a3) and D3\ D4 is nonempty only for
0 € (03,a3). Since 0Dy,0Dy,0D3, and 0Dy appear in this counter-clockwise order along
9T, it follows that 02 € (01,aq) and 0,4 € (03, a3), and that oy € (02,04) and ag € (04,0).

Let ¢ be a point in (D \ D2) N (D3 \ Dy), and let 1 be the orientation of £. Then we
have min {D3(n), D1(n)} > max {D4(n), D2(n)}. Moreover, n € (61,c1) N (03,a3). The
order relationships noted at the preceding paragraph are easily seen to imply that only the
following two cases can arise:

CASE (I) n e (93,0[1) - (03,94):
CASE (II) n e (91,0(3) - (01,92):
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In case (i), 0Dy appears along 9(Dy N Dy N D3) in at least two disjoint arcs—the arc
with angular range (61,62) and another arc containing a point at orientation 1 (observe
that 0Dy cannot appear on the boundary of this intersection in the angular range (62, 03)).
This however is impossible for congruent disks. Symmetrically, in case (ii), 0D4 appears
along 0(D1 N D3 N Dy) in at least two disjoint arcs—the arc with angular range (03, 6,)
and another arc containing a point at orientation 7. These two contradictions complete the
proof that the regions D;\ D;;1, for 1 <i <k, are pairwise disjoint. A symmetric argument
shows that the regions D; \ D;_1 are also pairwise disjoint. This completes the proof of the
lemma. O

Lemma 3.3 For m,n > 1, k(n,m) = O(m+/n +n).

Proof: Let D be a set of n congruent disks and P a set of m points in the plane. It suffices
to prove that x(n,m) < 2m? + n. By partitioning P into ¢t = [m//n] subsets, each of size
at most y/n, and observing that «(D, P;) = O(n) for each i < ¢, the bound on x(n,m) can
be improved to O(m+/n + n); see e.g. [4].

We partition D into maximal subsets Dy, ... , D, so that all disks within each D; contain
the same subset of P. Let V; be the set of vertices on the boundary of (D;. Obviously
Zle Vil <>, |Di| = n. We partition the vertices in V(D, P) into two subsets A and B,
where A consists of those vertices v for which the two disks on whose boundaries v lies
belong to the same D;, and B consists of those vertices whose two associated disks belong
to different D;’s. In the first case, v is a vertex of () D;, therefore |A| < Zle |Vi| <n. We
next bound |B].

For each point p € P, let B, C B be the set of vertices in B that appear on the boundary
of K,, and let (D1, Ds,...) be the circular sequence of disks whose boundaries appear in
this counter-clockwise order along 0K),. Suppose v € B, is an intersection point of the
circles bounding two consecutive disks in this sequence, say Dy and Dy. Since D; and Dy
belong to two different subsets, the symmetric difference D; & D5 contains at least one point
g of P. We charge v to ¢. If v is another vertex of By, which is an intersection point of the
circles bounding two other consecutive disks D3 and Dy, then, by Lemma 3.2, Dy \ Dy and
D3\ Dy are disjoint, and the same holds for Dy \ Dy and D4\ D3. Hence, each point ¢ € P
can be charged at most twice (once for lying in some D; \ D;;; and once for lying in some
D; \ D;j_1), thereby implying that |B,| < 2m. Summing over all points p € P, we obtain
that |B| < 2m?, and therefore

k(D, P) < 2m? + n,

as asserted. O

Proof of Theorem 3.1. Let » > 1 be a fixed parameter, to be specified later. We choose a
random subset R C D of size r, where each subset of size r is chosen with equal probability,
and consider the vertical decomposition A*(R) of the arrangement A(R) [2, 4]. For each
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cell A € A*(R), let DA C D be the set of disks whose boundaries intersect A (including the
edges of A), let Ea C D be the set of disks that are disjoint from A, and let PA C P be
the set of points that lie in A (a point lying on an edge (or a vertex) of A*(R) is assigned
to one of the cells adjacent to it. Put ma = |Pa| and na = |Da|. We denote by Za the
common intersection of the disks in Fa.

Let v be a vertex of K, for some p € Pa, not lying on a vertex of A*(R). Suppose that
v is an intersection point of the boundaries of two disks D and D’. Since, by definition,
none of these disks can fully contain A, we can classify v into three categories:

(i) Both D and D' belong to Da,
(i) D € Da and D' € Ex (or vice versa), or

(iii) both D, D' € Ea.

