
Finding the Maximal Empty Disk Containing a Query Point∗

Haim Kaplan† Micha Sharir‡

October 16, 2012

Abstract

Let P be a set of n points in the plane. We present an efficient algorithm for
preprocessing P , so that, for a given query point q, we can quickly report the largest
disk that contains q but its interior is disjoint from P . The storage required by the
data structure is O(n log n), the preprocessing cost is O(n log2 n), and a query takes
O(log2 n) time. We also present an alternative solution with an improved query cost
and with slightly worse storage and preprocessing requirements.

1 Introduction

We consider the problem of preprocessing a given set P of n points in the plane into a data
structure such that for any given query point q we can efficiently find the largest disk that
contains q but its interior does not contain any point of P .

A data structure for finding largest empty disks is needed when one wants to efficiently
estimate the size of the “free space” (free of points of P , that is) surrounding a query point
and locate the center of this free space. Concrete examples of such a scenario are: (i) We
want to transmit a message over the largest possible area (which is a disk if propagation
proceeds uniformly in all directions) such that we are sure that q receives the message but
none of the eavesdroppers at the points of P hears it. (ii) We want to position a sprinkler
to water the largest possible disk that includes our favorite plant at q but does not include
any of the locations in P , which are facilities that we do not want to get wet.

Note that it suffices to consider query points q that lie inside the convex hull CH(P) of
P because otherwise there are arbitrarily large disks containing q and disjoint from P .

Our results. We present an efficient data structure for largest empty disk queries that
requires O(n logn) storage, O(n log2 n) preprocessing time, and can answer a query in

∗Work on this paper was partially supported by the Israeli Centers of Research Excellence (I-CORE) pro-
gram (Center No. 4/11). Work by Haim Kaplan was also supported by Grant 2006/204 from the U.S.–Israel
Binational Science Foundation, and by Grant 822/10 from the Israel Science Fund. Work by Micha Sharir
was also supported by NSF Grant CCR-08-30272, by Grant 2006/194 from the U.S.–Israel Binational Sci-
ence Foundation, by Grant 338/09 from the Israel Science Fund, and by the Hermann Minkowski–MINERVA
Center for Geometry at Tel Aviv University.

†School of Computer Science, Tel Aviv University, Tel Aviv, Israel; email: haimk@tau.ac.il
‡School of Computer Science, Tel Aviv University, Tel Aviv, Israel, and Courant Institute of Mathematical

Sciences, New York University, New York, NY 10012, USA; email: michas@tau.ac.il

1

O(log2 n) time. We also present an alternative data structure that, for any prespecified
ε > 0, uses O(n1+ε) storage, requires O(n1+ε log2 n) preprocessing time, and answers a
query in O

(

1

ε log n
)

time.

Within those latter improved performance bounds, we in fact solve a related problem
of independent interest in which the input consists of n arbitrary disks in the plane, and
we want to process them into a data structure that allows to efficiently find the largest
disk among the input disks containing a query point. A solution to this problem when the
disks are the Delaunay disks defined by P turned out to be the bottleneck part in our data
structure.

Background. To the best of our knowledge the problem of finding a data structure for
largest disks queries was first introduced by Augustine et al. [1], who design a data struc-
ture that requires O(n2) space, O(n2 log n) preprocessing time, and can answer a query in
O(logn) time. In a more recent version of their work [2], they improve the storage and pre-
processing costs of their algorithm, to O(n5/3) and O(n5/3 log n), respectively, still retaining
the O(log n) bound for the query cost. They improve the storage and preprocessing costs
further, to O(n3/2 log n) and O(n3/2 log2 n), respectively, at the cost of a slight increase in
the query time bound, to O(log n log logn). They also provide in the new version a data
structure with near-linear storage and preprocessing, that receives as input a simple poly-
gon P with n edges, and finds, in O(logn) time, the largest disk containing a query point
and lying fully inside P .

A much easier problem, which has been studied much earlier, is that of finding the largest
empty disk for a set P of n points in the plane (where, to make sense of the problem, the
center of the disk has to lie, say, inside the convex hull of P—recall the remark made earlier
concerning points outside the hull). This problem arises in several areas such as data mining,
database management, visualization, and VLSI design, and it has a very simple solution.
Indeed, the largest empty disk has to be centered at a vertex of the Voronoi diagram of P ,
or at a crossing of an edge of the diagram with the convex hull boundary, and therefore can
be found in O(n logn) time.

We note that, in their initial study [1], Augustine et al. also consider a similar problem,
where the goal is to report the largest-area axis-parallel rectangle that contains the query
point, is contained in some fixed bounding box B, and its interior is disjoint from P .
Their solution for this variant also requires nearly quadratic storage and preprocessing; in a
companion paper [5] (see also [4]), we present a more efficient solution, which requires only
nearly linear storage and preprocessing, with O(log4 n) query time, for that latter problem.

