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ABSTRACT

Improving an old result of Clarkson et al., we show that
the number of distinct distances determined by a set P
of n points in three-dimensional space is Ω(n77/141−ε) =
Ω(n0.546), for any ε > 0. Moreover, there always exists a
point p ∈ P from which there are at least these many dis-
tinct distances to the remaining elements of P . The same
result holds for points on the three-dimensional sphere. As
a consequence, we obtain analogous results in higher dimen-
sions.

Categories and Subject Descriptors

F.2.2 [Theory of Computation]: Nonnumerical Algorithms
and Problems—geometrical problems and computations
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1. Introduction

“My most striking contribution to geometry is, no doubt,
my problem on the number of distinct distances”—wrote
Erdős on his 80th birthday [8]. What is the minimum num-
ber of distinct interpoint distances determined by n points in
R

d? More precisely, Erdős [7] asked the following question
in 1946. Given a point set P , let g(P ) denote the num-
ber of distinct distances between the elements of P . Let
gd(n) = minP g(P ), where the minimum is taken over all
sets P of n distinct points in d-space. We want to describe
the asymptotic behavior of the function gd(n). More than
50 years later, in spite of considerable efforts, we are still
far from knowing the correct order of magnitude of gd(n)
even in the plane (d = 2). This problem is more than just
a “gem” in recreational mathematics. It was an important
motivating trigger, along with several companion problems,
such as those of repeated distances and of point-curve inci-
dences, that have led to the discovery of important new con-
cepts and methods (levels in arrangements, space decompo-
sitions, cuttings, epsilon-net techniques, etc.) which proved
to be relevant in many areas of discrete and computational
geometry, including motion planning and ray shooting.

Erdős’ question is intimately related to another problem
raised in the same paper: what is the maximum number of
times that the same distance can occur among n points in
d-space? Denoting this function by fd(n), we clearly have,
by the pigeonhole principle, that

gd(n) ≥
(

n
2

)

fd(n)
. (1)

Spencer et al. [15] and Clarkson et al. [4], respectively, proved

that f2(n) = O(n4/3) and f3(n) = O(n3/2β(n)), where

β(n) = 2O(α2(n)) and α(n) is the extremely slowly growing
inverse Ackermann’s function. Therefore, we have

g2(n) = Ω(n2/3), g3(n) = Ω(n1/2/β(n)). (2)

Because small multiplicative factors such as β(n) often
appear in our calculations, we introduce the notation f(n) =

Õ(g(n)) to denote f(n) = O(g(n)nε), for any ε > 0, with



the implied constant depending on ε. Similarly, f(n) =

Ω̃(g(n)) means that f(n) = Ω(g(n)n−ε), for any ε > 0.

With this notation, a single distance occurs at most Õ(n3/2)
times among n points in three dimensions, and thus g3(n) =

Ω̃(n1/2).

For d ≥ 4, the above “naive” approach based on (1) can-
not give any nontrivial lower bound on the number gd(n)
of distinct distances determined by n points, because we
have fd(n) ≥ n2/4. To see that a single distance can ap-
pear n2/4 times, consider two circles centered at the origin,
whose planes are orthogonal to each other, and place n/2
points on each of them. Observe that all distances between
a point on one of the circles and a point on the other are
the same.

The first bound in (2) has been subsequently improved by
Chung et al. [3], Székely [16], Solymosi and Tóth [13], Tardos
[18], Katz [9], and Katz and Tardos [10] culminating in the

lower bound g2(n) = Ω̃(n(48−14e)/(55−19e)) = Ω(n0.86413).
On the other hand, the best known upper bound, which is
due to Erdős and is conjectured to be sharp, is g2(n) =
O(n/

√
log n). It is attained by the set of vertices of the

n1/2 × n1/2 integer lattice.

In three dimensions, however, nothing better was known
than the “naive” bound in (2). The aim of this paper is to
present such an improvement. Specifically, we have

Theorem 1.1. A set P of n points in three dimensions
determines at least

Ω̃
(
n77/141

)
= Ω

(
n0.546

)

distinct distances. Moreover, there always exists a point p ∈
P that determines at least these many distinct distances to
the remaining points of P .

The number of distinct distances determined by the ver-
tices of an n1/3 ×n1/3×n1/3 integer lattice is Θ(n2/3). That

is, we have g3(n) = O(n2/3), and it is conjectured that this
bound is not far from being sharp. For more problems and
results of this type, consult [12].

