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1 Introduction

Let A and B be two finite sets of points in the plane, of respective cardinalities
n and m. We are interested in measuring the similarity between A and B, under
a suitable proximity measure. We consider two such measures. In the first, each
point is assigned to its nearest neighbor in the other set, and the proximity is
the sum of the squared distances between the assigned pairs. See [1] for a similar
generalization of the Hausdorff distance. On the other hand, there are situations
where we want a one-to-one matching between A and B, which minimizes the
sum of squares of the matched pairs [12, 18, 19]. In general, the sets A and B
need not have the same size, say |A| > |B|, and then we want to match all the
points of B (a specific pattern that we want to identify), in a one-to-one manner,
to a subset of A (a larger picture that “hides” the pattern) of size |B|.

We refer to the measured distance between the sets, in both versions, as the
RMS distance. In the former setup the measure is called the Hausdorff RMS-
distance, and in the latter we call it the (partial) matching RMS-distance. In both
variants the sets A and B are in general not aligned, so we seek a translation
of one of them that will minimize the appropriate RMS-distance, Hausdorff or
partial matching.

The Hausdorff RMS distance problem. Let A = {a1, . . . , an} and B =
{b1, . . . , bm} be two sets of points in the plane, and let NA(x) (resp., NB(x)) de-
note the nearest neighbor in A (resp., in B) of a point x ∈ R2. The unidirectional
RMS distance between B and A is defined as

RMS(B,A) =
∑
b∈B
‖b−NA(b)‖2.

We also consider bidirectional RMS distances, in which we also measure distances
from the points of A to their nearest neighbors in B. We consider two variants
of this notion. The first variant is the L1-bidirectional RMS distance between A
and B, which is defined as

RMS1(B,A) = RMS(A,B) +RMS(B,A).

The second variant is the L∞-bidirectional RMS distance between A and B, and
is defined as

RMS∞(B,A) = max {RMS(A,B), RMS(B,A)}.

Allowing one of the sets (say, B) to be translated, we define the minimum uni-
directional RMS distance under translation to be

RMST (B,A) = min
t∈R2

RMS(B + t, A) = min
t∈R2

∑
b∈B
‖b+ t−NA(b+ t))‖2,

where B + t = {b1 + t, . . . , bm + t}. Similarly, we define the minimum L1- and
L∞-bidirectional RMS distances under translation to be

RMST,1(B,A) = min
t∈R2

RMS1(B + t, A) and

RMST,∞(B,A) = min
t∈R2

RMS∞(B + t, A).
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The partial matching RMS-distance problem. Here we assume that m =
|B| < |A| = n, and seek a minimum-weight complete matching of B into A. This
is a subset M of edges of the complete bipartite graph with edge set B × A, so
that each b ∈ B appears in exactly one edge of M , and each a ∈ A appears in
at most one edge. The weight of an edge (b, a) is ‖b − a‖2, and the weight of a
matching is the sum of the weights of its edges.

A maximum-cardinality matching can be identified as an injective assignment
π of B into A. With a slight abuse of notation, we denote by aπ(i) the point
aj that π assigns to bi. In this notation, the minimum RMS partial matching
problem (for fixed locations of the sets) is to compute

M(B,A) = min
π:B→A injective

m∑
i=1

∥∥bi − aπ(i)∥∥2 .
Allowing the pattern B to be translated, we obtain the problem of the minimum
partial matching RMS-distance under translation, defined as

MT (B,A) = min
t∈R2

M(B + t, A) = min
t∈R2,π:B→A,
π injective

m∑
i=1

∥∥bi + t− aπ(i)
∥∥2 ;

The function F (t) := M(B+ t, A) induces a subdivision of R2, where two points
t1, t2 ∈ R2 are in the same region if the minimum of F at t1 and at t2 is attained
by the same assignment π : B → A. We refer to this subdivision, following
Rote [15], as the partial matching subdivision and denote it by DB,A. We say
that a matching is optimal if it attains F (t) for some t ∈ R2.

Background. The problem of Hausdorff RMS minimization under translation
has been considered in the literature (see, e.g., [1] and references therein), al-
though only scarcely so.

If A and B are sets of points on the line, the complexity of the Hausdorff
RMS function, as a function of t, is O(mn) (and this bound is tight in the worst
case). Moreover, the function can have many local minima (up to Θ(mn) in the
worst case). Hence, finding the translation that minimizes the Hausdorff RMS
distance can be done in brute force, in O(mn log(mn)) time, but a worst-case
near linear algorithm is not known. In practice, though, there exists a popular
heuristic technique, called the ICP (Iterated Closest Pairs) algorithm, proposed
by Besl and McKay [6] and analyzed in Ezra et al. [10]. Although the algorithm
is reported to be efficient in practice, it might perform Θ(mn) iterations in the
worst case. Moreover, each iteration takes close to linear time (to find the nearest
neighbors in the present location).

The situation is worse in the plane, where the complexity of the RMS function
is O(m2n2), a bound which is worst-case tight, and the bounds for the perfor-
mance of the ICP algorithm, are similarly worse. Similar degradation shows up
in higher dimensions too; see, e.g., [10].

The problem of RMS minimization under translations is significantly more
involved for partial matchings. A thorough initial study of the problem is given
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by Rote [15]; see also [8, 16] for two follow-up studies, another study in [14], and
an abstract of part of this paper [11]. The resulting subdivision DB,A, as defined
above, is shown in [15] to be a convex subdivision. Rote’s main contribution
for the analysis of the complexity of DB,A was to show that a line crosses only
O(mn) regions of the subdivision (see Theorem 1 below). However, obtaining
sharp bounds for the complexity of DB,A is still an open issue, where the best
known upper bounds are exponential.

Our results. In this paper we study these two fairly different variants of the
problem of minimizing the RMS distance under translation, and improve the
state of the art in both of them.

For the Hausdorff variant, we provide improved algorithms for computing a
local minimum of the RMS function, in one and two dimensions. Assuming |A| =
|B| = n, in the one-dimensional case the algorithms run in time O(n log2 n), and
in the two-dimensional case they run in time O(n2 log n). Our approach thus
beats the ICP algorithm (used for decades to solve this problem) worst-case
running time. The techniques are reasonably standard, although their assembly
is somewhat involved. The approach is an efficient search through the (large
number of) critical values of the RMS function.

In the partial matching variant, we first analyze the complexity of DB,A. We
significantly improve the bound from the naive O(nm) to O(n2m3.5(e lnm)m).
A preliminary informal exposition of this analysis by a subset of the authors
is given in [11]. This paper expands the previous note, derives additional inter-
esting structural properties of the subdivision, and significantly improves the
complexity bound. The arguments that establish the bound can be general-
ized to bound the number of regions of the analogous subdivision in Rd by
O
(
(mn2)d(e lnm)m)/

√
m
)
. The derivation of the upper bound proceeds by a

reduction that connects partial matchings to a combinatorial question based on
a game theoretical problem, which we believe to be of independent interest.

