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Abstract

We prove that the number of incidences between m points and n bounded-degree
curves with k degrees of freedom in R

d is

I(m,n) = O
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k

dk−d+1+εn
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∑
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j +m+ n



 ,

for any ε > 0, where the constant of proportionality depends on k, ε and d, provided
that no j-dimensional surface of degree ≤ cj(k, d, ε), a constant parameter depending
on k, d, j, and ε, contains more than qj input curves, and that the qj ’s satisfy certain
mild conditions.

This bound generalizes a recent result of Sharir and Solomon [21] concerning point-
line incidences in four dimensions (where d = 4 and k = 2), and partly generalizes a
recent result of Guth [9] (as well as the earlier bound of Guth and Katz [11]) in three
dimensions (Guth’s three-dimensional bound has a better dependency on q2). It also
improves a recent d-dimensional general incidence bound by Fox, Pach, Sheffer, Suk,
and Zahl [8], in the special case of incidences with algebraic curves. Our results are
also related to recent works by Dvir and Gopi [5] and by Hablicsek and Scherr [13]
concerning rich lines in high-dimensional spaces.

1 Introduction

Let C be a set of curves in R
d. We say that C has k degrees of freedom with multiplicity s if

(i) for every k points in R
d there are at most s curves of C that are incident to all k points,

and (ii) every pair of curves of C intersect in at most s points. The bounds that we derive
depend more significantly on k than on s—see below.
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In this paper we derive general upper bounds on the number of incidences between a
set P of m points and a set C of n bounded-degree algebraic curves that have k degrees of
freedom (with some constant multiplicity s). We denote the number of these incidences by
I(P, C).

Before stating our results, let us put them in context. The basic and most studied case
involves incidences between points and lines. In two dimensions, writing L for the given set
of n lines, the classical Szemerédi–Trotter theorem [27] yields the worst-case tight bound

I(P, L) = O
(

m2/3n2/3 +m+ n
)

. (1)

In three dimensions, in the 2010 groundbreaking paper of Guth and Katz [11], an improved
bound has been derived for I(P, L), for a set P of m points and a set L of n lines in R

3,
provided that not too many lines of L lie in a common plane. Specifically, they showed:

Theorem 1.1 (Guth and Katz [11]) Let P be a set of m distinct points and L a set of
n distinct lines in R

3, and let q2 ≤ n be a parameter, such that no plane contains more than
q2 lines of L. Then

I(P,L) = O
(

m1/2n3/4 +m2/3n1/3q
1/3
2 +m+ n

)

.

This bound was a major step in the derivation of the main result of [11], an almost-linear
lower bound on the number of distinct distances determined by any set of n points in the
plane, a classical problem posed by Erdős in 1946 [7]. Their proof uses several nontrivial
tools from algebraic and differential geometry, most notably the Cayley–Salmon theorem
on osculating lines to algebraic surfaces in R

3, and additional properties of ruled surfaces.
All this machinery comes on top of the main innovation of Guth and Katz, the introduction
of the polynomial partitioning technique; see below.

In four dimensions, Sharir and Solomon [22] have obtained the following sharp point-line
incidence bound:

Theorem 1.2 (Sharir and Solomon [22]) Let P be a set of m distinct points and L a
set of n distinct lines in R

4, and let q2, q3 ≤ n be parameters, such that (i) each hyperplane
or quadric contains at most q3 lines of L, and (ii) each 2-flat contains at most q2 lines of
L. Then

I(P, L) ≤ 2c
√
logm

(

m2/5n4/5 +m
)

+A
(

m1/2n1/2q
1/4
3 +m2/3n1/3q

1/3
2 + n

)

, (2)

where A and c are suitable absolute constants. When m ≤ n6/7 or m ≥ n5/3, we get the
sharper bound

I(P, L) ≤ A
(

m2/5n4/5 +m+m1/2n1/2q
1/4
3 +m2/3n1/3q

1/3
2 + n

)

. (3)

In general, except for the factor 2c
√
logm, the bound is tight in the worst case, for any values

of m,n, with corresponding suitable ranges of q2 and q3.

This improves, in several aspects, an earlier treatment of this problem in Sharir and
Solomon [21].
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Another way to extend the Szemerédi–Trotter bound is for curves in the plane with k
degrees of freedom (for lines, k = 2). This has been done by Pach and Sharir, who showed:1

Theorem 1.3 (Pach and Sharir [18]) Let P be a set of m points in R
2 and let C be a

set of bounded-degree algebraic curves in R
2 with k degrees of freedom and with multiplicity

s. Then
I(P, C) = O

(

m
k

2k−1n
2k−2
2k−1 +m+ n

)

,

where the constant of proportionality depends on k and s.