Let tp(P ) stand for the number of distinct distances be-
tween a point p and the elements of P \{p}, and put t(P ) =
maxp∈P tp(P ). Finally, let t3(n) = min t(P ), where the min-
imum is taken over all n-element point sets P in R

3. Clearly,
t(P ) ≤ g(P ) and our result can be stated as

g3(n) ≥ t3(n) = Ω̃
(
n77/141

)
= Ω(n0.546).

As in most of all the earlier approaches to the planar prob-
lem [3, 4], our proof establishes an upper bound for the
number I(P,S) of incidences between the points in P and
the set S of all spheres around the elements of P , passing
through at least one other point of P . Clearly, the number
of these spheres is at most nt(P ). Since I(P, S) is n(n − 1),
this leads to an inequality for t(P ), whose solution yields a
lower bound for t(P ).

The most serious technical difficulty in the proof of our
main result is that in three dimensions we may encounter
‘large’ configurations, each involving many points of P lying
on a circle and many other points of P lying on the line
orthogonal to the circle and passing through its center (the
‘axis’ of the circle). See Figure 1. This leads to a complete
bipartite pattern of incidences between the set of points on

the circle and the set of spheres centered at the points on
the axis and passing through the circle. Such configurations
hinder the derivation of a sharp bound for I(P,S), so we
start the proof by removing all points of P that lie on lines
containing too many points.

Figure 1: A complete bipartite incidence pattern.

We also extend the results of Theorem 1.1 to point sets
in the three-dimensional unit sphere S

3 ⊂ R
4:

Theorem 1.2. A set P of n points in S
3 determines at

least

Ω̃
(
n77/141

)
= Ω

(
n0.546

)

distinct distances. Moreover, there always exists a point
p ∈ P that determines at least these many distances to the
remaining points of P .

The spherical result readily generalizes to distances in
higher dimensions:

Corollary 1.3. For d ≥ 3, any set P of n points in Eu-
clidean d-space R

d or on the d-sphere S
d determines at least

Ω̃
(
n1/(d− 90

77
)
)

distinct distances. Moreover, there always exists a point
p ∈ P that determines at least these many distances to the
remaining points of P .

As for d = 3, the number of distinct distances deter-
mined by an n1/d × · · · × n1/d portion of the integer lattice
is O(n2/d), so that we have gd(n) = O(n2/d).

The next three sections are devoted to the proof of The-
orem 1.1. We prove Theorem 1.2 and Corollary 1.3 in Sec-
tion 5. In Section 6 we make a few concluding remarks.

We need the following two results.

Theorem A ([17, 4, 16]). The number of incidences be-
tween n points and m pseudo-segments (i.e., Jordan arcs,
any two of which have at most one point in common) is

O(n2/3m2/3 + n + m).

Theorem B ([1]). The number of incidences between n
points and m circles in R

d is

Õ(n6/11m9/11 + n2/3m2/3 + n + m).



2. Lines with Many Points

Let P be a set of n points in R
3. Let t = t(P ) and recall

that our final goal is to prove a lower bound on t.

As mentioned in the introduction, we have to pay special
attention to the lines containing many points of P . In this
section we establish a reasonably small threshold µ0 so that
only a negligibly small number of points of P lie on lines
that contain more than µ0 points.

No line ℓ contains more than t + 1 points of P , since the
distance from an extremal point of ℓ∩ P to all other points
of ℓ ∩ P on the line are distinct.

For any line ℓ, let µℓ = |ℓ ∩ P | and let Cℓ be the set
of circles having ℓ as an axis and containing at least one
point of P . Our goal is to bound the size |Cℓ| of this set.
Consider the set Sℓ of all the spheres centered at points
of ℓ ∩ P and containing at least one point of P . We fix a
halfplane O bounded by ℓ. Each sphere in Sℓ intersects O
in a semicircle, and each circle in Cℓ intersects O at a single
point. Moreover, the intersection semicircles are distinct for
distinct spheres of Sℓ, and the intersection points are distinct
for distinct circles of Cℓ. See Figure 2. Since every circle
γ ∈ Cℓ is contained in exactly µℓ of the spheres of Sℓ, we
have |Cℓ|µℓ incidences between the at most µℓt semicircles
and the |Cℓ| points within O. Clearly, these semicircles form
a collection of pseudo-segments, that is, each pair of them
intersects at most once. Hence, Theorem A implies that

|Cℓ|µℓ = O
(
(|Cℓ|µℓt)

2/3 + µℓt + |Cℓ|
)
. (3)

p

q

c1

c2

O

Figure 2: Circle-sphere containments along a fixed
axis. The two points p, q on the axis and the two
circles c1, c2 (shown projected orthogonally to O) in-
duce four spheres, each centered at one of the points
and containing one of the circles. Each circle-sphere
containment is mapped into an incidence between a
point and a semicircle.

