
SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 34, No. 6, pp. 1331–1351

OUTPUT-SENSITIVE CONSTRUCTION OF THE UNION
OF TRIANGLES∗

ESTHER EZRA† AND MICHA SHARIR†

Abstract. We present an efficient algorithm for the following problem: Given a collection
T = {Δ1, . . . ,Δn} of n triangles in the plane, such that there exists a subset S ⊂ T (unknown to us)
of ξ � n triangles, such that

⋃
Δ∈S Δ =

⋃
Δ∈T Δ, construct efficiently the union of the triangles in

T . We show that this problem can be solved in randomized expected time O(n4/3 logn+nξ log2 n),
which is subquadratic for ξ = o(n/ log2 n). In our solution, we use a variant of the method of
Brönnimann and Goodrich [Discrete Comput. Geom., 14 (1995), pp. 463–479] for finding a set cover
in a set system of finite VC-dimension. We present a detailed implementation of this variant, which
makes it run within the asserted time bound. Our approach is fairly general, and we show that it
can be extended to compute efficiently the union of simply shaped bodies of constant description
complexity in R

d, when the union is determined by a small subset of the bodies.
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1. Introduction. Many problems in computational geometry involve the task of
constructing the boundary of the union of n geometric objects in the plane or in higher
dimensions. Problems of this kind include motion planning [26], where we wish to
construct the forbidden portions of the configuration space; hidden surface removal for
visibility problems in three dimensions [32]; finding the minimal Hausdorff distance
between two sets of points (or of segments) in R

2 [23]; applications in geographic
information systems [15]; and many others. In this paper, we focus mainly on the
problem of constructing the union of n triangles in R

2, but we also show that our
algorithm can be extended to other geometric objects in the plane and in higher
dimensions.

Computing the union by constructing the full arrangement of the n input triangles
requires Θ(n2) time in the worst case, which, in many instances, is wasteful, since
the combinatorial complexity of the union boundary might be considerably smaller.
Nevertheless, an algorithm for this problem that runs in subquadratic time when the
boundary of the union has subquadratic complexity1 is unlikely to exist, since this
problem belongs to the family of 3SUM-hard problems [21], which are problems that
are very likely to require Ω(n2) time in the worst case; see below for more details.

However, subquadratic algorithms exist in several special cases, such as the case
of fat triangles (namely, every angle of each triangle is at least some constant positive
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1This is one variant of output sensitivity that one may wish to attain. In this paper we use a

different notion of output sensitivity, described later in the introduction.
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Fig. 1. (a) An arrangement of six triangles, illustrating the first measure of output sensitivity.
The triangles t1 and t2 cover the entire union, so the output size is 2. (b) Illustrating the second
measure of output sensitivity. The union boundary is determined only by the triangles t1, . . . , t4,
even though the triangles t5 and t6 cover the hole created by

⋃
i≤4 ti. The output size is 4 according

to the second measure and 6 according to the first.

angle) or of triangles that arise in the union of Minkowski sums of a fixed convex poly-
gon with a set of pairwise disjoint convex polygons (which is the problem one faces in
translational motion planning of a convex polygon). In these cases, the union has only
linear or near-linear complexity [24, 28, 29], and more efficient algorithms, based on
either deterministic divide-and-conquer or on randomized incremental construction,
can be devised and are presented in the above-cited papers.

If the input consists of general triangles, then the complexity of the union can
be Θ(n2) in the worst case. If it happens to be smaller, one can attempt to compute
the union by employing the randomized incremental construction (RIC) of Agarwal
and Har-Peled [1], whose analysis is based on Mulmuley’s theta series [32]. Briefly,
the algorithm inserts the triangles one at a time in a random order and maintains
the union incrementally, updating it after each insertion. As is well known (and dis-
cussed in [18]), the RIC algorithm has good performance, even when the size of the
arrangement is quadratic, provided that the depth d(v) (i.e., the number of input
triangles containing v in their interior) of most of the vertices v in the arrangement
induced by the n input triangles is large enough. We refer to such vertices as being
deep. Otherwise, when most of the vertices in the arrangement are shallow, the RIC
algorithm performs poorly. In this case, one can employ the disjoint cover (DC) algo-
rithm proposed in [18], which has good performance in practice. This algorithm also
inserts the triangles one at a time, but it computes an insertion order that attempts
to cover as many shallow vertices as possible in each insertion step. However, from
a theoretical point of view (and in view of certain pathological examples presented
in [18]), the DC algorithm can produce Ω(n2) vertices of the arrangement, even if the
size of the output (i.e., the number of vertices on the boundary of the union) is only
linear or constant, and it can be beaten by the RIC algorithm in such cases.

Output sensitivity. In this paper we present an efficient algorithm that computes
the union in an “output-sensitive” manner. There are two obvious ways to define
output sensitivity. The first is to measure the output size in terms of the size of the
smallest subset S ⊂ T that satisfies

⋃
S =

⋃
T , where

⋃
S (resp.,

⋃
T ) denotes the

union of the triangles in S (resp., in T ). The second measure is in terms of the size
of the smallest subset S′ such that ∂

⋃
T ⊆ ∂

⋃
S′. See Figure 1 for an illustration of

the two measures. Note that if the output size is ξ, according to either measure, the
actual complexity of the union may be as large as Θ(ξ2) (but not larger).
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The second measure of output size is likely to be too weak. Indeed, consider
the reduction, as presented in [21], of an instance of 3sum (namely, the problem of
determining whether there exist a ∈ A, b ∈ B, c ∈ C satisfying a+ b+ c = 0 for three
given sets A, B, C of real numbers) to an instance of the problem of determining
whether the union of a given set of triangles fully covers the unit square. We can fur-
ther reduce this latter problem to our problem, as follows. Let A denote an algorithm
that efficiently computes the union of n triangles in the plane in terms of the second
measure, and let TA(n, ξ) denote its running time, expressed as a function of n and
of the “output size” ξ. We assume that TA(n, ξ) = o(n2) when ξ = o(n). In order
to determine efficiently whether the given triangles fully cover the unit square, we
consider only the portions of the triangles that are contained in the unit square and
retriangulate them if necessary. In addition, we add four thin and narrow triangles
that cover the boundary of the unit square. We now run A on the newly constructed
instance. Clearly, there are no holes in the union of the newly created triangles if
and only if the original union contains the unit square. In this case, the boundary
of the new union consists of only four triangles, and thus A will terminate in a pre-
dictable subquadratic time. We thus run A. If it terminates within the anticipated
(subquadratic) time, we can determine, at no extra cost, whether the union covers the
unit square. Otherwise, we stop A and correctly report that the union of the original
triangles does not cover the unit square. Hence an efficient output-sensitive solution,
under the second measure, would have yielded a subquadratic solution to 3sum and
is thus unlikely to exist.

