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Abstract

We prove a near-linear bound on the combinatorial complexity of the union
of n fat convex objects in the plane, each pair of whose boundaries cross at
most a constant number of times.

1 Introduction

Let C be a collection of n compact convex sets in the plane, satisfying the following
properties:

(i) The objects in C are a-fat, for some fixed o > 1; that is, for each ¢ € C there
exist two concentric disks D C ¢ C D’ such that the ratio between the radii of
D" and D is at most .

ii) For any pair of distinct objects ¢, ¢’ € C, their boundaries intersect in at most s
y J
points, for some fixed constant s.

See [12] for more details concerning fat objects in the plane.

Our goal is to derive a near-linear upper bound on the combinatorial complexity of
the union U = JC, where we measure the complexity by the number of intersection
points between the boundaries of the sets of C that lie on OU.
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There are not too many results of this kind. If C is a collection of a-fat triangles,’
then the complexity of U is O(nloglogn) (with the constant of proportionality de-
pending on «) [9], and this bound improves to O(n) if the triangles are nearly of
the same size [1]. See also [13] for additional results concerning fat polygons. If
C is a collection of n pseudo-disks (arbitrary simply-connected regions bounded by
closed Jordan curves, each pair of whose boundaries intersect at most twice), then
the complexity of U is O(n) [7]. Of course, without any additional conditions, the
complexity of U can be Q(n?), even for the case of (non-fat) triangles. Even for fat
convex objects, something like condition (ii) must be assumed, or else the complexity
of the union might be arbitrarily large, an easy observation that has been noted in
[9].

The main result of this paper is

Theorem 1.1 The combinatorial complexity of the union of a collection C that satis-
fies conditions (i)-(ii) is O(n'*¢), for any ¢ > 0, where the constant of proportionality
depends on £, a and s.

Theorem 1.1 constitutes a significant progress in the study of the union of planar

objects, an area that has many algorithmic applications, such as finding the maximal
depth in an arrangement of fat objects (see [3]), hidden surface removal in a collection
of fat objects in 3-space [6], and point-enclosure queries in a collection of fat objects
in the plane [5].
Remark: In an earlier version of this paper, the authors have proved the slightly
better bound O(\¢(n)) on the complexity of the union of C, under the additional
assumptions that all the regions in C are roughly of the same size and have bounded
curvature. The proof for this special case is considerably simpler than the one given
below. This result will be part of the final version of the paper, although it is not
given in the present version.

2 Analysis

2.1 Touching and shattering vertices

In this subsection, we derive a general property of the union of planar sets, which we
believe to be of independent interest.

Let C be a collection of n compact simply-connected sets in the plane, each
bounded by a closed Jordan curve (we refer to the sets in C as Jordan regions),
and let U denote their union. We assume that these regions are in general position,
so that each pair of boundaries intersect in a finite number of points and properly

'For triangles, there is an equivalent definition of fatness that requires all angles to be at least
ap; in [9], this is called ap-fatness.
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cross at each point of intersection, and no three boundaries have a common point.
(In this subsection we make no other assumption on C.) As already mentioned, we
measure the combinatorial complexity of U by the number of vertices of the arrange-
ment A(C) of C (i.e., points of intersection between pairs of boundaries of regions in
C) that lie on its boundary. We classify the arrangement vertices into two categories:

touching vertices: these are intersections between pairs of boundaries that intersect
at only two points.

shattering vertices: these are all the other boundary intersection points.

The [evel of a vertex of A(C) is the number of regions that contain it in their interior.
Thus the vertices of U are exactly the vertices at level 0.

Let T(C) (resp. S(C)) denote the number of touching (resp. shattering) vertices
of U.

Theorem 2.1 For any integer parameter k < n/2, we have
T(C) = O (n+ kE(T(R)) + K*E(S(R))),

where R is a random sample of n/k regions of C, and where E denotes expectation
with respect to the choice of R.

Proof: Fix a set ¢ € C, and consider the circular sequence o of vertices of A(C) in
counterclockwise order along dc. Partition ¢ into contiguous subsequences oy, . .., 0,
such that the arcs of dc between the first and last vertices of each o; (where we
go in counterclockwise direction from the first to the last vertex) are precisely the
connected components of dcNint(U). See Figure 1 for an illustration. Let us denote
by v; the arc corresponding to o;, for i = 1,...,m, and let u;, v; denote the clockwise
and counterclockwise endpoints of v;, respectively. Note that the overall number N
of subsequences, over all ¢ € C, is the number of vertices of U (each subsequence
contributes two vertices and each vertex is counted twice).

Let k be the given ‘threshold parameter’. We classify the subsequences o; (and
the arcs 7;) into the following three categories:

Short-and-touching sequences: Sequences o; with fewer than k vertices, all of which
are touching.

Shattering sequences: Sequences o; that contain a shattering vertex among their first
k elements.

Long sequences: Sequences o; with at least k elements, whose first k& elements are
all touching.
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The arcs v; inherit the same classification from their corresponding sequences o;. We
denote the overall number of short-and-touching (resp. shattering, long) subsequences,
over all sets ¢ € C, by Ny (resp. N, IN;). Clearly, N = Ny + N, + N;.

