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(B6) 2B:(m+2 < Ay(m +3), for k> 1, m > 1.

(B7) Ax_1(m) < Bi(m) < 28+(m) < Ap(m + 3), for k > 4, m>1,
so that the sequences of functions By and Ay have the same asymptotic
order of growth.

Next we define another sequence of functions {Cx} by putting Cy(m) =
28+(m) for all k and m. An explicit recursive definition of these functions, for
positive k and m, is

Cy(m) 1 m>1,
Q.n:,v Mﬁ_r!—mwu_ k > Mu AMAV
Cxm) = Cilm— 1) Cri (Ce(m-1)), k>2,m>2.

Il

It follows easily from the preceding analysis that,
(C1) Cy(m) =2, for m 240,

(C2) C3(m) =27+ for m > 0.

(C3) Ci(m) >27" | withm+1 2's in the exponential tower.

(C4) Ax—1(m) < Cyx(m) < Ar(m +3), for k>4, m > 1,
so that the growth of the sequences of functions {Ck} and {A,} are also
of the same asymptotic order of magnitude.

In what follows we will often use the shorthand notations

a=Ci(m—-1), A= Cr_1(Cr(m — 1)) = Cr_1(a@)

and = Cy(m) = @- 3 (by definition).

2.3.2  Generation of superlinear-size sequences

For each k,m > 1, the sequence S(k,m) that we are going to construct will
satisfy the following two properties:

(1) S(k,m) is composed of Ni(m) = m - Ci(m) distinct symbols. (These
symbols are named (d,5), for d = L...,m,y=1,...,%, and are ordered
in lexicographical order, so that (d,v) < (d',¥') if vy < 4" or ¥ =~" and
d<d.)

(2) S(k,m) contains Cy(m) fans of size m, where each fan is a contiguous
subsequence of the form

((1,7)(2,7) -+ (m,7)).
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Since fans are pairwise disjoint. by definition, the naming scheme of the
symbols of S(k,m) can be interpreted as assigning to each symbol the index
7 of the fan in which it appears, and its index d within that fan.

The construction proceeds by double induction on k and m, as follows.

1. k = 1: The sequence is a single fan of size m:
S(1,m) = ((1,1)(2,1) - (m, 1)).
Properties (1) and (2) clearly hold here (Cy(m) = 1)

2. k = 2: The sequence contains a pair of disjoint fans of size m, with a
block following each of these fans. Specifically,

S(2m) = {12, 1) (m—1,1)(m,1) (m - 1,1) ... (15:1)
(1,2)(2,2) - (m - 1,2) (m,2) (m-1,2) - (1,2)).

Indéed, S5(2,m) contains Cy(m) = 2 fans and is composed of 2m symbols.

3. k>3, m=1: The sequence is identical to the sequence for k' = k — 1
and m' = 2, except for renaming of its symbols and fans: S(k-1,2)
contains Cy_,(2) = wﬁ_i: fans, each of which consists of two symbols;
the symbol renaming in S(k, 1) causes each of these two elements to
become a 1-element fan, Properties (1) and (2) clearly hold.

4. The general case k >3,m>1:

(i) Generate inductively the sequence §' = S(k,m — 1); by induction,
it contains & fans of size m — 1 each and is composed of (m - 1) - &
symbols.

(i) Create 3 copies of S’ whose sots of symbols are pairwise disjoint.
For each § < f, rename the symbols in the fth copy .m.w of ' as
(d,a,3) where 1 <d < m —1is the index of the symbol in the fan
of Sj containing it, and 1 < a < ais the index of this fan in Sp.

(iii) Generate inductively the sequence S* = S(k — 1,a) whose set of
symbols is disjoint from that of any S5: by induction, it contains A
fans of size & each. Rename the symbols of 5* as (m,a, 3) (where
a is the index of that symbol within its fan, and /3 is the index of
that fan in §*). Duplicate the last element (m, @, 4) in each of the
A fans of §*.

