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Introduction 2centered at a point of P and containing P , is much easier to solve, in time O(n log n), usingthe furthest-neighbor Voronoi diagram of P . That is, the diagram allows us to �nd, inO(n log n) time, the furthest neighbor f(p) of each point p 2 P . The point p that minimizesthe distance between p and f(p) is the center of the desired smallest enclosing disk.The discrete 2-center appears to be more di�cult than the standard 2-center problem.Both problems involve a `decision procedure' that, given a �xed radius r, aims to determinewhether P can be covered by two disks of radius r. As an informal explanation of theadditional di�culty of the discrete 2-center problem, suppose that we have already guessedone center p. The second center must then lie in (`pierce') each of the disks of radius rcentered at the points of P and not containing p. In the standard 2-center problem wesimply need to determine whether the intersection of all these disks is nonempty, whereasin the discrete 2-center problem we need to determine whether this intersection contains apoint of P , which is a harder task.Main results and the overall approach. In this paper we obtain an e�cient solution tothe discrete 2-center problem that runs in time O(n4=3 log5 n). This is the �rst subquadraticalgorithm for solving the problem. We note that a near-quadratic solution is rather easy:It su�ces to show a near-quadratic solution to the �xed-size problem, and then follow (asimpler version of) the binary-search technique (on the radius r) that is described belowin Section 5, to �nd the optimal solution. The �xed-size problem, for a given radius r,determines whether there exist p; q 2 P so that P � D(p; r) [ D(q; r), where D(x; r)denotes the closed disk of radius r centered at x. We try each point p 2 P as the �rstcenter and obtain the set Np � P of points not contained in D(p; r). By computing thefarthest-point Voronoi diagram of Np, we can determine in O(n logn) time whether thereexists a point q 2 P so that Np � D(q; r). The running time of the �xed-size procedure istherefore O(n2 log n).In order to improve the running time of the �xed-size problem, we proceed as follows:For each p 2 P , let Kp be the intersection of all the disks D(q; r) centered at the points ofP and not containing p. If any set Kp contains a point q of P , then we are done: p and qare centers of two disks of radius r whose union covers P . Conversely, if p; q 2 P are centersof two such disks, then p 2 Kq and q 2 Kp. In other words, we need to compute the unionU of all the Kp's, and determine whether U \ P 6= ;. The di�cult step is to compute U intime close to n4=3.We consider a more general problem: Let P be a set of m points and D a set of ncongruent disks. For each p 2 P , de�ne Dp = fD 2 D j p 62 Dg, Kp = TD2Dp D,K = fKp j p 2 Pg, and U = Sp2P Kp. In Section 2 we present some important propertiesof K, which we believe to be of independent interest. The main property is that K is acollection of convex pseudo-disks; i.e., these sets are compact and convex, and for any pairKp, Kq of such sets, both Kp nKq and Kq nKp are connected.In Section 3 we show that the combinatorial complexity of U is O(m2=3n2=3 log1=3 n +Discrete 2-Center March 10, 1998



Structure of K 3n logn). While this bound is non-trivial, and `consistent' with the running time we areaiming at, we have so far been unable to exploit this bound to obtain an alternative simplersolution, of comparable complexity, of the discrete 2-center problem. The reasons for thisare technical, and will be noted below.In Section 4 we present an O(n4=3 log4 n)-time algorithm for computing U (and fortesting whether U \ P 6= ;) for the case in which D = fD(p; r) j p 2 Pg. The algorithmconstructs and searches in U in a semi-implicit manner, using appropriate range-searchingdata structures and techniques similar to those used in parametric searching, for performingvarious primitive operations on the semi-implicit representation of U . Finally, we describethe overall algorithm for the discrete 2-center in Section 5. As mentioned, its running timeis O(n4=3 log5 n).2 Structure of KIn this section we prove some interesting properties of K. These properties, besides beingof independent interest, are crucial for making our algorithm e�cient.Theorem 2.1 Let D be a �nite set of congruent disks in the plane, and let P be a �nite setof points. Let K be the same as de�ned in the introduction. Then K is a family of convexpseudo-disks; that is, each Kp is a compact convex set, and for each pair of distinct setsKp, Kq, both sets Kp nKq and Kq nKp are connected.We prove the theorem by a sequence of lemmas.Lemma 2.2 For a point p, two distinct disks D1;D2 2 D that do not contain p and anotherdisk D 2 D that contains p, the set D n (D1 \D2) is connected.Proof: Suppose to the contrary that D n (D1 \ D2) is disconnected. Since p 2 D andp 62 D1; D2, all three disks D;D1;D2 are distinct. Since D n (D1 \D2) is disconnected, @Dand @(D1\D2) must cross at exactly 4 points, all lying on the boundary of E = D\D1\D2.This however is impossible, since the intersection of three congruent disks can have at mostthree such intersection points on its boundary. 2Corollary 2.3 For a point p 2 P and a disk D 2 D that contains p, the set Kp n D isconnected.Proof: Suppose to the contrary that Kp n D is disconnected. Since D 62 Dp, it is distinctfrom any of the disks that form Kp, so any intersection of @D with @Kp must be a propercrossing. Moreover, since Kp nD is disconnected, the boundaries of D and of Kp must crossDiscrete 2-Center March 10, 1998