Next we present a polynomial-time algorithm for finding a local minimum of
the partial matching RMS-distance. This is significant, given that we do not have
a polynomial bound on the size of the subdivision. We also fill in the details of
explicitly computing the intersections of a line with DB,A. Although Rote hinted
at such an algorithm in [15], by exploiting some new properties of DB,A derived
here, we manage to compute the intersections in a simple, more efficient manner.

2 Properties of DB,A

We begin by reconstructing several basic properties of DB,A that have been
noted in [15]. First, if we fix the translation t ∈ R2 and the assignment π, the
cost of the matching, denoted by f(π, t), is

f(π, t) =

m∑
i=1

∥∥bi + t− aπ(i)
∥∥2 = cπ + 〈t, dπ〉+m ‖t‖2 , (1)

where cπ =
∑m
i=1

∥∥bi − aπ(i)∥∥2 and dπ = 2
∑m
i=1(bi − aπ(i)). For t fixed, the

assignment π that minimizes f(π, t) is the same assignment that minimizes
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g(π, t) := cπ + 〈t, dπ〉. It follows that DB,A is the minimization diagram (the
xy-projection) of the graph of the function

EB,A(t) = min
π:B→A injective

(cπ + 〈t, dπ〉) , t ∈ R2.

This is a lower envelope of a finite number of planes, so its graph is a convex
polyhedron, and its projection DB,A is a convex subdivision of the plane, whose
faces are convex polygons. The great open question regarding minimum partial
matching RMS-distance under translation, is whether the number of regions of
DB,A is polynomial in m and n. A significant, albeit small step towards settling
this question is the following result of Rote [15].

Theorem 1 (Rote [15]). A line intersects the interior of at most m(n−m)+1
different regions of the partial matching subdivision DB,A.

The following property observed by Rote [15] seems to be well known [19]

Lemma 1. For any A′ ⊂ A, with |A′| = m, the optimal assignment that realizes
the minimum M(B + t, A′) is independent of the translation t ∈ R2.

Next, we derive several additional properties of DB,A which show that the
diagram has, at least locally, low-order polynomial complexity.

Lemma 2. Every edge of DB,A has a normal vector of the form aj − ai for
suitable i, j ∈ {1, . . . , n}.

Proof. Let E be an edge of DB,A common to the regions associated with the
injections π, σ : B → A, respectively. By definition, g(π, t) = g(σ, t) for any t ∈ E
and g(π, t) = g(σ, t) ≤ g(δ, t) for every injection δ : B → A. By Equation (1),
E is contained in the line `(π, σ) = {t ∈ R2 : 〈t, dπ − dσ〉 = cσ − cπ}. Let
H = (π \ σ)∪ (σ \ π). It is easy to see that H consists of a vertex-disjoint union
of cycles and alternating paths. Let γ1, . . . , γp be these cycles and paths. It is not
hard to see that every cycle and every path can be “flipped” independently while
preserving the validity of the matching; that is, we can choose, within any of the
γj ’s, either all the edges corresponding to π or all the ones corresponding to σ,
without interfering with other cycles or paths, so that the resulting collection
of edges still represents an injection from B into A. Observe now that `(π, σ) =

{t ∈ R2 :
〈
t,
∑p
j=1 dγj

〉
= −

∑p
j=1 cγj}, where dγj is the sum of the terms in

dπ − dσ that involve only the ai ∈ A contained in γj and cγj is analogously
defined for cπ − cσ. Note that dγj is 0 for every cycle γj and, therefore, at least
one of the γj ’s is a path. Then, we must have

〈
t, dγj

〉
= −cγj for all j = 1, . . . , p

and every t ∈ `(π, σ). Otherwise, a flip in a path or cycle violating the equation
would contradict the optimality of π or of σ along `(π, σ). Therefore, all the
vectors dγj must be linearly dependent. In particular, the direction of dπ − dσ is
the same as the one of dγj for every path γj . If a path, say γ1, starts at some aj
and ends at some ai, then dγ1 = aj − ai, which concludes the proof. ut

Remark 1. It follows that if A is in general position then H has exactly one
alternating path, and the pair ai, aj is unique.
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Lemma 3. i) DB,A has at most 4m(n−m) unbounded regions.
ii) Every region in DB,A has at most m(n−m) edges.

iii) Every vertex in DB,A has degree at most 2m(n−m).
iv) Any convex path can intersect at most m(n−m)+n(n−1) regions of DB,A,

i.e., while translating B along any convex path, the optimal partial matching
can change at most m(n−m) + n(n− 1) times.

Proof. i) Take a bounding box that encloses all the vertices of the diagram. By
Theorem 1, every edge of the bounding box crosses at most m(n−m)+1 regions
of DB,A. The edges of the box traverse only unbounded regions, and cross every
unbounded region exactly once, except for the coincidences of the last region
traversed by an edge and the first region traversed by the next edge.

ii) By Lemma 2, the normal vector of every edge of a region corresponding
to the injection π is a multiple of aj − ai for some ai ∈ π(B) and aj /∈ π(B).
There are exactly m(n−m) such possibilities.

iii) Let v be a vertex of DB,A. Draw two generic parallel lines close enough to
each other to enclose v and no other vertex. Each edge adjacent to v is crossed by
one of the lines, and by Theorem 1 each of these lines crosses at most m(n−m)
edges.

iv) We use the following property that was observed in Rote’s proof of The-
orem 1. Suppose that we translate B along a line in some direction v. Rank the
points of A by their order in the v-direction, i.e., a < a′ means that 〈a, v〉 < 〈a′, v〉
(for simplicity, assume that v is generic so there are no ties). Let Φ denote the
sum of the ranks of the m points of A that participate in the optimal partial
match. As Rote has shown, whenever the optimal assignment changes, Φ must
increase. Now follow our convex path γ, which, without loss of generality, can
be assumed to be polygonal. As we traverse an edge of γ, Φ obeys the above
property, increasing every time we cross into a new region of DB,A. When we
turn (counterclockwise) at a vertex of γ, the ranking of A may change, but
each such change consists of a sequence of swaps of consecutive elements in the
present ranking. At each such swap, Φ can decrease by at most 1. Since γ is
convex, each pair of points of A can be swapped at most twice, so the total
decrease in Φ is at most 2

(
n
2

)
= n(n − 1). Hence, the accumulated increase in

Φ, and thus also the total number of regions of DB,A crossed by γ, is at most(
n+ (n− 1) + . . .+ (n−m+ 1)

)
−
(

1 + 2 + . . .+m
)

+ n(n− 1). ut

In the remainder of this section, we focus on establishing a global bound
on the complexity of the diagram DB,A. We begin by deriving the following
technical auxiliary results.