In contrast, the first measure does lend itself to an efficient output-sensitive so-
lution, which is the main result of this paper.

Our results. Specifically, we present an efficient algorithm to construct the bound-
ary of the union of a set T = {Δ1, . . . ,Δn} of n triangles in the plane, under
the assumption that there exists a subset S ⊂ T of ξ � n triangles (unknown
to us) such that

⋃
S =

⋃
T . We present an algorithm whose running time is

O(n4/3 log n+nξ log2 n), which is subquadratic when ξ = o(n/ log2 n). Our approach
is a randomized algorithm based on the method of Brönnimann and Goodrich for
finding a set cover or a hitting set in a set system of finite VC-dimension, as pre-
sented in [10]. Their method is based on a randomized natural selection technique
used by Clarkson [12, 13], Littlestone [27], and Welzl [35]; see section 2.1 for a brief
review of this method. In our case, the objects are the triangles of T , and any point
v in the plane defines a set Tv = {Δ ∈ T | v ∈ int(Δ)}. The collection {Tv}v∈R2

forms a set system for which a hitting set H ⊂ T is a subset satisfying
⋃
H =

⋃
T ,

and thus a minimum-size hitting set is the object that we wish to compute. (It is well
known, and easy to verify, that this set system has finite VC-dimension; see below
for details.) Note that this set system is the same as the one generated by sampling
one point v in the interior of each cell of the arrangement A(T ). In general, the
Brönnimann–Goodrich technique is not efficient enough for our purposes, but we use
a variant of the algorithm which can be implemented efficiently. Specifically, we apply
the algorithm of Brönnimann and Goodrich in an “approximate setting,” fine-tuning
it (using randomization) so that it constructs a subset T ′ of O(ξ log ξ) triangles of T ,
whose union covers the overwhelming majority of the vertices (of positive depth) in
the arrangement A(T ). This allows us, with some care, to compute the portion of⋃

T that lies outside
⋃
T ′ in an efficient explicit manner. We note that when mea-

suring the expected number of vertices generated by the algorithm, it suffices (and
is appropriate) to consider only vertices at positive depth, since vertices at depth 0
are the vertices of the union, and they have to be constructed by any algorithm that
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computes the union. We call the latter quantity, namely, the number of positive-depth
vertices generated by the algorithm, the residual cost of the algorithm.

In section 2.1 we briefly recall the algorithm of Brönnimann and Goodrich and
present our approximate version of it. Then we derive an upper bound on the ex-
pected residual cost of the algorithm in its approximate version. Section 3 describes
a detailed implementation of our algorithm. In this implementation, we use generic
and simple techniques that can be easily extended to other geometric objects of con-
stant description complexity2 in the plane and in R

d. These extensions are discussed
in section 4. We give concluding remarks and suggestions for further research in
section 5.

2. The union construction as a set cover problem.

2.1. An overview of the Brönnimann–Goodrich technique. A technique
for finding a set cover of a set system of finite VC-dimension is described in detail
by Brönnimann and Goodrich [10]; for the sake of completeness, we provide a brief
overview of this approach, in the context of the union construction problem. Very
recently, Even, Rawitz, and Shahar [17] have proposed an alternative technique, based
on a linear programming formulation of the problem, that appears to be somewhat
simpler and more efficient.

We denote by V the set of vertices of the arrangement A(T ) at positive depth
(considering only intersection points of the triangle boundaries and ignoring triangle
vertices). A hitting set for the set system induced by {Tv}v∈V , where Tv consists of
all the triangles Δ ∈ T that contain v in their interior, is a subset of triangles H ⊂ T
such that

⋃
H covers all the vertices in V . It need not necessarily cover

⋃
T entirely,

but the pieces left uncovered are easily computable and will be computed in the final
stages of the algorithm. Thus we consider the set system (T, V ∗), where

V ∗ = {Tv : v ∈ V }.

Since this set system is dual to (V, T ), which has some finite VC-dimension d (see,
e.g., [6]), it follows that the VC-dimension of (T, V ∗) is also finite; as a matter of fact,
it does not exceed 2d+1 [8]. As already mentioned, our goal is to find a hitting set
for (T, V ∗), that is, a subset H ⊆ T that has a nonempty intersection with every set
Tv ∈ V ∗, v ∈ V .

The algorithm of Brönnimann and Goodrich finds a hitting set whose size is
O(h∗ log h∗), where h∗ is the smallest size of any hitting set. Note that the reported
hitting set is actually a set cover for the primal set system (V, T ), where a set cover, in
this case, is a collection C ⊆ T of triangles whose union covers the entire set V . (For
technical reasons, the method of Brönnimann and Goodrich computes a set cover
via a hitting set of the dual set system, which is why we also work with the dual
system; see [10] for further details.) Since, by definition, the size of the optimal cover
is assumed to be ξ, it follows that the size of the set cover reported by the algorithm
is at most O(ξ log ξ).

We first describe the algorithm of Brönnimann and Goodrich in its “ideal setting,”
where the entire set V is given, and then show how to modify this setting, so that it
suffices to consider only a small subset of vertices.

2A set in R
d is said to have constant description complexity if it is a semialgebraic set defined

as a Boolean combination of a constant number of polynomial equalities and inequalities of constant
maximum degree in a constant number of variables.
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The Brönnimann–Goodrich algorithm has two key subroutines: (i) a net finder
F for (T, V ∗), which is an algorithm that, given a parameter r ≥ 1 and a weight
distribution w on T , computes a (1/r)-net for the weighted system (T, V ∗) [6]. A
(1/r)-net is a subset N ⊆ T , which has a nonempty intersection with each set in V ∗

whose total weight is at least 1/r of the total weight of T ; (ii) a verifier V that, given a
subset H ⊆ T , either states (correctly) that H is a hitting set, or returns a nonempty
“witness” set Tv ∈ V ∗, for some v, such that Tv ∩H = ∅. In our context, V simply
has to output a vertex v ∈ V that is not contained in the interior of

⋃
H.

The Brönnimann–Goodrich algorithm then proceeds as follows. We guess the
value of ξ (homing in on the right value using an exponential search). We assign
weights to the triangles in T . Initially, all weights are 1. We then use the net finder F
to construct a (1/2ξ)-net N for (T, V ∗). If the verifier V outputs some set Tv that N
does not hit, we double the weights of the triangles in Tv and repeat the process with
the new weights. As shown in [10], a hitting set is found after at most 4ξ log (n/ξ)
iterations.