Lemma 2.2 Ny = O(N,+ N, +n).

Proof: We construct a (plane embedding of a) planar graph G as follows. The nodes
of G are the counterclockwise endpoints v; of shattering and of long arcs; in addition,
if a region ¢ has only short-and-touching arcs along its boundary, we add to G' a node
that lies somewhere on d¢, but not on any of these arcs. (If this is impossible then
dc Cint(U), and we can simply ignore ¢ in what follows, since it does not contribute
any vertex to U.) The number of nodes of G is thus < N; + N; + n.

Let w be a vertex of U incident to the boundaries of two sets a,b € C, such that w
is an endpoint of a short-and-touching sequence on both da and 9b. Let v, (resp. vy)
be the node of G nearest to w along da (resp. 0b) in clockwise direction. We then
add to G an edge that connects v, to v, and draw it by connecting v, to w along
da in counterclockwise direction, and by connecting w to v, along 0b in clockwise
direction. We refer to each of these two portions of the edge as a half-edge. We shift
the resulting collection of edges slightly, to make sure that they do not overlap along
the boundaries; the rule is that when several half-edges emerge from the same node
Vg, their relative interiors are slightly shifted into the interior of the corresponding
region a, so that the shorter the half-edge is, the closer it is to the boundary. See
Figure 1 for an illustration.

This drawing of G may contain crossing pairs of edges, but we claim that any
pair of edges cross an even number of times. To see this, consider the collection
of half-edges of (G, each connecting a node v, € 0a, along the boundary of a, to
a ‘middle’ vertex w, as defined above. We claim that a pair of half-edges is either
disjoint or cross each other exactly twice. Indeed, by construction, half-edges along
the boundary of the same a are drawn so that they do not cross at all. Let = and =’
be two crossing half-edges, drawn along the boundaries of two respective distinct sets
¢, € C. By construction, all the sets that 7 crosses are such that their boundaries
cross Jc exactly twice, and 7 passes through (or, since it was perturbed, very near)
those two intersection points, and similarly for 7’. Hence dc¢ and ¢’ cross each other
exactly twice, and the same holds for 7, . (It is possible that one of these two points
w is an endpoint of, say, 7’. In this case 7’ must reach w from inside ¢, for otherwise
it would not have crossed c¢ at all, as is easily verified, contrary to our assumption.
Since 7 has been perturbed into ¢, it follows that = and 7’ cross at w too.)

It is known [8, Corollary 3.1] that a graph that can be drawn in the plane so
that every pair of edges cross an even number of times is planar. Hence G is planar.
By construction, and by definition of touching vertices, any pair of nodes of G are
connected by at most two edges, so Euler’s formula is easily seen to imply that the
number of edges of GG is at most 6 times the number of its nodes. This completes the
proof of the lemma. O
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Figure 1: The proof of Theorem 2.1: o, 05, and o3 are shattering sequences; o, and
o5 are short-and-touching sequences. Two edges of the graph G are drawn as dashed
arcs.
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Lemma 2.2 implies that T(C) = O(N; + N; +n). Indeed, the lemma bounds the
number of touching vertices on QU that are endpoints of two short-and-touching arcs.
Any other touching vertex of QU is an endpoint of a shattering or a long arc, so this
upper bound caters to these vertices too. We charge each long sequence o to the
block of the first k of its vertices. Clearly, each such vertex can be charged at most
twice (once along each boundary it is incident to), and they are all at level at most
k. Hence, N; is at most 2/k times the number of touching vertices at level at most k.
Applying the probabilistic analysis technique of Clarkson and Shor [2] (see also [10]),
we thus obtain

Ni= 2 O(PE(T(R))) = O(B(T(R))),

where R is a random sample of n/k regions from C. Similarly, we charge each shat-
tering sequence o to the first shattering vertex that it contains. Again, such a vertex
can be charged at most twice, and it lies at level at most k, so, arguing as above,
we obtain Ny = O(K*E(S(R))), where R is as above. This concludes the proof of
Theorem 2.1. O

Remark: The proof technique of Theorem 2.1 can be applied to obtain an alternative
simple proof of the result of [7], that if A(C) has no shattering vertices then the number
of vertices of U is at most 6n — 12 (for n > 3). For this, we define a graph G* with n
nodes, one node for each region in C, where the node of region ¢ is drawn as a point on
Jc that also lies on U (if no such point exist, we can ignore ¢, as above). We draw an
edge of G* for each vertex w of U, incident to two boundaries da, db, by connecting,
as above, the nodes representing a and b to w along (actually, slightly shifted away
from) the respective boundaries. Arguing exactly as in the proof of Lemma 2.2, it is
easily verified that every pair of edges of G* cross an even number of times. Hence
G* is planar, and no pair of its nodes is connected by more than two edges, which
implies, using Euler’s formula as above, that the number of edges of G* is at most
6n — 12, as asserted.