Structure of K 4at least four times. This, however, implies that D n Kp is also disconnected (this followsfrom the convexity of Kp). ButD nKp = D n \D02DpD0 = D \ [D02Dp(D0)c = [D02Dp(D nD0):If a union of a collection of sets is disconnected, then either one of the sets is disconnected,or there exist two disjoint sets in the collection. In our setting, D nD0 is always connected,and the second case contradicts Lemma 2.2 (because for D0;D00 2 Dp, (D nD0)[ (D nD00) =D n (D0 \D00)). Hence, Kp nD is connected. 2Lemma 2.4 For a point p, two distinct disks D1;D2 2 D that do not contain p and twoother distinct disks D3;D4 2 D that contain p, the set (D1 \D2) n (D3 \D4) is connected.Proof: Suppose again to the contrary that (D1\D2)n(D3\D4) is disconnected. Lemma 2.2implies (using the argument in the proof of Corollary 2.3) that (D1\D2)nD3 is connected,and so is (D1 \D2) nD4. It follows that @(D1 \D2) and @D3 intersect at most twice, andthe same holds for @(D1 \ D2) and @D4. These conditions, along with our assumption,imply that @(D1 \ D2) and @(D3 \ D4) intersect exactly 4 times. Moreover, put E =D1 \ D2 \ D3 \ D4, �x a point o in the interior of E, and consider the boundaries ofD1; : : : ;D4 and E as graphs of functions r = D1(�); : : : ; r = E(�) in polar coordinatesabout o. Let u; v; w; z be the four points of intersection between @(D1\D2) and @(D3\D4),appearing in this circular counter-clockwise order along @E. Let �u < �v < �w < �z be thepolar orientations of u; v; w; z, respectively. Since D1; : : : ;D4 are congruent disks, each @Diappears along @E in a single connected arc. Hence, with no loss of generality, we may assumethat @E is attained by @D1 over [�u; �v], by @D3 over [�v; �w], by @D2 over [�w; �z], and by@D4 over [�z; �u]. See Figure 1. Let �p be the polar orientation of ~op. It is impossible that
u v wz D2D3D4

D2o
p D1

Figure 1: The proof of Lemma 2.4�p lies in [�v; �w], for otherwise, since p 2 D3, we have jopj � D3(�p) � D1(�p), implyingDiscrete 2-Center March 10, 1998



Structure of K 5that p 2 D1, contrary to assumption. Similarly, �p cannot lie in [�z; �u]. (We use thenotation [�; �0] to denote the angular interval extending counter-clockwise from � to �0.)Suppose then that �p 2 [�u; �v]. Let F = D3 \D4 and regard it too as a graph r = F (�).Since p 2 F but p =2 D2, we have D2(�p) < F (�p), and this inequality is reversed overthe intervals [�v; �w] and [�z; �u]. It follows that @F and @D2 intersect at least twice overthe interval [�u; �v], which, together with w and z, yields 4 points of intersection betweenthese boundaries, all lying along @(D2 \D3 \D4). This is impossible for congruent disks(cf. the proof of Lemma 2.2). A similar contradiction occurs when �p 2 [�w; �z]. All thesecontradictions establish the lemma. 2Following the same argument as in the proof of Corollary 2.3, we obtain:Corollary 2.5 For a point p 2 P and two disks D;D0 2 D that contain p, the set Kp n(D \D0) is connected.We are now ready to prove Theorem 2.1.Proof of Theorem 2.1: Suppose to the contrary that there exist p; q 2 P such thatKp nKq is disconnected. As in the proof of Corollary 2.3, we can express Kp nKq asKp nKq = Kp n \D2DqD = Kp \ [D2DqDc= [D2Dq(Kp nD) = [D2DqnDp(Kp nD) :(The last equality follows from the fact that the disks in Dq \ Dp contribute empty sets tothis union.) Again, as in the proof of Corollary 2.3, if Kp nKq is disconnected, then eitherthere exists a disk D 2 Dq n Dp so that Kp n D is disconnected, or there exists two disksD1;D2 2 Dq n Dp so that Kp n (D1 \D2) is disconnected. The �rst condition contradictsCorollary 2.3 and the second contradicts Corollary 2.5. Hence, Kp nKq is connected (andso is Kq nKp). 2Theorem 2.1 fails for non-congruent disks, as is illustrated in Figure 2. Nevertheless,the following variant of the theorem holds in even more generality:Theorem 2.6 Let D be a �nite set of convex pseudo-disks in the plane; that is, each D 2 Dis a compact convex set, and for each pair of distinct sets D;D0 2 D, both sets D nD0 andD0 n D are connected; we also assume that @D and @D0 cross each other transversally atany point of intersection. Let P be a �nite set of points. For each p 2 P , let Dp denote theset of pseudo-disks in D that do not contain p, and let Kp denote their intersection. Then,for any p; q 2 P , @Kp and @Kq can cross each other at most twice.(Note that for the sets Kp and Kq in Figure 2, their boundaries do not cross at all.)Discrete 2-Center March 10, 1998



Structure of K 6
pqFigure 2: Kq nKp (the shaded region) consists of two connected components.Proof: We partition D into four subsets: the subset Dp \ Dq of pseudo-disks that containneither p nor q, the subset Dp n Dq of pseudo-disks that contain q but not p, the subsetDqnDp of pseudo-disks that contain p but not q, and the subset Dn(Dp[Dq) of pseudo-disksthat contain both p and q. We can ignore the last subset since the pseudo-disks in this sethave no e�ect on Kp or Kq. Let I = T(Dp \ Dq). Clearly, both Kp and Kq are containedin I, so any crossing between their boundaries must be interior to I. In particular, if sucha crossing occurs between a pseudo-disk D 2 Dp and a pseudo-disk D0 2 Dq, then we musthave D 2 Dp n Dq and D0 2 Dq n Dp (that is, q 2 D and p 2 D0).Now suppose that @Kp and @Kq cross each other three times, at points u, v, and w. Bythe above argument, there exist six (not necessarily all distinct) pseudo-disks, D(p)u , D(q)u ,D(p)v , D(q)v , D(p)w , D(q)w , such that D(p)u , D(p)v , and D(p)w are in Dp n Dq, D(q)u , D(q)v , and D(q)ware in Dq n Dp, D(p)u and D(q)u cross at u, D(p)v and D(q)v cross at v, and D(p)w and D(q)w crossat w.Let o be a point in the interior of Kp \Kq. There must exist two of the crossing points,say u and v, such that p and q appear between u and v in counter-clockwise angular orderabout o. Without loss of generality, assume that u, p, q, and v appear in this counter-clockwise order about o, and let �u < �p < �q < �v be the orientations of the vectors ~ou,~op, ~oq, and ~ov, respectively. q D(q)uv D(p)v

u po
Figure 3: Proof of Theorem 2.6.