A vertex of type (i) is also a vertex of V(Da, Pa), so the number of such vertices is at most
k(Da, Pa) < k(na,ma). Since Ex C D, for every p € Pa, every vertex of type (ii) lies on
the boundary of Za. The boundary of each disk in Da intersects Za in at most two points,
so the number of type (ii) vertices is at most 2na. Summing over all cells, the number of
type (i) and type (ii) vertices is Y5 c 4(p) O(na + £(na, ma)).

Finally, each vertex of type (iii) is a vertex of Za. Hence, in order to bound the number
of (distinct) vertices of type (iii), we need an upper bound on the total number of distinct
vertices of all the Za’s, over all cells A € A*(R). Let G be the graph dual to A*(R), that
is, each node of G corresponds to a cell of A*(R), and two nodes corresponding to cells
A, A" are connected by an edge if the boundaries of A and A’ overlap along (a portion
of) an edge. We compute a path II in G that visits each node of G at least once and at
most 4 times. The existence of such a path was proved in [2]. We traverse II, and at each
node corresponding to a cell A, we maintain Za, as follows. When we move from a node
corresponding to A to the next node in TI, corresponding to a cell A’ € A*(R), we delete
all the disks of Da \ Das from the intersection, and insert the disks of Das \ Da into the
intersection. Since Ea U Ear C Da U Dar, we now have the set Ean/. We thus perform
at most na + nas insertions and deletions as we move from one node of II to the next.
Summing over all nodes of II, we perform O()_ , na) insertions and deletions. We wish to
bound the number of distinct vertices that ever appear on the intersection, we traverse II.
Tamir [15] (see also Agarwal [1]) has shown that the number of distinct vertices that ever
appear on the intersection of halfplanes, as we perform a mixed sequence of k insertions
and deletions (starting at the empty set), is O(klog k). Using the same argument, one can
show that the total number distinct vertices that ever appear on the intersection of a set
of congruent disks, as we perform a sequence of & insertions and deletions (again, starting
at the empty set), is also O(klogk). Hence, the number of distinct type (iii) vertices is

O(D>_Analogn).
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Finally, each vertex of A*(R) may be a vertex of V (D, P). Putting everything together,
we obtain

k(D,P) < Z H(DA,PA)+O< Z nAlogn>+0(7"2)

A€A*(R) AeA*(R)
= O( Z (mA\/nA+nAlogn)> + O0(r?).
A€A*(R)

Since R is a random subset of D, the random-sampling technique of Clarkson and Shor [5]
implies that there exists R for which

Z na = O(nr),

A€A*(R)
n
Z may/na = O <m ;) .
AEA*(R)
m2/3
Substituting these values and choosing r = | ————=— [, we obtain
n'/31og??n

K(n,m) = O(m?*n*31og'® n + nlogn).
This completes the proof of the theorem. O

An immediate consequence of Theorem 3.1 and Corollary 2.7 is the following.
Corollary 3.4 The complezity of U is O(n*/31og'/? n).

Unfortunately, we have not been able to exploit this bound to obtain an efficient algorithm,
of comparable complexity, that computes U explicitly. The results of this section, although
of interest in their own right, are not needed for the analysis of the algorithm that we
present in the next two sections.

4 The Decision Algorithm

Let P be a set of n points in the plane, and let D = {D(p,r) | p € P}. Let K and U be
the same as defined in the introduction. We describe an O(n*/? log® n)-time algorithm to
determine whether U N P # (). Our strategy is to construct separately each of the four sub-
unions Ur = U,ep, Kp, Up = Upep, Kps UL = Upep, Kp, and Ug = U ¢ p, Kp, and to test
whether any of them contains any point of P. We next describe in detail the construction of
one such sub-union, say Ur. As already mentioned, we do not know how to compute these
unions efficiently in an explicit manner (for instance, it may be too expensive to construct
each K, explicitly, for all p € P). We will therefore represent the Kj’s and their unions
implicitly; this implicit representation will be sufficient to determine whether Uy N P # ().
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4.1 Representation of £ and of its union

For a subset A C P, let U4 denote the union Upea

of OUA, we store its concave vertices (points of crossing of the boundaries of two distinct
K,’s) and the points that are locally z-extremal along OU. If two top (or two bottom)
boundaries have a weak crossing along U4, as in the remark following Theorem 2.8, we
store the left endpoint of the common overlap between these boundaries, and think of it
as a ‘weakly-concave’ vertex of OU”. A maximal portion v of OU that does not contain
any of these points is z-monotone and lies on the boundary of a single K, (such a portion,
7, may overlap with the boundaries of many K,,’s, but there is (at least) one point p such
that « is fully contained in 0K)). We refer to v as a boundary arc of UA. We maintain v
implicitly, by recording the point p for which v C 0K, and a bit that indicates whether ~
is a portion of the top or bottom part of 0K,.