The problem with this ideal setting is that it requires the construction of all the
(positive-depth) vertices of A(T ), which is much too much to ask for, since it can be
too expensive (V can be quadratic in the worst case, while ξ can still be very small).
Instead, we use a smaller randomly sampled subset R ⊆ V of r elements, whose actual
computation is presented in section 3. We then feed the verifier V with R instead
of the entire set V . We show that once the verifier V announces that the subset H,
reported by the net finder F , covers R (actually, it suffices that H covers most of
R—see below), the actual number of vertices of V that remain uncovered is relatively
small, with high probability. We then compute the uncovered vertices in an explicit
manner and thereby complete the construction of

⋃
T .

2.2. A subquadratic residual cost via sampling. We begin the analysis
of our implementation of the Brönnimann–Goodrich technique with the following
lemma, which provides a lower bound for the size of the sample R, which is sufficient
to guarantee the property asserted at the end of the preceding subsection.

In what follows, we say that an event occurs with overwhelming probability (or
w.o.p., for short) if the probability that it does not occur is at most 1

nc for some
constant c ≥ 1.

Lemma 2.1. Let T = {Δ1, . . . ,Δn} be a given collection of n triangles in the
plane, let V denote the set of vertices of the arrangement A(T ) at positive depth, let
κ denote the size of V , and suppose that there are only ξ triangles of T whose union
is equal to

⋃
T . Let S ⊆ T denote a subset of triangles, and let R ⊆ V be a random

sample of r = Ω(tlog n) positive-depth vertices, sampled after S has been fixed for some
prespecified parameter t ≥ 1 and with a sufficiently large constant of proportionality.
If S covers all but r

S
< r vertices of R, then, w.o.p., the actual number κ

S
of vertices

of V that are not covered by the elements of S satisfies

κ
S
≤ max

{κ

t
, β

κ

r
r
S

}
(2.1)

for some absolute constant β > 1.
Proof. For simplicity of exposition, we present the analysis under the model where

R is obtained by drawing each point of V independently with probability p = r
κ .

Nevertheless, the assertion of the lemma also holds for other models of sampling R,
in particular, for the model we use in the actual implementation of the algorithm;
see section 3 and Appendix A for details. Since each point in V \

⋃
S is chosen
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independently with probability r
κ , the expected number of vertices of R that are not

covered by S is r
κκS

.
It suffices to consider the case κ

S
> κ

t , for otherwise (2.1) clearly holds.
Since R is sampled after S has been fixed, the number r

S
of vertices of R that

are not covered by
⋃
S is a random variable, which can be expressed as the sum of

κ
S

mutually independent indicator variables, X1, . . . , Xκ
S
, each satisfying

Pr[Xi = 1] = p, Pr[Xi = 0] = 1 − p for i = 1, . . . , κ
S
.

Fix a parameter r0 > 0 and consider the event

AS : r
S
− r

κ
κ

S
< −r0.

Using a large deviation bound given in [6, Theorem A.13], it follows that

Pr[AS ] < e
− r0

2

2 r
κ

κ
S .(2.2)

Putting r0 =
√

2c0
r
κκS

log n for some constant c0 ≥ 1, (2.2) implies that the

probability that the event AS does not occur is at most 1
nc0

. Hence, w.o.p.,

r
S
− r

κ
κ

S
≥ −

√
2c0

r

κ
κ

S
log n,

or

r
S
≥

√
r

κ
κ

S

[√
r

κ
κ

S
−

√
2c0 log n

]
.

Since we have assumed that κ
S
> κ

t and that r = Ω(t log n), with a sufficiently large
constant of proportionality, it follows that, w.o.p.,√

r

κ
κ

S
−

√
2c0 log n > α

√
r

κ
κ

S
(2.3)

for some absolute constant 0 < α < 1, which implies that

κ
S
≤ κ

αr
r
S
,

and thus the lemma follows.
Remarks. (1) Note that Lemma 2.1, as well as its variant discussed in Appendix

A, deals with abstract sets, and does not exploit any special property of vertices in
arrangements of triangles. We will therefore be able to use the lemma, more or less
verbatim, in the extensions presented in section 4.

(2) We reemphasize that Lemma 2.1 relies on the assumption that R is sampled
after S has been chosen (in our implementation, this choice will also be random).
In particular, for the lemma to be applicable at each iteration of the Brönnimann–
Goodrich algorithm, R should be redrawn from scratch before applying the verifier
V. (See section 3 for further details.)

Lemma 2.1 implies that if the triangles in S cover all but at most r
t of the elements

of R (and thus r
S

= O
(
r
t

)
), then, w.o.p., κ

S
≤ κ

t . We thus construct the union of the
input triangles in two steps: in the first we find a set H of O(ξ log ξ) triangles that
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covers all but at most κ
t vertices of V and compute the union

⋃
H, and in the second

step we handle efficiently all the remaining vertices of V that H does not cover; see
below for details. It thus follows that the overall expected number of positive-depth
vertices generated by the algorithm is O(ξ2 log2 ξ) (which is the number of vertices of
the arrangement of the triangles in H) in the first part, and at most κ

t in the second
part.

We have established the following theorem.

Theorem 2.2. Let T = {Δ1, . . . ,Δn} be a given collection of n triangles in the
plane, and assume that there exists a subset H ⊂ T of ξ � n triangles (unknown to us)
such that

⋃
H =

⋃
T . Let V , κ, and t be as in Lemma 2.1. Then one can implement

the Brönnimann–Goodrich algorithm, so that its residual cost is O(ξ2 log2 ξ + κ
t ),

w.o.p. In particular, for t = max{ κ
ξ2 , 1} the residual cost is O(ξ2 log2 ξ).

Discussion. Clearly, if our only concern is to have the algorithm generate as few
positive-depth vertices as possible, we should choose t as large as possible, thereby
making R larger and the set of vertices of V not covered by H smaller. For example,
as noted, if we choose t = max{ κ

ξ2 , 1}, then the residual cost of the algorithm is at

most O(ξ2 log2 ξ), w.o.p. Since there are only ξ triangles that define the union, the
combinatorial complexity of the boundary of the union is only O(ξ2). This implies that
for the above choice of t, the overall number of vertices that the algorithm generates is
O(ξ2 log2 ξ), which is subquadratic for ξ = o(n/ log n). However, if we are concerned
with the actual running time, large values of t will slow down the algorithm, because
sampling the sets R will be more expensive. Hence, in the actual implementation of
the algorithm, presented in section 3 below, we will choose a smaller value for t in
order to optimize the bound on the actual running time of the algorithm. This will
also affect the bound on the residual cost.

We also note that the bound O(ξ2 log2 ξ) on the complexity of the union of the
triangles computed in the first part of the algorithm may be too pessimistic in practice.
If the complexity of the union

⋃
H turns out to be smaller, the residual cost will be

smaller too.

