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Abstract. We review recent progress in the study of arrangements in
computational and combinatorial geometry, and discuss several open
problems and areas for further research.

In this talk I will survey several recent advances in the study of arrangements
of curves and surfaces in the plane and in higher dimensions. This is one of the
most basic structures in computational and combinatorial geometry. Arrange-
ments appear in a variety of application areas, such as geometric optimization,
robotics, graphics and modelling, and molecular biology, just to name a few.
Arrangements also possess their own rich structure, which has fueled extensive
research for the past 25 years (although, if one wishes, one can find the first
trace of them in a study by Steiner in 1826 [37]). While considerable progress
has been made, it has left many “hard nuts” that still defy a solution. The aim
of this talk is to present these difficult problems, describe what has been done,
and what are the future challenges.

An arrangement of a collection S of n surfaces in R
d is simply the decom-

position of d-space obtained by “drawing” the surfaces. More formally, it is the
decomposition of d-space into maximal relatively open connected sets, of dimen-
sion 0, 1, . . . , d, where each set (“face”) is contained in the intersection of a fixed
subset of the surfaces, and avoids all other surfaces. In many applications, one
is interested only in certain substructure of the arrangement, such as lower en-
velopes, single cells, union of regions, levels, and so on. Other applications study
certain constructs related to arrangements, such as incidences between points
and curves or surfaces, or cuttings and decompositions of arrangements.

The topics that the talk will aim to address (and, most likely, only partially
succeed) include:

(a) Union of geometric objects: In general, the maximum combinatorial
complexity of the union of n simply shaped objects in R

d is Θ(nd). However,
in many favorable instances better bounds can be established, include unions
of fat objects and unions of Minkowski sums of certain kinds; in most cases,
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these bounds are close to O(nd−1), which is asymptotically tight. I will briefly
review the significant recent progress made on these problems, and list the main
challenges that still lie ahead. The main open problems involve unions in three
and higher dimensions. For more details, see a recent survey by Agarwal et al. [3].

(b) Decomposition of arrangements: In many algorithmic and combina-
torial applications of arrangements, one uses divide-and-conquer techniques, in
which the space is decomposed into a small number of regions, each of which is
crossed by only a small number of the n given curves or surfaces. Ideally, for a
specified parameter r, one seeks a decomposition (also known as a (1/r)-cutting)
into O(rd) regions, each crossed by at most n/r of the curves or surfaces. This
goal has been achieved for planar arrangements, and for arrangements of hy-
perplanes in any dimesnion. For general simply-shaped surfaces in dimensions
three and four, there exist (1/r)-cuttings of size close to O(rd). The problem is
wide open in five and higher dimensions. Several (hard) related problems, such
as complexity of the overlay of minimization diagrams, or of the sandwich region
between two envelopes, will also be mentioned. There is in fact only one method
for decomposing arrangements of semi-algebraic surfaces, which is the vertical

decomposition (see [13] and the many references given below), and the challenge
is to understand its maximum combinatorial complexity. For more details, see
the book [35], and several surveys on arrangements [5, 6, 34].

(c) Incidences between points and curves and related problems: Bound-
ing the number of incidences between m distinct points and n distinct curves or
surfaces has been a major area of research, which traces back to questions raised
by Erdős more than 60 years ago [19]. The major milestone in this area is the
1983 paper of Szemerédi and Trotter [39], proving that the maximum number of
incidences between m points and n lines in the plane is Θ(m2/3n2/3 + m + n).
Since then, significant progress has been made, involving bounds on incidences
with other kinds of curves or surfaces, new techniques that have simplified and
extended the analysis, and related topics, such as repeated and distinct distances,
and other repeated patterns. I will review the state of the art, and mention many
open problems. An excellent source of many open problems in this area is the
recent monograph of Brass et al. [11]. See also the monographs of Pach and
Agarwal [32] and of Matoušek [28], and the survey by Pach and Sharir [33].

(d) k-Sets and levels: What is the maximum possible number of vertices in an
arrangement of n lines in the plane, each having exactly k lines passing below it?
This simple question is representative of many related problems, for which, in
spite of almost 40 years of research, tight answers are still elusive. For example,
for the question just asked, the best known upper bound is O(nk1/3) [16], and

the best known lower bound is Ω(n · 2c
√

log k) [30, 41]. Beyond the challenge of
tightening these bounds, the same question can be asked for arrangements of
hyperplanes in any dimension d ≥ 3, where the known upper and lower bounds
are even wider apart [28, 29, 36], and for arrangements of curves in the plane,
where several weaker (but subquadratic) bounds have recetly been established
(see, e.g., [12]). I will mention a few of the known results and the implied chal-



lenges. Good sources on these problems are Matoušek [28] and a recent survey
by Wagner [42].

(e) Generalized Voronoi diagrams: Given a collection S of n sites in R
d, and

a metric ρ, the Voronoi diagram V orρ(S) is a decomposition of R
d into cells, one

per site, so that the cell of site s consists of all the points for which s is their ρ-
nearest neighbor in S. This is one of the most basic constructs in computational
geometry, and yet, already in three dimensions, very few sharp bounds are known
for the combinatorial complexity of Voronoi diagrams. In three dimensions, the
main conjecture is that, under reasonable assumptions concerning the shape of
the sites and the metric ρ, the diagram has nearly quadratic complexity. This
is a classical result (with tight worst-case quadratic bound) for point sites and
the Euclidean metric, but proving nearly quadratic bounds in any more general
scenario becomes an extremely hard task, and only very few results are known;
see [10, 14, 24, 26]. I will mention the known results and the main challenges.
One of my favorites concerns dynamic Voronoi diagrams in the plane: If S is a
set of n points, each moving at some fixed speed along some line, what is the
maximum number of topological changes in the dynamically varying Voronoi
diagram of S? The goal is to tighten the gap between the known nearly-cubic
upper bound and nearly-quadratic lower bound. See [9, 35] for more details.

(f) Applications to range searching, optimization, and visibility: Ar-
rangements are a fascinating structure to explore for its own sake, but they
do have a myriad of applications in diverse areas. As a matter of fact, much
of the study of the basic theory of arrangements has been motivated by ques-
tions arising in specific applications. I will (attempt to) highlight a few of those
applications, and discuss some of the open problems that they still raise.

Bibliography: In addition to the works cited above, the bibliography below is
a collection of papers that are relevant to the topics mentioned above. The list
is not complete in any sense, but it should give the interested reader sufficiently
many pointers into the labyrinth of the literature that has accumulated to date.
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[39] E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry, Com-

binatorica 3 (1983), 381–392.
[40] H. Tamaki and T. Tokuyama, How to cut pseudo-parabolas into segments, Discrete

Comput. Geom. 19 (1998), 265–290.
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