Several special cases of this result, such as the cases of unit circles and of arbitrary circles,
have been considered separately [4, 25]. Unlike the Szemerédi-Trotter result (which arises
as a special case of Theorem 1.3 with k = 2), the bound in Theorem 1.3 is not known to
be tight for any k ≥ 3. In fact, it is known not to be tight for the case of arbitrary circles;
see [1].

Here too one can consider the extension of these bounds to higher dimensions. The
literature here is rather scarce, and we only mention here the work of Sharir, Sheffer and
Zahl [20] on incidences between points and circles in three dimensions; an earlier study of
this problem by Aronov et al. [2] gives a different, dimension-independent bound.

The bounds given above include a “leading term” that depends only onm and n (like the
term m1/2n3/4 in Theorem 1.1), and, except for the two-dimensional case, a series of “lower-

dimensional” terms (like the term m2/3n1/3q
1/3
2 in Theorem 1.1 and the terms m1/2n1/2q

1/4
3

and m2/3n1/3q
1/3
2 in Theorem 1.2). The leading terms, in the case of lines, become smaller

as d increases (when m is not too small and not too large with respect to n). Informally,
by placing the lines in a higher-dimensional space, it should become harder to create many
incidences on them.

Nevertheless, this is true only if the setup is “truly d-dimensional”. This means that
not too many lines or curves can lie in a common lower-dimensional space. The lower-
dimensional terms handle incidences within such lower-dimensional spaces. There is such a
term for every dimension j = 2, . . . , d− 1, and the “j-dimensional” term handles incidences
within j-dimensional subspaces (which, as the quadrics in the case of lines in four dimensions
in Theorem 1.2, are not necessarily linear and might be algebraic of low constant degree).
Comparing the bounds for lines in two, three, and four dimensions, we see that the j-
dimensional term in d dimensions, for j < d, is a sharper variant of the leading term
in j dimensions. More concretely, if that leading term in j dimensions is manb then its
counterpart in the d-dimensional bound is of the form mantqb−t

j , where qj is the maximum
number of lines that can lie in a common j-dimensional flat or low-degree variety, and t
depends on j and d.

Our results. In this paper we consider a grand generalization of these results, to the case
where C is a family of bounded-degree algebraic curves with k degrees of freedom (and some
multiplicity s) in R

d. This is a very ambitious and difficult project, and the challenges that
it faces seem to be enormous. Here we make the first, and fairly significant, step in this
direction, and obtain the following bounds. As the exponents in the bounds are rather

1Their result holds for more general families of curves, not necessarily algebraic, but, since algebraicity
will be assumed in higher dimensions, we assume it also in the plane.
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cumbersome expressions in d, k, and j, we first state the special case of d = 3 (and prove
it separately), and then give the general bound in d dimensions.

Theorem 1.4 (Curves in R
3) Let k ≥ 2 be an integer, and let ε > 0. Then there exists

a constant c(k, ε) that depends on k and ε, such that the following holds. Let P be a set of
m points and C a set of n irreducible algebraic curves of constant degree with k degrees of
freedom (and some multiplicity s) in R

3, such that every algebraic surface of degree at most
c(k, ε) contains at most q2 curves of C. Then

I(P, C) = O

(

m
k

3k−2
+εn

3k−3
3k−2 +m

k
2k−1

+εn
3k−3
4k−2 q

k−1
4k−2

2 +m+ n

)

,

where the constant of proportionality depends on k, s, and ε (and on the degree of the
curves).

The corresponding result in d dimensions is as follows.

Theorem 1.5 (Curves in R
d) Let d ≥ 3 and k ≥ 2 be integers, and let ε > 0. Then there

exist constants cj(k, d, ε), for j = 2, . . . , d− 1, that depend on k, d, j, and ε, such that the
following holds. Let P be a set of m points and C a set of n irreducible algebraic curves
of constant degree with k degrees of freedom (and some multiplicity s) in R

d. Moreover,
assume that, for j = 2, . . . , d − 1, every j-dimensional algebraic variety of degree at most
cj(k, d, ε) contains at most qj curves of C, for given parameters q2 ≤ . . . ≤ qd−1 ≤ n. Then
we have

I(P, C) = O



m
k

dk−d+1
+εn

dk−d
dk−d+1 +

d−1
∑

j=2

m
k

jk−j+1
+ε

n
d(j−1)(k−1)

(d−1)(jk−j+1) q
(d−j)(k−1)

(d−1)(jk−j+1)

j +m+ n



 ,

where the constant of proportionality depends on k, s, d, and ε (and on the degree of the
curves), provided that, for any 2 ≤ j < l ≤ d, we have (with the convention that qd = n)

qj ≥

(

ql−1

ql

)l(l−2)

ql−1. (4)