Lemma 4. Let π be an optimal assignment for a fixed translation t ∈ R2.

i) There is no cyclic sequence (i1, i2, . . . , ik, i1) satisfying
‖bij + t− aπ(ij)‖ < ‖bij + t− aπ(ij+1)‖ for all j ∈ {1, . . . , k} (modulo k).

ii) Each point of B + t is matched to one of its m nearest neighbors in A.
iii) At least one point in B + t is matched to its nearest neighbor in A.
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iv) There exists an ordering 〈b1, . . . , bm〉 of the elements of B, such that each
bk is assigned by π to one of its k nearest neighbors in A, for k = 1, . . . ,m.

Proof. i) For the sake of contradiction, we assume that there exists a cyclic
sequence that satisfies all the prescribed inequalities. Consider the assignment
σ defined by σ(ij) = ij−1 for all j ∈ {0, . . . , k} and σ(`) = π(`) for all other
indices `. Since π is a one-to-one matching, we have that π(ij) 6= π(ij′) for all
different j, j′ ∈ {1, . . . , k} and, consequently, σ is one-to-one as well. It is easily
checked that f(σ, t) < f(π, t), contradicting the optimality of π.

ii) For contradiction, assume that for some point b ∈ B, b+ t is not matched
by π to one of its m nearest neighbors in A. Then, at least one of these neighbors,
say a, cannot be matched (because these m points can be claimed only by the
remaining m−1 points of B+ t). Thus, we can reduce the cost of π by matching
b+ t to a, a contradiction that establishes the claim.

iii) Again we assume for contradiction that π does not match any of the
points of B + t to its nearest neighbor in A. We construct the following cyclic
sequence in the matching π. We start at some arbitrary point b1 ∈ B, and
denote by a1 its nearest neighbor in A (to simplify the presentation, we do not
explicitly mention the translation t in what follows). By assumption, b1 is not
matched to a1. If a1 is also not claimed in π by any of the points of B, then b1
could have claimed it, thereby reducing the cost of π, which is impossible. Let
then b2 denote the point that claims a1 in π. Again, by assumption, a1 is not
the nearest neighbor a2 of b2, and the preceding argument then implies that a2
must be claimed by some other point b3 of B. We continue this process, and
obtain an alternating path (b1, a1, b2, a2, b3, . . .) such that the edges (bi, ai) are
not in π, and the edges (bi+1, ai) belong to π, for i = 1, 2, . . .. The process must
terminate when we reach a point bk that either coincides with b1, or is such that
its nearest neighbor is among the already encountered points ai, i < k. We thus
obtain a cyclic sequence as in part i), reaching a contradiction.

iv) Start with some point b1 ∈ B such that b1 + t goes to its nearest neighbor
a1 in A in the optimal partial matching π; such a point exists by part iii). Delete
b1 from B, and a1 from A. The optimal matching of B \ {b1} into A \ {a1}
(relative to t) is equal to the restriction of π to the points in B \ {b1}, because
otherwise we could have improved π itself. We apply part iii) to the reduced
sets, and obtain a second point b2 ∈ B \ {b1} whose translation b2 + t is matched
to its nearest neighbor a2 in A \ {a1}, which is either its first or second nearest
neighbor in the original set A. We keep iterating this process until the entire set
B is exhausted. At the k-th step we obtain a point bk ∈ B \ {b1, . . . , bk−1}, such
that the nearest neighbor ak in A \ {a1, . . . , ak−1} is matched to bk by π, so ak
is among the k nearest neighbors in A of bk + t. ut

Observe, that the geometric properties in Lemma 4 can be interpreted in
purely combinatorial terms. Indeed, for t fixed, associate with each bi ∈ B an
ordered list Lt(bi), called its preference list, which consists of the points of A
sorted by their distances from bi + t. In general, given m such ordered lists
on n elements, an injective assignment from {1, . . . ,m} to {1, . . . , n} such that
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there is no cycle as in part i) is called stable or Pareto efficient. The problem of
finding a sable matching was studied, for the case m = n, in the game theory
literature under the name of the House Allocation Problem [17]. Note also that
the proofs of parts ii)–iv) can be carried out in this abstract setting, and hold
for any stable matching. Now assume that we let t vary, but constrain it to stay
in a region in which there is no change in any of the preference lists Lt(bi),
for i = 1, . . . ,m. Then part iii) and the proof of part iv) immediately yield an
upper bound of m! on the number of stable matchings. This bound is tight for the
combinatorial problem, since if the ordered lists all coincide there are m! different
stable matchings. A recent study motivated by the extended abstract [11] prior
to this work studied this combinatorial problem and derived the following.

Lemma 5 (Asinowski et al. [2]). The number of elements that belong to some
stable matching on m ordered preference lists is at most m(lnm+ 1).

The properties derived so far imply the following significantly improved upper
bound on the complexity of DB,A.

Theorem 2. The combinatorial complexity of DB,A is O(n2m3.5(e lnm)m).

Proof. The proof has two parts. First, we identify a convex subdivision K such
that in each of its regions the ordered preference lists Lt(b) of neighbors of each
b + t, according to their distance from b + t, are fixed for all b ∈ B. We show
that the complexity of K is only polynomial; specifically, it is O(n2m4). Second,
we give an upper bound on how many regions of DB,A can intersect a given
region of K, using Theorem 5. Together, these imply an upper bound on the
complexity of DB,A. Due to lack of space, the proof of the first part is given in
Appendix A. We now consider all possible translations t in the interior of some
fixed region τ of K and their corresponding optimal matchings. Lemma 4(i)
ensures that all of them must be stable with respect to the fixed preference lists
Lt(b), for b ∈ B, over t ∈ τ . In addition, Lemma 1 ensures that we only need
to bound the number of different image sets of such stable matchings. Using
the bound in Lemma 5, we can derive that the number of optimal matchings

for translations in τ is then O
((
m(lnm+1)

m

))
= O

(
mm lnmm

m!

)
= O

(
lnm(m)√
me−m

)
,

where in the second step we used Stirling approximation. Hence, by multiplying
this bound by the number of regions in K, we conclude that the number of
assignments corresponding to optimal matchings, and thus also the complexity
of DB,A, is at most O(n2m3.5(e lnm)m. ut

The following proposition (proved in Appendix A) sets an obstruction for
the combinatorial approach alone to yield a polynomial bound for DB,A.

Proposition 1. For every n ≥ bm2 c + m, there exists m preference lists of

{1, . . . , n} with Ω
(

2m√
m

)
different images of stable matchings.
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3 Finding a local minimum of the partial matching
RMS-distance under translation

The high-level algorithm. We now concentrate on the algorithmic problem
of computing, in polynomial time, a local minimum of the partial matching
RMS-distance under translation.

We “home in” on a local minimum of F (t) by maintaining a vertical slab I
in the plane that is known to contain such a local minimum in its interior, and
by repeatedly shrinking it until we obtain a slab I∗ that does not contain any
vertex of DB,A. That is, any (vertical) line contained in I∗ intersects the same
sequence of regions, and, by Theorem 1, the number of these regions is O(mn).
We compute these regions, find the optimal partial matching assignment in each
region, and the corresponding explicit (quadratic) expression of F (t), and search
for a local minimum within each region.