We are not aware of any previous specific work on the problem of preprocessing n disks
into a data structure of near-linear size that can find the largest disk containing a query
point in logarithmic time. The main structure that we use in this paper for this problem,
which is adapted from a similar solution in [1, 2], requires O(log2 n) query time. We note
that this problem is a special case of a more general range searching setting where ranges
have priorities (in our case the size of the disk is its priority) and we want a data structure
that can find the range of highest priority containing a query point.

2

2 Preliminaries

Let P be a set of n points in the plane. We call a disk whose interior is disjoint from P a
P -empty disk. We wish to preprocess P into a data structure so that, given a query point
q, we can efficiently find the largest P -empty disk containing q. The following easy lemma
completes the observation made earlier, that it suffices to consider only query points q that
lie inside the convex hull CH(P) of P .

Lemma 2.1 There are arbitrarily large P -empty disks containing q if and only if q does
not lie in the interior of the convex hull CH(P) of P .

Proof. If q does not lie in the interior of CH(P) then there is a line ℓ through q that defines
halfplane whose interior is P -empty; clearly there are arbitrarily large P -empty disks in this
halfplane tangent to ℓ at q.

For the converse statement, let B be some fixed disk containing P ∪{q}. Clearly if there
are arbitrarily large P -empty disks containing q then there are arbitrarily large P -empty
disks containing q on their boundary. For any such disk D, D ∩B contains the intersection
of B with a wedge W whose apex is q and whose bounding rays go through the points in
∂B ∩ ∂D. The wedge W is P -empty (W ∩ B is P -empty since it is contained in D and
W \B is empty since there are no points of P outside B), and its opening angle tends to π
as D grows. In the limit, W becomes a halfplane containing q and openly disjoint from P .
Hence q does not lie in the interior of CH(P). ✷

Let Vor(P) denote the Voronoi diagram of P .

For a point q in the interior of CH(P), let Dmax(q) denote an arbitrary largest P -empty
disk containing q, and let cmax(q) denote its center. (In general this disk needs not be
unique. For example we may have two congruent Delaunay disks, that is, maximal P -
empty disks centered at vertices of Vor(P), both containing q, and larger than any other
P -empty disk containing q. The disk will be unique if we assume that the points of P are
in general position.)

The analysis proceeds through the following stages.

Lemma 2.2 Let q be in the interior of CH(P). Then cmax(q) lies on a Voronoi edge or at
a Voronoi vertex.

Proof. If D is a P -empty disk that contains q and is centered at some point c not on the
Voronoi diagram then D touches at most one point of P . If it does not touch any point of
P , we can get a larger P -empty disk containing q by expanding D about c until it touches
some (unique) point a ∈ P . If D already touches a point a of P then we can get a larger
P -empty disk containing q by moving the center of D along the ray from a through c, away
from a, keeping it touching a, until it touches another point b of P . This has to occur,
for otherwise we get arbitrarily large P -empty disks containing q, contrary to Lemma 2.1.
It follows that a disk which is not centered at a Voronoi edge or vertex is not a maximal
P -empty disk containing q. ✷

Suppose that cmax(q) lies in the relative interior of a Voronoi edge eab defined by two
sites a, b ∈ P . There is at least one direction along eab so that we can increase the size of the

3

disk by moving its center in that direction away from cmax(q) while keeping it P -empty and
touching a and b. Since Dmax(q) is the largest P -empty disk containing q, we conclude that
in this case q must lie on the boundary of Dmax(q). Moreover, this boundary is split into
two arcs by a and b, and q has to lie on the smaller arc; see Figure 1. Note that in this case
we have ∠aqb > π/2. (Note also that ab cannot be a diameter of Dmax(q), for otherwise
we can expand Dmax(q) by moving its center along eab towards q, keeping it P -empty and
containing q.)

a

b

q

cmax(q)eab

Figure 1: The case where cmax(q) lies in the relative interior of a Voronoi edge.

Continuing the analysis of this scenario, we note that in this case cmax(q) is equally
nearest to a, b, and q. That is, cmax(q) is a vertex of the Voronoi cell V (q) of q in the
augmented Voronoi diagram Vor(P ∪ {q}). Then a and b are two consecutive neighbors of
q; that is, the Voronoi edges eaq, ebq are consecutive along ∂V (q). The angle between these
edges, within V (q), is π −∠aqb, and is therefore smaller than π/2. See Figure 2. Since the
sum of the exterior angles of a convex polygon is 2π, it follows that V (q) has at most three
vertices that can be the location of cmax(q). We summarize the observations made so far in
the following lemma.

Lemma 2.3 If cmax(q) lies in the relative interior of a Voronoi edge eab then q lies on
the smaller arc connecting a and b along ∂Dmax(q). In this case cmax(q) is a vertex of the
Voronoi cell V (q) of q in the Voronoi diagram Vor(P ∪ {q}). Furthermore, cmax(q) is one
of the at most three vertices of V (q) with an acute interior angle.