Rewriting (3), we deduce that one of the inequalities µℓ ≤
a, |Cℓ| ≤ at, or |Cℓ| ≤ at2/µℓ must hold, for some absolute
constant a. Using the fact that µℓ ≤ t + 1, we have at =
O(t2/µℓ). Hence, we have

|Cℓ| = O

(
t2

µℓ

)
,

whenever µℓ > a.

We now consider the collection Lµ of all lines ℓ with µℓ ≥ µ
for some parameter µ > a. Let Cµ be the union of the sets
Cℓ, for ℓ ∈ Lµ. Notice that the sets Cℓ are disjoint for
distinct lines ℓ. We count the number of incidences between
the points in P and the circles in Cµ. Each collection Cℓ

contributes n − µℓ such incidences. We may assume that
n − µℓ ≥ n/2, as otherwise t = Ω(n). Thus, we have at
least n|Lµ|/2 incidences between the n points of P and the
O(|Lµ|t2/µ) circles of Cµ. Using Theorem B on circle-point
incidences in three dimensions, we obtain

n|Lµ|/2 = Õ(n6/11(|Lµ|t2/µ)9/11

+ n2/3(|Lµ|t2/µ)2/3 + n + |Lµ|t2/µ). (4)

Solving (4) for |Lµ|, it follows that either µ = Õ(t2/n) or

|Lµ| = Õ

(
1 +

t4

µ2n
+

t9

µ9/2n5/2

)
. (5)

Let us choose µ0 such that (5) holds for all µ ≥ µ0. Let
X be the set of points in P incident to at least one line in
Lµ0

. Clearly,

|X| ≤
∑

i≥0

2i+1µ0|L2iµ0
|.

Notice that L2iµ0
= ∅ if 2iµ0 > t + 1. Hence

|X| = Õ

(
t +

t4

µ0n
+

t9

µ
7/2
0 n5/2

)
.

By the definition of Õ, this can be rephrased as

|X| ≤
(

t +
t4

µ0n
+

t9

µ
7/2
0 n5/2

)
γ(n),

where we may take γ(n) to satisfy log n < γ(n) = Õ(1).

We choose the value µ0 = γ2(n)t18/7/n = Õ(t18/7/n). The
above bound yields |X| = o(n) unless t > n0.7. In the latter
case, there is nothing to prove, as our final goal is a much
weaker lower bound on t. The following lemma summarizes
our results so far.

Lemma 2.1. Let P be a set of n distinct points in R
3 and let

t = t(P ). If t ≤ n0.7 we can set µ0 = Õ(t18/7/n) such that
the total number of points in P incident to lines containing
at least µ0 points of P is only o(n).

3. Incidences with Good Spheres

Let P be a set of n points in R
3. We classify each (two-

dimensional) sphere σ as being either good with respect to
P , if no circle that lies fully in σ contains more than half of
the points in σ ∩ P , or bad, otherwise.

In this section, we bound the number of incidences be-
tween a set of good spheres and P . Let G be a finite set of
good spheres.

Lemma 3.1. The number of incidences between P and G
is O(n|G|3/4).

Proof. Consider the following set of quintuples:

Q = {(p1, p2, p3, p4, σ) | σ ∈ G, p1, p2, p3, p4

distinct non-coplanar points of P ∩ σ}.



We clearly have |Q| ≤ n4, since any quadruple {p1, p2, p3, p4}
of non-coplanar points determine at most one sphere of G
that contains them all. To obtain a lower bound on |Q|, we
fix a sphere σ ∈ G and put nσ = |P ∩ σ|. Notice that, as σ
is good, we have nσ ≥ 6. We construct the quintuples in Q
involving σ by selecting the points p1, p2, p3, and p4 one by
one. Clearly, p1 can be chosen in nσ different ways, while
we have nσ − 1 ≥ 5

6
nσ choices for p2 and nσ − 2 ≥ 2

3
nσ

choices for p3. After p1, p2, and p3 have been selected, p4

must be chosen in σ∩P but off the circle determined by the
first three points. Since σ is good, we have at least nσ/2
choices for p4. We thus obtain the following lower bound on
the size of Q:

|Q| ≥
∑

σ∈G

5

18
n4

σ ≥ 5

18

(
∑

σ∈G nσ)4

|G|3 .