Discrete 2-Center March 10, 1998



Structure of K 7Now consider the two pseudo-disks D(q)u and D(p)v , and regard their boundaries as func-tions r = D(q)u (�) and r = D(p)v (�) in polar coordinates about o. Then we have (see Figure 3):D(q)u (�u) � D(p)v (�u)D(q)u (�p) > D(p)v (�p)D(q)u (�q) < D(p)v (�q)D(q)u (�v) � D(p)v (�v) :These inequalities follow from the convexity of Kp and Kq, from the fact that u and v lieon their boundaries, and from the fact that D(p)v 2 Dp n Dq and D(q)u 2 Dq n Dp. However,this implies that D(q)u and D(p)v intersect at least three times, contradicting the assumptionthat D is a set of pseudo-disks. This completes the proof. 2The following corollary is an immediate consequence of the results of [10]:Corollary 2.7 In the setting of Theorem 2.6, if P has m points, then the boundary ofSp2P Kp consists of O(m) connected portions of the boundaries of the individual Kp's.We now return to the assumption that D is a set of congruent disks. For a point p 2 P ,we say that p lies above (resp. below) Kp if the downward-directed (resp. upward-directed)vertical ray from p intersects Kp, and p lies to the left (resp. right) of Kp if p and Kp areseparated by a vertical line, so that p lies to the left (resp. right) of the line. To facilitateour solution to the �xed-size decision problem, presented in Section 4, we need the followingstronger property of the Kp's: De�nePT = fp 2 P j p lies above Kpg;PB = fp 2 P j p lies below Kpg;PL = fp 2 P j p lies to the left of Kpg;PR = fp 2 P j p lies to the right of Kpg:Theorem 2.8 Let p; q be two distinct points in PT . Then the top boundaries of Kp andKq cross at most once, and the same holds for the bottom boundaries. The same propertieshold for each of the other three sets PB, PL, and PR.Proof: Suppose that the top boundaries of Kp and Kq cross at two points u and v. Theintersection u must be witnessed by two disks D(u)p and D(u)q with u on the top boundariesof these disks, D(u)p \ fp; qg = fqg and D(u)q \ fp; qg = fpg. Similarly, there exist witnessdisks D(v)p and D(v)q , with similar properties, for the intersection v.Let us �rst prove that two such intersections are not possible if p; q 2 PT .Discrete 2-Center March 10, 1998



Structure of K 8
p qu v 
p
q (i) (ii) vu pK0q K0pFigure 4: Impossible crossings between the top boundaries: (i) p; q 2 PT ; (ii) p; q 2 PB .We call the top boundary of a disk D extended by vertical rays downwards at itsendpoints the top curve of D. Since we are dealing with disks of equal radius, the top curvesof D(u)p and D(u)q intersect in exactly one point (they have to intersect, since otherwise Kpand Kq are disjoint). Since p is above D(u)p , and not above D(u)q , and vice versa for q, thex-coordinate of this unique intersection has to lie between the x-coordinates of p and q. Sowe have shown that the x-coordinate of u has to lie between p and q, and the same is truefor v. We may assume that the x-coordinates of p, u, v, and q appear in this increasingorder.Now consider the top curves 
(v)p and 
(u)q of disks D(v)p and D(u)q , respectively, and referto Figure 4 (i). The curve 
(v)p lies below p (since p 62 D(v)p and p lies above Kp), lies aboveu or passes through u (otherwise u cannot lie on the boundary of Kp), passes through v,and lies above q (since q 2 D(v)p ). The curve 
(u)q lies above p, passes through u, continuesabove v and lies below q. It follows that the two curves switch sides three times: betweenp and u, between u and v, and between v and q. (This also covers the case where, say,
(v)p passes through u, because the curves 
(v)p and 
(u)q must cross at this point, as is easilyveri�ed.) This gives three intersections of these curves, a contradiction, which concludesthe argument for the case in which p; q 2 PT .Suppose next that p; q 2 PB . Let D(u)p , D(u)q , D(v)p , and D(v)q be four respective witnessdisks, de�ned as above. We exploit now the previously proved fact that K 0p := D(v)p \D(u)pand K 0q := D(v)q \D(u)q behave like pseudo-disks and thus their boundaries do not cross atany point other than u and v. Let us assume that the top boundary of K 0q lies above thetop boundary of K 0p in the range between the x-coordinates of u and v. Now recall thatp must lie in K 0q n K 0p, and thus it lies below the top boundary of K 0q and above the topboundary of K 0p, in contradiction to the fact that p lies below Kp which is contained in K 0p;see Figure 4 (ii).We now switch to the case of PL, where p and q lie to the left of their regions Kp andKq. Without loss of generality, suppose that p lies to the left of q. Since Kq is to the rightof q, any intersection of the boundaries of Kp and Kq must lie to the right of q. So let usDiscrete 2-Center March 10, 1998