The preceding analysis therefore suggests the following high-level approach: Identify,
without constructing V (q) explicitly (whose complexity can be as high as Θ(n)), the at
most three vertices of this cell which might be the location of cmax(q), compute, in O(1)
time, the radii of the corresponding largest P -empty disks centered at these vertices, and
output the center with the largest radius. This is however only one part of the solution,
because we also have to consider Voronoi vertices of Vor(P) as possible locations for cmax(q).

4

eab

q
eaq

ebq

a

bc

e

d

cmax(q)

Figure 2: The cell V (q) in Vor(P ∪ {q}), superimposed on Vor(P). The angle between eaq
and ebq is smaller than π/2.

2.1 A quick-and-dirty interim solution

Before continuing towards an efficient solution, we can already exploit the analysis given
so far, to obtain the following quick-and-dirty solution. Consider a query point q, the cell
V (q) of q in Vor(P ∪{q}), and its at most three special vertices having acute interior angles,
which are the candidate placements for cmax(q) (other than Voronoi vertices of Vor(P)).
If we move q, V (q) will vary continuously, and its combinatorial structure (namely, the
sequence of its edges and the identity of the three acute vertices) will remain fixed until q
reaches some critical placement in which one of these attributes changes. It is easy to verify
that the sequence of edges of V (q) can change only when one of its vertices is a vertex of
the non-augmented diagram Vor(P); that is, when q lies on the boundary of the Delaunay
disk which is centered at that vertex (and circumscribes its dual Delaunay triangle). The
“acuteness” of a vertex of V (q), lying on an original Voronoi edge eab, can change only when
q lies on the boundary of the diametral disk determined by a and b, but only if this disk
is P -empty. (Note that the diametral disk is P -empty if and only if ab is an edge of the
Gabriel graph of P .)

So a quick-and-dirty solution is to draw the O(n) disks of the above two types (Delaunay
disks and diametral disks determined by edges of the Gabriel graph), form their arrangement
A, and store with each face f of A the list L(f) of the at most three acute vertices of V (q),
for any q ∈ f (by the preceding argument, the list is the same for all q ∈ f). We also store
with each f the largest Delaunay disk, D(f), centered at a vertex of Vor(P), which contains
f . We can compute the lists L(f) and the disks D(f) incrementally, observing that it is
straightforward to update L(f) in O(1) time as we cross from one face f to a neighboring
face f ′. Updating D(f) can be done in O(log n) time, by dynamically maintaining the list of
all Delaunay disks containing the present face f , sorted in the decreasing order of their radii.
We then preprocess A for efficient point location, and obtain the desired data structure.
It requires O(n2) storage and O(n2 logn) preprocessing, and a query takes O(logn) time:
Locate the query point q in A, retrieve the list L(f) of the face f containing q, and search
each of its (at most three) elements for a possible location of cmax(q). We return the largest

5

among the maximal P -empty disks centered at the vertices defined by L(f) and the disk
D(f). Note that the elements of L(f) are only stored symbolically, because the actual
vertices of V (q) vary continuously as q moves inside f ; still, the combinatorial identification
of each of these elements allows us to test it in O(1) time for any concrete query point q in
f .

This straightforward approach matches the performance of the algorithm in [1] (but not
its improvement in [2]).

3 A more efficient data structure

3.1 Efficient processing of Delaunay disks

It is relatively easy to improve the algorithm that finds the largest Delaunay disk containing
q, using the approach given in [1]. That is, we sort the Voronoi vertices v of Vor(P) by the
radius rv of the Delaunay disk centered at v, and store them, in this inorder, at the leaves of
a balanced binary tree T . For each node w of T , let Qw denote the subset of vertices stored
at the leaves of the subtree rooted at w, and let Rw denote the set of the corresponding radii
rv. Construct the union Uw of all the Delaunay disks centered at the points of Qw, and store
it at w. Uw has O(|Qw|) edges and vertices [6] and can be constructed in O(|Qw| log |Qw|)
time (e.g., by lifting the disks to planes in three dimensions and by constructing the upper
envelope of these planes), for a total of O(n logn) storage and O(n log2 n) preprocessing
time. We process each Uw for fast (logarithmic time) point location.

Now, given a query point q, we search with it through T . We first test, in O(logn) time,
whether q ∈ Uroot. If not, we stop and report that q is not contained in any Delaunay disk.
Otherwise, at each node w that we visit (starting from the root), we take its right child wr

and check whether q ∈ Uwr
. If so, then q is contained in at least one Delaunay disk whose

radius belongs to Rwr
, and we continue the search at wr. If q /∈ Uwr

, we continue the search
at the left child wl of w. When the search terminates at some leaf, the disk stored at that
leaf is the largest Delaunay disk containing q. The search takes a total of O(log2 n) time.

Remark. It is interesting to note that this is the most expensive part of the query proce-
dure, as the other part, described below, takes only O(logn) time. As a matter of fact, the
problem at hand is an instance of the more general problem where we are given n disks in
the plane, and wish to preprocess them into a data structure of near-linear size, so that we
can report, in logarithmic time, the largest disk containing a query point. We provide in
Section 4 an algorithm that makes some progress towards this goal, but so far we do not
know how to fully accomplish this.