Comparing this with the n4 upper bound on the same quan-
tity, we get the asserted upper bound on the number

∑
σ∈G nσ

of incidences between points in P and spheres in G.

4. Decomposition

In this section, we complete the proof of Theorem 1.1.
First we use Lemma 2.1 to eliminate all points of P that
lie on lines containing many points, and then we combine
Lemma 3.1 with a standard random sampling argument, to
obtain the desired lower bound on t(P ).

We are given a set P of n points in R
3. Let t = t(P ). If

t > n0.7 we are done. Otherwise we choose µ0 = Õ(t18/7/n)
so that Lemma 2.1 holds. Using the lemma, we may assume,
without loss of generality, that no line contains µ0 or more
points from P . Indeed, since t ≤ n0.7, we simply remove
from P those o(n) points that lie on lines containing at least
µ0 points, and apply the argument to the remaining set.

Consider the set S of spheres centered at the points of P ,
each containing at least one element of P . Clearly, we have
|S| ≤ nt.

We fix a parameter r, whose value will be determined be-
low, and construct a (1/r)-cutting of S. Using an extension
of the method of Chazelle and Friedman [2], reviewed in
[11], which is based on the vertical decomposition technique

presented in [4], we obtain a cutting consisting of Õ(r3)
connected, relatively open cells of dimension 0, 1, 2, or 3,
so that each cell is crossed by (i.e., intersected by, but not
fully contained in) at most nt/r spheres in S.

We first bound the number of incidences involving points
that lie in some cell and spheres that fully contain that cell.
Consider a fixed cell τ . If τ is 0-dimensional, i.e., a single
point, it contributes at most n incidences, for a total of

Õ(nr3). If τ is 2-dimensional, it can be fully contained in at
most one sphere of S, and these full containments produce
at most n incidences in total, because each point of P lies in
at most one such cell. If τ is 3-dimensional, no sphere can
fully contain it. If τ is 1-dimensional, the only nontrivial
case is when τ is a circular arc contained in several spheres.
However, the maximum number of such spheres is at most
µ0, because the centers of all these spheres lie on the axis
of the circle containing τ . Hence, the number of incidences
produced by the full containments by 1-dimensional cells is
at most O(nµ0) (again, each point lies in at most one 1-
dimensional cell). In summary, full containments generate

Õ(nµ0 + nr3) incidences.

It remains to bound the number of incidences between
points in a cell and spheres crossing it. For any cell τ , put
Pτ ≡ P ∩τ , let Sτ denote the set of the at most nt/r spheres
of S that cross τ , and let Gτ (resp., Bτ ) denote the subset
of good (resp., bad) spheres of Sτ , with respect to Pτ . By
Lemma 3.1, the number of incidences between Pτ and Gτ is
O(|Pτ | · |Gτ |3/4). Summing this bound over all cells τ , we
obtain a contribution of

∑

τ

O(|Pτ | · |Gτ |3/4) = O

(
n

(
nt

r

)3/4
)

= O

(
n7/4t3/4

r3/4

)
(6)

incidences.

We next estimate the contribution of bad spheres to the
number of incidences. Fix a cell τ . For each bad sphere
σ ∈ Bτ , we can just consider the more than |σ∩Pτ |/2 points
that lie on a common circle γ along σ. We choose one such
circle γ = γ(σ, τ ), and we lose at most half the incidences
between Pτ and σ in doing so.

In other words, we have constructed a set Cτ of circles,
where each circle γ ∈ Cτ appears with some multiplicity
µγ,τ , which is the number of bad spheres σ ∈ Bτ that satisfy
γ(σ, τ ) = γ. We wish to bound the number of incidences
between the points of Pτ and the circles of Cτ , where each
such incidence is to be counted with the multiplicity of the
corresponding circle. Namely, we wish to bound the sum

∑

τ

∑

γ∈Cτ

µγ,τ |γ ∩ Pτ | .