A major component of the algorithm is a procedure, that we call Π1(`),
which, for a given input line `, constructs the intersection of DB,A with `, com-
putes the global minimum t∗ of F on `, and determines a side of `, in which
F attains strictly smaller values than F (t∗). If no such decrease is found in the
neighborhood of t∗ then it is a local minimum of F , and we stop.

We use this “decision procedure” as follows. Suppose we have a current ver-
tical slab I, bounded on the left by a line `− and on the right by a line `+. We
assume that Π1 has been executed on `− and on `+, and that we have deter-
mined that F assumes smaller values than its global minimum on `− to the right
of `−, and that it assumes smaller values than its global minimum on `+ to the
left of `+. This is easily seen to imply that F must contain a local minimum in
the interior of I. Note that just finding a local minimum of F along `+ or `− is
not sufficient; see Appendix C for a discussion of a similar issue in the case of
the Hausdorff RMS-distance. Let ` be some vertical line passing through I. We
run Π1 on `. If it determines that F attains smaller values to its left (resp., to
its right), we shrink I to the slab bounded by `− and ` (resp., the slab bounded
by ` and `+). By what has just been argued, this ensures that the new slab also
contains a local minimum of F in its interior.

To initialize the slab I, we choose an arbitrary horizontal line λ, and run Π1

on λ, to find the sequence S of its intersection points with the edges of DB,A. We
run a binary search through S, where at each step we execute Π1 on the vertical
line through the current point. When the search terminates, we have a vertical
slab I0 whose intersection with λ is contained in a single region σ0 of DB,A.

After this initialization, we find the region σ1 that lies directly above σ0
and that the final slab I∗ should cross. In general, there are possibly many such
regions, but fortunately, by Lemma 3(ii), their number is only at most m(n−m).

To find σ1, we compute the boundary of σ0; details about this procedure are
given in Appendix B. Once we have explored the boundary of σ0, we take the
sequence of all vertices of σ0, and run a Π1-guided binary search on the vertical
lines passing through them, exactly as we did with the vertices of S, to shrink I0
into a slab I1, so that σ0 intersects I1 in a trapezoid (or a triangle), with a single
(portion of an) edge at the top and a single edge at the bottom. This allows us
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to determine σ1, which is the region lying on the other (higher) side of the top
edge. A symmetric variant of this procedure will find the region lying directly
below σ0 in the final slab.

We repeat the previous step to find the entire stack of regions that I∗ crosses,
where each step shrinks the current slab and then crosses to the next region in
the stack. Once this is completed, we find a local minimum within I∗ as explained
above. Details for this are again given in Appendix B.

In summary, we have the following main result of this section.

Theorem 3. Given two finite point sets A,B in R2, with n = |A| > |B| = m
and no two pairs (a1, a2), (a1, a2) ∈ A with a1 − a2 = a3 − a4, a local mini-
mum of the partial matching RMS-distance under translation can be computed
in O(m6n3 log n) time.

4 Finding a local minimum of the Hausdorff
RMS-distance under translation

In this section, we turn to the simpler problem involving the Hausdorff RMS-
distance, and present efficient algorithms for computing a local minimum of the
RMS function in one and two dimensions. Due to lack of space, most of the
material in this section is delegated to Appendix C, and we only provide here a
high-level review of our algorithms.

The one-dimensional unidirectional case. Let NA(b + t) be the nearest neigh-
bor in A of b+ t, for b ∈ B, and t ∈ R. The function r(t) := RMS(B + t, A) =∑
b∈B(b+t−NA(b+t))2 is continuous and piecewise parabolic, with O(mn) non-

smooth breakpoints, which are the breakpoints of the step functions NA(b+ t).
For any given t0, it is easy to compute, in O(m log n) time, the derivative r′(t0),
or its left and right one-sided versions r′(t0)−, r′(t0)+ (when t0 is a breakpoint).
A simple observation is that if I = [t1, t2] is an interval satisfying r′(t1)+ < 0
and r′(t2)− > 0 then I contains a local minimum of r. We thus start with a
large interval I that contains all breakpoints of r, and keep shrinking it, halving
the number of breakpoints in I in each step, until it contains only linearly many
breakpoints, in which case r can be constructed explicitly over I, and searched
for a local minimum, in near-linear time. See Appendix C for full details, which
imply the following.

Theorem 4. Given two finite point sets A, B on the real line, with |A| = n and
|B| = m, a local minimum of the unidirectional RMS distance under translation
from B to A can be obtained in time O(m log2 n+ n log n).

The one-dimensional bidirectional case. Simple extensions of the procedure given
above apply to the two variants of the minimum bidirectional Hausdorff RMS-
distance, as defined in the introduction. Omitting the fairly routine details of
these extensions, we obtain:
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Theorem 5. Given two finite point sets A, B on the real line, with |A| = n
and |B| = m, a local minimum under translation of the L1-bidirectional or
L∞-bidirectional RMS distance between A and B, can be computed in time
O((n logm+m log n) log min {m,n}).

Minimum Hausdorff RMS-distance under translation in two dimensions. Here
the function r(t) := RMS(B+t, A) =

∑
b∈B ‖b+t−NA(b+t)‖2 induces a convex

subdivision of the plane, where in each of its regions σ, all the m values NA(b+t),
for b ∈ B, are fixed for t ∈ σ. This subdivision is simply the overlay M of the m
shifted copies V(A − b), for b ∈ B, of the Voronoi diagram of A. These copies
have a total of O(mn) edges, and their overlay has thus complexity O(m2n2)
(which is tight in the worst case). Over each region of M , r(t) is a quadratic
function (a paraboloid), and the explicit expression for r(t) can be updated in
O(1) time as we cross from one region to an adjacent one.

The goal is to search for a local minimum of r without explicitly constructing
these many features of M . Similarly to the one-dimensional case, we maintain a
vertical slab I, known to contain a local minimum, and keep shrinking it until
it contains no vertices of M . In this case it overlaps only O(mn) regions of M ,
vertically stacked above one another, and it is straightforward to enumerate all
of them, get the explicit expressions of r over each of them, and search for a
local minimum in each part, in a total of O(mn) time.

To shrink I we use a “decision procedure” that, given a vertical line `, com-
putes the global minimum t̄ of r restricted to `, and tests the x-derivative of r
at t̄ to determine which side of ` contains smaller values than r(t̄). For a vertical
slab I and a vertical line ` in the interior of I, this procedure enables us to
replace I by its portion to the left or to the right of `, according to the output
of the procedure at `. The decision procedure takes O(mn logmn) time.

The shrinking of I is performed in two phases. We first enumerate all O(mn)
Voronoi vertices of the original diagrams, and run a binary search through them,
as above. The resulting intermediate slab contains no original vertices, so the
edges that cross it behave like lines. They might still intersect at O(m2n2) points
within I, but we can run a binary search through them efficiently, using the
(dual version of the) slope selection algorithm of [7], so that each step takes only
O(mn logmn) time.