Structure of K 9assume that two such intersections u and v exist, both between the top boundaries of Kpand Kq, and that the x-coordinates of p, q, u, and v appear in this increasing order. LetD(u)p , D(u)q , D(v)p , and D(v)q be four respective witness disks, de�ned as above.First consider the top boundary of the disk D(v)q . It must lie above p and u and passthrough v. Let us assume that it lies below q (which we will lead to a contradiction) andrefer to Figure 5(i). The top boundary of D(u)p lies above q, goes through u and lies above(or passes through) v, and so it must intersect the top boundary of D(v)q twice, once betweenq and u, and once between u and v; a contradiction (as in a preceding argument, this alsocovers the case where @D(v)q passes through u). So the top boundary of D(v)q must lie aboveq, which implies that the whole disk D(v)q must lie above q, since q 62 D(v)q . This implies thatD(u)q must also lie above q, for otherwise it must lie entirely below q, and so the vertical linethrough q is disjoint from the intersection of D(v)q and D(u)q . But this intersection containsp to the left of this line, and the point u to the right of this line, which is a contradiction,since this intersection has to be connected.
p vu D(u)p p q

u vD(u)qD(v)qq D(v)pFigure 5: The proof of p; q 2 PL: (i) D(v)q lies below q; (ii) the other situation.Now we investigate the interplay between D(u)q and D(v)p . Their top boundaries intersectbetween u and v. Since the top boundaries of two congruent disks intersect at most once,the top boundary of D(v)p lies above the top boundary of D(u)q at the x-coordinate of q, whichin turn lies above q, as just proved. Now the bottom boundary of D(u)q must lie above q,while the bottom boundary of D(v)p must lie below (one disk must not contain q, the otherhas to). So either the boundaries of these two disks intersect twice to the left of q (whichyields at least three intersections between these boundaries, including the one between uand v), or they do not intersect there, which implies that D(v)p contains D(u)q to the leftof the vertical line through q; see Figure 5 (ii). But p 2 D(u)q , which implies p 2 D(v)p ; acontradiction.The cases of bottom boundaries, and of PR, are symmetric, which concludes the proofof the theorem. 2Discrete 2-Center March 10, 1998



Complexity of K 10Remark: Two top boundaries (or two bottom boundaries) of two sets Kp, Kq, for twopoints p; q in, say PT , may also interact in somewhat more involved manners. First, we canhave a weak crossing between two such top boundaries, in which the two boundaries havean overlapping portion, so that the top portion of @Kp lies below the top portion of @Kqto the left of the overlap, lies above it to the right of the overlap. See Figure 6(i) for anillustration. Another possibility is that these top boundaries meet twice, without crossing,and overlap between these two meeting points, as is illustrated in Figure 6(ii). Situationsof the second type will not a�ect our algorithm, and we will have to exercise some care toaccommodate situations of the �rst type in the algorithm; see Section 4 for details.pq
(i) (ii)

@Kp @Kq @Kp@Kq qp
Figure 6: Counter-examples for Theorem 2.8 if we just consider intersection points (includ-ing noncrossings).3 Complexity of KLet D be a set of n congruent disks and P a set ofm points in the plane. Let K and U be thesame as de�ned in the introduction. In this section we obtain a bound on the combinatorialcomplexity of K, which is de�ned as follows. Let V (D; P ) be the set of intersection pointsof disks in D that lie on the boundary of some Kp. Set �(D; P ) = jV (D; P )j and �(n;m) =max �(D; P ), where the maximum is taken over all sets of n congruent disks and over allsets of m points in the plane. Note that if a vertex appears on the boundaries of several setsin K, we count it only once. If we count the vertices with multiplicity, then �(n;m) � mn| take n congruent disks all of whose boundaries appear on their common intersection andchoose m points in their common exterior. The main result of this section is the followingtheorem.Theorem 3.1 �(n;m) = O(m2=3n2=3 log1=3 n+ n logn).The proof of the theorem is based on the random-sampling technique, and proceedsalong the same lines as the proof by Clarkson et al. [4] for the bound on the complexity ofDiscrete 2-Center March 10, 1998



Complexity of K 11many faces in an arrangement of lines in the plane. We �rst prove a technical lemma anda weaker bound on �(n;m), and then prove the theorem.
�3

v3 v1oD1 nD2�1�3�1
�1�3D3 nD4Figure 7: Proof of Lemma 3.2.Lemma 3.2 Let D1;D2; : : : ;Dk be a set of congruent disks, all of whose boundaries appearon their common intersection I. Assume that @D1; @D2; : : : ; @Dk appear in this clockwiseorder along @I. Then the sets Di n Di+1, for 1 � i � k (where we put Dk+1 = D1), arepairwise disjoint, and the same holds for the sets Di+1 nDi.Proof: Suppose that there exist a pair of indices 1 � i < j � k so that Di n Di+1 andDj nDj+1 intersect. Note that j must be at least i + 2, and i must be at least j + 2 � k;without loss of generality, we can assume that i = 1, j = 3, and k � 4. Consider thearrangement A(fD1;D2;D3;D4g), and let I 0 = T4i=1Di. Let us assume that the origin,o, lies in the interior of I 0. Let vi be the (unique) intersection point of @Di and @Di+1that appears on I 0, and let �i be the other intersection point of these circles. Let �i (resp.�i) denote the orientation of vi (resp. �i). We will regard @Di as the graph of a univariatefunction Di(�) in polar coordinates. We will denote by (�1; �2) the (open) counter-clockwisecircular interval from �1 to �2.By construction, D1(�) > D2(�) for � 2 (�1; �1), and therefore D1 nD2 is nonempty onlyfor � 2 (�1; �1). Similarly, D3(�) > D4(�) for � 2 (�3; �3) and D3 nD4 is nonempty only for� 2 (�3; �3). Since @D1; @D2; @D3, and @D4 appear in this counter-clockwise order along@I 0, it follows that �2 2 (�1; �1) and �4 2 (�3; �3), and that �1 2 (�2; �4) and �3 2 (�4; �2).Let � be a point in (D1 n D2) \ (D3 n D4), and let � be the orientation of �. Then wehave min fD3(�);D1(�)g > max fD4(�);D2(�)g. Moreover, � 2 (�1; �1) \ (�3; �3). Theorder relationships noted at the preceding paragraph are easily seen to imply that only thefollowing two cases can arise:Case (i) � 2 (�3; �1) � (�3; �4):Case (ii) � 2 (�1; �3) � (�1; �2):Discrete 2-Center March 10, 1998



