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ts inthe Plane�Alon Efraty Mi
ha SharirzJune 23, 2003Abstra
tWe prove a near-linear bound on the 
ombinatorial 
omplexity of the unionof n fat 
onvex obje
ts in the plane, ea
h pair of whose boundaries 
ross atmost a 
onstant number of times.1 Introdu
tionLet C be a 
olle
tion of n 
ompa
t 
onvex sets in the plane, satisfying the followingproperties:(i) The obje
ts in C are �-fat, for some �xed � > 1; that is, for ea
h 
 2 C thereexist two 
on
entri
 disks D � 
 � D0 su
h that the ratio between the radii ofD0 and D is at most �.(ii) For any pair of distin
t obje
ts 
; 
0 2 C, their boundaries interse
t in at most spoints, for some �xed 
onstant s.See [12℄ for more details 
on
erning fat obje
ts in the plane.Our goal is to derive a near-linear upper bound on the 
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Analysis 2There are not too many results of this kind. If C is a 
olle
tion of �-fat triangles,1then the 
omplexity of U is O(n log logn) (with the 
onstant of proportionality de-pending on �) [9℄, and this bound improves to O(n) if the triangles are nearly ofthe same size [1℄. See also [13℄ for additional results 
on
erning fat polygons. IfC is a 
olle
tion of n pseudo-disks (arbitrary simply-
onne
ted regions bounded by
losed Jordan 
urves, ea
h pair of whose boundaries interse
t at most twi
e), thenthe 
omplexity of U is O(n) [7℄. Of 
ourse, without any additional 
onditions, the
omplexity of U 
an be 
(n2), even for the 
ase of (non-fat) triangles. Even for fat
onvex obje
ts, something like 
ondition (ii) must be assumed, or else the 
omplexityof the union might be arbitrarily large, an easy observation that has been noted in[9℄. The main result of this paper isTheorem 1.1 The 
ombinatorial 
omplexity of the union of a 
olle
tion C that satis-�es 
onditions (i){(ii) is O(n1+"), for any " > 0, where the 
onstant of proportionalitydepends on ", � and s.Theorem 1.1 
onstitutes a signi�
ant progress in the study of the union of planarobje
ts, an area that has many algorithmi
 appli
ations, su
h as �nding the maximaldepth in an arrangement of fat obje
ts (see [3℄), hidden surfa
e removal in a 
olle
tionof fat obje
ts in 3-spa
e [6℄, and point-en
losure queries in a 
olle
tion of fat obje
tsin the plane [5℄.Remark: In an earlier version of this paper, the authors have proved the slightlybetter bound O(�s(n)) on the 
omplexity of the union of C, under the additionalassumptions that all the regions in C are roughly of the same size and have bounded
urvature. The proof for this spe
ial 
ase is 
onsiderably simpler than the one givenbelow. This result will be part of the �nal version of the paper, although it is notgiven in the present version.2 Analysis2.1 Tou
hing and shattering verti
esIn this subse
tion, we derive a general property of the union of planar sets, whi
h webelieve to be of independent interest.Let C be a 
olle
tion of n 
ompa
t simply-
onne
ted sets in the plane, ea
hbounded by a 
losed Jordan 
urve (we refer to the sets in C as Jordan regions),and let U denote their union. We assume that these regions are in general position,so that ea
h pair of boundaries interse
t in a �nite number of points and properly1For triangles, there is an equivalent de�nition of fatness that requires all angles to be at least�0; in [9℄, this is 
alled �0-fatness.Union of Fat Obje
ts June 23, 2003



Analysis 3
ross at ea
h point of interse
tion, and no three boundaries have a 
ommon point.(In this subse
tion we make no other assumption on C.) As already mentioned, wemeasure the 
ombinatorial 
omplexity of U by the number of verti
es of the arrange-ment A(C) of C (i.e., points of interse
tion between pairs of boundaries of regions inC) that lie on its boundary. We 
lassify the arrangement verti
es into two 
ategories:tou
hing verti
es: these are interse
tions between pairs of boundaries that interse
tat only two points.shattering verti
es: these are all the other boundary interse
tion points.The level of a vertex of A(C) is the number of regions that 
ontain it in their interior.Thus the verti
es of U are exa
tly the verti
es at level 0.Let T (C) (resp. S(C)) denote the number of tou
hing (resp. shattering) verti
esof U .Theorem 2.1 For any integer parameter k < n=2, we haveT (C) = O �n+ kE(T (R)) + k2E(S(R))� ;where R is a random sample of n=k regions of C, and where E denotes expe
tationwith respe
t to the 
hoi
e of R.Proof: Fix a set 
 2 C, and 
onsider the 
ir
ular sequen
e � of verti
es of A(C) in
ounter
lo
kwise order along �
. Partition � into 
ontiguous subsequen
es �1; : : : ; �m,su
h that the ar
s of �
 between the �rst and last verti
es of ea
h �i (where wego in 
ounter
lo
kwise dire
tion from the �rst to the last vertex) are pre
isely the
onne
ted 
omponents of �
\ int(U). See Figure 1 for an illustration. Let us denoteby 
i the ar
 