3. Implementation of the algorithm. The actual cost of the algorithm de-
pends on the cost of several support routines (in addition to the cost of the actual
generation of positive-depth vertices), such as (i) constructing the random samples
R; (ii) finding a (1/2ξ)-net for the set system (T, V ∗); (iii) implementing the verifier
V, which in our case is an algorithm that efficiently decides whether a given subset S
of triangles covers (most of the elements of) another given subset R of positive-depth
vertices; and (iv) the actual construction of the union of the input triangles after an
approximate hitting set has been found. We present here an implementation that uses
generic and simple techniques and yields a subquadratic output-sensitive algorithm
for constructing the union.

In the following description, we denote by h the size of the set H computed in
the first stage of the algorithm.

Sampling R. The task at hand is to construct, at each iteration of the algorithm,
a random sample of (an expected number of) r = ct log n positive-depth vertices of
A(T ), for appropriate values of the parameter t and the constant c. (As already
mentioned and to be discussed below, we have to draw a new subset R in each iteration
of the algorithm in order to eliminate any dependence between the present subset of
triangles reported by the net finder F and the (current) sample R.)

We sample R using the following simple approach. Suppose that we have a guess
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for the values of ξ and κ (see below for details concerning these guesses). Let κ∗

denote the number of vertices on the boundary of
⋃
T . If κ = O(κ∗), then the en-

tire arrangement has only O(κ∗) = O(ξ2) vertices and can thus be constructed in
time O(n log n + ξ2), using any of the standard techniques [32]. We may thus as-
sume that κ > βκ∗ for some absolute constant β > 1. We also may assume that
κ > β max{ξ2, n4/3} for the same constant. Otherwise, we construct the entire ar-
rangement in time O((n + ξ2 + n4/3) log n) = O((ξ2 + n4/3) log n).

We now perform
9c′r(n2)

κ sampling steps, where in each step we choose, uniformly
and independently, a pair of edges of distinct triangles in T for an appropriate con-
stant c′ > 1 (we first select a random pair of triangles and then randomly choose a
pair of triangle edges out of the nine triangle edge pairs induced by the two chosen
triangles). Clearly, a real vertex of the arrangement A(T ) (that is formed by a pair of
intersecting triangle edges) is chosen in a single step with probability κ+κ∗

9(n2)
, and thus

the expectation of the number r′ of pairs of edges that actually intersect is

κ + κ∗

9
(
n
2

) ·
9c′r

(
n
2

)
κ

= Θ(r).

Applying the same deviation bound used in Lemma 2.1, it can be shown that, w.o.p.,
the actual number of such pairs satisfies

r′ ≥ E(r′) −

√
γ

κ

9
(
n
2

) 9c′r
(
n
2

)
κ

log n = E(r′) −
√
γc′r log n

for some constant γ ≥ 1. Since
√
γc′r log n = o(r) (by the choice of γ, c′, and r), there

is a constant 0 < α < 1, which can be made arbitrarily small (for a proper choice of
γ) such that, w.o.p.,

r′ ≥ (1 − α)E(r′) = Θ(r)

for a sufficiently large constant of proportionality that depends on c′ and γ.
Not all sampled vertices have positive depth. However, since κ > βκ∗, the over-

whelming majority of the sampled vertices will have positive depth. By choosing c′

to be sufficiently large, at least r of these vertices will have positive depth, w.o.p.

Implementing a net finder F and a verifier V. As already described in
the preceding section, we assign weights to the elements of T (initially, each triangle
gets the weight 1) and use a net finder F to construct a (1/2ξ)-net for the weighted
dual system (T, V ∗). We then apply the verifier V in order to decide whether H
covers (most of the elements of the newly resampled subset) R. If it does, the first
part of the algorithm terminates, and we proceed to the actual construction of the
union; otherwise, V returns a particular witness subset Tv ∈ V ∗, for some v ∈ R,
such that Tv ∩H = ∅. We then double the weights of the triangles in Tv, construct
a new (1/2ξ)-net and a new sample R, and repeat this process until we find a subset
of triangles that covers all but at most r

t elements of R. The analysis in [10] can
be modified to show that the number of iterations that this algorithm performs is
O(ξ log (n/ξ)). Indeed, as long as there exists some vertex of the new sample R that
is not covered by the set H constructed by F , we keep on doubling the weights of
the triangles covering this vertex, and, according to the analysis in [10], the overall
number of such iterations does not exceed 4ξ log (n/ξ).
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We start with the description of the net finder F . We use a simple method,
presented by Matoušek [30] and briefly reviewed in [10], for reducing the weighted
case to the unweighted one. In this method, we scale all weights of the triangles in
T such that the sum w(T ) of the weights of all the elements of T satisfies w(T ) = n.
We then take �w(Δ) + 1� copies of each element Δ ∈ T (where w(Δ) is the scaled
weight of Δ). Note that the multiset T ′ that we have constructed contains all the
elements of T and has at most 2n elements. It is shown in [30] that an ε-net for (the
unweighted set) T ′ is also an ε-net for the weighted set T . Finding a (1/2ξ)-net for
T ′ can be done by drawing O(ξ log ξ) random elements of T ′. As shown, e.g., in [6],
an appropriate choice of the constant of proportionality ensures that such a random
sample is a (1/2ξ)-net, w.o.p. Clearly, creating the multiset T ′ takes O(n) time, and
drawing O(ξ log ξ) random elements of T ′ takes an additional time of O(ξ log ξ). Thus
the overall running time of the net finder is O(n), for a total time of O(nξ log (n/ξ))
over all iterations of the algorithm. Note that if the random sample is not a (1/2ξ)-net
(which may happen with an overwhelmingly small probability for any ξ ≥ log n; see,
e.g., [22]), the number of iterations of the algorithm may exceed 4ξ log (n/ξ), and, in
this case, we may stop the whole process and restart it from scratch. The fact that
the process fails with an overwhelmingly small probability ensures that, w.o.p., the
number of such trials is not larger than some constant. (When ξ < log n, the number
of trials that guarantees success, w.o.p., is at most O(log n). However, this does not
affect the asymptotic running time of the algorithm; see section 3 for the specific
bound on the running time of the algorithm.)

In the implementation of the verifier V, we use brute force and iterate over all the
vertices of R and the triangles of H in O(rξ log ξ) time, to determine whether there
exists a vertex in R that is not covered by the triangles of H. We denote the set of
all such vertices of R by RH . Suppose RH contains at least r

t vertices (otherwise,
the first part of the algorithm terminates). Rather than just picking any v ∈ RH , we
sample a random vertex v from RH , obtain, by brute force, the set Tv of all triangles
in T that contain v in their interior (clearly, Tv ∩H = ∅), and if Tv = ∅, double their
weights. The reason for sampling is that R may in general also contain zero-depth
vertices, and Tv will be empty for such vertices v. To accommodate this case, we
use the sampling technique and stop when we find a positive-depth vertex in RH .
Since (i) |RH | ≥ r

t = Ω(log n), (ii) κ > βκ∗, and (iii) R is sampled after H has been
constructed, it follows that a constant positive fraction of the elements of RH have
positive depth, and that, w.o.p., such an element will be found after at most O(log n)
samplings. Hence, w.o.p., the total cost of this substep is O(n log n). Since we repeat
this procedure for O(ξ log (n/ξ)) steps, the overall cost of this stage is, w.o.p.,

O(ξ log (n/ξ)(rξ log ξ + n log n)) = O(rξ2 log ξ log (n/ξ) + nξ log (n/ξ) log n),

and this bounds the overall running time, for both the net finder F and the verifier
V, over all iterations of the first part of the algorithm.