3.2 Disks centered at Voronoi edges

We next consider the other situation, where cmax(q) lies in the relative interior of some
Voronoi edge. Let eab be a Voronoi edge, determined by two points a, b ∈ P and delimited
by the Voronoi vertices vabc, vabd, for two additional points c, d ∈ P , so that vabc (resp.,
vabd) is equally nearest to a, b, c (resp., to a, b, d). Let Dab denote the diametral disk on
ab, and let Dabc (resp., Dabd) denote the Delaunay disk centered at vabc (resp., vabd), so it
circumscribes ∆abc (resp., ∆abd).

6

Lemma 3.1 Any point q for which cmax(q) lies in the relative interior of eab must lie in

Kab = int (Dab \ (Dabc ∩Dabd)) .

Proof. Indeed, we have already argued that such a point q must satisfy ∠aqb > π/2,
which is equivalent to q belonging to the interior of Dab. In addition, the center of the disk
circumscribing ∆aqb lies in the relative interior of eab if and only if q lies in the interior of
(Dabc ∪Dabd) \ (Dabc ∩Dabd), as is easily verified. The conjunction of these two conditions
is q ∈ Kab. ✷

The case where ab is an edge of the Gabriel graph is shown in Figure 3. In this case ab
crosses eab and Dab is P -empty. We refer to such an edge in short as a Gabriel edge. In this
case Kab is the union of the interiors of the two shaded lunes.

Dab

a

b

eab

q

c

d

vabc
vabd

cmax(q)
Dabc

Dabd

Figure 3: q has to lie in the interior of one of the shaded lunes if cmax(q) lies in the relative
interior of the Voronoi edge eab; the case where ab is an edge of the Gabriel graph. The
corresponding disk Dmax(q) is shown dotted.

The case where the Delaunay edge ab does not belong to the Gabriel graph (a non-
Gabriel edge) is shown in Figure 4. Here Kab is the single shaded lune.

Note that for each lune, in both cases of Gabriel edges and non-Gabriel edges, the area
enclosed by the “outer” (longer) arc of the lune and the edge ab is P -empty.

We construct the regions Kab, for all Voronoi edges eab of Vor(P), and denote the
collection of all these O(n) lunes and double lunes as K. A crucial property is that no point
q can be contained in more than three regions of K. Indeed, a point q belongs to Kab if and
only if the disk circumscribing ∆aqb is P -empty, its center lie in the relative interior of the
Voronoi edge eab, and ∠aqb > π/2. The claim then follows from Lemma 2.3.

Ideally, we could construct the arrangement A(K), preprocess it for fast point location,
and store with each face f of A(K) the at most three Delaunay edges ab whose regions
Kab (fully) contain f . Then, given a query point q, we could locate q in the arrangement,
retrieve the at most three corresponding Delaunay edges, and test, in constant time, each
of the respective Voronoi edges for possible location of cmax(q). The problem with this
approach is that the complexity of A(K) might be quadratic, as depicted in Figure 5. (Note
that the arrangement A constructed in Section 2.1 is in fact a refinement of A(K).)

We overcome this problem by first decomposing K and its lunes into a constant number
of subcollections, each consisting of portions of the lunes, so that, within each subproblem

7

a

b

d

vabd

Dabd

vabc

eab

Dab

Dabc

q

c

Figure 4: q has to lie in the interior of the shaded lune if cmax(q) lies in the relative interior
of the Voronoi edge eab; the case where ab is not an edge of the Gabriel graph.

Figure 5: Illustrating a scenario in which the arrangement of the lunes Kab has quadratic
complexity.

that we create, the regions are pairwise openly disjoint, and so the planar map that they form
has linear complexity. Overall, we obtain a structure that uses only linear storage, and the
query time, which is dominated by the point location in these maps, is only O(logn). (The
overall query time, though, is O(log2 n), because of the search for the largest Delaunnay
disk containing q; see Sections 3.1 and 4.)

The intersection pattern of the lunes The following simple lemma provides the main
technical tool for decomposing the lunes.

Lemma 3.2 Let Kab and Kcd be two distinct lunes (the four points a, b, c, d need not all be
distinct) with a nonempty intersection. Then, for each point q ∈ Kab ∩Kcd, there exists a
line ℓ through q that (weakly) separates a, b from c, d. That is, one closed halfplane bounded
by ℓ contains a and b, and the other closed halfplane contains c and d.

8

Proof. Refer to Figure 6. Let Dabq (resp., Dcdq) denote the disk circumscribing the triangle
∆abq (resp., ∆cdq). By the properties of the lunes, as analyzed in Lemma 3.1, both disks
are P -empty. The circle Cabq bounding Dabq and the circle Ccdq bounding Dcdq meet at q
and therefore either (i) they also intersect at a second point q′, or (ii) they are tangent to
each other at q. Let ℓ be the line connecting q and q′ in case (i) or the common tangent line
at q in case (ii). As is easily checked, ℓ separates the arcs α = Cabq\Dcdq and γ = Ccdq\Dabq.
Moreover, since Dabq and Dcdq are both P -empty, a and b must lie in the closure of α and
c and d must lie in the closure of γ, thereby completing the proof of the lemma. ✷

Dcdq

q

a

b

ℓ

d

c

Dabq

Figure 6: Illustrating the proof of Lemma 3.2.