Complexity of K 12In case (i), @D2 appears along @(D1 \ D2 \D3) in at least two disjoint arcs|the arcwith angular range (�1; �2) and another arc containing a point at orientation � (observethat @D2 cannot appear on the boundary of this intersection in the angular range (�2; �3)).This however is impossible for congruent disks. Symmetrically, in case (ii), @D4 appearsalong @(D1 \ D3 \ D4) in at least two disjoint arcs|the arc with angular range (�3; �4)and another arc containing a point at orientation �. These two contradictions complete theproof that the regions DinDi+1, for 1 � i � k, are pairwise disjoint. A symmetric argumentshows that the regions Di nDi�1 are also pairwise disjoint. This completes the proof of thelemma. 2Lemma 3.3 For m;n � 1, �(n;m) = O(mpn+ n).Proof: Let D be a set of n congruent disks and P a set of m points in the plane. It su�cesto prove that �(n;m) � 2m2 + n. By partitioning P into t = dm=pne subsets, each of sizeat most pn, and observing that �(D; Pi) = O(n) for each i � t, the bound on �(n;m) canbe improved to O(mpn+ n); see e.g. [4].We partitionD into maximal subsetsD1; : : : ;Dk, so that all disks within each Di containthe same subset of P . Let Vi be the set of vertices on the boundary of TDi. ObviouslyPki=1 jVij � Pi jDij = n. We partition the vertices in V (D; P ) into two subsets A and B,where A consists of those vertices v for which the two disks on whose boundaries v liesbelong to the same Di, and B consists of those vertices whose two associated disks belongto di�erent Di's. In the �rst case, v is a vertex of TDi, therefore jAj �Pki=1 jVij � n. Wenext bound jBj.For each point p 2 P , let Bp � B be the set of vertices in B that appear on the boundaryof Kp, and let (D1;D2; : : : ) be the circular sequence of disks whose boundaries appear inthis counter-clockwise order along @Kp. Suppose v 2 Bp is an intersection point of thecircles bounding two consecutive disks in this sequence, say D1 and D2. Since D1 and D2belong to two di�erent subsets, the symmetric di�erence D1�D2 contains at least one pointq of P . We charge v to q. If v0 is another vertex of Bp, which is an intersection point of thecircles bounding two other consecutive disks D3 and D4, then, by Lemma 3.2, D1 nD2 andD3 nD4 are disjoint, and the same holds for D2 nD1 and D4 nD3. Hence, each point q 2 Pcan be charged at most twice (once for lying in some Di nDi+1 and once for lying in someDj n Dj�1), thereby implying that jBpj � 2m. Summing over all points p 2 P , we obtainthat jBj � 2m2, and therefore �(D; P ) � 2m2 + n;as asserted. 2Proof of Theorem 3.1. Let r � 1 be a �xed parameter, to be speci�ed later. We choose arandom subset R � D of size r, where each subset of size r is chosen with equal probability,and consider the vertical decomposition A�(R) of the arrangement A(R) [2, 4]. For eachDiscrete 2-Center March 10, 1998



Complexity of K 13cell � 2 A�(R), let D� � D be the set of disks whose boundaries intersect � (including theedges of �), let E� � D be the set of disks that are disjoint from �, and let P� � P bethe set of points that lie in � (a point lying on an edge (or a vertex) of A�(R) is assignedto one of the cells adjacent to it. Put m� = jP�j and n� = jD�j. We denote by I� thecommon intersection of the disks in E�.Let v be a vertex of Kp, for some p 2 P�, not lying on a vertex of A�(R). Suppose thatv is an intersection point of the boundaries of two disks D and D0. Since, by de�nition,none of these disks can fully contain �, we can classify v into three categories:(i) Both D and D0 belong to D�,(ii) D 2 D� and D0 2 E� (or vice versa), or(iii) both D;D0 2 E�.A vertex of type (i) is also a vertex of V (D�; P�), so the number of such vertices is at most�(D�; P�) � �(n�;m�). Since E� � Dp for every p 2 P�, every vertex of type (ii) lies onthe boundary of I�. The boundary of each disk in D� intersects I� in at most two points,so the number of type (ii) vertices is at most 2n�. Summing over all cells, the number oftype (i) and type (ii) vertices is P�2A�(R) O(n� + �(n�;m�)).Finally, each vertex of type (iii) is a vertex of I�. Hence, in order to bound the numberof (distinct) vertices of type (iii), we need an upper bound on the total number of distinctvertices of all the I�'s, over all cells � 2 A�(R). Let G be the graph dual to A�(R), thatis, each node of G corresponds to a cell of A�(R), and two nodes corresponding to cells�;�0 are connected by an edge if the boundaries of � and �0 overlap along (a portionof) an edge. We compute a path � in G that visits each node of G at least once and atmost 4 times. The existence of such a path was proved in [2]. We traverse �, and at eachnode corresponding to a cell �, we maintain I�, as follows. When we move from a nodecorresponding to � to the next node in �, corresponding to a cell �0 2 A�(R), we deleteall the disks of D� n D�0 from the intersection, and insert the disks of D�0 n D� into theintersection. Since E� [ E�0 � D� [ D�0 , we now have the set E�0 . We thus performat most n� + n�0 insertions and deletions as we move from one node of � to the next.Summing over all nodes of �, we perform O(P� n�) insertions and deletions. We wish tobound the number of distinct vertices that ever appear on the intersection, we traverse �.Tamir [15] (see also Agarwal [1]) has shown that the number of distinct vertices that everappear on the intersection of halfplanes, as we perform a mixed sequence of k insertionsand deletions (starting at the empty set), is O(k log k). Using the same argument, one canshow that the total number distinct vertices that ever appear on the intersection of a setof congruent disks, as we perform a sequence of k insertions and deletions (again, startingat the empty set), is also O(k log k). Hence, the number of distinct type (iii) vertices isO(P� n� log n).Discrete 2-Center March 10, 1998