The missing details are in Appendix C, and we obtain:

Theorem 6. Given two finite point sets A, B in R2, with |A| = n and |B| = m,
a local minimum of the unidirectional Hausdorff RMS-distance from B to A
under translation can be computed in time O(mn log2mn).

The bidirectional variants can be handled in much the same way, and, omit-
ting the details, we get:

Theorem 7. Given two finite point sets A,B in R2, with |A| = n and |B| = m,
a local minimum of the L1-bidirectional or the L∞-bidirectional Hausdorff RMS-
distance between A and B under translation can be computed in O(mn log2mn)
time.
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A Proofs and remarks in Section 2

Proof (First part of Theorem 2.). Recall that the goal is to identify a convex
subdivision K such that in each of its regions the ordered preference lists Lt(b)
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of neighbors of each b+ t, according to their distance from b+ t, are fixed for all
b ∈ B. We claim that the complexity of K is only polynomial; specifically, it is
O(n2m4).

In order to see this, fix b ∈ B, and consider the coarser subdivision V(b, A), in
which only the single list Lt(b) is required to be fixed withing each cell. A naive
way of bounding the complexity of V(b, A) is to draw all the O(n2) bisectors
between the pairs of points in A − b, and form their arrangement. Each cell of
the arrangement has the desired property, as is easily checked. As a matter of
fact, this naive analysis can be applied to the entire structure, over all b ∈ B.
Altogether there are O(mn2) such bisectors, and their arrangement thus consists
of O(m2n4) regions.

To obtain the improved bound asserted above, we note that it suffices to
draw only relevant portions of the bisectors. Specifically, let b ∈ B and a, a′ ∈ A.
In view of Lemma 4(ii), we need to consider only the portion of the bisector
βa−b,a′−b between a − b and a′ − b that consists of those points t such that a
and a′ are among the m nearest neighbors of b + t in A; other portions of the
bisector are “transparent” and have no effect on the structure of K.

In general, the relevant portion of a bisector βa−b,a′−b need not be connected.
To simplify the analysis, we will bound the number of (entire) bisectors of this
form whose relevant portion is nonempty. Moreover, we will carry out this anal-
ysis for each b ∈ B separately.

This analysis can be carried out via the Clarkson-Shor technique, albeit in a
somewhat non-standard manner. Specifically, with b fixed, we have the set A of n
points, and a system of bisectors βa−b,a′−b, each defined by two points a, a′ ∈ A.
Each bisector βa−b,a′−b has a conflict set, which we define to be a smallest subset
A′ of A, such that there exists a point t on the bisector, whose two nearest
neighbors in A \A′ are a and a′. Clearly, the conflict set is not uniquely defined,
but this is fine for the Clarkson-Shor technique to apply, because, if we draw
a random sample R of A, it still holds that the probability that βa−b,a′−b will
generate an edge of the Voronoi diagram of R− b is at least the probability that
a and a′ are chosen in R and none of the points in the specific conflict set is not
chosen. This lower bound suffices for the Clarkson-Shor technique to apply, and
it implies that the number of bisectors that contribute a portion to V(b, A) (each
of which has a conflict set of size at most m) is O(m2) times the complexity of
the Voronoi diagram of R− b, for a random sample R of n/m points of A. That
is, the number of such bisectors is O(mn), instead of the number O(n2) of all
bisectors. The claim about the complexity of K is now immediate. ut

Proof (Proposition 1.). We construct a set of lists such that for every i ∈
{1, . . . ,m} the bm2 c smallest elements S are the same (and in the same or-
der). For the position bm2 c + 1 of the lists, we use a set S′ of m elements such
that S ∩ S′ = ∅. Given a permutation λ of {1, . . . , n}, consider the matching
assigning to each i ∈ {1, . . . ,m} the first element in its list, in the order λ, that
was not assigned to any previous element. It is easy to see that this matching
is stable and that its image consists of S and the subset of S′ corresponding to
the last dm2 e positions of λ. Therefore, every subset of S′ of size dm2 e is, together
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with S, the image of a stable matching. Hence,
(
m
dm2 e

)
= Ω

(
2m√
m

)
different sets

correspond to images of stable matchings. ut

Remark: Convex paths. In order to gain better understanding of how the poten-
tial Φ (defined in the proof for Lemma 3iv) changes when we translate the set
B along a convex path, we consider a standard dual construction [5], where we
map the points a ∈ A to lines in the following manner:

a = (ax, ay) 7−→ y = ayx+ ax.

The duality is order persevering in the sense that, given two points a1, a2, and
a direction u = (ux, uy) in the primal plane, then it can be easily checked that
a2 ·u > a1 ·u if and only if a2 is above a1 at the x-coordinate that corresponds to
uy/ux in the dual plane, i.e., to the direction of u. Thus, we get an arrangement
of n lines, in which the height of the lines in each x-coordinate in the dual plane
represents the order of A along the corresponding direction in the primal plane;
see Figure 1 for an illustration.

u3

u1

a1

a∗1

a∗4

a∗3

a∗2

a3

a4
a2

u2

Fig. 1: An example for a convex path with three highlighted directions, a set of four
given points, and the resulting dual arrangement.

Furthermore, for each point on a convex path, we can mark at the corre-
sponding x-coordinate in the dual plane, the m dual lines that correspond to
the m points which are currently (optimally) matched. By the observations in
the proofs for Rote’s Theorem 1 in [15], and in Lemma 3iv, if the matching
changes, it must be that some point in B changes its matching to a point that is
further to the right. In our dual setting, it simply means that when a matching
changes, the points can only skip upwards to a line that passes above them. The
sum of the indeces of the marked lines (those that participate in the matching)
is exactly the rank defined in the proof of Theorem 1.

This dual setting also demonstrates how and when the potential Φ that is
defined in 3iv could drop — it happens when two lines intersect in the dual
plane, and thus the height of a matched point (its rank) can drop by 1. If
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one can bound the amount of such drops, i.e., for m points moving along the
dual n lines, from left to right, skipping from line to line only upwards, then it
immediately gives a bound for the amount of intersections of a convex path with
DB,A. Unfortunately, an almost quadratic lower bound for the complexity of
such monotone paths was in fact presented in [3], and thus it seems hopeless to
get a better upper bound for the amount of intersections of a convex path with
DB,A than the one in Lemma 3iv, without exploiting any additional geometric
properties.

B The procedures used in Section 3

Minimum partial matching at a fixed translation: The Hungarian algorithm. The
Hungarian method, developed by Kuhn in 1955 [13], is an efficient procedure
for computing a perfect maximum weight (or, for us, minimum weight) bipartite
matching between two sets A,B of equal size m, with running time O(m4), which
has been improved to O(m3) by Edmond and Karp [9]. The original algorithm
proceeds iteratively, starting with an empty set M0 of matched pairs. In the i-th
iteration it takes the current set Mi−1 of i− 1 matched pairs, and transforms it
into a set Mi with i matched pairs, until it obtains the desired optimal perfect
matching with m pairs.