2.2 Caps, inscribed fat polygons, and their properties

We now return to the case where C satisfies the conditions (i) and (ii) in the intro-
duction. Let ¢ € C. We inscribe in ¢ a convex polygon P, defined as follows. We
choose some constant integer parameter ¢ > 12, which also satisfies

arcsin(cos(m/t)/a) > 27 /t,

and define 0; = 27j/t, for j = 0,1,...,t — 1. For each j, let w; = w;(c) denote the
(unique) point on Oc that has a tangent (that is, a supporting line) at orientation 6,
(tangents are assumed to be oriented so that c¢ lies to their left). P, is defined to be
the convex polygon whose vertices are wy, ..., w; 1. (Note that P. may have fewer
than t vertices if Jc contains nonsmooth points whose tangent orientations span a
sufficiently large interval.) The difference ¢ \ P, is the union of at most ¢ caps of
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cap

Figure 2: The inscribed polygon P, and the corresponding caps; one inner fat triangle
is also illustrated.

¢, where a cap is an intersection of ¢ with a halfplane. The chord of a cap is the
intersection of ¢ with the line bounding the corresponding halfplane. An illustration
of such an inscribed polygon and of the corresponding caps is shown in Figure 2.

Lemma 2.3 The polygons P. are o'-fat, for o' = a/ cos(n/t).

Proof: Since c is a-fat, there exist two concentric disks Dy C ¢ C D, with respective
radii rq, 79, such that ro < ar;. Clearly, P. C D,. Let K be one of the caps that
constitute ¢\ P, and assume that D; intersects the chord pg of K. It must do so at two
points, or else its interior would have contained p or ¢, contradicting the assumption
that D; C c. By definition, there exist two tangents to ¢, 7, at p and 7, at ¢, whose
orientations differ by 27 /t. Let d denote the distance from the center O of D to pq.
It is easy to verify that d > ry cos(n/t). Indeed (see Figure 3), translate the tangents
7, and 7, so that they support K N D; at two respective points p’, ¢'. The angle
p'Oq' is at most 27 /t, so at least one of the angles between the perpendicular from
O to p'q’ and p'O or ¢'O is at most w/t. Since both [p'O| and |¢'O| = ry, the claim
follows. This implies that the disk concentric with Dy and having radius ry cos(r /t)
is contained in P,, and this completes the proof of the lemma. O

Let ¢ € C, and let O denote the common center of two disks D; C P, C D», such
that their respective radii ry, ro satisfy ro < a'r;. Let pg be an edge of P.. The
convexity of P. and the fact that D; C P. are easily seen to imply that the angle
Opq must be at least the angle 5 between Op and the tangent to D; from p, which
satisfies sin f = r1/|Op| > ri/ry > 1/a/. Similarly, the angle Ogp must also be at
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Figure 3: The proof of Lemma 2.3
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least 3. It follows that we can find a point v inside Opgq, such that all the angles of
the triangle vpg are at least

By = min {arcsin(1/a’), 7/3}.

We repeat this analysis to each edge of each polygon, and replace the polygons
P, by the collection of resulting triangles vpg. We refer to these triangles as inner fat
triangles. Let T = T(C) denote the collection of inner fat triangles. Clearly, |T| < nt.
As an immediate consequence of [9], we have:

Lemma 2.4 The union Ur of the triangles in T has O(nloglogn) vertices.

Let v be a shattering vertex of OU, incident to two sets a,b € C. Let K,, Kj be
the respective caps of a, b that contain v, and let p,q,, pygy denote their respective
chords. Consider the convex set R = K, N K.

Lemma 2.5 At least one of the chords p,qa, ppqy meets OR.

Proof: Indeed, suppose to the contrary that both chords are disjoint from R. Tt
follows that R = a N b, and that OR contains at least four points of intersection
between da and 0b. Moreover, let O be an interior point of R, and consider 0K, and
0K, as graphs of two respective functions r = K, (), r = K;(0), in polar coordinates
about O. Note that OR is the graph of the pointwise minimum of K, and K;,. There
is an angular interval I, over which K,(f) is attained at the chord of K, and a similar
interval I, for the chord of Kj. These intervals must be disjoint, or else R would
overlap one of these chords, contrary to assumption. See Figure 4.

Let u (resp. w) denote the first vertex of OR that we encounter as we rotate
about O clockwise (resp. counterclockwise) from I, (clearly, no vertex of OR has an
orientation in I,). In the angular interval that runs counterclockwise from u to w,
the boundary of R is attained by 0b. Moreover, as we traverse, in counterclockwise
direction, the portion of 0b that lies on 0K}, we first encounter v and then w, and
the reverse order is obtained along da. See Figure 4.