The actual construction of the union. The implementation of the actual
construction of the union proceeds through two stages. We first construct the union
of the triangles in the set H and then compute the portion of A(T ) outside this union.
As argued earlier, this portion contains, w.o.p., at most κ

t positive-depth vertices of
A(T ).

We first construct the union of the h triangles of H in O(h2) = O(ξ2 log2 ξ) time
(using, e.g., randomized incremental construction [32]). Next, we efficiently find the
intersections of the boundary of each of the remaining triangles Δ with the boundary
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U

t2

t1

t3

Fig. 2. The second stage of the actual construction of the union. U denotes the union of the
h triangles in the hitting set H and t1, t2, and t3 denote the remaining triangles to be inserted into
the union. Only the portions of t1, t2, and t3 that lie outside U are relevant.

of
⋃
H in order to collect all the portions of ∂Δ lying outside

⋃
H. We denote the

set of all such portions, over all the remaining triangles, by C. (See Figure 2 for an
illustration.)

In order to find those portions efficiently, we use the algorithm of Bentley and
Ottmann [9] (see also [16]) for reporting all k intersections in a set of n simply shaped
Jordan arcs in O(n log n+k log n) time. We partition the set of the remaining triangles
into � n

ξ log ξ � subsets, each containing O(ξ log ξ) triangles. We denote the collection

of all these subsets by S = {S1, . . . , S� n
ξ log ξ �}. Next, we compute, for every subset

S ∈ S, the arrangement A(S) induced by the triangles in S and then run the Bentley–
Ottmann algorithm on the combined collection of the edges of A(S) and the O(h2)
edges of

⋃
H. Since the edges of A(S) are pairwise openly disjoint, as are the edges

of
⋃
H, the algorithm will report only intersections between the boundary of

⋃
H

and the remaining triangles. Since the overall number of such intersections over all
subsets in S is at most κ

t , the overall cost of reporting all intersections is

O

((
n

ξ log ξ
· ξ2 log2 ξ

)
log n +

κ

t
log n

)
= O

(
nξ log ξ log n +

κ

t
log n

)
.

Next, we trim the edges of the remaining triangles to their portions outside
⋃
H

and then construct the entire union using another line-sweeping procedure on these
exterior edge portions and the boundary edges of

⋃
H [9]. Since there are at most κ

t
positive-depth vertices that are constructed during this process, the algorithm takes
O((n + ξ2 log2 ξ + κ

t ) log n) time.
This completes the detailed description of our algorithm, which is summarized in

the following procedure for which ξ is an input parameter. Since ξ is not known a
priori, we run this procedure with the values ξ = 1, 2, 4, . . . , 2i, . . . (where i < log n),
thereby guaranteeing a constant approximation of the actual value of ξ. The choice
of r (that is, of the parameter t) in this procedure will be specified later.
Procedure ConstructUnion(T , ξ)
1. Construct

⋃
T by a line-sweeping procedure on the triangles in T . Stop the

procedure as soon as it constructs more than max{ξ2, n4/3} vertices.
If it terminates goto 16.



THE UNION CONSTRUCTION AS A SET COVER PROBLEM 1341

2. Initialize all weights of the triangles in T to 1.
3. repeat
4. H ← (1/2ξ)-net of size O(ξ log ξ) for the weighted system (T, V ∗).
5. Construct a new random sample R of r vertices out of the vertices of A(T ).
6. Apply the verifier V to H and R.
7. if H covers all but at most r

t vertices of R goto 11.
8. else
9. Double the weights of all the triangles in the subset Tv reported by V.
10. endrepeat
11. Construct the union of the triangles in H.
12. Partition T into subsets S1, . . . , S� n

ξ log ξ � of size O(ξ log ξ) each.

13. For each Si, compute A(Si) and find all intersections between its edges and
∂
⋃
H, using a line-sweeping procedure.

14. Trim the edges of the remaining triangles to their portions outside
⋃
H.

Denote the set of the resulting segments by C.
15. Construct

⋃
T by a line-sweeping procedure on C and the boundary edges of⋃

H.
16. end

We substitute r = ct log n for some absolute constant c and for the parameter t
that we still need to fix. Since the size h of H is O(ξ log ξ) and since the algorithm
terminates after O(ξ log (n/ξ)) iterations, the overall cost of the algorithm (including
the exponential search of the actual value of ξ) is

min

⎧⎪⎪⎨
⎪⎪⎩

O((n + κ) log n),

O
(

n2

κ rξ log (n/ξ) + nξ log (n/ξ) log n + hrξ log (n/ξ)

+nh log n + κ
t log n + h2 log n

)
⎫⎪⎪⎬
⎪⎪⎭

= min

⎧⎪⎪⎨
⎪⎪⎩

O((n + κ) log n),

O
(

n2

κ tξ log n log (n/ξ) + nξ(log (n/ξ) + log ξ) log n

+ ξ2t log ξ log n log (n/ξ) + κ
t log n

)
⎫⎪⎪⎬
⎪⎪⎭ .

Choosing

t = max

{ √
κ

ξ log n
, 1

}
,

the running time bound becomes

min

{
O((n + κ) log n), O

(
n2

√
κ

log (n/ξ) + ξ
√
κ log2 n + nξ(log (n/ξ) + log ξ) log n

)}
.

Since κ = O(n2) and ξ ≤ n, this is upper bounded by

min

{
O((n + κ) log n), O

(
n2

√
κ

log n + nξ log2 n

)}
.

The two terms involving κ are equal when κ = n4/3. Hence the running time is always
bounded by O(n4/3 log n + nξ log2 n).
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We have established the following theorem.
Theorem 3.1. Let T be a set of n triangles in the plane whose union is equal to

the union of an unknown subset of ξ � n triangles. Then the union can be constructed
in randomized expected time O(n4/3 log n + nξ log2 n), which is subquadratic for any
ξ = o( n

log2 n
).

4. Extensions. In this section we show how to extend our algorithm to compute
the union of other planar shapes, as well as unions of simply shaped bodies in three
and higher dimensions.