Discussion. The advantages of our results are obvious: They provide the first nontrivial
bounds for the general case of curves with any number of degrees of freedom in any dimen-
sion (with the exception of one previous study of Fox et al. [8], in which weaker bounds are
obtained, for arbitrary varieties instead of algebraic curves). Apart for the ε in the expo-
nents, the leading term is “best possible,” in the sense that (i) the polynomial partitioning
technique [11] that our analysis employs (and that has been used in essentially all recent
works on incidences in higher dimensions) yields a recurrence that solves to this bound, and,
moreover, (ii) it is (nearly) worst-case tight for lines in two, three, and four dimensions (as
shown in the respective works cited above), and in fact is likely to be tight for lines in
higher dimensions too, using a suitable extension of a construction, due to Elekes and used
in [11, 22].

Nevertheless, our bounds are not perfect, and tightening them further is a major chal-
lenge for future research. Specifically:
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(i) The bounds involve the factor mε. As the existing works indicate, getting rid of this
factor is no small feat. Although the factor does not show up in the cases of lines in two
and three dimensions, it already shows up (sort of) in four dimensions (Theorem 1.2), as
well as in the case of circles in three dimensions [20]. (A recent study of Guth [9] also pays
this factor for the case of lines in three dimensions, in order to simplify the original analysis
in the Guth–Katz paper [11].) See the proofs and comments below for further elaboration
of this issue.

(ii) The condition that no surface of degree cj(k, d, ε) contains too many curves of C, for
j = 2, . . . , d − 1, is very restrictive, especially since the actual values of these constants
that arise in the proofs can be quite large. Again, earlier works also “suffer” from this
handicap, such as Guth’s work [9] mentioned above, as well as an earlier version of Sharir
and Solomon’s four-dimensional bound [21].

(iii) Finally, the lower-dimensional terms that we obtain are not best possible. For example,
the bound that we get in Theorem 1.4 for the case of lines in R

3 (k = 2) is O(m1/2+εn3/4+

m2/3+εn1/2q
1/6
2 + m + n). When q2 ≪ n, the two-dimensional term m2/3+εn1/2q

1/6
2 in

that bound is worse than the corresponding term m2/3n1/3q
1/3
2 in Theorem 1.1 (even when

ignoring the factor mε).

Our results are also related to recent works by Dvir and Gopi [5] and by Hablicsek and
Scherr [13], that study rich lines in high dimensions. Specifically, let P be a set of n points
in R

d and let L be a set of r-rich lines (each line of L contains at least r points of P). If
|L| = Ω(n2/rd+1) then there exists a hyperplane containing Ω(n/rd−1) points of P. Our
bounds might be relevant for extending this result to rich curves. Concretely, for a set P
of n points in R

d and a collection C of r-rich constant-degree algebraic curves, if |C| is too
large then the incidence bound becomes larger than our “leading term”, indicating that
some lower-dimensional surface must contain many curves of C, from which it might be
possible to also deduce that such a surface has to contain many points of P. While such an
extension is not straightforward, we believe that it is doable, and plan to investigate it in
our future work.

As in the classical work of Guth and Katz [11], and in the numerous follow-up studies
of related problems, here too we use the polynomial partitioning method, as pioneered in
[11]. The reason why our bounds suffer from the aforementioned handicaps is that we
use a partitioning polynomial of (large but) constant degree. (The idea of using constant-
degree partitioning polynomials for problems of this kind is due to Solymosi and Tao [24].)
When using a polynomial of a larger, non-constant degree, we face the difficult task of
bounding incidences between points and curves that are fully contained in the zero set of
the polynomial, where the number of curves of this kind can be large, because the polynomial
partitioning technique has no control over this value. We remark that for lines we have the
classical Cayley–Salmon theorem (see, e.g., Guth and Katz [11]), which essentially bounds
the number of lines that can be fully contained in an algebraic surface of a given degree,
unless the surface is ruled by lines. However, such a property has not been known for more
general curves. Nevertheless, Nilov and Skopenkov [17] have recently established such a
result involving lines and circles in R

3, and, very recently, Guth and Zahl [12] have done the
same for general algebraic curves in three dimensions. Handling these incidences requires
heavy-duty machinery from algebraic geometry, and leads to profound new problems in that
domain that need to be tackled.
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In contrast, using a polynomial of constant degree makes this part of the analysis much
simpler, as can be seen below, but then handling incidences within the cells of the partition
becomes non-trivial, and a naive approach yields a bound that is too large. To handle
this part, one uses induction within each cell of the partitioning, and it is this induction
process that is responsible for the weaker aspects of the (lower-dimensional terms in the)
resulting bound. Nevertheless, with these “sacrifices” we are able to obtain a “general
purpose” bound that holds for a broad spectrum of instances. It is our hope that this study
will motivate further research on this problem that would improve our results along the
“handicaps” mentioned earlier. Recalling how inaccessible were these kinds of problems
prior to Guth and Katz’s breakthroughs seven and five years ago, it is quite gratifying that
so much new ground can be gained in this area, including the progress made in this paper.

