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Let P1 and P2 be two finite sets of points in the plane, so that P1
is contained in a line �1, P2 is contained in a line �2, and �1 and
�2 are neither parallel nor orthogonal. Then the number of distinct
distances determined by the pairs of P1 ×P2 is

Ω
(
min

{|P1|2/3|P2|2/3, |P1|2, |P2|2
})

.

In particular, if |P1| = |P2| = m, then the number of these distinct
distances is Ω(m4/3), improving upon the previous bound Ω(m5/4)

of Elekes (1999) [3].
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Given a set P of m points in R
2, let D(P) denote the number of distinct distances that are deter-

mined by pairs of points from P . Let D(m) = min|P|=m D(P); that is, D(m) is the minimum number
of distinct distances that any set of m points in R

2 must always determine. In his celebrated 1946
paper [6], Erdős derived the bound D(m) = O (m/

√
log m ). For the celebrations of his 80’th birthday,

Erdős compiled a survey of his favorite contributions to mathematics [7], in which he wrote “My most
striking contribution to geometry is, no doubt, my problem on the number of distinct distances. This
can be found in many of my papers on combinatorial and geometric problems”. Recently, after 65
years and a series of increasingly larger lower bounds (comprehensively described in the book [8]),
Guth and Katz [9] provided an almost matching lower bound D(m) = Ω(m/ log m). For this, Guth and
Katz developed several novel techniques, relying on tools from algebraic geometry.
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Fig. 1. (a) Two parallel lines with D(P1,P2) = Θ(m). (b) Two orthogonal lines with D(P1,P2) = Θ(m).

While the problem of obtaining the asymptotic value of D(m) is almost settled, many other vari-
ants of the distinct distances problem are still widely open. For example, see [2,10] regarding the
conjecture that any m points in convex position in the plane determine at least �m/2� distinct dis-
tances, and [13] for a study of the minimum number of distinct distances in higher dimensions.

In this paper we consider the following variant of the distinct distances problem in the plane. Let
P1 and P2 be two finite sets of points, such that all the points of P1 lie on a line �1, and all the
points of P2 lie on a line �2. Let D(P1,P2) denote the number of distinct distances between the
points of P1 and P2, i.e.,

D(P1,P2) = ∣∣{dist(p,q)
∣∣p ∈ P1,q ∈ P2

}∣∣.
Consider first the “balanced” case, where |P1| = |P2| = m. When the two lines are parallel or or-
thogonal, the points can be arranged such that D(P1,P2) = Θ(m); for example, see Fig. 1. Purdy
conjectured that if the lines are neither parallel nor orthogonal then D(P1,P2) = ω(m) (e.g., see [1,
Section 5.5]). Elekes and Rónyai [4] proved that the number of distinct distances in such a scenario is
indeed superlinear. They did not give an explicit bound, but a brief analysis of their proof shows that
D(P1,P2) = Ω(m1+δ) for some δ > 0. Elekes [3] derived the improved bound D(P1,P2) = Ω(m5/4)

(when the lines are neither parallel nor orthogonal) and gave a construction, reminiscent of the one
by Erdős [6], with D(P1,P2) = O (m2/

√
log m ), in which the angle between the two lines is π/3. Pre-

viously, these were the best known bounds for D(P1,P2) for the balanced case. The unbalanced case,
where |P1| �= |P2|, has recently been studied by Schwartz, Solymosi, and de Zeeuw [12], who have
shown, among several other related results, that the number of distinct distances remains superlinear
when |P1| = m1/2+ε and |P2| = m, for any ε > 0.

In this paper we derive the following result, for point sets P1,P2 of arbitrary (possibly different)
cardinalities.

Theorem 1.1. Let P1 and P2 be two sets of points in R
2 of cardinalities n and m, respectively, such that the

points of P1 all lie on a line �1 , the points of P2 all lie on a line �2 , and the two lines are neither parallel nor
orthogonal. Then the number of distinct distances between P1 and P2 is

D(P1,P2) = Ω
(
min

{
n2/3m2/3,n2,m2}).