The analysis of the algorithm of [10] holds for any range space of finite VC-
dimension. Consider an input set S of bodies in R

d, and let V denote the set of
positive-depth vertices of A(S). It is well known that the range space (S, V ∗) has
finite VC-dimension if the objects have constant description complexity. This can
be shown, for instance, by the linearization technique (see, e.g., [31]). In this case,
the number of vertices that the objects in the set H, reported by the net finder F ,
can generate, among themselves, is O(ξd logd ξ). In addition, Lemma 2.1 continues
to hold in this case, since it does not make any assumptions on the input shapes.
It thus follows that Theorem 2.2 can be easily extended to bodies in R

d of constant
description complexity, and that the residual cost of the algorithm, in this case, is
O(ξd logd ξ + κ

t ), w.o.p.
The actual implementation of the various stages of the algorithm can also be

easily extended to bodies in R
d of constant description complexity. We begin with

the planar case, and then discuss in section 4.1 the extension to higher dimensions.
In the case of simply shaped planar regions, we apply similar subroutines, which

run within the same time bounds as stated in section 3. In the sampling procedure,
each pair of region boundaries intersect in a constant number of points, and we collect
all these intersections to form R. Since our system has finite VC-dimension, we can
construct a (1/2ξ)-net for this system in much the same way as in section 3. In
addition, the verifier V can still detect whether a given vertex v is contained in the
interior of another given region in O(1) time, and thus these two subroutines will run
within the same asymptotic time bounds as in the case of triangles. (In fact, these
properties hold for bodies of constant description complexity in higher dimensions as
well, and thus the net finder F and the verifier V will run within the same asymptotic
time bounds in these cases too.) In the actual construction of the union, we use the
algorithm of Bentley and Ottmann [9], which can be applied for any set of Jordan arcs
of constant description complexity, with the same asymptotic time bound, as stated
in section 3.

We can thus easily derive the following theorem.
Theorem 4.1. Let S be a set of n planar regions of constant description complex-

ity, whose union is equal to the union of an unknown subset of ξ � n regions. Then
the union can be constructed in randomized expected time O(n4/3 log n + nξ log2 n),
which is subquadratic for any ξ = o( n

log2 n
).

4.1. The union of simply shaped bodies in R
d. We begin with the extension

of our algorithm to the case of bodies of constant description complexity in three
dimensions and then describe the generalization to higher dimensions.

In 3-space, we may assume in the sampling procedure that κ > β max{ξ3, n2}
for some absolute constant β > 1. Otherwise, we construct the union in time
O((n2 + ξ3) log n), as follows. We fix a body B ∈ S and intersect its boundary F with
each object B′ ∈ S\{B}. We obtain a collection of n−1 Jordan regions of constant de-
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scription complexity on F . The complement of their union is the portion of F that ap-
pears on ∂

⋃
S. Computing this complement can be done in time O(n log n+κB log n),

where κB is the number of vertices of A(S) that lie on F , using an appropriate variant
of the line-sweeping algorithm of Bentley and Ottmann [9]. Repeating this procedure
for each boundary F , the total cost is O((n2 + κ) log n) = O((n2 + ξ3) log n), as
claimed.

The main part of the algorithm then proceeds in much the same way as before.
For example, when we construct a sample R of vertices, we perform, in analogy with

the two-dimensional procedure,
c′r(n3)

κ sampling steps, for an appropriate constant
c′ > 1, where in each step we choose, uniformly and independently, a triple of distinct
input bodies in S and collect all resulting boundary intersections to form R. An
analysis similar to that described in section 3 shows that with an appropriate choice
of the constant c′, at least r of the chosen triples generate real vertices that have
positive depth, w.o.p.

As noted above, the net finder F and the verifier V can be implemented in a
manner similar to that described in section 3 and run within the same asymptotic
time bounds (and this holds in higher dimensions as well). It follows that, choosing

t = max{
√
κ

ξ logn , 1}, the first part of the algorithm computes a subset H of S of size

h = O(ξ log ξ), in time O(rξ2 log ξ log (n/ξ) + nξ log (n/ξ) log n), such that at most κ
t

positive-depth vertices of A(S) lie outside the (interior of the) union
⋃
H.

After constructing
⋃
H, we need to compute all the intersections between the

remaining bodies and the boundary of
⋃
H. This is done as follows. For each body

B ∈ S (particularly, B may belong to H), we take its boundary F and compute the
set of its exposed portions that lie outside

⋃
H \ {B}. This is done by constructing

the intersections B′
F = B′ ⋂F for each B′ ∈ H \ {B}, and then we compute the

complement of their union within F . Since the regions B′
F are bounded by curves of

constant description complexity, their arrangement has O(h2) complexity and can be
constructed in O(h2 log n) time. We denote by EF the set of edges of the arrangement
that appear on the boundary of the union of the regions B′

F . Clearly |EF | = O(h2).
We then intersect F with all the remaining n − h input bodies, obtaining a set of
curves SF bounding the intersection regions. Our goal is to find the portions of
the curves in SF that are not contained in the interior of

⋃
H; see Figure 3 for an

illustration. We first report the intersections between the curves in SF and EF in
O(nh log n+IF log n) time, where IF is the number of such intersections, in a manner
similar to that described in the two-dimensional case. Since the overall number of
these intersections, over all boundaries F , is less than κ

t , the overall time needed to
report all these intersections, over all these boundaries, is

O
(
n2h log n +

κ

t
log n

)
.

We now trim, on each boundary F , the edges of the cross sections of the remaining
input bodies, to their portions outside

⋃
H, and continue in a similar manner to that

described in the two-dimensional case; that is, we run a line-sweeping procedure on
these portions and the curves in EF . This constructs the entire two-dimensional
arrangements that these portions induce, from which the complete union boundary
is easy to extract. The running time of this procedure over all boundaries F is
O((n2 + nh2 + κ

t ) log n).

The overall running time of the algorithm in this case is thus
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F

Fig. 3. The case where the input bodies are simplices in three dimensions. The facet F belongs
to one of the h simplices in H. The thick lines are the boundaries of

⋃
H on F . The thin lines are

the intersections of the n − h remaining simplex boundaries with F . The intersections appearing
in the shaded regions lie in the interior of the union of the n simplices and need not be computed
explicitly.

min

{
O((n2 + κ) log n),

O
(

n3

κ rξ log (n/ξ) + nξ log (n/ξ) log n + hrξ log (n/ξ) + n2h log n + κ
t log n

)}

= min

{
O((n2 + κ) log n),

O
(

n3

κ tξ log n log (n/ξ) + ξ2t log ξ log n log (n/ξ) + n2ξ log ξ log n + κ
t log n

)}.

Choosing, as above,

t = max

{ √
κ

ξ log n
, 1

}
,

the running time bound becomes

min

{
O((n2 + κ) log n), O

(
n3

√
κ

log (n/ξ) + ξ
√
κ log2 n + n2ξ log ξ log n

)}
.