Let 02, 02 denote the orientations of the tangents to a at u and w, respectively,
and let 0°, 6° denote the corresponding tangent orientations for b. (If any of these
tangents is not unique, we fix an arbitrary tangent among those that are available.)
The circular counterclockwise order of these four orientations is (62,6%, 6% 69), and
they partition the circular range of orientations into four angular intervals that we
denote by (02,60%), (0°,0°), (6°,6%), and (62,6%). Each of the second and fourth
intervals has length at most 27/t (since the endpoints of any of these intervals are
two tangent orientations within a single cap), and each of the first and third intervals
has length at most 7 (the total amount by which the tangent to a convex set can turn
at a fixed point of its boundary is at most 7). It follows that each of the lengths of

the first and third intervals is at least 7 — 47/t > 27/3.
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Figure 4: Two intersecting caps without a chordal intersection

We now repeat the whole analysis in the last two paragraphs by interchanging
a and b. This yields two vertices u', w’' of R, such that the turning angle of the
tangents to R at each of these vertices is also greater than 27 /3. It is easily verified
that among the vertices u, w, ', w' there exist at least three distinct vertices, or else
da and 0b would have intersected at only two points, contrary to assumption. We have
thus obtained at least three vertices of R such that the turning angle of the tangents
at each of them is greater than 27 /3, which is impossible, because the overall turning
angle for a convex set is 2. This contradiction completes the proof of the lemma. O

Lemma 2.6 Let K, be a cap of some set a € C, with chord e,, and let A, be an
inner fat triangle in T, obtained from the polygon P,, for some b € C, such that the
chord ey of Ay crosses 0K,. Then one of the following cases must occur:

(i) eq crosses 0Ny (as in Figure 5(i)).
(ii) K, contains a vertex of A, (as in Figure 5(ii)).
(111) Ay contains a verter of K, (as in Figure 5(iii)).

(iv) OK, and 0N, cross exactly twice, at two points that lie on da and on e,, and e,
s disjoint from K, N Ay. Furthermore, let K, denote the cap of b that shares
the same chord e, with A,. Then either K, contains an endpoint of e, (as in
Figure 5(iv.a)), or da and 0b intersect only twice (as in Figure 5(iv.b)).
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(i) (ii) (iii)

Ay

Figure 5: Illustrating the various cases in Lemma 2.6
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Ay

Figure 6: Two patterns of intersection of a cap K, and an inner fat triangle A,

Proof: Suppose that cases (i) and (ii) do not occur. That is, e, does not cross 0A,
and no vertex of Ay lies in K,. Then e, must intersect 0K, at two points, u, v, both
lying on da. Therefore e, splits K, into two subregions, the region K that contains
€q, and the complementary region K. Denote the range of the orientations of the
tangents to a at the points of K, by (6,0 + 27 /t). Clearly, the orientations of e,
and of ey also lie in this range. Two cases can arise:
(1) A, overlaps K/ and is disjoint from K (see Figure 6(i)): If K/ is fully contained
in Ay then u and v are the only two points of intersections between 0K, and 04,
and, moreover, A, contains both vertices of K,, so we are in case (iii). Otherwise,
since, by assumption, A, does not intersect e, and does not have a vertex inside K7,
one of its other edges, f, must also cross 0K, twice, at two points w, 2z, lying on Oa,
so that the four points w,u, v,z appear in this order along dK,. In this case the
orientation of f also lies in the range (6, 6y + 27/t), and thus the angle between e
and f, which is > (g, is at most 27 /¢, a contradiction.
(2) Ay overlaps K and is disjoint from K (see Figure 6(ii)): We claim that in this
case A, fully contains K/, so u and v are the only two intersection points of 0K, and
0Ay. Since the orientations of e, and of the tangents (or, rather, any tangents) to a
at v and at v all lie in the range (g, 0y + 27/t), it follows that the angles between e
and these tangents are both at most 27 /t. However, the angles of A, at the endpoints
of e are both > [y, and are therefore larger. It follows that the triangle bounded by
e and by two such tangents is fully contained in A;, from which the claim follows
readily.

Finally, suppose that K}, does not contain any of the endpoints e,. Let p and ¢ be
the endpoints of e,, so that p,u, v, ¢ appear in this order along da. Then the portion
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of 0K, along 0b must cross the portion of K, along da at least twice, at one point
w between p and u and at another point z between v and ¢ (see Figure 5(iv.b)). We
claim that w and z are the only two intersection points of da and 0b. Indeed, suppose,
with no loss of generality, that e, lies along the z-axis and that K, lies above it. Then
Yo = 0aN K, is a downward-concave z-monotone arc. Moreover, the absolute value of
the orientation of e, is at most 27 /¢, so the orientation of any tangent to vy, = 0bN K,
has absolute value < 47 /t, which is easily seen to imply that =, is also z-monotone
and downward-convex. It follows that 7, and =, cross each other exactly twice (at w
and z). We claim that there can be no other point of intersection between da and 0b.
Indeed, any such point must lie either in the halfplane below e, or in the halfplane
above e,. Consider the halfplane H lying below e, (the second case is treated in a
fully symmetric manner). It is easy to see that any such intersection must lie on ~;.
However, if v, reaches H it must cross e, twice. Arguing as above, it follows that
the portion of 7, in H is fully contained in the inner fat triangle of P, that has e,
as a chord, and hence it cannot intersect da at all. This shows that condition (iv)
holds, and thus completes the proof of the lemma. (Note that these arguments also
imply that, in any configuration of case (iv), 0K, and 0K}, can intersect in at most
two points; they intersect in one or zero points if and only if K} contains an endpoint
of e,.) O

2.3 The proof of Theorem 1.1

The proof follows the technique used in the analysis of the complexity of lower en-
velopes of surfaces in higher dimensions and of related structures, as given in [4, 11].