Background. Incidence problems have been a major topic in combinatorial and compu-
tational geometry for the past thirty years, starting with the aforementioned Szemerédi-
Trotter bound [27] back in 1983 (and even earlier). Several techniques, interesting in their
own right, have been developed, or adapted, for the analysis of incidences, including the
crossing-lemma technique of Székely [26], and the use of cuttings as a divide-and-conquer
mechanism (e.g., see [4]). Connections with range searching and related algorithmic prob-
lems in computational geometry have also been noted and exploited, and studies of the
Kakeya problem (see, e.g., [28]) indicate the connection between this problem and inci-
dence problems. See Pach and Sharir [19] for a comprehensive (albeit a bit outdated)
survey of the topic.

The landscape of incidence geometry has dramatically changed in the past seven years,
due to the infusion, in two groundbreaking papers by Guth and Katz [10, 11], of new
tools and techniques drawn from algebraic geometry. Although their two direct goals have
been to obtain a tight upper bound on the number of joints in a set of lines in three
dimensions [10], and a near-linear lower bound for the classical distinct distances problem
of Erdős [11], the new tools have quickly been recognized as useful for incidence bounds.
See [6, 14, 15, 20, 24, 29, 30] for a sample of recent works on incidence problems that use
the new algebraic machinery.

The present paper continues this line of research, and aims at extending the collection
of instances where nontrivial incidence bounds in higher dimensions can be obtained.

2 The three-dimensional case

Proof of Theorem 1.4. We fix ε > 0, and prove by induction on m+ n that

I(P, C) ≤ α1

(

m
k

3k−2
+εn

3k−3
3k−2 +m

k
2k−1

+εn
3k−3
4k−2 q

k−1
4k−2

)

+ α2(m+ n), (5)

where α1, α2 are sufficiently large constants, α1 depends on ε and k (and s), and α2 depends
on k (and s).

For the induction basis, the case where m,n are sufficiently small constants can be
handled by choosing sufficiently large values of α1, α2.

Since the incidence graph, as a subgraph of P × C, does not contain Kk,s+1 as a sub-
graph, the Kővári-Sós-Turán theorem (e.g., see [16, Section 4.5]) implies that I(P, C) =
O(mn1−1/k + n), where the constant of proportionality depends on k (and s). When
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m = O(n1/k), this implies the bound I(P, C) = O(n), which is subsumed in (5) if we
choose α2 sufficiently large. We may thus assume that n ≤ cmk, for some absolute constant
c.

Applying the polynomial partitioning technique. We construct an r-partitioning
polynomial f for P, for a sufficiently large constant r (depending on ε). That is, as estab-
lished in Guth and Katz [11], f is of degree O(r1/3) (the constant in the O notation is an
absolute constant), and the complement of its zero set Z(f) is partitioned into u = O(r)
open connected cells, each containing at most m/r points of P. Denote the (open) cells of
the partition as τ1, . . . , τu. For each i = 1, . . . , u, let Ci denote the set of curves of C that
intersect τi and let Pi denote the set of points that are contained in τi. We set mi = |Pi|
and ni = |Ci|, for i = 1, . . . , u, and m′ =

∑

imi, and notice that mi ≤ m/r for each i (and
m′ ≤ m). An obvious property (which is a consequence of Bézout’s theorem, see, e.g., [24,
Theorem A.2]) is that every curve of C intersects O(r1/3) cells of R3 \ Z(f). Therefore,
∑

i ni ≤ bnr1/3, for a suitable absolute constant b > 1 (that depends on the degree of the
curves in C). Using Hölder’s inequality, we have

∑

i

n
3k−3
3k−2

i ≤

(

∑

i

ni

)
3k−3
3k−2

(

∑

i

1

) 1
3k−2

≤ b′
(

nr
1
3

)
3k−3
3k−2

r
1

3k−2 = b′n
3k−3
3k−2 r

k
3k−2 ,

∑

i

n
3k−3
4k−2

i ≤

(

∑

i

ni

)
3k−3
4k−2

(

∑

i

1

)
k+1
4k−2

≤ b′
(

nr
1
3

)
3k−3
4k−2

r
k+1
4k−2 = b′n

3k−3
4k−2 r

k
2k−1 ,

for another absolute constant b′. Combining the above with the induction hypothesis,
applied within each cell of the partition, implies

∑

i

I(Pi, Ci) ≤
∑

i

(

α1

(

m
k

3k−2
+ε

i n
3k−3
3k−2

i +m
k

2k−1
+ε

i n
3k−3
4k−2

i q
k−1
4k−2

2

)

+ α2(mi + ni)

)

≤ α1





m
k

3k−2
+ε

r
k

3k−2
+ε

∑

i

n
3k−3
3k−2

i +
m

k
2k−1

+εq
k−1
4k−2

2

r
k

2k−1
+ε

∑

i

n
3k−3
4k−2

i



+
∑

i

α2(mi + ni)

≤ α1b
′





m
k

3k−2
+εn

3k−3
3k−2

rε
+

m
k

2k−1
+εn

3k−3
4k−2 q

k−1
4k−2

2

rε



+ α2

(

m′ + bnr1/3
)

.