Fix a parameter µ > 0, consider the subset C
(µ)
τ of cir-

cles in Cτ with multiplicity between µ and 2µ. We have

µ|C(µ)
τ | ≤ |Sτ | ≤ nt/r, so that Nτ ≡ |C(µ)

τ | ≤ nt/(rµ). By
Theorem B the number of incidences between Nτ distinct
circles and nτ ≡ |Pτ | points in 3-space is

Õ
(
n6/11

τ N9/11
τ + n2/3

τ N2/3
τ + nτ + Nτ

)
.

We multiply this bound by 2µ, the bound on the multiplicity

of any circle in C
(µ)
τ , and sum it over all cells τ , to obtain

that the total number of incidences between the points of
P in a cell τ and the bad spheres whose representing circles

are in the subset C
(µ)
τ , summed over all cells τ , is

Õ

(
µ

(
∑

τ

n6/11
τ

)(
nt

rµ

)9/11

+

µ

(
∑

τ

n2/3
τ

)(
nt

rµ

)2/3

+ µ
∑

τ

(
nτ +

nt

rµ

))

= Õ

(
µn6/11(r3)5/11

(
nt

rµ

)9/11

+ µn2/3(r3)1/3

(
nt

rµ

)2/3

+ nµ + ntr2

)

= Õ(n15/11t9/11r6/11µ2/11

+ n4/3t2/3r1/3µ1/3 + nµ + ntr2).

(7)

If a circle γ appears in Cτ with multiplicity µ, then there
are µ spheres whose centers all lie on the axis of γ. By our



initial pruning process, we have µ ≤ µ0. We can there-
fore bound the number of all “bad” incidences by sum-
ming (7) over an appropriate geometric progression of µ

ending at µ0 = Õ(t18/7/n), and then combine the sum with
the bound (6) on “good” incidences and with the bounds for
incidences between points in a cell and spheres containing
the entire cell, to obtain (the fifth term has an additional
logarithmic factor, which is subsumed by the factor implied

by the Õ-notation)

n(n − 1) = I(P, S)

= Õ(
n7/4t3/4

r3/4
+ n13/11t9/7r6/11+

nt32/21r1/3 + t18/7 + ntr2 + nr3).

We choose r = n25/57/t55/133 > 1 to equalize the first two
terms on the right-hand side, obtaining

n2 = Õ
(
n27/19t141/133 + n196/171t79/57+

t18/7 + n107/57t23/133 + n132/57/t165/133
)

.

Solving this inequality for t yields that one of the following
five relations must hold:

t = Ω̃
(
n77/141

)
, t = Ω̃

(
n146/237

)
,

t = Ω̃
(
n7/9

)
, t = Ω̃

(
n49/69

)
,

or t = Õ
(
n14/55

)
.

Here the last relation is impossible, as we already know that

t = Ω̃(n1/2). From the first four relations the weakest one—
the first—is the bound claimed in Theorem 1.1. 2

5. Distinct Distances in S
d and R

d

We start with proving Theorem 1.2. We only point out
the few places where the proof of Theorem 1.1 has to be
altered to apply to the spherical case.

First, the axis of a circle (the locus of points from which
every point of the circle is equidistant) is a great circle in
S

3. Thus, we need to modify the analysis so that it handles
axes that are great circles, rather than lines.

Second, it is sufficient to prove our lower bound for point
sets contained in an open hemisphere of S

3. This assump-
tion has two advantages. In R

3, the axis of a circle cannot
contain more than t+1 points. This remains true on a hemi-
sphere (within which the axis is a great semi-circle), but a
full great circle could contain as many as 2t + 1 distinct
points. A more important consequence of this assumption
is that when we consider spheres centered at points of our
set, no sphere arises more than once. In the full S

3, spheres
around diagonally opposite points could coincide.

The only subsequent place in the proof where the analysis
of the spherical and the Euclidean cases differ is in the proof
of the bound (3) in Section 2. We recall the setting: P is
set of n points, now in a hemisphere of S

3. We let t = t(P ).
We pick a great circle ℓ that contains µℓ points of P . We
define Cℓ to be the set of circles, each having ℓ as an axis
and containing at least one point of P . Our goal is to bound
|Cℓ| using the bound (3), restated here:

|Cℓ|µℓ = O
(
(|Cℓ|µℓt)

2/3 + µℓt + |Cℓ|
)
. (3)

We leave S
3 and consider the Euclidean 4-space R

4 con-
taining it. Let O be the (two-dimensional) plane in R

4 con-
taining the great circle ℓ. We project the spheres in Sℓ and
the circles in Cℓ orthogonally onto O. Any sphere in Sℓ is
in fact the intersection of two spheres in R

4, one of which
is the unit sphere S

3 containing ℓ, and the other is a sphere
centered at a point of ℓ. The projection of this intersection
is a chord of ℓ. Note also that distinct spheres project to
distinct chords. The circles in Cℓ are contained in planes
orthogonal to O, so each of them projects to a single point
of O (inside the circle ℓ). Here again, distinct circles in Cℓ

project to distinct points. Each circle in Cℓ lies in µℓ spheres
in Sℓ, creating at least |Cℓ|µℓ incidences between the points
and the chords in the projection. Thus, by Theorem A, the
bound (3) also holds in this case.