3.3 Partitioning the lunes

Having these observations at hand, we now proceed to eliminate all intersections between the
lunes by an appropriate problem decomposition, as promised above. Rotate the coordinate
frame so that no two points have the same x- or y-coordinate. We first partition K into two
subcollections K+ and K−, where K+ (resp., K−) consists of all the lunes which lie above
(resp., below) the lines containing their “bases” (i.e., the corresponding Delaunay edges).
We describe the processing of K+; processing K− is done in a fully symmetric manner. We
refer to the lunes in K+ as upper lunes.

We next distinguish between lunes in K+ whose bases have positive slope and those
whose bases have negative slope, and treat each subcollection separately. We will only
consider the first subcollection, since the other one is handled in a fully symmetric manner,
and, for simplicity of notation, we will continue to denote it as K+.

Let Kab be one of these upper lunes, with, say, a lying to the left of b (and with ab
having positive slope). We note that some portion of Kab might extend to the left of the
vertical line through a and that Kab lies fully to the left of the vertical line through b (this
latter property holds because Kab is always contained in the diametral disk of ab). As is
easy to check, Kab always extends to the left if ab is a Gabriel edge, but it does not have to
do so if ab is a non-Gabriel edge.

We form from K+ two new collections. We take each upper lune Kab in K+, with a to
the left of (and below) b, and split it into (at most) two open regions by drawing a vertical
line through a. (The union of the regions is Kab without its intersection segment with the
vertical line through a.) One region, denoted KT

ab, lies vertically above ab, and the other,

9

denoted KL
ab, lies fully to the left of a. As just noted, KL

ab might be empty. We denote by
KT (resp., KL) the collection of all the top portions KT

ab (resp., left portions KL
ab) of the

lunes of K+. See Figure 7 for an illustration.

a

b

KT
abKL

ab

Figure 7: Partitioning an upper lune (with a base ab of positive slope) into a top portion
and a left portion.

Lemma 3.3 The regions of KT are pairwise disjoint.

Proof. Suppose to the contrary that there exist two distinct top regions KT
ab and KT

cd in
KT , with a to the left of b and c to the left of d, such that KT

ab and KT
cd have a nonempty

intersection, and let q be a point in both regions. By Lemma 3.2 there exists a line ℓ through
q that weakly separates a and b from c and d. This however is impossible because q lies
vertically above both segments ab and cd. See Figure 8. ✷

c

d

q
b

a

Figure 8: Illustrating the proof of Lemma 3.3.

Lemma 3.4 The regions of KL are pairwise disjoint.

Proof. Suppose to the contrary that there exist two distinct left regions KL
ab and KL

cd in
KL, with a to the left of b and c to the left of d, such that KL

ab and KL
cd have a nonempty

10

intersection, and let q ∈ KL
ab ∩ KL

cd. By Lemma 3.2 there exists a line ℓ through q that
weakly separates a and b from c and d. By construction, the two segments ab and cd lie
to the right of the vertical line λ through q; one of them, say, ab lies in the upper-right
quadrant Q+ formed by ℓ and λ, and the other, cd, lies in the lower-right quadrant Q−.
See Figure 9. Suppose first that the angle at q of Q+ is at most π/2 (Figure 9(left)). Then
q (which is different from a) is lower in the y-direction than a. This however is impossible
since q ∈ KL

ab, which is contained in the upper portion of the diametral disk of ab, which lies
fully above a. Otherwise, the angle at q of Q− is acute. This too is impossible because KL

cd

is fully contained in the interior of the diametral disk of cd. These contradictions establish
the assertion of the lemma. ✷

c

q

λ

b

a ℓ

d
Q−

Q+

c

d

ℓ

a

b

q

λ

Q−

Q+

Figure 9: Illustrating the proof of Lemma 3.4. Left: The angle at q of the quadrant Q+

containing a and b is at most π/2. Right: The angle at q of the quadrant Q− containing c
and d is acute.

3.4 The data structure

We thus obtain the following algorithm. Partition K into the four subcollections of upper
lunes with positive-slope bases, upper lunes with negative-slope bases, lower lunes with
positive-slope bases, and lower lunes with negative-slope bases. Each of these subcollec-
tions is processed in a similar manner, and we describe only the processing of the first
subcollection, which, as above, we denote as K+.

We decompose each lune K in K+ into its top subregion KT and its left subregion KL,
by the recipe given above, and let KT (resp., KL) denote the collection of the resulting top
(resp., left) subregions. By Lemmas 3.3 and 3.4, each collection consists of pairwise disjoint
regions, and so forms a planar map of linear complexity (so that each subregion in the
collection is a single separate face of the map). We process each of the two resulting maps
for fast (logarithmic time) point location queries. Altogether we obtain eight such maps.