Our assumption that n = O(mk) implies that n = O
(

m
k

3k−2n
3k−3
3k−2

)

(with an absolute

constant of proportionality). Thus, when α1 is sufficiently large with respect to r, k, and
α2, we have

∑

i

I(Pi, Ci) ≤ 2α1b
′





m
k

3k−2
+εn

3k−3
3k−2

rε
+

m
k

2k−1
+εn

3k−3
4k−2 q

k−1
4k−2

2

rε



+ α2m
′.

When r is sufficiently large, such that rε ≥ 6b′, we have

∑

i

I(Pi, Ci) ≤
α1

3

(

m
k

3k−2
+εn

3k−3
3k−2 +m

k
2k−1

+εn
3k−3
4k−2 q

k−1
4k−2

2

)

+ α2m
′. (6)
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Incidences on the zero set Z(f). It remains to bound incidences with points that lie on
Z(f). Set P0 := P ∩ Z(f) and m0 = |P0| = m −m′. Let C0 denote the set of curves that
are fully contained in Z(f), and set C′ := C \ C0, n0 := |C0|, and n′ := |C′| = n− n0. Since
every curve of C′ intersects Z(f) in O(r1/3) points, we have, taking α1 to be sufficiently
large, and arguing as above,

I(P0, C
′) = O(nr1/3) ≤

α1

3
m

k
3k−2

+εn
3k−3
3k−2 . (7)

Finally, we consider the number of incidences between points of P0 and curves of C0. For this,
we set c(k, ε) to be the degree of f , which is O(r1/3), and can be taken to be O((6b′)1/(3ε)).
Then, by the assumption of the theorem, we have |C0| ≤ q2. We consider a generic plane
π ⊂ R

3 and project P0 and C0 onto two respective sets P∗ and C∗ on π. Since π is chosen
generically, we may assume that no two points of P0 project to the same point in π, and
that no pair of distinct curves in C0 have overlapping projections in π. Moreover, the
projected curves still have k degrees of freedom, in the sense that, given any k points on
the projection γ∗ of a curve γ ∈ C0, there are at most s− 1 other projected curves that go
through all these points. This is argued by lifting each point p back to the point p̄ on γ
in R

3, and by exploiting the facts that the original curves have k degrees of freedom, and
that, for a sufficiently generic projection, any curve that does not pass through p̄ does not
contain any point that projects to p. The number of intersection points between a pair of
projected curves may increase but it must remain a constant since these are intersection
points between constant-degree algebraic curves with no common components. By applying
Theorem 1.3, we obtain

I(P0, C0) = I(P∗, C∗) = O(m
k

2k−1

0 q
2k−2
2k−1

2 +m0 + q2),

where the constant of proportionality depends on k (and s). Since q2 ≤ n and m0 ≤ m, we

have m
k

2k−1

0 q
2k−2
2k−1

2 ≤ m
k

2k−1n
3k−3
4k−2 q

k−1
4k−2

2 . We thus get that I(P0, C0) is at most

O

(

m
k

2k−1n
3k−3
4k−2 q

k−1
4k−2

2 + n+m0

)

≤
α1

3
m

k
2k−1n

3k−3
4k−2 q

k−1
4k−2

2 + b2n+ α2m0, (8)

for sufficiently large α1 and α2; the constant b2 comes from Theorem 1.3, and is independent
of ε and of the choices for α1, α2 made so far.

By combining (6), (7), and (8), including the case m = O(n1/k), and choosing α2

sufficiently large, we obtain

I(P, C) ≤ α1

(

m
k

3k−2
+εn

3k−3
3k−2 +m

k
2k−1

+εn
3k−3
4k−2 q

k−1
4k−2

2

)

+ α2(m+ n).