Let £ = K(C) denote the collection of all caps of sets in C, as defined above; recall
that |IC| < nt. Let Ux denote the union of these caps. The vertices of U are also
vertices of Uy.

Let K, C a and K;, C b be two caps of two (distinct) regions a,b € C, such that
0K, and 0K} intersect in at least one vertex that is shattering in A(C) (in other
words, this is a vertex incident to da and 0b, and these boundaries cross at least four
times; note also that a vertex can be shattering in A(C) and not in A(K) or vice
versa). Put R = K,NK,. We call an arc of OR marked if it contains a vertex of A(K)
that lies on the chord of some cap, such that condition (iv) of Lemma 2.6 does not
hold for that vertex (or, rather, for the cap and the triangle on whose boundaries the
vertex lies), and unmarked otherwise; see Figure 7. We will refer to vertices of A(K)
that lie on some chord as chordal vertices. Chordal vertices that satisfy condition (iv)
of Lemma, 2.6 will be called special chordal vertices, and all the other chordal vertices
will be called standard chordal vertices.

Lemma 2.5 and Lemma 2.6 imply that at least one arc of R is marked. Actu-
ally, they imply that one of the vertices of R is a standard chordal vertex. Indeed,
Lemma 2.5 implies that R has at least one chordal vertex. If all the chordal vertices
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Figure 7: The region R = K, N K3; the marked arcs are labeled by M; OR has three
shattering vertices, with indices 0,1,2, as shown

of R are special then each of the chords of K,, K contains zero or two such vertices,
and, arguing as in the proof of Lemma 2.6, one can show that da and 0b intersect
in exactly two vertices, contradicting the assumption that 0K, and 0K} intersect in
at least one shattering vertex in A(C). Note also that if OR has any special chordal
vertex, then it must also have an endpoint of a chord as a vertex (see Lemma 2.6).

We define the index of a vertex w of a N b that lies on JR to be the number of
unmarked arcs of OR that we encounter before hitting a marked arc, as we traverse
this boundary from w in counterclockwise direction. However, if OR has a special
chordal vertex, it can have at most one vertex of da N 0b, as follows easily from the
analysis of the proof of Lemma 2.6, and we define the index of that vertex to be 0.
The index of a vertex is an integer between 0 and s — 1.

We also define the [evel of a vertex v of the arrangement A(/C) to be the number
of caps of I containing v in their interior. Clearly, vertices at level 0 are exactly the
vertices of OUy.

We define the following quantities:

e 7T(C) is the number of touching vertices in A(C) that lie on OU.
e S(C) is the number of shattering vertices in A(C) that lie on 0U.

e SU)(C), for j = 0,...,5 — 1, is the number of these shattering vertices whose
index is at most j (so S(C) = SC=1(C)).

e (Q*(C) is the number of special chordal vertices that lie at level 0 in the arrange-
ment A(KC U T) of the caps and inner fat triangles of the regions in C.?

2One might be tempted to think that these vertices lie on the boundary of the union of these
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e (0y(C) is the number of standard chordal vertices that lie at level 0 in A(C U T).

T'(n) is the maximum of T'(C), over all collections C of n sets satisfying (i) and
(ii) (with fixed v and s).
)

e S(n) is the maximum of S(C), over all collections C as above.
e SU)(n) is the maximum of SU)(C), for j =0,...,s — 1, over all collections C as
above.

e ()*(n) is the maximum of Q*(C), over all collections C as above.

e ()o(n) is the maximum of Qy(C), over all collections C as above.

We will derive a (somewhat complex) system of recurrence relationships for the
above quantities. Each of these recurrences involves a ‘threshold parameter’ k < n/2,
which is arbitrary, and we will choose a different value of k for each recurrence, in a
manner detailed below.

First, using Theorem 2.1, we have:
T(n) <c(n+kT(n/k)+ k*S(n/k)), (1)

for some constant ¢ (for simplicity, we will use the same constant in all the recur-
rences).

We next estimate SU)(n), for j = 0,...,5—1. Let v be a shattering vertex of A(C)
that lies on OU, incident to two boundaries da, b, and contained in two respective
caps K, C a and K, C b, whose index is at most j. Let R = K, N K,, and let ~
denote the arc of OR incident to v and lying counterclockwise to it; see Figure 7. We
fix a threshold parameter £, trace v from v, and examine the sequence o of vertices
of A(KC) that we encounter. Several cases can arise:

(a) o contains at least k vertices, and none of the first £ vertices of o is a standard
chordal vertex. (Note that o may contain a standard chordal vertex only if the
index of v is zero.) In this case we charge v to the block of the first £ vertices
of . Several important observations need to be made:

(i) Each of these charged vertices lies at level < k (in A(K), or in A(C) if it is
a vertex of this latter arrangement).