The Decision Algorithm 14Finally, each vertex of A�(R) may be a vertex of V (D; P ). Putting everything together,we obtain �(D; P ) � X�2A�(R) �(D�; P�) +O� X�2A�(R) n� logn�+O(r2)= O� X�2A�(R)(m�pn� + n� log n)�+O(r2):Since R is a random subset of D, the random-sampling technique of Clarkson and Shor [5]implies that there exists R for whichX�2A�(R) n� = O(nr);X�2A�(R)m�pn� = O�mrnr� :Substituting these values and choosing r = & m2=3n1=3 log2=3 n', we obtainK(n;m) = O(m2=3n2=3 log1=3 n+ n logn):This completes the proof of the theorem. 2An immediate consequence of Theorem 3.1 and Corollary 2.7 is the following.Corollary 3.4 The complexity of U is O(n4=3 log1=3 n).Unfortunately, we have not been able to exploit this bound to obtain an e�cient algorithm,of comparable complexity, that computes U explicitly. The results of this section, althoughof interest in their own right, are not needed for the analysis of the algorithm that wepresent in the next two sections.4 The Decision AlgorithmLet P be a set of n points in the plane, and let D = fD(p; r) j p 2 Pg. Let K and U bethe same as de�ned in the introduction. We describe an O(n4=3 log4 n)-time algorithm todetermine whether U \P 6= ;. Our strategy is to construct separately each of the four sub-unions UT = Sp2PT Kp, UB = Sp2PB Kp, UL = Sp2PL Kp, and UR = Sp2PR Kp, and to testwhether any of them contains any point of P . We next describe in detail the construction ofone such sub-union, say UT . As already mentioned, we do not know how to compute theseunions e�ciently in an explicit manner (for instance, it may be too expensive to constructeach Kp explicitly, for all p 2 P ). We will therefore represent the Kp's and their unionsimplicitly; this implicit representation will be su�cient to determine whether UT \ P 6= ;.Discrete 2-Center March 10, 1998



The Decision Algorithm 154.1 Representation of K and of its unionFor a subset A � P , let UA denote the union Sp2AKp. For each connected componentof @UA, we store its concave vertices (points of crossing of the boundaries of two distinctKp's) and the points that are locally x-extremal along @UA. If two top (or two bottom)boundaries have a weak crossing along @UA, as in the remark following Theorem 2.8, westore the left endpoint of the common overlap between these boundaries, and think of itas a `weakly-concave' vertex of @UA. A maximal portion 
 of @UA that does not containany of these points is x-monotone and lies on the boundary of a single Kp (such a portion,
, may overlap with the boundaries of many Kp's, but there is (at least) one point p suchthat 
 is fully contained in @Kp). We refer to 
 as a boundary arc of UA. We maintain 
implicitly, by recording the point p for which 
 � @Kp and a bit that indicates whether 
is a portion of the top or bottom part of @Kp.Next, to represent each Kp implicitly, we compute a family fD(1); : : : ;D(s)g of \canon-ical" subsets of D such that Psi=1 jD(i)j = O(n4=3 logn), and such that for any p 2 P , Dpcan be represented as the union of O(n1=3 log n) canonical subsets. Let Jp be the set ofindices of these canonical subsets (i.e., Dp = Si2Jp D(i)). Katz and Sharir [9] have shownthat the construction of such a family of canonical sets, and of the corresponding sets ofindices fJpgp2P , can be accomplished in time O(n4=3 logn). For each canonical subset D(j),we compute the intersection I(j) = TD(j) in O(jD(j)j log jD(j)j) time. We store the verticesof the top and bottom parts of I(j) in separate lists, each sorted in increasing order of theirx-coordinates. For each vertex v 2 I(j), we also store the disk whose boundary appearson @I(j) immediately to its right. Finally, we store the vertices of all the I(j)'s in a singlemaster list �, sorted in increasing order of their x-coordinates. The total time spent incomputing this implicit representation of the Kp's is Psi=1O(jD(j)j log n) = O(n4=3 log2 n).4.2 Basic operations on KIn order to compute the implicit representation of UT , we will need subroutines for thefollowing basic operations on the boundaries of the sets in K.(S1) Leftmost and rightmost points. Given a point p, compute the leftmost and therightmost points of Kp.This requires computing the leftmost and the rightmost points of Tj2Jp I(j). Reichling[13] has shown that the leftmost (or rightmost) point of the intersection of k convex polygonswith a total of n vertices can be computed in time O(k log2 n). In fact, his algorithm can alsobe applied to a family of intersections of congruent disks. Applying Reichling's algorithmto the set fI(j) j j 2 Jpg, we can compute the leftmost (or rightmost) point of Kp in timeO(jJpj log2 n) = O(n1=3 log3 n).Discrete 2-Center March 10, 1998