This completes the induction step and thus the proof of the theorem. ✷

Example 1: The case of lines. Lines in R
3 have k = 2 degrees of freedom, and we

almost get the bound of Guth and Katz in Theorem 1.1. There are three differences that
make this derivation somewhat inferior to that in Guth and Katz [11], as detailed in items
(i)–(iii) in the discussion in the introduction. We also recall the two follow-up studies of
point-line incidences in R

3, of Guth [9] and of Sharir and Solomon [23]. Guth’s bound
suffers from weaknesses (i) and (ii), but avoids (iii), using a fairly sophisticated inductive
argument. Sharir and Solomon’s bound avoids (i) and (iii), and almost avoids (ii), in a
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sense that we do not make explicit here. In both cases, considerably more sophisticated
machinery is needed to achieve these improvements.

Example 2: The case of circles. Circles in R
3 have k = 3 degrees of freedom, and we

get the bound

I(P, C) = O
(

m3/7+εn6/7 +m3/5+εn3/5q
1/5
2 +m+ n

)

.

The leading term is the same as in Sharir et al. [20], but the second term is weaker, because
it relies on the general bound of Pach and Sharir (Theorem 1.3), whereas the bound in
[20] exploits an improved bound for point-circle incidences, due to Aronov et al. [2], which
holds in any dimension. If we plug that bound into the above scheme, we obtain an exact
reconstruction of the bound in [20]. In addition, considering the items (i)–(iii) discussed
earlier, we note: (i) The requirements in [20] about the maximum number of circles on a
surface are weaker, and are only for planes and spheres. (ii) The mε factors are present in
both bounds. (iii) Even after the improvement noted above, the bounds still seem to be
weak in terms of their dependence on q2, and improving this aspect, both here and in [20],
is a challenging open problem.

Theorem 1.4 can easily be restated as bounding the number of rich points.

Corollary 2.1 For each ε > 0 there exists a parameter c(k, ε) that depends on k and ε,
such that the following holds. Let C be a set of n irreducible algebraic curves of constant
degree and with k degrees of freedom (with some multiplicity s) in R

3. Moreover, assume
that every surface of degree at most c(k, ε) contains at most q2 curves of C. Then, there
exists some constant r0(k, ε) depending on ε, k (and s), such that for any r ≥ r0(k, ε), the
number of points that are incident to at least r curves of C (so-called r-rich points), is

O

(

n3/2+ε

r
3k−2
2k−2

+ε
+

n3/2+εq
1/2+ε
2

r
2k−1
k−1

+ε
+

n

r

)

, where the constant of proportionality depends on k, s

and ε.

Proof. Denoting by mr the number of r-rich points, the corollary is obtained by combining
the upper bound in Theorem 1.4 with the lower bound rmr. ✷

3 Incidences in higher dimensions

Proof of Theorem 1.5. Again, we fix ε > 0, and prove, by double induction, where the
outer induction is on the dimension d and the inner induction is on m+ n, that I(P, C) is
at most

α1,d



m
k

dk−d+1
+εn

dk−d
dk−d+1 +

d−1
∑

j=2

m
k

jk−j+1
+ε

n
d(j−1)(k−1)

(d−1)(jk−j+1) q
(d−j)(k−1)

(d−1)(jk−j+1)

j



+ α2,d(m+ n), (9)

where α1,d, α2,d are sufficiently large constants, α1,d depends on k, ε, d (and s), and α2,d

depends only on d, k (and s).

For the outer induction basis, the case d = 2 follows by Theorem 1.3, and the case d = 3
is just Theorem 1.4, proved in the previous section. We assume therefore that the claim
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holds up to dimension d − 1, and prove it in dimension d ≥ 4. The base case of the inner
induction (that is, when d is fixed, we induct over m+n) is when m,n are sufficiently small
constants. The bound in (9) can then be enforced by choosing sufficiently large values of
α1,d, α2,d.

The case m = O(n1/k) can be handled exactly as for d = 3, so we may assume, as before,
that n ≤ cmk for some absolute constant c.

Applying the polynomial partitioning technique. The analysis is somewhat repetitive
and resembles the one in the previous section, although many details are different; it is given
in detail for the convenience of the reader.

Let f be an r-partitioning polynomial, for a sufficiently large constant r. According to
the polynomial partitioning theorem [11], we have degf = O(r1/d). Denote the (open) cells
of the partition as τ1, . . . , τu, where u = O(r). For each i = 1, . . . , u, let Ci denote the set
of curves of C that intersect τi and let Pi denote the set of points that are contained in
τi. We set mi = |Pi|, and ni = |Ci|, for i = 1, . . . , u, and m′ =

∑

imi, and notice that
mi ≤ m/r for each i (and m′ ≤ m). Arguing as before, every curve of C intersects at most
deg(f) = O(r1/d) cells of Rd \ Z(f). Therefore,

∑

i ni ≤ bdnr
1/d, for a suitable constant

bd > 1 that depends on d and the degree of the curves. Using Hölder’s inequality, we have