K,. For each connected component

Next, to represent each K, implicitly, we compute a family {DW, ..., DO} of “canon-
ical” subsets of D such that Y5_, [D@W| = O(n*/3logn), and such that for any p € P, D,
can be represented as the union of O(n'/?logn) canonical subsets. Let Jp be the set of
indices of these canonical subsets (i.e., Dp = U,c, D). Katz and Sharir [9] have shown
that the construction of such a family of canonical sets, and of the corresponding sets of
indices {J,}pep, can be accomplished in time O(n*/?logn). For each canonical subset DU),
we compute the intersection ZU) = DY) in O(|DY)|log |DY)|) time. We store the vertices
of the top and bottom parts of ZU) in separate lists, each sorted in increasing order of their
z-coordinates. For each vertex v € ZU), we also store the disk whose boundary appears
on 9ZU) immediately to its right. Finally, we store the vertices of all the ZU)’s in a single
master list A, sorted in increasing order of their z-coordinates. The total time spent in
computing this implicit representation of the K,’s is 3.7, O(|DYW)|logn) = O(n*/?log? n).

4.2 Basic operations on K

In order to compute the implicit representation of Ur, we will need subroutines for the
following basic operations on the boundaries of the sets in .

(S1) Leftmost and rightmost points. Given a point p, compute the leftmost and the
rightmost points of K.

This requires computing the leftmost and the rightmost points of [ e, 7). Reichling
[13] has shown that the leftmost (or rightmost) point of the intersection of k& convex polygons
with a total of n vertices can be computed in time O(k log? n). In fact, his algorithm can also
be applied to a family of intersections of congruent disks. Applying Reichling’s algorithm
to the set {ZU) | j € J,}, we can compute the leftmost (or rightmost) point of K}, in time

O(]Jp|log® n) = O(n'/?log® n).
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(S2) Intersection points with a vertical line. Given a vertical line ¢ and a point
p € P, determine the intersection points of £ with 0K,.

For each j € J,, we can compute £ N ZU) in O(logn) time. Repeating this step for
all 7 € J,, we obtain a collection of O(nl/ 3logn) intervals along . We can compute the
endpoints of the intersection of these intervals (or detect that the intersection is empty)
in an additional O(n'/3logn) time. Hence, the total running time of this procedure is
O(n'/?log? n). This procedure can also be used to determine whether a query point in the
plane lies above, below, or on a boundary arc .

(S3) Crossing points of two top (or two bottom) boundary arcs. Given two points
p,q € Pr and an z-interval [a,b] contained in the z-span of both K, and K,, determine
whether the top boundaries of K, and K, cross in [a,b]. If so, return their crossing point.
If they weakly cross in [a,b], then return the leftmost endpoint of their common overlap in
[a,b]. A similar operation is prescribed for the bottom boundaries of K, and K,.

Let ), (resp. y4) be the portion of the top boundary of K, (resp. K,) in the z-interval
[a,b], and let ¢, : £ = a and ¢, : © = b. By computing the intersection points of 0K, and
0K, with £,, we can determine, in O(n'/?logn) time, whether -y, lies above or below 7,
at £,. Suppose v, lies above 7, at £,. We repeat the same procedure at £,. Note that, by
Theorem 2.8, v, lies below v, at £} too if and only if 7, and -y, cross (or weakly cross). If
they do cross, then, by performing a binary search over the points stored in the master list
A, we obtain two consecutive vertices «, 5 € A so that the crossing point (or, in case of
weak crossing, the leftmost point of the common overlap) of 7, and +, lies in the z-interval
I between o and 3. Each step of the binary search involves determining whether -y, lies
above v, at a vertical line ¢ : x = z, for some zy € A, and is performed using subroutine
(S2). Hence the total cost of the binary search is O(n!/?log®n). The top boundary of
each ZU), for j € Jp, is composed of a single circular arc in the z-interval I. We therefore
collect the O(n!/3logn) corresponding disks, and compute, in O(n'/3log? n) time, the top
boundary 4, of their intersection within /. Similarly, we compute 4,, the top boundary of
K, over I. We can now compute the crossing point (or the leftmost point of the common
overlap) of 4, and 4, in an additional O(n'/3logn) time, by merging the lists of vertices of
¥p and 9,4, and by inspecting each ‘atomic’ interval formed by this merge. The total time
spent by this procedure is thus O(n'/3log®n). A symmetric procedure can compute the
unique crossing point (or the leftmost point of the common overlap of a weak crossing) of
the bottom boundaries of K, and K, within the same time bound.