(ii) Each charged vertex is charged at most twice, once along each of the
boundaries containing it.

caps and triangles, but this is not the case, since each chordal vertex z lies in the interior of the
union of the cap and triangle that share the chord that contains z. This is why we use the more
careful notion of level 0.
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(iii) The portion of v that contains o may lie inside some inner fat triangles,
but it does not cross any non-chordal edge of any such triangle (this follows
from condition (iv) of Lemma 2.6).

(iv) Each of the charged special chordal vertices lies at level < kin A(KUT)
(this is a consequence of observation (iii)).

It follows that the overall number of shattering vertices of A(C) that lie on U
and fall into this category is at most 2/k times the number of touching and
shattering vertices of A(C) that lie at level at most & (in either arrangement)
plus 2/k times the number of special chordal vertices that lie at level at most
k in A(JCUT) (this is a consequence of observation (iii)). Using again the
probabilistic analysis technique of Clarkson and Shor [2], this upper bound is at
most (2/k)-O(k?) times the expected number of touching and shattering vertices
of the union of a random sample of n/k regions of C, plus (2/k)-O(k?) times the
expected number of special chordal vertices at level 0 in the arrangement of the
caps and inner fat triangles of a random sample of n/k regions of C. In other
words, the number of vertices v of the present type is O(kT(n/k) + kS(n/k) +

kQ*(n/k)).

(b) The first k& (or all, if o is shorter) vertices in o include at least one standard
chordal vertex w (in this case the index of v must be zero). We charge v to
the first such w. It is easily verified that w can be charged in this manner only
once. Since w is at level at most k£ in A(JCU T) (see observation (iv)), another

application of the Clarkson-Shor technique implies that the number of vertices
v of this kind is at most O(k*Qq(n/k)).

(c) o contains fewer than k vertices of A(K), none of which is standard chordal. In
this case we consider the other endpoint w of v. If w is also a shattering vertex
in A(C), then its index is at most j — 1, and it lies at level at most & in A(C).
In this case we charge v to w. Otherwise, w is a special chordal vertex, in which
case, as observed above, 0 R must contain an endpoint z of the chord of K, or
of K. Moreover, suppose, without loss of generality, that v C da. Then the
proof of Lemma 2.6 is easily seen to imply that z is an endpoint of the chord of
K,, and that the entire counterclockwise portion of da from v to z is lies in the
interior of Uy (see Figure 5(iv.b)). In this case we charge v to z. The argument
just given implies that z can be charged at most once in this manner, and the
number of such points z is at most nt = O(n). Applying the Clarkson-Shor
technique again to the former type of charging, we conclude that the number
of vertices v of this kind is O(n + k2SU=1(n/k)).

Thus, summing up these bounds, we obtain the following system of recurrences:

SW(n) < c(n+kT(n/k) + kS(n/k) + kQ* (n/k) + K*SUD(n/k) + K*Qu(n/k)) .
(2)
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Figure 8: The region R = K, N Ay; the marked arcs are labeled by M; OR has four
semi-sharp vertices, with indices 0,1,2,3, as shown

for j =0,...,5 — 1, and for some constant ¢ that depends on « (for j = 0, we put
S =0 in the right-hand side).

Next we estimate Qo(C), using an analysis similar to the one just presented. Recall
that we are counting standard chordal vertices at level 0 in A(KC U 7). (Formally, we
can also take each pair of a cap and a triangle with a common chord, and shift them
slightly away from each other, so that each of the standard chordal vertices that lie
on this chord and are counted in Q(C) is split into two vertices, both of which lie on
the boundary of the union of L UT".)

We analyze the number of these chordal vertices by considering them as vertices in
A(K UT), each lying on the boundary of the intersection of an inner fat triangle and
a cap. So let v be a standard chordal vertex, lying on the boundary of a cap K, C a
and on the chord of an inner fat triangle A, C b, for two (distinct) sets a,b € C.
By definition, K, and A, satisfy one of the conditions (i)—(iii) of Lemma 2.6, which
means that the boundary of the intersection R = K,N A, has at least one vertex that
is a vertex of A(T), and none of its vertices is a special chordal vertex (see Figure 8).
Observe that OR consists of at most six arcs, since each edge of A, can intersect 0K,
at most twice. We call an arc of OR marked if it contains a vertex of A(7), and
unmarked otherwise. We will refer to these vertices as sharp vertices. As just argued,
at least one arc of R is marked. We define the index of any non-sharp vertex w of
R (including non-chordal vertices as well) to be the number of unmarked arcs of OR
that we encounter before hitting a marked arc, as we traverse this boundary from w
in counterclockwise direction. The index of a vertex is an integer between 0 and 5. As
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just mentioned, not all the vertices that we encounter during this traversal need be
chordal; each non-chordal and non-sharp vertex lies on da and on some edge (other
than the chord) of A,. We refer to all such vertices as semi-sharp; clearly, chordal
vertices are also semi-sharp.