∑

i

n
dk−d

dk−d+1

i ≤ b′d

(

nr
1
d

)
dk−d

dk−d+1
r

1
dk−d+1 ≤ b′dn

dk−d
dk−d+1 r

k
dk−d+1 , and

∑

i

n
d(j−1)(k−1)

(d−1)(jk−j+1)

i ≤ b′d

(

nr
1
d

)
d(j−1)(k−1)

(d−1)(jk−j+1)
r

dk−jk+j−1
(d−1)(jk−j+1) ≤ b′dn

d(j−1)(k−1)
(d−1)(jk−j+1) r

k
jk−j+1 ,

for each j = 2, . . . , d − 1, where b′d is another constant parameter that depends on d.
Combining the above with the induction hypothesis implies that

∑

i I(Pi, Ci) is at most

∑

i



α1,d



m
k

dk−d+1
+ε

i n
dk−d

dk−d+1

i +
d−1
∑

j=2

m
k

jk−j+1
+ε

i n
d(j−1)(k−1)

(d−1)(jk−j+1)

i q
(d−j)(k−1)

(d−1)(jk−j+1)

j



+ α2,d(mi + ni)





≤ α1,d







m
k

dk−d+1
+ε

r
k

dk−d+1
+ε

∑

i

n
dk−d

dk−d+1

i +
d−1
∑

j=2

m
k

jk−j+1
+ε

q
(d−j)(k−1)

(d−1)(jk−j+1)

j

r
k

jk−j+1
+ε

∑

i

n
d(j−1)(k−1)

(d−1)(jk−j+1)

i






+
∑

i

α2,d(mi+ni)

≤ α1,db
′
d







m
k

dk−d+1
+εn

dk−d
dk−d+1

rε
+

∑d−1
j=2 m

k
jk−j+1

+ε
n

d(j−1)(k−1)
(d−1)(jk−j+1) q

(d−j)(k−1)
(d−1)(jk−j+1)

j

rε






+α2,d

(

m′ + bdnr
1/d
)

.

Since we assume that n = O(mk), we have n = O
(

m
k

dk−d+1n
dk−d

dk−d+1

)

, with a constant of

proportionality that depends only on d. Thus, when α1,d is sufficiently large with respect
to r, d, and α2,d, we have

∑

i

I(Pi, Ci) ≤ 2α1,db





m
k

dk−d+1
+εn

dk−d
dk−d+1

rε
+

m
k

2k−1
+εn

dk−d
(d−1)(2k−1) q

(k−1)(d−2)
(d−1)(2k−1)

rε



+ α2,dm
′.
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When r is sufficiently large, such that rε ≥ 6b′, the bound is at most

α1,d

3



m
k

dk−d+1
+εn

dk−d
dk−d+1 +

d−1
∑

j=2

m
k

jk−j+1
+ε

n
d(j−1)(k−1)

(d−1)(jk−j+1) q
(d−j)(k−1)

(d−1)(jk−j+1)

j



+ α2,dm
′. (10)

Incidences on the zero set Z(f). It remains to bound incidences with points that lie on
Z(f). Set P0 = P ∩ Z(f) and m0 = |P0| = m −m′. Let C0 denote the set of curves that
are fully contained in Z(f), and set C′ = C \ C0, n0 = |C0|, and n′ = |C′| = n − n0. Since
every curve of C′ intersects Z(f) in O(r1/d) points, we have, arguing as above,

I(P0, C
′) ≤ bdn

′r1/d = O(nr1/d) ≤
α1,d

3
m

k
dk−d+1

+εn
dk−d

dk−d+1 , (11)

provided that α1,d is chosen sufficiently large.

Finally, we consider the number of incidences between points of P0 and curves of C0.
For this, we set cd−1(k, d, ε) to be the degree of f , which is O(r1/d) = O((6b′)1/(εd)). Then,
by the assumption of the theorem, we have |C0| ≤ qd−1. We consider a generic hyperplane
H ⊂ R

d and project P0 and C0 onto two respective sets P∗ and C∗ on H. Arguing as in the
three-dimensional case, we can enforce that I(P0, C0) = I(P∗, C∗), that the projected curves
have k degrees of freedom, and that, for j < d− 1, the pairs (qj , cj) remain unchanged for
P∗ and C∗ within H. Applying the induction hypothesis for dimension d− 1, and recalling
that |C0| ≤ qd−1, we obtain

I(P0, C0) = I(P∗, C∗) ≤ α1,d−1





d−1
∑

j=2

m
k

jk−j+1
+ε

q
(d−1)(j−1)(k−1)
(d−2)(jk−j+1)

d−1 q
(d−j−1)(k−1)
(d−2)(jk−j+1)

j



+α2,d−1(m+n).