11

Now, given a query point q, we locate it in each of these eight maps, and retrieve the
at most three lunes that contain q. Each such lune yields a candidate maximal empty disk
containing q and centered at the respective Voronoi edge. (If q happens to lie on a vertical
edge of a map, which bounds some region KT

ab or KL
ab, then the Voronoi edge eab is one

of the three candidate edges.) This part of the data structure requires O(n) space, takes
O(n logn) time to construct and querying it takes O(logn) time. We then find the largest
empty Delaunay disk (centered at a Voronoi vertex) containing q, as described in Section
3.1, and output the largest of the at the four candidate disks. The overall complexity is
dominated by the costs of handling Delaunay disks.

We thus obtain the main result of this paper.

Theorem 3.5 One can preprocess a set P of n points in the plane in O(n log2 n) time into
a data structure of size O(n logn), so that, given a query point q (in the interior of the
convex hull of P), we can compute, in O(log2 n) time, the largest P -empty disk containing
q.

The largest P -empty disk containing k query points. In view of the applications
discussed in the introduction, a natural interesting generalization of the problem studied in
this paper is to handle queries, each consisting of a collection Q of k points, where, say, k is
some constant, and the goal is to find the largest disk containing Q (or, rather, its convex
hull CH(Q)) whose interior is disjoint from P . (Note that when |Q| > 1 the problem does
not always have a solution.) As far as we know, it is an open problem whether this can be
done with near-linear storage, and with query time that depends polylogarithmically on n
(and polynomially on k). Some observations concerning this problem are given next.

To answer such a query with a set Q we observe that the largest P -empty disk D
containing Q (if it exists) must contain on its boundary either three points of P , in which
case it is a Delaunay disk, or two points of P and one point of Q. Indeed, as is easy to see,
in all other cases there is a larger P -empty disk containing Q. Finding the largest Delaunay
disk containing a set of two or more points is harder than the case of a single query point
since we cannot use the binary search procedure in the arrangements of unions of disks
described in Section 3.1.

We can determine whether there exists a P -empty disk containing Q in O(k log n) time
with an appropriate preprocessing of P , as follows. We lift the points of P and the points
of Q to the paraboloid z = x2 + y2 in R

3. (For simplicity, we refer to the lifted sets of
points also as P and Q, respectively.) In this representation a P -empty disk containing Q
corresponds to a hyperplane separating the convex hull CH(P) of P and the convex hull
CH(Q) of Q. Such a hyperplane exists if and only if CH(Q) is disjoint from CH(P). It
is not difficult to show, using the technique of Dobkin and Kirkpatrick [3] that one can
preprocess P in O(n logn) time, into a linear-size data structure, such that, given a query
set Q, we can determine whether CH(Q) and CH(P) are disjoint, in O(k log n) time.

Briefly and informally, we note that neither of CH(Q) and CH(P) fully contains the
other hull, because they are hulls of points on the paraboloid (unless Q ⊆ P , in which case
no such disk exists). It follows that they intersect if and only if either an edge of CH(Q)
intersects a face of CH(P) or (an edge of) CH(P) intersects a face of CH(Q). Intersection
of edges of CH(Q) with CH(P) can be detected in O(k logn) time using the technique of
[3]. Once we have determined that no edge of CH(Q) meets CH(P), we test, for each face

12

f of CH(Q), whether its supporting plane πf meets CH(P). (This can also be easily done
in a total of O(k log n) time.) If no such intersection is found, f is disjoint from CH(P).
Otherwise we obtain a witness point w ∈ πf ∩ CH(P), and we test whether w ∈ f (and
then f intersects CH(P)), or not (and then there is no intersection). The latter properties
follow because we already know that no edge of Q intersects CH(P).

We also note that finding the largest P -empty disk whose boundary contains two points
of P and one of Q is rather easy to do. We simply query the structure presented at Sections
3.2–3.4 with each point of Q separately, collect the at most 3k candidate disks, filter out
those that do not fully contain Q, and return the largest among the surviving ones. With
an appropriate implementation this takes a total of O(k log n+ k log k) time.

We close this discussion by noting that the problem can be solved with fast query time
as specified above, provided one is allowed near-quadratic storage, using standard range
searching techniques.

4 Finding the largest (Delaunay) disk containing a query
point

As discussed in a remark at the end of Section 3.1, an interesting open problem is to reduce
the query time to O(logn) without increasing significantly the storage and preprocessing
costs. As noted, the bottleneck in the query cost is at the stage that finds the largest
Delaunay disk that contains q (see Section 3.1).

While we still do not know how to achieve this goal, we provide in this section a partial
solution that may be of independent interest. As a matter of fact, we study a more general
problem, involving a collection of n arbitrary disks, rather than Delaunay disks of some input
point set. We do not know whether the Delaunayhood of the disks makes the problem any
easier to solve.

