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Let S be a set of n points in the plane, and let T be a set
of m triangles with vertices in S . Then there exists a point in
the plane contained in Ω(m3/(n6 log2 n)) triangles of T . Eppstein
[D. Eppstein, Improved bounds for intersecting triangles and
halving planes, J. Combin. Theory Ser. A 62 (1993) 176–182] gave
a proof of this claim, but there is a problem with his proof.
Here we provide a correct proof by slightly modifying Eppstein’s
argument.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let S be a set of n points in the plane in general position (no three points on a line), and let T be
a set of m �

(n
3

)
triangles with vertices in S . Aronov et al. [2] showed that there always exists a point

in the plane contained in the interior of

Ω

(
m3

n6 log5 n

)
(1)

triangles of T . Eppstein [5] subsequently claimed to have improved this bound to

Ω

(
m3

n6 log2 n

)
. (2)
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There is a problem in Eppstein’s proof, however.3 In this note we provide a correct proof of (2), by
slightly modifying Eppstein’s argument.

1.1. The Second Selection Lemma and k-sets

The above result is the special case d = 2 of the following lemma (called the Second Selection
Lemma in [6]), whose proof was put together by Bárány et al. [3], Alon et al. [1], and Živaljević and
Vrećica [8]:

Lemma 1. If S is an n-point set in R
d and T is a family of m �

( n
d+1

)
d-simplices spanned by S, then there

exists a point p ∈ R
d contained in at least

cd

(
m

nd+1

)sd

nd+1 (3)

simplices of T , for some constants cd and sd that depend only on d.

(Note that m/nd+1 = O (1), so the smaller the constant sd , the stronger the bound.) Thus, for d = 2
the constant s2 in (3) can be taken arbitrarily close to 3. The general proof of Lemma 1 gives very
large bounds for sd; roughly sd ≈ (4d + 1)d+1.

The main motivation for the Second Selection Lemma is deriving upper bounds for the maximum
number of k-sets of an n-point set in R

d; see [6, Chapter 11] for the definition and details.

2. The proof

We assume that m = Ω(n2 log2/3 n), since otherwise the bound (2) is trivial. The proof, like the
proof of the previous bound (1), relies on the following two one-dimensional selection lemmas [2]:

Lemma 2 (Unweighted Selection Lemma). Let V be a set of n points on the real line, and let E be a set of m
distinct intervals with endpoints in V . Then there exists a point x lying in the interior of Ω(m2/n2) intervals
of E.

Lemma 3 (Weighted Selection Lemma). Let V be a set of n points on the real line, and let E be a multiset of m
intervals with endpoints in V . Then there exists a multiset E ′ ⊆ E of m′ intervals, having as endpoints a subset
V ′ ⊆ V of n′ points, such that all the intervals of E ′ contain a common point x in their interior, and such that

m′

n′ = Ω

(
m

n log n

)
.

The proof of the desired bound (2) proceeds as follows:
Assume without loss of generality that no two points of S have the same x-coordinate. For each tri-

angle in T define its base to be the edge with the longest x-projection. For each pair of points a,b ∈ S ,
let Tab be the set of triangles in T that have ab as base, and let mab = |Tab|. (Thus,

∑
ab mab = m.)

Discard all sets Tab for which mab < m/n2. We discarded at most
(n

2

)
m/n2 < m/2 triangles, so we

are left with a subset T ′ of at least m/2 triangles, such that either mab = 0 or mab � m/n2 for each
base ab.4

Partition the bases into a logarithmic number of subsets E1, E2, . . . , Ek for k = log4(n
3/m), so that

each E j contains all the bases ab for which

4 j−1m

n2
� mab <

4 jm

n2
. (4)

3 The very last sentence in the proof of Theorem 4 (Section 4) in [5] reads: “So ε = 1/2i+1, and x = mε/y = O (m/8i), from
which it follows that x/ε3 = O (n2).” This is patently false, since what actually follows is that x/ε3 = O (m), and the entire
argument falls through.

4 This critical discarding step is missing in [5], and that is why the proof there does not work.
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Fig. 1. Pairing two triangles with a common base.

Let T j = ⋃
ab∈E j

Tab denote the set of triangles with bases in E j , and m j = |T j | denote their number.
There must exist an index j for which

m j � 2−( j+1)m,

since otherwise the total number of triangles in T ′ would be less than m/2. From now on we fix
this j, and work only with the bases in E j and the triangles in T j .

For each pair of triangles abc, abd having the same base ab ∈ E j , project the segment cd into the
x-axis, obtaining segment c′d′ . We thus obtain a multiset M0 of horizontal segments, with

|M0| � m j

2

(
4 j−1m

n2
− 1

)
= Ω

(
2 jm2

n2

)
.

(Each of the m j triangles in T j is paired with all other triangles sharing the same base, and each such
pair is counted twice.)

We now apply the Weighted Selection Lemma (Lemma 3) to M0, obtaining a multiset M1 of seg-
ments delimited by n1 distinct endpoints, all segments containing some point z0 in their interior,
with

|M1|
n1

= Ω

( |M0|
n log n

)
= Ω

(
2 jm2

n3 log n

)
.

Let � be the vertical line passing through z0. For each horizontal segment c′d′ ∈ M1, each of its
(possibly multiple) instances in M1 originates from a pair of triangles abc, abd, where points a and c
lie to the left of �, and points b and d lie to the right of �. Let p be the intersection of � with ad, and
let q be the intersection of � with bc. Then, pq is a vertical segment along �, contained in the union
of the triangles abc, abd (see Fig. 1). Let M2 be the set of all these segments pq for all c′d′ ∈ M1.

Note that the vertical segments in M2 are all distinct, since each such segment pq uniquely deter-
mines the originating points a, b, c, d (assuming z0 was chosen in general position).

Let n2 be the number of endpoints of the segments in M2. We have n2 � nn1, since each endpoint
(such as p) is uniquely determined by one of n1 “inner” vertices (such as d) and one of at most n
“outer” vertices (such as a).

Next, apply the Unweighted Selection Lemma (Lemma 2) to M2, obtaining a point x0 ∈ � that is
contained in

Ω

( |M2|2
n2

2

)
= Ω

(
1

n2

( |M1|
n1

)2)
= Ω

(
4 jm4

n8 log2 n

)

segments in M2. Thus, x0 is contained in at least these many unions of pairs of triangles of T j . But
by (4), each triangle in T j participates in at most 4 jm/n2 pairs. Therefore, x0 is contained in

Ω

(
m3

n6 log2 n

)

triangles of T j .
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3. Discussion

Eppstein [5] also showed that there always exists a point in R
2 contained in Ω(m/n) triangles

of T . This latter bound is stronger than (2) for small m, namely for m = O (n5/2 logn).
On the other hand, as Eppstein also showed [5], for every n-point set S in general position and

every m = Ω(n2), m �
(n

3

)
, there exists a set T of m triangles with vertices in S , such that no point

in the plane is contained in more than O (m2/n3) triangles of T . Thus, with the current lack of any
better lower bound, the bound (2) appears to be far from tight. Even achieving a lower bound of
Ω(m3/n6), without any logarithmic factors, is a major challenge still unresolved.

It is known, however, that if S is a set of n points in R
3 in general position (no four points on

a plane), and T is a set of m triangles spanned by S , then there exists a line (in fact, a line spanned
by two points of S) that intersects the interior of Ω(m3/n6) triangles of T ; see [4] and [7] for two
different proofs of this.
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