We introduce more quantities that we want to bound:

e ((C) is the number of semi-sharp vertices on Uk, (perturbed as above),
excluding special chordal vertices. Clearly, Qo (C) < Q(C).

e QU)(C), for j = 0,...,5, is the number of semi-sharp vertices on OUi,7 (ex-
cluding special chordal vertices), whose index is at most j (so Q(C) = Q®(C)).

e ((n) the maximum of Q(C), over all collections C of n regions satisfying (i) and
(ii) (with fixed v and s).

e QU)(n) is the maximum of QW (C), over all such collections C, for j =0,...,5.

Let v be a semi-sharp vertex of QUyr, incident to the boundary of a cap K, C a
(and to Oa itself) and to the boundary of an inner fat triangle A, C b, for two
distinct sets a,b € C, whose index is at most j. Let R = K, N A, and let v denote
the arc of OR incident to v and lying counterclockwise to it. We fix some threshold
parameter k, trace v from v, and examine the sequence o of vertices of AKX UT)
that we encounter. Several cases can arise:

(a) o contains at least k vertices, and none of the first k vertices of o is sharp.
(Note that o may contain a sharp vertex only if the index of v is zero.) In
this case we charge v to the block of the first k vertices of 0. As above, we
have the important observations that (i) each of these vertices lies at level < k
in A(KUT), and (ii) each such vertex is charged at most twice, once along
each of the boundaries containing it. It follows that the overall number of
semi-sharp vertices of QU7 that fall into this category is at most (2/k) times
the number of touching and shattering vertices of A(C') at level at most k,
and of semi-sharp and special chordal vertices of A(JCUT) at level at most
k. As above, the probabilistic analysis technique of Clarkson and Shor implies
that this upper bound is at most (2/k) - O(k?) times the expected number of
touching and shattering vertices of the union of a random sample of n/k regions
of C, plus (2/k) - O(k?) times the expected number of semi-sharp and special
chordal vertices of the union of the caps and triangles of a random sample of
n/k regions of C. Hence the number of semi-sharp vertices of Uy of this

kind is O(kT'(n/k) + ES(n/k) + kQ(n/k) + kQ*(n/k)).

(b) The first k£ (or all, if o is shorter) vertices in o include at least one sharp vertex
w (in this case the index of v must be zero). We charge v to the first such w.
As above, it is easily seen that w can be charged in this manner at most twice,
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and that it lies at level at most k in A(JCU 7). Hence, using Lemma 2.4 and
the Clarkson-Shor analysis technique, the number of vertices v of this kind is
easily seen to be O(k? - Zloglog ) = O(nkloglogn).

(c) o contains fewer than k vertices of A(JCUT), none of which is sharp. In this
case we charge v to the other endpoint w of v. Clearly, w is also a semi-sharp
vertex (as noted above, no vertex of R is special chordal), whose index is at
most j — 1, and it lies at level at most k in A(JC U T). Applying the Clarkson-
Shor technique again, we conclude that the number of vertices v of this kind is

O(k*QU=(n/k)).
Thus, summing up these bounds, we obtain:

QY (n) < ¢ (nkloglogn + kT (n/k) + kS(n/k) + kQ(n/k) + kQ*(n/k) + K*QU Y (n/k)) ,
(3)

for j = 0,...,5, and for some constant ¢ > 0 that depends on « (for j = 0, we put

QY =0 in the right-hand side).

Finally, we estimate Q*(C), that is, the number of special chordal vertices on
OUxur (perturbed as above). We do this by applying a variant of the analysis in the
proof of Theorem 2.1. Note that the special chordal vertices are touching vertices
in AU T), but not all such touching vertices are necessarily special chordal. We
apply the same graph construction as in the proof of Theorem 2.1, except that instead
of touching vertices we consider only the subset of special chordal vertices. Thus, for
example, a subsequence o; (as in the proof of Theorem 2.1) that contains (among its
first £ members) a touching vertex that is not special chordal will be treated as a
‘shattering’ subsequence, and will correspond to a node of the graph (rather than to
an edge of it), and edges are induced only by short sequences that consist exclusively
of special chordal vertices. We leave it to the reader to verify that the proof remains
valid under this modification, and that the conclusion now is that

Q*(C) = O (n+ kE(Q'(R)) + F*(E(T(R)) + E(S(R)) + E(Q(R)))) ,
where R is a random sample of n/k regions of C, as above. In other words, we have:
Q'(n) < c(n+kQ (n/k) + KT(n/k) + K*S(n/k) + K*Q(n/k)) , (4)

for some constant ¢, as above.