The Decision Algorithm 16(S2) Intersection points with a vertical line. Given a vertical line ` and a pointp 2 P , determine the intersection points of ` with @Kp.For each j 2 Jp, we can compute ` \ I(j) in O(logn) time. Repeating this step forall j 2 Jp, we obtain a collection of O(n1=3 logn) intervals along `. We can compute theendpoints of the intersection of these intervals (or detect that the intersection is empty)in an additional O(n1=3 log n) time. Hence, the total running time of this procedure isO(n1=3 log2 n). This procedure can also be used to determine whether a query point in theplane lies above, below, or on a boundary arc 
.(S3) Crossing points of two top (or two bottom) boundary arcs. Given two pointsp; q 2 PT and an x-interval [a; b] contained in the x-span of both Kp and Kq, determinewhether the top boundaries of Kp and Kq cross in [a; b]. If so, return their crossing point.If they weakly cross in [a; b], then return the leftmost endpoint of their common overlap in[a; b]. A similar operation is prescribed for the bottom boundaries of Kp and Kq.Let 
p (resp. 
q) be the portion of the top boundary of Kp (resp. Kq) in the x-interval[a; b], and let `a : x = a and `b : x = b. By computing the intersection points of @Kp and@Kq with `a, we can determine, in O(n1=3 log n) time, whether 
p lies above or below 
qat `a. Suppose 
p lies above 
q at `a. We repeat the same procedure at `b. Note that, byTheorem 2.8, 
p lies below 
q at `b too if and only if 
p and 
q cross (or weakly cross). Ifthey do cross, then, by performing a binary search over the points stored in the master list�, we obtain two consecutive vertices �; � 2 � so that the crossing point (or, in case ofweak crossing, the leftmost point of the common overlap) of 
p and 
q lies in the x-intervalI between � and �. Each step of the binary search involves determining whether 
p liesabove 
q at a vertical line ` : x = x0, for some x0 2 �, and is performed using subroutine(S2). Hence the total cost of the binary search is O(n1=3 log3 n). The top boundary ofeach I(j), for j 2 Jp, is composed of a single circular arc in the x-interval I. We thereforecollect the O(n1=3 log n) corresponding disks, and compute, in O(n1=3 log2 n) time, the topboundary 
̂p of their intersection within I. Similarly, we compute 
̂q, the top boundary ofKq over I. We can now compute the crossing point (or the leftmost point of the commonoverlap) of 
̂p and 
̂q in an additional O(n1=3 log n) time, by merging the lists of vertices of
̂p and 
̂q, and by inspecting each `atomic' interval formed by this merge. The total timespent by this procedure is thus O(n1=3 log3 n). A symmetric procedure can compute theunique crossing point (or the leftmost point of the common overlap of a weak crossing) ofthe bottom boundaries of Kp and Kq, within the same time bound.(S4) Crossing points of a top boundary arc and a bottom boundary arc. Giventwo points p; q 2 PT and an x-interval [a; b] contained in the x-span of both Kp and Kq,determine whether the top boundary of Kp crosses the bottom boundary of Kq in the intervalDiscrete 2-Center March 10, 1998



The Decision Algorithm 17[a; b]. If so, return their crossing point(s).Let 
p be the portion of the top boundary of Kp lying in the interval [a; b], and let 
q bethe portion of the bottom boundary ofKq lying in the interval [a; b]. Note that, by convexity,
p and 
q can cross in at most two points. By comparing the y-coordinates of the endpointsof 
p; 
q, using an appropriate variant of subroutine (S2), we can determine whether theycross exactly once. In this case, we can determine their unique crossing point (or the leftmostpoint of overlap of a weak crossing) using an appropriate variant of subroutine (S3). Supposethat we determine that 
p and 
q cross at zero or two points, and that 
q lies above 
p atthe vertical line x = a (and also at x = b); if 
q lies below 
p at these points, the arcs donot intersect. If we regard 
p and 
q as graphs of univariate, partially de�ned functions
p(x); 
q(x), respectively, then �
(x) = 
q(x)� 
p(x) is a convex function. Therefore, by abinary search through �, each step of which requires determining the intersection points ofa vertical line with 
p and 
q, we can determine, in overall O(n1=3 log3 n) time, the uniquex-value x0 at which �
 attains its minimum. If �
(x0) > 0, then 
p and 
q do not intersect.If �
(x0) = 0, then the minimum of �
 is the unique point of intersection (actually, oftangency) of 
p and 
q. If �
(x0) < 0, then 
p and 
q have two crossings, one of which liesin the interval [a; x0] and the other lies in the interval [x0; b]. Now we can compute bothcrossing points in O(n1=3 log3 n) time, using an appropriate variant of subroutine (S3).4.3 Computing UTWe now describe an algorithm for computing the implicit representation of UT describedabove, and for determining whether UT \ P 6= ;. We �rst compute, using subroutine (S1),the leftmost and rightmost points, lp; rp, of each Kp, for p 2 P . This, combined with calls tosubroutine (S2), allows us to compute the sets PT , PB , PL, and PR, in overall O(n4=3 log3 n)time. Next, we compute UT , using a divide-and-conquer algorithm. If jPT j = 1, thenUT = Kp, where p is the only point in PT . In this case, we output @UT as consisting oftwo boundary arcs, both connecting lp and rp, where the top (resp. bottom) arc is the top(resp. bottom) boundary of Kp. If jPT j > 1, we partition PT into two subsets P 1T and P 2T ,each of size at most djPT j=2e. We recursively compute U1T = Sp2P 1T Kp and U2T = Sp2P 2T Kp,and then compute UT = U1T [U2T , using a sweep-line algorithm. This `merge' step computesthe implicit representation of UT from those of U1T ; U2T , which are output by the respectiverecursive calls.The sweep line scans the plane from left to right, stopping at the concave vertices and thelocally x-extremal points of U1T ; U2T , and UT . By Corollary 2.7, the number of such \eventpoints" is only O(n). The algorithm maintains those arcs of U1T ; U2T that currently intersectthe sweep line in a height-balanced tree T , sorted in the increasing order of the y-coordinatesof their intersection points with the line. At each event point, the algorithm inserts a newarc, deletes an arc, or swaps two adjacent arcs in the tree T . In order to insert a new arc intoT , the algorithm has to perform O(log n) comparisons of the following form: given a pointDiscrete 2-Center March 10, 1998