(iv) For each 1 < a < @, 1 < B < B, extend the ath fan of Sj by
duplicating its last, element (m — 1,a, ), and by inserting the cor-
responding symbol (1, a, A) of S* between these duplicated appear-
ances of (m ~ 1, a, 8). This process extends the (m — 1)-fans of Sp
into m-fans and adds a new element after each extended fan.
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(v) Finally construct the desired sequence S(k,m) by merging the
copies S of S" with the sequence S*. This is done by replacing, for
each 1 < 4 < 3, the fth fan of §* hy the corresponding copy Sj; of
S', as modified in (iv) above. Note that the duplicated copy of the
last element in each fan of S* (formed in step (iii) above) appears
now after the copy Sj that replaces this fan; see Figure 2.1 for an
illustration of this process.
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FI1GURE 2.1. Merging the subsequences.

To establish property (1), note that S(k,m) consists of
Ni(m) B (m—1)a+ aCr_ (@)
= (m-1ag+ap
= maf

= mCg(m)

symbols. Property (2) is trivial, because the fans of S(k,m) are precisely the
extended fans of the copies S of S’, and their number is Cy(m—1)-8 = Cy(m).

We now establish several important properties of the sequences S(k,m).
For our present purpose, property (a) is all we need. However, later on in
Chapter 4 we will be concerned with geometric realization of the sequences
S(k,m), and there we will need to use the other properties.

Theorem 2.20 For each k,m > 1 the sequence S = S(k,m) satisfies the
following properties:
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(a) S is a DS(Ny(m),3)-sequence.

(b) Each symbol of S appears in precisely one fan and makes its first (left-
most) appearance in S.

(c) For k > 2 and for each v < 7, the last element (m,vy) of the yth fan of
S forms the beginning of a contiguous subsequence that is the reverse of
that fan:

{(m,7) (m = 1,7) -« (2,7) (1,7)):

(Note that this sequence is the initial portion of a block of S.)

(d) For each block c of S, let [ be the rightmost fan preceding or including
c and let ¢y, ¢q,...,¢; be the blocks appearing in S between [ and ¢, for
some t > 0. Let a be the first (leftmost) element of c; then either this
appearance of a is within f, or else a must also appear in one of the
preceding blocks c;.

Remark 2.21 (i) For each v < % and each d < m, the element (d,7v) in
the yth fan of S forms a 1-element block. Note that property (d) is trivially
correct for these singleton blocks.

(ii) Property (b) implies in particular that S starts with a fan.

(i) Unless ¢ is one of the singleton blocks mentioned in (i) above, the first
block ¢; in property (d) is the block mentioned in (c) (whose initial portion
is the reverse of the fan f). Note that property (d) clearly holds for the case
c=Cy.

Proof. The proof proceeds by double induction on k and m. The base case
k = 1is trivial: 5(1,m) is plainly a DS(m, 3)-sequence, (b) and (d) are trivial,
and (c) is vacuous in this case.

The case k = 2 is also easy. Here ¥ = 2 and S(2,m) is obviously a
DS(2m, 3)-sequence, so (a) follows. Properties (b),(c), and (d) are also imme-
diate.

Next consider the case k > 2, m = 1. Here S(k,1) = S(k —1,2) (with its
symbols being renamed), so property (a) holds by induction. Property (b) is
also trivial because the only change in the fan structure between S(k—-1,2)
and S(k,1) is that each fan is split into two subfans. Since each fan is now of
size 1, property (c¢) is trivial too. Finally, since the block structure in S(k, 1)
is identical to that in S(k — 1,2), (d) also follows immediately by induction.

Finally consider the general case k > 2, m > 1. We first prove property (a).
First note that no two adjacent elements of § = S(k,m) are equal: Indeed, by
the induction hypothesis, no two adjacent elements either in S* or in any Sp
are equal; all these sequences have pairwise disjoint sets of symbols, and the