So let D be a collection of n arbitrary disks; assume for simplicity that all their radii
are distinct. Let M(D) be the planar map, each of whose 2-dimensional faces is a maximal
connected region f with the property that all its points have the same largest disk D(f)
containing them, or none of them is contained in any disk (in which case f is a face of the
complement of the union of the disks). We label each face f by the corresponding largest
disk D(f) (or by a flag indicating that f lies outside the union). A procedural definition of
M(D) goes as follows. Sort the disks of D in decreasing order of their radii, and enumerate
the resulting sequence as D1, D2, . . . , Dn. Insert the disks one by one in this order and
maintain the map M(Di) for the prefix Di of the first i inserted disks. When Di is inserted,
we add to M(Di−1) the region Di \

⋃

Di−1. The “filled” portion of M(Di−1) (that is, the
union

⋃

Di−1 of Di−1) is thus not touched, and is augmented by the connected components
of the added region.

Once we have M(D) available, we preprocess it for fast point location, and then we are
done. Given a query point q, we locate q is M(D) and output the disk D(f) of the face f
containing q (or report that q does not lie in any disk). The query time is O(logn), but
the “catch” is that the worst case complexity of M(D) is Θ(n2); an example is depicted in
Figure 10. The following lemma provides an important special case where the complexity
is only linear.

13

Figure 10: Left: A collection D of n disks such that M(D) has quadratic complexity. There
are n/2 solid disks {D1, . . . ,Dn/2} such that Di+1 is slightly smaller than Di and its center
is slightly to the right of Di. There are also n/2 dotted disks which are much larger than
the solid disks. Each dotted disk Dj intersects each solid disk Di in a narrow lune Dij .
Lunes of different dotted disks are disjoint, that is Di1j1 ∩Di2j2 = ∅ for every j1 6= j2. Lunes
of the same dotted disk are nested, that is Di1j ⊂ Di2j if i2 > i1. Right: This is M(D),
assuming the sizes of the dotted disks are decreasing from top to bottom.

Lemma 4.1 Let D = {D1, . . . ,Dn} be a collection of disks, sorted in decreasing order by
radii, all centered below the x-axis. Then the portion of M(D) above the x-axis has linear
complexity.

Proof. Denote this portion of M(D) by M+(D), and consider the step that inserts a disk
Di to M+(Di−1); that is, we add the (portion above the x-axis of the) region Di \

⋃

Di−1

to the (portion above the x-axis of)
⋃

Di−1. We claim that ∂Di contributes only (at most)
one arc to the new map. Indeed, any such arc γ is a maximal arc of ∂Di that lies on the
boundary of the union

⋃

Di. Let a be an endpoint of γ, let Dj be the (larger) disk into
which ∂Di enters past a, and let b denote the other intersection point of ∂Di and ∂Dj . Let
ci and cj denote the respective centers of Di and Dj . Note that a and b are symmetric
with respect to the line containing cicj . Suppose first that the segment cicj intersects ab;
see Figure 11(a). Since both ci and cj lie below the x-axis and a lies above it, b must lie
below it. That is, the portion of ∂Di on the other side of a reaches the x-axis before it exits
the union, so it cannot contribute any arc to the union boundary. Suppose then that cicj
does not intersect ab; see Figure 11(b). In this case ∂Di \Dj is smaller than a semicircle,
as is easily verified, and the preceding argument applies in this case too. Repeating the
argument to the other endpoint of γ, we conclude that γ is the only arc of ∂Di appearing
in M+(Di), and this is easily seen to complete the proof of the lemma. (The added region
Di \

⋃

Di−1 may also consist of faces that do not touch ∂Di, but this does not add any new
features to M(Di−1); it simply “fills” already existing holes of the preceding union, making

14

them parts of the new union.) ✷

(a)

a

ci

b

cj

(b)

a b

ci

cj

Figure 11: An illustration of the proof of Lemma 4.1.

M+(D) can be constructed using the following standard divide-and-conquer technique.
Partition D into the subsets Ds and Db, where Ds consists of the n/2 smallest disks of D,
and Db of the remaining larger disks. Construct M+(Ds) and M+(Db) recursively, and
extract from M+(Db) only the boundary of the union of these disks (within the appropriate
halfplane), denoted as Ub. Now run a sweep-based algorithm for merging the maps M+(Ds)
and Ub. It is easy to verify that any intersection point between arcs of these two maps must
be a vertex of M+(D), so there are only O(n) such points. Once the sweep is over, we
prune away the portion of M+(Ds) that lies inside Ub, and “glue” the remaining portion of
M+(Ds) to M+(Db), thereby obtaining M+(D). It is straightforward to verify that the time
it takes to construct M+(D) using this simple divide-and-conquer algorithm is O(n log2 n).