Let us sketch the technique for minimum-weight matching, which is the one
we want. The i-th iteration is implemented as follows. Define D to be the (bipar-
tite) directed graph, with vertex set A ∪ B, whose edges are the edges of Mi−1
directed from B to A, and the edges of (A× B) \Mi−1, directed from A to B.
We look for an augmenting path p that starts at B and ends at A, of minimum
weight, and we set Mi := Mi−1 ⊕ p (here ⊕ denotes symmetric difference).

To find p, we run the Bellman-Ford algorithm for shortest paths on the
directed graph D, with a suitable initialization of the so-called distance labels.
The main operation of the algorithm is the Relax operation, which, for an edge
(u, v) of D, compares l(u)+w(u, v) with l(v), and updates l(v) if l(u)+w(u, v) is
smaller; here the quantities l(u), l(v) are the distance labels that the algorithm
maintains; upon termination, l(v), for v ∈ A ∪B, will be the minimum weight
of a path that starts at some vertex of B and ends at v.

In our case there will be one instance where we will want to run the Hungarian
algorithm with |B| < |A|, which can be done with a suitable padding of B to
make it have the same size as A; we omit the routine details of this extension.
All other invocations of this procedure will be with sets A, B of equal size; see
below for details.

Hence, to recap, given a translation t, we can compute M(B + t, A) by the
above algorithm, where the weight of an edge (a, b) ∈ A×B is ‖b+ t− a‖2. We
denote this procedure as Π0(t); its output is the set of matched pairs, or, in our
notation, the injective assignment π : B → A.

Computing the boundary of σ0. Let A0 ⊂ A be the set of the m matched points
of A, for translations t ∈ σ0. A0 can be computed by running Π0(t0), for finding
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the optimal complete matching M0 for the translation t0, in time O(n3) [9]. To
find σ1, we first compute ∂σ0. By Lemma 2, we know that there are O(mn)
possible directions for the bisectors forming ∂σ0. Moreover, when we cross an
edge of σ0, the new optimal matching M1 that replaces M0 is obtained from
a collection of alternating paths (and possibly also cycles), where in each path
we replace the edges of M0 in the path by the (same number of) edges of M1.
The subset A1 of the m matched points of A in M1 is obtained by replacing,
for each of these paths, the starting point ai of the path (which belongs to A0)
by the terminal point aj (which belongs to A1). As shown in Lemma 2, this
implies that the bisector through which we have crossed from σ0 to the neighbor
region σ1 must be perpendicular to ai − aj , for each of the pairs ai, aj , one
for each pair. Moreover, assuming general position, and specifically that there
are no two pairs of points (a1, a2), (a3, a4) ∈ A×A such that −−→a1a2 and −−→a3a4 are
parallel, it follows that each edge of DB,A, and specifically of ∂σ0, corresponds to
a single such alternating path, and to a single replacement pair (ai, aj). In other
words, under the above general position assumption, over each edge of σ0 only
one point ai ∈ A0 exits the optimal matching and another point aj ∈ A \A0

replaces it. Therefore, we can construct ∂σ0 easily and efficiently in the following
manner. For each of the m points ai ∈ A0, we replace it by one of the n −m
points aj ∈ A \A0. For each such replacement we compute the new optimal
(perfect) matching M1 between B and A1 = A \ {ai} ∪ {aj} (recall that, by
Lemma 1, once A1 is fixed, the matching M1 is independent of the translation,
so it can be computed at any translation, e.g., at t0). We then find the bisector,
by comparing (1) between the new matching M1 and the optimal matching M0

in σ0. This provides us with a total of O(mn) potential bisectors. We now obtain
σ0 as the intersection of the O(mn) halfplanes, bounded by these bisectors and
containing t0. This takes O(mn logmn) additional time.

Note that for each edge on ∂σ0 we also know the optimal assignment on its
other side. The overall cost of the procedure is O(mn ·m3) = O(m4n), since it
runs the Hungarian algorithm O(mn) times, each time on two sets of size m,
and the cost of the other steps is dominated by this bound.

Solving Π1(`). Let ` be a given line in R2; without loss of generality assume `
to be vertical. We start at some arbitrary point t0 ∈ `, run Π0(t0), and obtain
the optimal injective assignment π0 for the partial matching between B+ t0 and
A. We now proceed from t0 upwards along `, and seek the intersection of this
ray with the boundary of the region σ0 of DB,A that contains t0. Finding this
intersection will also identify the next region of the subdivision that ` crosses
into, and we will continue in this manner, finding all the regions of DB,A that the
upper ray of ` crosses. In a fully symmetric manner, we find the regions crossed
by the lower ray, altogether O(mn) regions, by Theorem 1.

To find the intersection t∗ of the upper ray of ` with ∂σ0, we apply a simplified
variant of the procedure for computing ∂σ0. That is, we construct the O(mn)
potential bisectors between σ0 and the neighboring regions, exactly as before.
The point t∗ is then the lowest point of intersection of ` with all these bisectors
lying above t0. We repeat this process for each new region that we encounter,
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and do the same in the opposite direction, along the lower ray from t0, until we
find all the regions of DB,A crossed by `.

The number of regions is O(mn). We compute the explicit expression for
F (t) in each of them, and thereby find the global minimum t̄ of F along `.
Finally, we compute ∂F

∂x (t̄) (which is a linear expression in t, readily obtained
from the explicit quadratic expression for F in the neighborhood of t̄). We note
that t̄ cannot be a breakpoint of F (that is, lie on an edge of DB,A), since a
local minimum in t̄ implies that F (t) in both neighboring regions is decreasing
towards t̄, but no bisecting edge can pass through such a point. If it is negative
(resp., positive), we conclude that F attains lower values than its minimum on
` to the right (resp., left) of `, and we report this direction. If the derivative is
0, we have found a local minimum of F and we stop the whole algorithm.

The cost of Π1(`) is O(mn ·mn ·m3) = O(m5n2), as we encounter O(mn)
regions along `, and for each of them we examine O(mn) potential bisectors,
each of which is obtained by running Π0, in O(m3) time.

Running time of the algorithm The running time of the whole algorithm is
dominated by the cost of constructing the O(mn) regions that the final slab I∗

crosses. Each region is constructed in O(m4n) time, after which we run a Π1-
guided binary search through its vertices, in time O(m5n2 logmn). Multiplying
by the number of regions, we get a total running time of O(m6n3 logmn) =
O(m6n3 log n). Note that the overall course of the algorithm is incremental in
nature. That is, every time we need to compute a matching, we have available
the subset of A that participates in the matching, which is obtained from the
preceding subset by removing an element and adding a new element. This is fine
except for the initial call to the matching procedure, where we run it on B + t0,
for a suitable translation t0, and the entire A. This call costs O(n3) time, which
is negligible in comparison to the total running time.