(S4) Crossing points of a top boundary arc and a bottom boundary arc. Given
two points p,q € Pr and an z-interval [a,b] contained in the x-span of both K, and K,
determine whether the top boundary of K, crosses the bottom boundary of K, in the interval
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[a,b]. If so, return their crossing point(s).

Let 7, be the portion of the top boundary of K), lying in the interval [a, b], and let -y, be
the portion of the bottom boundary of K lying in the interval [a, b]. Note that, by convexity,
7p and 7y, can cross in at most two points. By comparing the y-coordinates of the endpoints
of vp,7g, using an appropriate variant of subroutine (S2), we can determine whether they
cross exactly once. In this case, we can determine their unique crossing point (or the leftmost
point of overlap of a weak crossing) using an appropriate variant of subroutine (S3). Suppose
that we determine that v, and 7, cross at zero or two points, and that -y, lies above -, at
the vertical line z = a (and also at = b); if y, lies below 7, at these points, the arcs do
not intersect. If we regard 7, and v, as graphs of univariate, partially defined functions
Yp(x),v4(2), respectively, then Ay(z) = v,(x) — vp(z) is a convex function. Therefore, by a
binary search through A, each step of which requires determining the intersection points of
a vertical line with v, and 4, we can determine, in overall O(nl/ 3 1og? n) time, the unique
x-value zy at which A~y attains its minimum. If Ay(zg) > 0, then 7, and 7, do not intersect.
If Ay(zg) = 0, then the minimum of A+ is the unique point of intersection (actually, of
tangency) of 7y, and 7,. If Ay(zg) < 0, then 7, and 7, have two crossings, one of which lies
in the interval [a,z(] and the other lies in the interval [z, b]. Now we can compute both
crossing points in O(n'/?1log® n) time, using an appropriate variant of subroutine (S3).

4.3 Computing Uy

We now describe an algorithm for computing the implicit representation of Ur described
above, and for determining whether Upr N P # (). We first compute, using subroutine (S1),
the leftmost and rightmost points, l,,, 7p, of each K,,, for p € P. This, combined with calls to
subroutine (S2), allows us to compute the sets Pr, Pg, Pr,, and Pg, in overall O(n*/3 log® n)
time. Next, we compute Ur, using a divide-and-conquer algorithm. If |Pr| = 1, then
Ur = K, where p is the only point in Pr. In this case, we output OUr as consisting of
two boundary arcs, both connecting I, and r,, where the top (resp. bottom) arc is the top
(resp. bottom) boundary of K,. If |Pr| > 1, we partition Pr into two subsets P% and P%,
each of size at most [|Pr|/2]. We recursively compute U = UpeP% K, and U? = UpeP% K,,
and then compute Ur = U%,U U%, using a sweep-line algorithm. This ‘merge’ step computes
the implicit representation of Uy from those of U}, U%, which are output by the respective
recursive calls.

The sweep line scans the plane from left to right, stopping at the concave vertices and the
locally z-extremal points of U}, UZ, and Ur. By Corollary 2.7, the number of such “event
points” is only O(n). The algorithm maintains those arcs of Uk, U2 that currently intersect
the sweep line in a height-balanced tree T', sorted in the increasing order of the y-coordinates
of their intersection points with the line. At each event point, the algorithm inserts a new
arc, deletes an arc, or swaps two adjacent arcs in the tree 7. In order to insert a new arc into
T, the algorithm has to perform O(logn) comparisons of the following form: given a point
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q and a boundary arc -y, determine whether ¢ lies above, below, or on . Using subroutine
(S2), such a comparison can be performed in O(n'/? log? n) time. The time spent in inserting
an arc is thus O(n'/?log®n). The deletion of an arc follows a standard deletion procedure
of a height-balanced tree. After having inserted or deleted an arc, we obtain the new O(1)
adjacent pairs of arcs in T', compute their (leftmost) intersection points to the right of the
current sweep line, and insert them into the event queue. We thus need to perform O(1)
calls to the subroutines (S3) and (S4), each of which takes O(n!/?log®n) time. Omitting
all the other straightforward and standard details of the sweep-line algorithm, we conclude
that the algorithm spends O(nl/ 3log®n) time at each event point, therefore the total time
spent by the sweep-line algorithm is O(n*3log3n). The overall time spent in computing
the implicit representation of Uy is thus O(n*?log*n). (Note that the computation of the
sets DU, 7U) and Jp is performed only once, before starting the recursive construction of
Ur.)