The Overall Algorithm 18q and a boundary arc 
, determine whether q lies above, below, or on 
. Using subroutine(S2), such a comparison can be performed inO(n1=3 log2 n) time. The time spent in insertingan arc is thus O(n1=3 log3 n). The deletion of an arc follows a standard deletion procedureof a height-balanced tree. After having inserted or deleted an arc, we obtain the new O(1)adjacent pairs of arcs in T , compute their (leftmost) intersection points to the right of thecurrent sweep line, and insert them into the event queue. We thus need to perform O(1)calls to the subroutines (S3) and (S4), each of which takes O(n1=3 log3 n) time. Omittingall the other straightforward and standard details of the sweep-line algorithm, we concludethat the algorithm spends O(n1=3 log3 n) time at each event point, therefore the total timespent by the sweep-line algorithm is O(n4=3 log3 n). The overall time spent in computingthe implicit representation of UT is thus O(n4=3 log4 n). (Note that the computation of thesets D(j), I(j), and Jp is performed only once, before starting the recursive construction ofUT .)We next have to determine whether UT\P 6= ;. This can easily be done, at no increase inthe asymptotic running time, during the topmost sweep of the recursion, in which the entireUT is constructed. We include the points of P as additional event points of the line sweep.Whenever we encounter a point p 2 P , we �nd the arc 
 of UT lying immediately above p.If 
 is a portion of the top boundary of some Kq, then p 2 UT . Moreover, D(p; r)[D(q; r)covers all points of P , so we can return p; q as the solution to the �xed-size problem; if 
 isa portion of the bottom boundary of some Kq, then p =2 UT . The arc 
 can be determinedby searching the tree with p, where each step of the search determines whether p lies above,below, or on an arc 
0. Since each such step can be performed in O(n1=3 log2 n) time, usingsubroutine (S2), we can determine in O(n1=3 log3 n) time whether p 2 UT . Summing thiscost over all points p 2 P , the total time spent by this stage is O(n4=3 log3 n).We now construct and search in UB , UL and UR, using the algorithm just described. Ifat least one of these unions contains a point of P then we have found, and can output, twopoints p; q 2 P such that D(p; r) [ D(q; r) covers P ; otherwise, no two such points exist.The overall running time is O(n4=3 log4 n). Hence, we obtain the following result.Theorem 4.1 Given a set P of n points in the plane and a real value r > 0, we candetermine, in O(n4=3 log4 n) time, whether there are two points p; q 2 P so that P �D(p; r) [D(q; r). If so, we can also �nd such a pair within the same time bound.Remark. The running time can be improved by a logarithmic factor by exploiting thespecial structure of canonical subsets and using fractional cascading. We omit the detailsof this slight improvement from here.5 The Overall AlgorithmThe overall algorithm for the discrete 2-center problem proceeds as follows. We note that theoptimum radius r� is a distance between two points of P , so we will run a binary search overDiscrete 2-Center March 10, 1998



Conclusion 19these �n2� distances, using the �xed-size decision procedure given in the preceding sectionto determine whether the optimum r� is larger than, smaller than, or equal to a distancer. Note that r < r� if U = Sp2P Kp, as de�ned in the introduction, contains a point of P ,that r > r� if the interior of U contains a point of P , and r = r� if the interior of U doesnot contain a point but its boundary contains a point of P .Of course, running this binary search explicitly will require quadratic time, so we useinstead the distance-selection algorithm of [9] (see also [2]), which computes the k-th smallestdistance in a set of n points in the plane in time O(n4=3 log2 n). Since we need to invokethis procedure, and also the �xed-size decision procedure, only O(log n) times, the overallrunning time of the algorithm is O(n4=3 log5 n).Theorem 5.1 The discrete 2-center problem for a set of n points in the plane can be solvedin time O(n4=3 log5 n).6 ConclusionWe have presented anO(n4=3 log5 n)-time algorithm for the planar discrete 2-center problem.By remark following Theorem 4.1, the running time can be improved by a logarithmic factor.Our decision algorithm relies heavily on the properties of the combinatorial structureof K that we have proved in Section 2. Although we have shown in Section 3 that thecomplexity of U is roughly n4=3, we do not have an algorithm with comparable running timethat computes U explicitly. There are, in fact, a number of substructures in an arrangementof a set of congruent disks, whose worst-case complexity has the same asymptotic upperbound as that of the corresponding structure in an arrangement of lines. For example, thenumber of incidences between points and congruent disks, the complexity of many faces, andthe complexity of U (one can de�ne a structure analogous to U for a set of halfplanes in theplane). However, unlike the case of lines, no e�cient algorithm is known for computing mostof these substructures. It is an open problem whether m distinct faces in an arrangementof n congruent disks can be computed in time close to m2=3n2=3 + n. A solution to any ofthese problems will most likely o�er insights for developing a simpler algorithm (still withrunning time close to n4=3) for the discrete 2-center problem. A more challenging openproblem is whether a near-linear-time algorithm can be developed for the discrete 2-centerproblem.AcknowledgmentsThe authors thank Arie Tamir for helpful discussions and the referee for several usefulcomments.Discrete 2-Center March 10, 1998
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