Theorem 1.1 immediately implies the following improved lower bound for the balanced case.

Corollary 1.2. Let P1 and P2 be two sets of points in R
2 , each of cardinality m, such that the points of P1 all

lie on a line �1 , the points of P2 all lie on a line �2 , and the two lines are neither parallel nor orthogonal. Then
D(P1,P2) = Ω(m4/3).

Note that Theorem 1.1 also implies the result of [12], mentioned earlier, and slightly strengthens
it, by providing the explicit lower bound Ω(m1+2ε/3).
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Fig. 2. (a) A quadruple (a, p,b,q) in Q . (b) By the law of cosines, we have ‖ap‖2 = ‖oa‖2 + ‖op‖2 − 2‖oa‖‖op‖ cosα.

Even with the improved lower bound in Corollary 1.2 (over the lower bound in [3]), there is still a
considerable gap to the near-quadratic upper bound in [3], and the prevailing belief is that the correct
lower bound is indeed close to quadratic.

To obtain the improved bound, we use a double counting argument, applied to the number of
quadruples (a, p,b,q) of points, with a,b ∈ P1 and p,q ∈ P2, that satisfy ‖ap‖ = ‖bq‖. The argument
is similar to the one in the reduction devised by Elekes and presented in Elekes and Sharir [5]. For
this double counting we use the same lower bound analysis as in [5], but replace the upper bound
analysis by a considerably simpler one, in which the problem is reduced to that of bounding the
number of incidences between certain points and hyperbolas in the plane. (In contrast, the original
reduction in [5] is to incidences between points and lines in R

3.)

2. The proof of Theorem 1.1

Without loss of generality, we may assume that the points of P1 are on one side of the intersection
point �1 ∩ �2. Otherwise, we can partition P1 into two subsets by splitting �1 at �1 ∩ �2, and remove
the subset that yields fewer distinct distances with the points of P2. At worst, this halves the number
of distinct distances between the pairs in P1 × P2. For the same reason, we may assume that the
points of P2 are also on one side of �1 ∩ �2. Furthermore, without loss of generality, we may assume
that n = |P1| � m = |P2|.

We rotate, translate, and possibly reflect the original plane, so that the origin o is �1 ∩ �2, �1 is the
x-axis, the points of P1 lie on the positive side of o, and the points of P2 lie above �1. We denote the
angle between the two lines by α. Since the two lines �1 and �2 are neither parallel nor orthogonal,
we have α �= 0,π/2. We will also assume that o /∈ P1 ∪ P2, because the presence of o in either set
can generate at most O (m + n) distinct distances.

We begin with a variant of the first part of the reduction from [5]. We set x = D(P1,P2) and de-
note the x distinct distances in P1 ×P2 as δ1, . . . , δx . For a pair of points u and v , we denote by ‖uv‖
the (Euclidean) distance between u and v . Let Q be the set of quadruples (a, p,b,q), where a,b ∈P1
and p,q ∈ P2, such that ‖ap‖ = ‖bq‖ > 0 and ap �= bq (the two segments are allowed to share at
most one endpoint); see Fig. 2(a). The quadruples are ordered, so that (a, p,b,q) and (b,q,a, p) are
considered as two distinct elements of Q .

Let Ei = {(a, p) ∈ P1 × P2 | ‖ap‖ = δi}, for i = 1, . . . , x. Using the Cauchy–Schwarz inequality we
have,

|Q | = 2
x∑

i=1

(|Ei|
2

)
�

x∑
i=1

(|Ei | − 1
)2 � 1

x

(
x∑

i=1

(|Ei| − 1
))2

= (mn − x)2

x
. (1)

In the remainder of the proof we derive an upper bound on |Q |, showing that |Q | = O (m4/3n4/3 +
n2). Combined with (1) this yields the lower bound asserted in the theorem (under the assumption
n � m).