The linear complexity of M+(D) and its fast construction algorithm described above,
suggest the following simple recursive data structure for maintaining an implicit represen-
tation of M(D). Sort the disks in increasing order of the y-coordinates of their centers. Fix
some parameter r, whose value will be specified later, and partition the resulting sequence
of disks into r blocks, each consisting of n/r disks (we ignore rounding issues for the sake
of simplicity). Denote the blocks as B1,B2, . . . ,Br. For each i = 1, . . . , r − 1, let λi denote
some horizontal line that separates the centers of the disks in Bi from the centers of the
disks in Bi+1. For each i = 1, . . . , r, let σi denote the horizontal strip between λi−1 and
λi. For i = 0 (resp., i = r) this is the halfplane below λ1 (resp., above λr−1). For each
i = 1, . . . , r, put B−

i = B1 ∪ · · · ∪ Bi−1 and B+

i = Bi+1 ∪ · · · ∪ Br. Let M+(B−
i) denote the

portion of M(B−
i) that lies above λi−1, and let M−(B+

i) denote the portion of M(B+

i) that
lies below λi. Lemma 4.1 and its symmetric version (in which we flip the direction of the
y-axis) imply that the complexity of each of the maps M+(B−

i), M
−(B+

i), for i = 1, . . . , r,

15

is O(n); the overall complexity of all these maps is thus O(nr). We can construct each of
these maps, by a divide-and-conquer scheme as described above, in O(n log2 n) time, for a
total of O(nr log2 n) time. This running time subsumes also the preprocessing cost of each
of these maps for fast point location.

In addition, we construct a recursive version of the data structure for each of the sets Bi,
using the same value of r at each recursive level. The recursion bottoms out when n ≤ r, in
which case we simply construct M(D), using O(r2) storage and O(r2 log r) preprocessing.
(Here we can afford to construct the full arrangement of the disks, and then extract from
it the relevant edges of M(D).)

A query with a point q is performed as follows. We first locate, in O(log r) time, the
horizontal strip σi containing q. We then locate q in the maps M+(B−

i) and M−(B+

i),
and retrieve the (at most) two corresponding largest disks D−, D+ containing q. We then
search with q in the recursive data structure for Di, and output the largest of D−, D+, and
the disk returned by the recursive call. The cost of a query is O(k log n), where k is the
recursion depth.

Assume that the storage needed for a map M+(D) or M−(D) is at most c|D|, for some
absolute constant c. Then the maximum storage S(n) of the structure for a set of n disks
satisfies the recurrence

S(n) ≤ 2crn+ rS(n/r),

for n ≥ r, and S(n) = O(r2) for n ≤ r. Again, if the recursion has depth k, the overall
storage cost is

S(n) ≤ 2crkn+ (n/r) ·O(r2) = O(rkn).

A similar recursion shows that the preprocessing time is O(rkn log2 n). Let ε > 0 be given.
We choose r = nε (the same r at all recursive levels, with n being the initial input size),
and observe that the recursion then has depth k = 1/ε. With this choice we thus obtain
the following result.

Theorem 4.2 (a) Given a collection D of n arbitrary disks in the plane, and a parameter
ε > 0, we can preprocess D into a data structure of size O(n1+ε), in O(n1+ε log2 n) time,
so that, for any query point q, we can find the largest disk of D containing q in O

(

1

ε log n
)

time.
(b) Given a set P of n points in the plane, and a parameter ε > 0, we can preprocess P
into a data structure of size O(n1+ε), in O(n1+ε log2 n) time, so that, for any query point
q, we can find the largest P -empty disk containing q in O

(

1

ε log n
)

time.

The main open problem raised by the study in this section is to develop further improved
algorithms for the largest disk problem.

Acknowledgments. The authors would like to thank Günter Rote and Joe Mitchell for
helpful discussions concerning the problem studied in this paper. In particular, the analysis
in Section 4 was triggered by constructive comments that they have made.

16

References

[1] J. Augustine, S. Das, A. Maheshwari, S. C. Nandy, S. Roy, and S. Sarvattomananda,
Recognizing the largest empty circle and axis-parallel rectangle in a desired location, in
arXiv.org:1004.0558, 2010.

[2] J. Augustine, S. Das, A. Maheshwari, S. C. Nandy, S. Roy, and S. Sarvattomananda,
Localized geometric query problems, in arXiv.org:1111.2918v2, 2012.

[3] D. P. Dobkin and D. G. Kirkpatrick, Fast detection of polyhedral intersection, Theoret.
Comput. Sci. 27 (1983), 241–253.

[4] H. Kaplan, S. Mozes, Y. Nussbaum and M. Sharir, Submatrix maximum queries in
Monge matrices and Monge partial matrices and their applications, Proc. 23rd ACM-
SIAM Annu. Sympos. Discrete Algorithms, 2012, 338–355.

[5] H. Kaplan and M. Sharir, Finding the maximal empty rectangle containing a query
point, in arXiv.org:1106.3628, 2011.

[6] K. Kedem, R. Livne, J. Pach and M. Sharir, On the union of Jordan regions and collision-
free translational motion amidst polygonal obstacles, Discrete Comput. Geom. 1 (1986),
59–71.

17