C Missing details in Section 4

We begin with the simpler one-dimensional case.

The NA function. The function NA is a step function with the following struc-
ture. Assume that the elements of A are sorted as a1 < a2 < · · · < an, and put
µi = ai+ai+1

2 , for i = 1, . . . , n−1. Then, breaking ties in favor of the larger point,
we have:

NA(x) =

a1 for x < µ1

ai for i = 2, . . . , n− 1 and µi−1 ≤ x < µi
an for x ≥ µn−1 .

See Figure 2 for an illustration.
Moreover, each of the m functions NA(bi+t) is just a copy of NA, x-translated

to the left by the respective bi.
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a1 a2 a3 a4

NA

a2

a3

a4

µ1 µ2 µ3

a1

Fig. 2: The step function NA.

The one-dimensional unidirectional case. Denote RMS(B + t, A) as r(t) for
short, regarding A and B as fixed. We also use the shorthand notation NA,i(t)
for NA(bi + t), the nearest neighbor in A of bi + t, for bi ∈ B, and t ∈ R. We
thus want to compute a (local) minimum of the function

r(t) =

m∑
i=1

(bi + t−NA,i(t))2.

We observe that r(t) is continuous and piecewise differentiable (except at the
points of discontinuity of the step functions NA,i(t)) and each of its pieces is a
parabolic arc. For any t, which is not one of these singular points, also referred
to as breakpoints, the derivative of each of the step functions is 0. Hence we have,
for any non-singular local minimum t of r,

r′(t) = 2

m∑
i=1

(bi + t−NA,i(t)) = 0. (2)

Clearly, for any given (non-singular) translation t0, r(t0) and r′(t0) can be com-
puted (from scratch) in O(m log n) time. This also holds for the left and right
one-sided derivatives of r(t0), at a breakpoint t0, denoted respectively as r′(t0)−

and r′(t0)+.
We note that a local minimum of r(t) cannot occur at a singular point.

Indeed, for the local minimum to occur at a breakpoint tstep, we must have
r′(tstep)− ≤ 0 and r′(tstep)+ ≥ 0. However, referring to equation (2), one easily
verifies that the value of r′(t) can only decrease at tstep, contradicting the above
inequalities.

Another simple observation is that if there is an interval I = [t1, t2], such
that r′(t1)+ < 0 and r′(t2)− > 0, then there exists a local minimum of r(t) inside
I. Our algorithm starts with a large interval with this property, and shrinks it
repeatedly, while ensuring that it continues to contain a local minimum. At

18



every step of the shrinking process, the number of breakpoints of r(t) over I
reduces by (at least) half, and the process terminates when I contains only
O(max {m,n}) breakpoints. At this point it is straightforward to calculate a local
minimum in linear time, e.g., by constructing the explicit representation of r over
I and by searching each of its O(max {m,n}) smooth parabolic subgraphs for a
local minimum, recalling the property that the explicit expression for a smooth
parabolic portion of r(t) can be obtained in O(1) time from the expression for
the preceding portion.

Assuming after relabelling that b1 < . . . < bm, set t1 = µ1 − bm, and
t2 = µn−1 − b1. We start with I = [t1, t2]. It is easily checked that r(t) has
no breakpoints outside I, and it is in fact decreasing for t < t1 and increasing
for t > t2. Thus I contains the global minimum of r(t).

We next describe the procedure for shrinking I, i.e., computing a subinterval
I ′ ⊂ I, such that the number of breakpoints of r(t) over I ′ is (approximately)
half the number of breakpoints over I, while maintaining the invariant that
r′(t)+ < 0 at the left endpoint of I ′, and r′(t)− > 0 at the right endpoint. Such
a “halving” of I is performed in a single iteration of the procedure, and since we
start with O(mn) breakpoints, and finish with Θ(max {m,n}) breakpoints, the
algorithm executes O(log min {m,n}) iterations.

The shrinking process is performed as follows.
(1) Each iteration starts with an interval I = [t1, t2] such that r′(t1)+ < 0 and
r′(t2)− > 0 (where the initial values of t1 and t2 are given above). We calculate,
for each i = 1, . . . ,m, the median step ξi of NA,i among its steps within I, which
can be done in O(log n) time. These m median steps are thus found in total time
O(m log n). We sort them into a list L = (ξ1, . . . , ξm).
(2) We perform a binary search over L for finding a local minimum of r(t)
between two consecutive elements of L. At each step of the search, with some
value t = ξk, we compute r′(ξk)− and r′(ξk)+ in O(m log n) time; as noted
earlier, there are only three possible cases:

(a) If r′(ξk)− > 0 and r′(ξk)+ > 0, we go to the left, replacing t2 by ξk.
(b) If r′(ξk)− < 0 and r′(ξk)+ < 0, we go to the right, replacing t1 by ξk.
(c) If r′(ξk)− > 0 and r′(ξk)+ < 0, it does not matter where to go—there are

local minima on both sides; we go to the left, say, resetting t2 as in (a).

In this way, we maintain our invariant. At the end of the binary search, we get
an interval I ′ = [ξj , ξj+1] with r′(ξj)+ < 0 and r′(ξj+1)− > 0. The progress that
we have made by passing from I to I ′ is that, for each step function NA,i, we
got rid of at least half of its steps within I: if ξk ≤ ξj (resp., ξk ≥ ξj) then the
leftmost (resp., rightmost) half of the steps of NA,i within I is discarded.
(3) We keep shrinking I, until the number of breakpoints (from all NA,i) within I
is O(max {m,n}). We gather all the breakpoints in the final I in time O(m log n),
and sort them in time O(max {m,n} log max {m,n}). We then explicitly con-
struct the graph of r over I, which consists of O(max {m,n}) parabolic arcs, and
search for a local minimum of r within each of these pieces. By the invariant, at
least one such minimum will be found. As already mentioned, each breakpoint
indicates the point bi that changes its neighbor at the breakpoint, and therefore
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it is easy to update r(t), while crossing over a breakpoint, in constant time. The
overall running time of step (3) is thus O(max {m,n} log max {m,n}).

Hence, the overall running time is O(m logm log n log min {n,m} + n log n).
When |A| = |B| = n, the running time is simply O(n log3 n).

An improved algorithm. Step (2) of the preceding algorithm, performs logm bi-
nary search steps over the list of the median breakpoints of the step functions
within I, in order to eliminate (at least) half of the breakpoints inside the inter-
val, but we can get rid of a quarter of these breakpoints by just performing the
first step of the search, thereby saving a logarithmic factor in the running time
bound. Omitting the rather standard details, we obtain with this improvement
the following result.

Minimum Hausdorff RMS-distance under translation in two dimensions. Again,
we focus on the unidirectional variant, but the analysis and results extend in
a straightforward manner to the bidirectional variants. Recall that, for A =
{a1, . . . , an} and B = {b1, . . . , bm} two sets in R2, the minimum unidirectional
Hausdorff RMS-distance under translation from B to A is

RMST (B,A) = min
t∈R2

RMS(B + t, A) = min
t∈R2

m∑
i=1

‖bi + t−NA,i(t)‖2 .