To obtain this upper bound, we re-interpret |Q | as an incidence count between certain points and
hyperbolas in a suitable parametric plane, and then use standard machinery to bound this count. This
replaces (and greatly simplifies) the second part of Elekes’s reduction, where |Q | is interpreted as an
incidence count between points and lines in R

3.
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Let us consider a quadruple (a, p,b,q) ∈ (P1 × P2)
2. By the law of cosines, we have ‖ap‖2 =

‖oa‖2 + ‖op‖2 − 2‖oa‖‖op‖ cosα and ‖bq‖2 = ‖ob‖2 + ‖oq‖2 − 2‖ob‖‖oq‖ cosα (see Fig. 2(b)). Thus,
the quadruple (a, p,b,q) is in Q if and only if

‖oa‖2 + ‖op‖2 − 2‖oa‖‖op‖ cosα = ‖ob‖2 + ‖oq‖2 − 2‖ob‖‖oq‖ cosα.

We represent each point u of P1 or of P2 by its distance ‖ou‖ from the origin o. Each of P1, P2 is
contained in a ray (with initial point o) of the respective line �1, �2, we may assume that all these
distances are all distinct in P1 and are all distinct in P2.

In what follows, we will use u to denote both the point and its distance ‖ou‖ from o. Using the
notation s = cosα, the above condition can be written as

a2 − b2 + p2 − q2 − 2s(ap − bq) = 0, (2)

where s �= 0,1.
Let V1 and V2 denote the sets of ordered distinct pairs of P1 and of P2, respectively. That is,

Vi = Pi ×Pi \ {
(x, x)

∣∣ x ∈ Pi
}

for i = 1,2.

For every i ∈ {1,2} and (a,b) ∈ Vi , there is a curve γ
(i)

a,b , corresponding to the pair (a,b), given by
the equation

a2 − b2 + x2 − y2 − 2s(ax − by) = 0. (3)

This can also be written as

(x − sa)2 − (y − sb)2 = (
1 − s2)(b2 − a2).

Since s �= 1 and a �= b, the curve γ
(i)

a,b is a hyperbola. Moreover, since s �= 0, all the hyperbolas γ
(1)

a,b

are distinct, and so are all the hyperbolas γ
(2)

a,b . Let C1 denote the set of the m(m − 1) hyperbolas,

C1 = {γ (1)

a,b | (a,b) ∈ V1}. By construction, the hyperbola γ
(1)

a,b ∈ C1 is incident to the point (p,q) ∈ V2 if
(and only if) a, b, p, q satisfy the condition in (2). That is, the number of quadruples (a, p,b,q) in Q
for which a �= b and p �= q is at most the number of point-hyperbola incidences between V2 and C1.
The number of missing elements of Q , where either a = b or p = q, has the trivial upper bound 4mn,
as is easily verified.

Every pair of hyperbolas from C1 intersect in at most two points in the real plane. Therefore,
for every pair of hyperbolas from C1 there are at most two points of V2 that are incident to both
hyperbolas. The roles of V1 and V2 in (3) are symmetric. In particular, every pair of hyperbolas from
C2 = {γ (2)

a,b | (a,b) ∈ V2} intersect in at most two points too. This implies that there are at most two
hyperbolas of C1 that pass through a given pair of points in V2.

We can therefore use the following result of Pach and Sharir [11].

Theorem 2.1. (See Pach and Sharir [11].) Consider a point set P , a set of curves C , and a constant positive
integer s, such that

(i) for every pair of points of P there are at most s curves of C that are incident to both points, and
(ii) every pair of curves of C intersect in at most s points.

Then the number of incidences between P and C is at most c(s)(|P|2/3|C|2/3 + |P| + |C|), where c(s) is a
constant that depends on s.

We apply Theorem 2.1 to V2 and C1, with s = 2, and obtain (adding the bound on the missing
pairs in Q )

|Q | = O
(
m4/3n4/3 + m2 + n2 + mn

) = O
(
m4/3n4/3 + n2)
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(recalling that we assume n � m), as desired. As already noted, combining this bound with (1) implies

(mn − x)2

x
= O

(
m4/3n4/3 + n2),

or, as is easily checked,

x = Ω
(
min

{
m2/3n2/3,m2}).

Combining this bound with its symmetric version when m � n yields the bound asserted in the theo-
rem.
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