We next have to determine whether UpNP # (). This can easily be done, at no increase in
the asymptotic running time, during the topmost sweep of the recursion, in which the entire
Ur is constructed. We include the points of P as additional event points of the line sweep.
Whenever we encounter a point p € P, we find the arc v of Ur lying immediately above p.
If 7 is a portion of the top boundary of some K, then p € Up. Moreover, D(p,r) U D(q,r)
covers all points of P, so we can return p, ¢ as the solution to the fixed-size problem; if + is
a portion of the bottom boundary of some K, then p ¢ Ur. The arc v can be determined
by searching the tree with p, where each step of the search determines whether p lies above,
below, or on an arc 4. Since each such step can be performed in O(nl/ 3 log? n) time, using
subroutine (S2), we can determine in O(n!/?log®n) time whether p € Up. Summing this
cost over all points p € P, the total time spent by this stage is O(n*/3 log®n).

We now construct and search in Upg, Uy, and Ug, using the algorithm just described. If
at least one of these unions contains a point of P then we have found, and can output, two
points p,q € P such that D(p,r) U D(q,r) covers P; otherwise, no two such points exist.
The overall running time is O(n*?3 log* n). Hence, we obtain the following result.

Theorem 4.1 Given a set P of n points in the plane and a real value r > 0, we can
determine, in 0(714/3 log* n) time, whether there are two points p,q € P so that P C
D(p,r) U D(q,r). If so, we can also find such a pair within the same time bound.

Remark. The running time can be improved by a logarithmic factor by exploiting the

special structure of canonical subsets and using fractional cascading. We omit the details
of this slight improvement from here.

5 The Overall Algorithm

The overall algorithm for the discrete 2-center problem proceeds as follows. We note that the
optimum radius r* is a distance between two points of P, so we will run a binary search over
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these (72’) distances, using the fixed-size decision procedure given in the preceding section
to determine whether the optimum r* is larger than, smaller than, or equal to a distance
r. Note that r < rx if U = UpeP K,, as defined in the introduction, contains a point of P,
that r > r* if the interior of U contains a point of P, and r = r* if the interior of U does
not contain a point but its boundary contains a point of P.

Of course, running this binary search explicitly will require quadratic time, so we use
instead the distance-selection algorithm of [9] (see also [2]), which computes the k-th smallest
distance in a set of n points in the plane in time O(n*/?log?n). Since we need to invoke
this procedure, and also the fixed-size decision procedure, only O(logn) times, the overall
running time of the algorithm is O(n*/3log® n).

Theorem 5.1 The discrete 2-center problem for a set of n points in the plane can be solved
in time O(n*/3log® n).

6 Conclusion

We have presented an O(n4/ 3 log® n)-time algorithm for the planar discrete 2-center problem.
By remark following Theorem 4.1, the running time can be improved by a logarithmic factor.

Our decision algorithm relies heavily on the properties of the combinatorial structure
of IC that we have proved in Section 2. Although we have shown in Section 3 that the
complexity of U is roughly n*/3, we do not have an algorithm with comparable running time
that computes U explicitly. There are, in fact, a number of substructures in an arrangement
of a set of congruent disks, whose worst-case complexity has the same asymptotic upper
bound as that of the corresponding structure in an arrangement of lines. For example, the
number of incidences between points and congruent disks, the complexity of many faces, and
the complexity of U (one can define a structure analogous to U for a set of halfplanes in the
plane). However, unlike the case of lines, no efficient algorithm is known for computing most
of these substructures. It is an open problem whether m distinct faces in an arrangement
of n congruent disks can be computed in time close to m?2/3n2/3 4 n. A solution to any of
these problems will most likely offer insights for developing a simpler algorithm (still with
running time close to n*/ 3) for the discrete 2-center problem. A more challenging open
problem is whether a near-linear-time algorithm can be developed for the discrete 2-center
problem.
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