Since κ = O(n3) and ξ ≤ n, this is upper bounded by

min

{
O((n2 + κ) log n), O

(
n3

√
κ

log n + n2ξ log2 n

)}
.

The two terms involving κ are equal when κ = n2. Hence the running time is always
bounded by

O(n2 log n + n2ξ log2 n) = O(n2ξ log2 n),

which is subcubic for ξ = o( n
log2 n

).
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Consider next the union problem in d ≥ 4 dimensions. Let B be a set of n bodies
of constant description complexity in R

d, and let S ⊂ B be the (unknown) subset of
ξ bodies whose union is equal to

⋃
B. We compute the union by recursing on the

dimension. That is, we fix a body B ∈ B, take its boundary F , and intersect it with
each body B′ ∈ B \ {B}. We then compute the union of these intersection bodies
and construct its component within F . The union of all these components over all
boundaries F yields the boundary of ∂B. Note that if B ∈ B \ S, then the union of
the intersection bodies along ∂B covers the entire boundary of B. In fact, the union
of the intersections with the bodies of S already covers the boundary. Similarly, if
B ∈ S, then the union of the intersection bodies along ∂B is equal to the union of the
intersections with the bodies of S. In either case, with an appropriate parametrization
of the boundaries, we obtain n (d−1)-dimensional instances of the union construction
problem, each with output size ≤ ξ, according to our measure. We thus compute these
(d− 1)-dimensional unions recursively and stop the recursion when d = 3. This leads
to an overall algorithm that runs in randomized expected time O(nd−1ξ log2 n). That
is, we have the following theorem.

Theorem 4.2. Let S be a set of n bodies of constant description complexity in
R

d, whose union is equal to the union of an unknown subset of ξ � n bodies. Then
the union can be constructed in randomized expected time O(nd−1ξ log2 n), which is
asymptotically smaller than nd for any ξ = o( n

log2 n
).

5. Concluding remarks. We have presented an output-sensitive algorithm for
the problem of constructing efficiently the union of n triangles in the plane, whose
running time is expressed in terms of the smallest size ξ of an unknown subset of the
triangles whose union is equal to the union of the entire set. We have used a variant
of the technique of Brönnimann and Goodrich [10] for finding an approximate set
cover in a set system of finite VC-dimension. We have also presented a detailed and
fairly generic implementation of this method, showing that the above problem can be
solved in randomized expected time O(n4/3 log n + nξ log2 n), which is subquadratic
for ξ = o( n

log2 n
). Derandomization of our implementation seems nontrivial, and an

open problem that thus arises is to make the worst-case running time of the algorithm
subquadratic and deterministic. The algorithm does not have to know the value of
ξ in advance. Instead, it runs an exponential search on ξ, which approximates well
the correct value of ξ, up to a constant factor. However, this approximation concerns
only the size h of the subset H computed in the first stage of the algorithm, whereas
the number of the remaining triangles whose union covers

⋃
T \

⋃
H may be much

larger than h. An open problem that this paper raises is to compute (in subquadratic
time) a subset H ′ ⊂ T such that

⋃
H ′ =

⋃
T and |H ′| is within a constant (or even

O(log n)) factor off the optimum size ξ, or, alternatively, to show that this problem
is 3SUM-hard.

In addition, the subset H of triangles that the algorithm computes is not a hitting
set for the weighted system (T, V ∗) but is rather a (1/2ξ)-net for that system. Thus
another question that arises is whether the Brönnimann–Goodrich algorithm can be
transformed to an algorithm that finds a small ε-net in a general setting (with finite
VC-dimension), as it is believed that finding the smallest ε-net is NP-complete. This
might lead to an approximation algorithm for finding minimum-size ε-nets.

We showed that our approach can be easily extended to simply shaped bodies of
constant description complexity in R

d for d ≥ 2, where the union is determined by
ξ bodies. In the planar case, the running time remains O(n4/3 log n + nξ log2 n). In
d ≥ 3, the union can be constructed in randomized expected time O(nd−1ξ log2 n),
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which is asymptotically smaller than nd for ξ = o( n

log2 n
). For d > 3, we computed

the union recursively on d by constructing the union along each object boundary sep-
arately. However, this recursion had to stop at d = 3. Indeed, for d = 3, applying
the two-dimensional algorithm on the boundary of each input body yields an overall
O(n7/3 log n+n2ξ log2 n) expected running time, which is worse than the bound that

we have obtained when ξ = o( n1/3

logn ). (Note, however, that the two-dimensional ap-
proach is used in the actual construction of the union, because a global approach, in
this case, would yield an inefficient solution, since it involves the vertical decompo-
sition of simply shaped bodies in three dimensions, which may become quadratic in
the number of bodies in the worst case [14, 25, 34].)

A direction for further research is to determine whether there exist simpler efficient
approaches to the union construction problem studied in this paper. We note that
the standard RIC of [32] may fail in the case that we have considered. In fact, the
standard bad example for the RIC, consisting of n triangles that form Θ(n2) shallow
vertices that are all covered by one large triangle (or, more generally, sparsely covered
by ξ = o(n) triangles), shows that the RIC may fail to construct the union in an
output-sensitive manner.

Another direction for further research is to extend our approach to instances
involving unions in three dimensions where the worst-case complexity of the union
is only quadratic or near-quadratic (see [4, 7, 33] for known instances of this kind).
Our approach runs in subcubic time, when ξ is small, but does not improve upon
standard, output-insensitive techniques when the union complexity is always near-
quadratic. The simplest instance of such a problem would be the following: Given a
collection of n balls in R

3 whose union is equal to the union of some ξ = o(n) of the
balls, can the union be constructed in subquadratic time?

Finally, we note that in an earlier version of the algorithm [20], we used a different
approach, based on a careful implementation of the DC algorithm of [18]. The previous
approach is more complicated, yields a somewhat less efficient solution (which is
subquadratic for only a smaller range of the values of the parameter ξ), and is more
difficult to extend to other geometric shapes and to higher dimensions (in this previous
approach, the implementation was based on the techniques of [2, 3, 5, 11, 19]. Our
new approach, based on the technique of Brönnimann and Goodrich, is simpler and
more generic, improves our previous result, and extends to other shapes and to higher
dimensions.

Appendix A. The actual model for sampling R.

In this appendix we show that Lemma 2.1 continues to hold under the actual
model of sampling R.