As before, we put r(t) = RMS(B+t, A), for t ∈ R2, and we seek a translation
t∗ ∈ R2 that brings r to a local minimum.

Here too, one can compute a local minimum by applying the two-dimensional
version of the ICP algorithm, but in the worst case it might perform O(m2n2)
iterations, each taking O(m log n) time [10]. Moreover, one can calculate the
global minimum of r(t) in O(m2n2 log (mn)) time, as follows.

Let V(A) denote the Voronoi diagram of A, and let M denote the overlay
subdivision of the m shifted Voronoi diagrams, V(A − bi), for bi ∈ B, which
are just copies of V(A), shifted by the corresponding bi ∈ B. M has O(m2n2)
regions, and this bound is tight in the worst case [10]. M can be constructed in
O(m2n2 log (mn)) time, using, e.g., a standard line-sweep technique.

Within each region τ of M , the nearest-neighbor assignments NA,i(t), for
i = 1, . . . ,m, are fixed for all t ∈ τ . Hence, the graph of r(t) over τ is a portion
of a single paraboloid of the form r(t) = m‖t‖2 + 〈dτ , t〉 + cτ , for a suitable
vector dτ and scalar cτ . This allows us (when cτ and dτ are available) to find a
local minimum of r(t) within the interior of τ (if one exists) in constant time.
One also needs to test for a local minimum over each edge and vertex of M , and
this too can be done in constant time for each such feature, provided that the
explicit expression for r(t) over that feature is known. This expression can be
updated in constant time as we move from one feature of M to a neighboring
feature. All this leads to the promised computation of the global minimum of
r(t) in O(m2n2 log (mn)) time, and our goal is to find a local minimum much
faster.
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Finding a local minimum. We now present an improved algorithm that runs in
time O(mn log2 (mn)). Similar to the one-dimensional case, we search for a local
minimum of r(t) within a vertical slab I, that we keep shrinking until it contains
no vertex of M in its interior. This final slab crosses M in a sequence of only
O(mn) regions, stacked above one another and separated by (portions of) edges
of M . It is then routine to scan these regions, construct the explicit expression
for r(t) over each region, updating these expressions in constant time as we go
from one region to an adjacent one, and searching for the global minimum within
I, all in O(mn) time.

A main component in our approach is a procedure that decides whether
r(t) has a local minimum to the left or to the right of a vertical line λ. In
analogy to the analysis in Section 3, we call this procedure Γ1(λ). This decision
can be made in O(mn log(mn)) time, as follows. We first calculate the global
minimum of r(t) restricted to λ, by intersecting λ with the O(mn) edges of the
shifted Voronoi diagrams V(A− bi), by sorting these intersections along λ, and
by constructing the explicit expressions for r(t) over each interval between two
consecutive intersections, updating these expressions in O(1) time as we cross
from one interval to an adjacent one. Having found the global minimum t̄ along
λ, we then inspect the sign of ∂r

∂x at t̄, and go in the direction where r is locally
smaller than r(t̄). All this takes O(mn log(mn)) time.

Local minima along the slab boundary do not suffice. As in the case of partial
matching, computing only a local minimum along each of the lines bounding
some slab I, and verifying that r decreases to the right of the left local minimum
and to the left of the right local minimum, is not sufficient to guarantee that r(t)
has a local minimum within (the interior of) I. This is illustrated in Figure 3.
However, if r(t) decreases to the right of the left global minimum and to the left
of the right global minimum, then r(t) does have a local minimum within the
interior of I, as is easily checked.

We use the decision procedure Γ1 for shrinking the slab I, while ensuring that
it continues to contain a local minimum. The shrinking is done in two stages.
The first stage narrows I until it has no original vertices of the shifted Voronoi
diagrams inside it. The second stage narrows the slab further to a slab that has
no vertices of M (i.e., intersection points of Voronoi edges of different diagrams)
in it.

Pruning the original Voronoi vertices. The overlay M contains s = O(mn)
original Voronoi vertices. We sort these vertices into a list L = (v1, . . . , vs), by
their x-coordinates.

The slab that we start with is I = [λ1, λs], where λi denotes the y-parallel
line through vi, for i = 1, . . . , s. We run Γ1(λ1) and Γ1(λs), computing the global
minima on λ1 and on λs, and inspecting the signs of ∂r

∂x at these minima. If the
output points to a local minimum outside I, then one of the semi-x-unbounded
side slabs to the left or to the right of I contains a local minimum and has no
original Voronoi vertex in its interior, and we stop the first stage with that slab.
Otherwise, we perform a binary search over L, where at each step of the search,
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q1

q2

r(x1, s)

r(x2, s)

Fig. 3: Illustration of an impossible case where r(t) attains a local minimum at a break-
point.

at some vertex vi, we run the decision procedure Γ1(λi) and determine which
of the two sub-slabs that are split from the current slab by λi contains a local
minimum, using the rule stated above. This stage takes O(mn log2(mn)) time.

Pruning the remaining vertices. Let I denote the final slab of the previous
stage. Since I does not contain any original Voronoi vertices, every edge of any
Voronoi diagram that meets I crosses it from side to side, so its intersection with
I coincides with the intersection of the line supporting the edge. Let S denote
the set of these lines.

The number of intersections between the lines of S within I can still be large
(but at most O(m2n2)). We run a binary search over these intersections, to
shrink I further to a slab between two consecutive intersections (that contains a
local minimum). To guide the binary search, we use the classical slope-selection
procedure [7] that can compute, for a given slab I and a given parameter k, the k-
th leftmost intersection point of the lines in S within I, in O(mn log(mn)) time.
With this procedure at hand, the binary search performs O(log (mn)) steps, each
taking O(mn log (mn)) time, both for finding the relevant intersection point, and
for running Γ1 at the corresponding vertical line. Thus, this stage takes (also)
O(mn log2 (mn)) time.

Computing a local minimum in the final slab. Once there are no vertices of
M within I, I is crossed by at most O(mn) edges of M , each crossing I from
its left line to its right line. Consequently, these edges partition I into O(mn)
trapezoidal or triangular slices, each being a portion of a single region of M ,
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and is bounded by the left and right bounding lines of I, and by two consecutive
edges of M (in their y-order).

We compute r(t) in, say, the top slice, and its minimum in that slice. Then
we traverse the slices from top to bottom, and update r(t) for every slice that we
encounter in constant time. In each slice, r(t) attains a minimum either inside
the slice or on its boundary, and we keep the smallest value of r(t) that we
encounter along the way. Since, by construction, the slab must contain a local
minimum, we will find it.

The running time of this final computation is comprised of computing r(t)
once, in O(m log n) time, and afterwards updating it, in constant time, O(mn)
times, and computing its minimum in I. Therefore, this stage takes a total of
O(mn) time.

Thus, with all these components, we get the main result of Section 4.
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