The rest of the proof of Theorem 1.1 applies essentially
verbatim in this case. Notice that for the Euclidean case one
has to use Theorem B on point-circle incidences in three
dimensions, whereas to derive the same bound (4) in the
spherical case we use the result in four dimensions. The por-
tion of the proof in Section 3 proceeds without any change.
For the final part in Section 4, one has to use (1/r)-cuttings
within S

3, whose existence and properties can be established
following the approach mentioned in Section 4.

Finally, we prove Corollary 1.3. The proof proceeds by
induction on d. The base case d = 3 is covered by Theorems
1.1 and 1.2. For d > 3, fix an arbitrary point p ∈ P . There
are tp(P ) (d − 1)-dimensional spheres centered at p that
collectively contain the n − 1 points of P \ {p}. Hence,
there is a sphere σ passing through at least (n − 1)/tp(P )
elements of P . If tp(P ) is smaller than the asserted bound,

then σ contains more than n1−1/(d− 90

77
) points of P . By

the induction hypothesis, we may apply Corollary 1.3 to
σ∩P , and conclude that there exists a point q ∈ σ∩P that
determines at least

Ω̃

((
n1−1/(d− 90

77
)
)1/(d−1− 90

77
)
)

= Ω̃
(
n1/(d− 90

77
)
)

distinct distances to the other points of σ ∩ P , completing
the proof of Corollary 1.3.

6. Discussion

Clearly, the main open problem is to improve the bound
obtained in this paper, to a bound close to Ω(n2/3). For this,
other approaches should also be considered, for example,
variants of those used by Székely [16] and by Solymosi and
Tóth [13] for the planar case.

We note that an earlier draft of this paper used results of
Elekes [5, 6] on the number of distinct distances determined
by two sets of points, each consisting of µ points on a line.
If the lines are neither parallel nor orthogonal, then there
are Ω(µ5/4) distinct distances between the two sets. This
result was applied to points lying on axes of the circles that
contain points of P . In the present analysis, however, the
bottleneck is the case where the axes of circles contain ap-
proximately µ ≈ (n77/141)18/7/n = n19/47 points of P and

µ5/4 < n77/141 , thus Elekes’ result cannot be used to im-
prove the analysis. Elekes’ bound, however, is conjectured
(e.g., by Elekes himself) not to be tight, and a major im-
provement of it would lead to a stronger lower bound on
g3(n) (but not on the number t3(n) of distinct distances
from a single point).



Another improvement would result if one could further
improve the bound of Theorem B of [1] for the number of
incidences between points and circles in three and four di-
mensions.

This indeed can be done for point sets with certain spe-
cial properties. For example, for so-called dense sets P , for
which the ratio between the maximum and minimum dis-
tances between their elements is O(n1/3), one can improve
the bound on the number of incidences between arbitrary
circles and the points in P . This, in turn, yields an im-
provement on the number of distinct distances for such sets.
A recent work by Solymosi and Vu [14] pushes the bound
further for this special case, showing that for dense sets of
n points in 3-space one has Ω(n5/9) distinct distances.

We conjecture that our bound on g3(n) is far from being

sharp and that the best bound is close to Ω(n2/3). As a first
challenge, which we believe not to be too difficult, we pose
the problem of showing that g3(n) = Ω(n5/9). Even with the
improvements that one might hope to achieve, as discussed
above, the current approach does not extend to proving a
bound beyond Ω(n5/9). This can be seen by considering
only the two terms

O

(
n7/4t3/4

r3/4
+ ntr2

)
,

where the first term bounds the number of incidences with
good spheres, and the second bounds incidences involving
spheres that cross cells of the cutting but meet there only
O(1) points. Choosing r to balance the two terms and solv-
ing the resulting inequality for t, we would have obtained
t = Ω(n5/9).
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