As described in section 3, we draw the elements of R by randomly making
9c′r(n2)

κ
independent selections of a vertex out of V + for some constant c′ ≥ 1, where in
each trial, each vertex (or more precisely, each pair of triangle edges from distinct
triangles) is chosen with probability 1

9(n2)
(thus the same vertex may be sampled more

than once). The probability p that a vertex v ∈ V + is chosen (at least once) is equal
to

p = 1 −
(

1 − 1

9
(
n
2

)
)9c′r

(n2)
κ

.(A.1)
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It is easily checked that p is smaller than c′ rκ . Moreover, one can also easily show that

p > c′
r

κ
− (c′r)2

κ2
.(A.2)

In this model, the variables X1, . . . , Xκ
S

(as defined in Lemma 2.1) are no longer
independent. Nevertheless, examining the proof of the deviation bound given in [6,
Theorem A.13], we note that the only place where it uses the assumption that these
variables are independent is in the derivation of the equality

E
[
e
∑κ

S
i=1 λXi

]
=

κ
S∏

i=1

E
[
eλXi

]

for any λ. Moreover, the analysis in [6] uses only the value λ = r0
pκ

S
, where r0 is

defined as in Lemma 2.1. An inspection of the derivation of these bounds in [6] shows
that they continue to hold when

E
[
e
∑κ

S
i=1 λXi

]
≤

κ
S∏

i=1

E
[
eλXi

]
.

Furthermore, Lemma 2.1 continues to hold when the weaker inequality

E
[
e
∑κ

S
i=1 λXi

]
≤ γ

κ
S∏

i=1

E
[
eλXi

]
(A.3)

holds for some positive constant γ. This has the effect of multiplying the probability
that (2.1) fails by γ, which implies that (2.1) still holds, w.o.p. Hence, it suffices to
show that (A.3) holds for the above value of λ. More precisely, as in the original proof
of Lemma 2.1, it suffices to establish this under the assumption that κ

S
> κ

t .

In our model,

κ
S∏

i=1

E
[
eλXi

]
=

(
eλp + (1 − p)

)κ
S =

(
1 + p(eλ − 1)

)κ
S ,(A.4)

and

E
[
e
∑κ

S
i=1 λXi

]
=

r∗∑
m=0

Pr [r
S

= m] eλm,(A.5)

where r∗ = min{ 9c′r(n2)
κ , κ

S
}. (Note that Pr[r

S
= m] = 0 for any m > r∗.)

In each of the
9c′r(n2)

κ drawing trials, the probability that we have selected a

vertex v, and that it is not covered by S, is q = κ

9(n2)
· κ

S

κ =
κ
S

9(n2)
. Since these trials

are independent, we have

Pr [r
S

= m] =

(
r∗

m

)
qm(1 − q)

r∗−m
.
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Hence the expression in (A.5) becomes

r∗∑
m=0

(
r∗

m

)
qm(1 − q)

r∗−m
eλm =

(
eλq + 1 − q

)r∗
=

(
1 + q

(
eλ − 1

))r∗
.

In other words, putting eλ − 1 = λ0, we need to show that

(1 + λ0q)
r∗ ≤ γ (1 + λ0p)

κ
S

for some constant γ > 0. We will show that

(1 + λ0q)
r∗ ≤ (1 + λ0p)

2c′r
(1 + λ0p)

κ
S ,

which implies the preceding inequality because (1 + λ0p)
2c′r = O(1). Indeed, (1 +

λ0p)
2c′r < e2c′λ0pr. Using the fact that eλ ≤ 1 + 2λ for 0 ≤ λ ≤ 1 and substituting

λ = r0
pκ

S
(which is indeed ≤ 1 when r0 is chosen as in Lemma 2.1 and c′ is sufficiently

large, as is easily verified) and λ0 = eλ − 1, we have λ0 ≤ 2λ, and thus

e2c′λ0pr ≤ e
4c′

rr0
κ
S .

Since we choose r0 =
√

2c0
r
κκS

log n in Lemma 2.1, for some constant c0 ≥ 1, the
latter expression is smaller than

e
4c′ r

κ
S

√
2c0

r
κκ

S
logn

= e
O
(
r
√

r log n
κκ

S

)
,

which, since we assume that κ
S
> κ

t , is upper bounded by

eO( r
κ

√
tr logn).

Substituting r = ct log n, for some constant c, and t = max{
√
κ

ξ logn , 1}, as above,

and using the assumption that κ > β max{ξ2, n4/3}, for an absolute constant β > 1
(see section 3), we have

e2c′λ0pr < max

{
e
O
(

1
ξ2

)
, e

O
(

log2 n
κ

)}
= O(1).

It thus remains to show that

(1 + λ0q)
r∗ ≤ (1 + λ0p)

2c′r+κ
S .(A.6)

Let us first assume that
9c′r(n2)

κ ≤ κ
S
. We thus need to show that

(
1 + λ0

κ
S

9
(
n
2

)
) 9c′r(n2)

κ

≤ (1 + λ0p)
2c′r+κ

S

or that

(
1 + λ0

κ
S

9
(
n
2

)
) 9(n2)

κ
S

≤ (1 + λ0p)
κ(2c′r+κ

S
)

c′rκ
S .
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Note that the function (1+λ0x)
1
x is monotone decreasing, and since we have assumed

that
9c′r(n2)

κ ≤ κ
S
, it follows that

κ
S

9(n2)
≥ c′r

κ > p. We thus have

(
1 + λ0

κ
S

9
(
n
2

)
) 9(n2)

κ
S

≤ (1 + λ0p)
1
p .

It therefore suffices to show that 1
p ≤ κ(2c′r+κ

S
)

c′rκ
S

. Using (A.2), p > c′ rκ − (c′r)2

κ2 , and

thus it suffices to show that c′r
κ (1 − c′r

κ ) ≥ c′rκ
S

κ(2c′r+κ
S

) , or that

1 − c′r

κ
≥ 1 − 2c′r

2c′r + κ
S

,(A.7)

or that

κ ≥ c′r +
κ

S

2
,

which clearly holds, since κ
S
≤ κ and r = o(κ).

We next assume that
9c′r(n2)

κ > κ
S
. We thus need to show that(

1 + λ0
κ

S

9
(
n
2

)
)

≤ (1 + λ0p)
2c′r+κ

S
κ
S .

Using the facts that (1 + λ0p)
2c′r+κ

S
κ
S ≥ 1 + λ0p (

2c′r+κ
S

κ
S

) and
κ
S

9(n2)
< c′r

κ , as well as

(A.2), it is sufficient to show that

c′r

κ
≤ c′

r

κ

(
1 − c′r

κ

)(
1 +

2c′r

κ
S

)

or that (1 − c′r
κ )(1 + 2c′r

κS
) ≥ 1, which is identical to (A.7), as is easily checked, and

thus follows by the preceding argument.
We note that (A.6) holds for any value of λ0 > 0, and the assumption on λ is

used only when showing that (1 +λ0p)
2c′r = O(1). This completes the proof of (A.3)

for the value of λ that we use and therefore shows that Lemma 2.1 also holds for the
sampling model used by our algorithm.
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