Following the analysis in [4, 11], the solution of the combined recurrences (1), (2),
(3), and (4), with appropriate choice of the threshold parameters k, can be shown to
be

T(n) = O(n'™)
S(n) = On'"")
Q(n) = O(n')
Q'(n) = O(n'™),
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for any € > 0, where the constants of proportionality depend on £, a;, and s. Since
these recurrences are somewhat more involved than those in [4, 11], we include, in
the Appendix below, a proof of these bounds, for the sake of completeness. This
concludes the proof of Theorem 1.1. O
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Appendix: Solving the Recurrences

In this appendix we prove that the solution of the above system of recurrences is
near-linear. Recall that the recurrences are:

T(n) < c(n+kT(n/k)+kS(n/k))
SO(n) < c(kT(n/k)+ kS(n/k) + kQ*(n/k) + K*SU™D (n/k) + K*Q(n/k))

Q(j)(n) < c¢(nkloglogn + kT (n/k) + kS(n/k) + kQ(n/k) + kQ*(n/k)
+K2QU D (n/k))
Q'(n) < c(n+kQ (n/k) + KT (n/k) + k*S(n/k) + K*Q(n/k)).

Before deriving the formal solution, here is an intuitive explanation of the analysis.
The right-hand sides of these recurrences include three kinds of terms:

(i) ‘overhead’, non-recursive terms that are linear or near-linear in n,
(i) recursive terms with coefficients of the form O(k), and
(iii) recursive terms with coefficients of the form O(k?).

If it were not for the terms of the third kind, the recurrences would trivially solve to
O(n'*¢), for any &€ > 0. Terms of the third kind are ‘dangerous’, because they ‘suggest’
a quadratic solution. Fortunately, though, there is a strict hierarchy between the
various functions appearing in the recurrences, such that any term with a coefficient
O(k?) involves a function that is lower in the hierarchy than the function appearing
in the left-hand side. This hierarchy is

Q*—)T—)S — S(s_l)_)S(S_Q)_) - _>S(O)_>Q — Q(5)_)Q(4)_> - _>Q(0)

There are m = s + 8 functions in this hierarchy, and we assign to each function
F a serial number i(F) in the hierarchy, so that the serial number of @Q* is m — 1
and that of Q(® is 0. We exploit this hierarchy by choosing different ’s in different
recurrences, so that the k’s chosen for recurrences whose left-hand-side functions are
lower in the hierarchy are much larger than those chosen for functions higher in the
hierarchy. In this way, the effect of the coefficients O(k?) can be made negligible,
making the overall solution near-linear.
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In more detail, we fix € > 0. In the recurrence for the function F' whose serial
number is i = i(F), for i = 0,1,...,m — 1, we choose k = kp = ki, for some
sufficiently large ky that we will choose later. We claim that the solution of these
recurrences is F(n) < Apn'*®, where F is any of the m functions Q*, T, S¥), and
QY. and Ap is the constant

AF — A(6C)i(F)k8—gi(F)+l

Y

for some sufficiently large constant A that will be determined later.

We prove these upper bounds by induction on n. First, by choosing A to be
sufficiently large, we may assume that these bounds hold for all the functions and for
any n < ng, for some sufficiently large ny (that will be fixed below).

We put A, = max Ap, over all the functions F' in the recurrences. Note that
Ap is a monotone increasing function of the serial number of F', so Apax = Ag- =
A(6e)™ kg

Each of the recurrences has the form

F(n) < ¢(N(n) + k(G (n/k) + -+ Gy, (n/k)) + K*(Fy, (n/k) + -+ F, (n/k)))

for k = kp, as defined above, where N(n) is a near-linear overhead term (which may
also depend on k), and the serial numbers of the functions F; ,...,F; are smaller
than that of F'. Moreover, in all the recurrences we have 1 + g + p < 6. Using the
induction hypothesis, we need to show that, for n > ny,

cN(n) c(Ag;, +-+ Ag,) n ckp(Ap, +---+ Ap,)

1+e € €
n k5 k%

< Ap.
Let G be the function immediately following F" in the hierarchy (so i(G) = i(F) —1).
The monotonicity of the coefficients Ap implies that it suffices to show that

cN(n)  cqAmax N cpkrAg <A
nte ks K

Let i = i(F). Then kp = k§, Ap = A(6c)'k§ =", and Anax = A(60)" k5" We
thus need to show that

cN(n)  cqA(6e)™ ki " N cpke A(6¢) = kg

g—gitl
i1 i1 .
nlte k§' k&'

< A(6c)kS

Write the left-hand side as Ly + Ly + L3, and the right-hand side as R. Note that R
is minimized when 7 = 0, in which case it is equal to A. The term L, is a decreasing
function of n, for n > ny, assuming that ng is sufficiently large, and we choose A so
that it satisfies

c¢N(ng)

g

6

<A,
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implying that L; < R/6 (for n > ny).
Concerning Ly, we have

Ly  cq(6c)m'7" < cq(6c)™!
R ke™ N

We choose kqy so that
(6c)™ < k5",
which implies that Ly < ¢R/6.

Finally, it is straightforward to check that L3/R = p/6, or Ly < pR/6.

Adding up these three inequalities, we have L; + Ly + L3 < (1+ ¢+ p)R/6 < R,
which completes the inductive proof. (To complete the argument, we need to fix ng,
we choose it large enough so that it is greater than 2k, and so that all the overhead
terms N(n) are such that N(n)/n'*® are decreasing functions of n.)
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