As is easily verified, Equation (4) with l = d (and qd = n) implies that, for each j,

q
(d−1)(j−1)(k−1)
(d−2)(jk−j+1)

d−1 q
(d−j−1)(k−1)
(d−2)(jk−j+1)

j ≤ n
d(j−1)(k−1)

(d−1)(jk−j+1) q
(d−j)(k−1)

(d−1)(jk−j+1)

j .

By choosing α1,d ≥ 3α1,d−1 and α2,d ≥ α2,d−1, we have that I(P0, C0) is at most

α1,d

3





d−1
∑

j=2

m
k

jk−j+1
+ε

n
d(j−1)(k−1)

(d−1)(jk−j+1) q
(d−j)(k−1)

(d−1)(jk−j+1)

j



+ α2,d(m+ n). (12)

By combining (10), (11), and (12), including the case m = O(n1/k), and choosing α2,d

sufficiently large, we obtain

I(P, C) ≤ α1,d

(

m
k

dk−d+1
+εn

dk−d
dk−d+1 +m

k
2k−1

+εn
dk−d

(d−1)(2k−1) q
(k−1)(d−2)
(d−1)(2k−1)

)

+ α2,d(m+ n).

This completes the induction step and thus the proof of the theorem. ✷

As a consequence of Theorem 1.5, we have:

Example: incidences between points and lines in R
4.

In the earlier version [21] of our study of point-line incidences in four dimensions, we
have obtained the following weaker version of Theorem 1.2.
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Theorem 3.1 For each ε > 0, there exists an integer cε, so that the following holds. Let
P be a set of m distinct points and L a set of n distinct lines in R

4, and let q, s ≤ n be
parameters, such that (i) for any polynomial f ∈ R[x, y, z, w] of degree ≤ cε, its zero set
Z(f) does not contain more than q lines of L, and (ii) no 2-plane contains more than s
lines of L. Then,

I(P,L) ≤ Aε

(

m2/5+εn4/5 +m1/2+εn2/3q1/12 +m2/3+εn4/9s2/9
)

+A(m+ n),

where Aε depends on ε, and A is an absolute constant.

This result follows from our main Theorem 1.5, if we impose Equation (4) on q2 = s,

q3 = q, and n, which in this case is equivalent to s ≤ q ≤ n and q9

n8 < s. This illustrates
how the general theory developed in this paper extends similar results obtained earlier for
“isolated” instances. Nevertheless, as already mentioned earlier, the bound for lines in R

4

has been improved in Theorem 1.2 of [22], in its lower-dimensional terms.

Discussion. We first notice that similarly to the three-dimensional case, Theorem 1.5 im-
plies an upper bound on the number of k-rich points in d dimensions (see Corollary 2.1 in
three dimensions), and the proof thereof applies verbatim, with the appropriate modifica-
tions of the various exponents that now depend also on d. We leave it to the reader to work
out the precise statement.

Second, we note that Theorems 1.4 and 1.5 have several weaknesses. The obvious ones
are the items (i)–(iii) discussed in the introduction. Another, less obvious weakness, has to
do with the way in which the qj-dependent terms in the bounds are derived. Specifically,
these terms facilitate the induction step, when the constraining parameters qj are passed
unchanged to the inductive subproblems. Informally, since the overall number of lines in
a subproblem goes down, one would expect the various parameters qj to decrease too, but
so far we do not have a clean mechanism for doing so. This weakness is manifested, e.g.,
in Corollary 2.1, where one would like to replace the second term by one with a smaller
exponent of n and a larger one of q = q2. Specifically, for lines in R

3, one would like to
get a term close to O(nq2/k

3). This would yield O(n3/2/k3) for the important special case
q2 = O(n1/2) considered in [11]; the present bound is weaker.

A final remark concerns the relationships between the parameters qj , as set forth in
Equation (4). These conditions are forced upon us by the induction process. As noted above,
for incidences between points and lines in R

4, the bound derived in our main theorem 1.5
is (asymptotically) the same as that of the main result of Sharir and Solomon in [21].
The difference is that there, no restrictions on the qj are imposed. The proof in [21] is
facilitated by the so called “second partitioning polynomial” (see [14, 21]). Recently, Basu
and Sombra [3] proved the existence of a third partitioning polynomial (see [3, Theorem
3.1]), and conjectured the existence of a k-partitioning polynomial for general k > 3 (see [3,
Conjecture 3.4] for an exact formulation); for completeness we refer also to [8, Theorem
4.1], where a weaker version of this conjecture is proved. Building upon the work of Basu
and Sombra [3], the proof of Sharir and Solomon [22] is likely to extend and yield the same
bound as in our main Theorem 1.5, for the more general case of incidences between points
and bounded degree algebraic curves in dimensions at most five, and, if [3, Conjecture 3.4]
holds, in every dimension, without any conditions on the qj .
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