orresponding to �i, for i = 1; : : : ; m, and let ui, vi denote the 
lo
kwiseand 
ounter
lo
kwise endpoints of 
i, respe
tively. Note that the overall number Nof subsequen
es, over all 
 2 C, is the number of verti
es of U (ea
h subsequen
e
ontributes two verti
es and ea
h vertex is 
ounted twi
e).Let k be the given `threshold parameter'. We 
lassify the subsequen
es �i (andthe ar
s 
i) into the following three 
ategories:Short-and-tou
hing sequen
es: Sequen
es �i with fewer than k verti
es, all of whi
hare tou
hing.Shattering sequen
es: Sequen
es �i that 
ontain a shattering vertex among their �rstk elements.Long sequen
es: Sequen
es �i with at least k elements, whose �rst k elements areall tou
hing.Union of Fat Obje
ts June 23, 2003



Analysis 4The ar
s 
i inherit the same 
lassi�
ation from their 
orresponding sequen
es �i. Wedenote the overall number of short-and-tou
hing (resp. shattering, long) subsequen
es,over all sets 
 2 C, by Nst (resp. Ns, Nl). Clearly, N = Nst +Ns +Nl.Lemma 2.2 Nst = O(Ns +Nl + n).Proof: We 
onstru
t a (plane embedding of a) planar graph G as follows. The nodesof G are the 
ounter
lo
kwise endpoints vi of shattering and of long ar
s; in addition,if a region 
 has only short-and-tou
hing ar
s along its boundary, we add to G a nodethat lies somewhere on �
, but not on any of these ar
s. (If this is impossible then�
 � int(U), and we 
an simply ignore 
 in what follows, sin
e it does not 
ontributeany vertex to U .) The number of nodes of G is thus � Ns +Nl + n.Let w be a vertex of U in
ident to the boundaries of two sets a; b 2 C, su
h that wis an endpoint of a short-and-tou
hing sequen
e on both �a and �b. Let va (resp. vb)be the node of G nearest to w along �a (resp. �b) in 
lo
kwise dire
tion. We thenadd to G an edge that 
onne
ts va to vb, and draw it by 
onne
ting va to w along�a in 
ounter
lo
kwise dire
tion, and by 
onne
ting w to vb along �b in 
lo
kwisedire
tion. We refer to ea
h of these two portions of the edge as a half-edge. We shiftthe resulting 
olle
tion of edges slightly, to make sure that they do not overlap alongthe boundaries; the rule is that when several half-edges emerge from the same nodeva, their relative interiors are slightly shifted into the interior of the 
orrespondingregion a, so that the shorter the half-edge is, the 
loser it is to the boundary. SeeFigure 1 for an illustration.This drawing of G may 
ontain 
rossing pairs of edges, but we 
laim that anypair of edges 
ross an even number of times. To see this, 
onsider the 
olle
tionof half-edges of G, ea
h 
onne
ting a node va 2 �a, along the boundary of a, toa `middle' vertex w, as de�ned above. We 
laim that a pair of half-edges is eitherdisjoint or 
ross ea
h other exa
tly twi
e. Indeed, by 
onstru
tion, half-edges alongthe boundary of the same a are drawn so that they do not 
ross at all. Let � and �0be two 
rossing half-edges, drawn along the boundaries of two respe
tive distin
t sets
; 
0 2 C. By 
onstru
tion, all the sets that � 
rosses are su
h that their boundaries
ross �
 exa
tly twi
e, and � passes through (or, sin
e it was perturbed, very near)those two interse
tion points, and similarly for �0. Hen
e �
 and �
0 
ross ea
h otherexa
tly twi
e, and the same holds for �, �0. (It is possible that one of these two pointsw is an endpoint of, say, �0. In this 
ase �0 must rea
h w from inside 
, for otherwiseit would not have 
rossed 
 at all, as is easily veri�ed, 
ontrary to our assumption.Sin
e � has been perturbed into 
, it follows that � and �0 
ross at w too.)It is known [8, Corollary 3.1℄ that a graph that 
an be drawn in the plane sothat every pair of edges 
ross an even number of times is planar. Hen
e G is planar.By 
onstru
tion, and by de�nition of tou
hing verti
es, any pair of nodes of G are
onne
ted by at most two edges, so Euler's formula is easily seen to imply that thenumber of edges of G is at most 6 times the number of its nodes. This 
ompletes theproof of the lemma. 2Union of Fat Obje
ts June 23, 2003
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v3 �3
v1

�1 �4
v2

�2
�5

Figure 1: The proof of Theorem 2.1: �1, �2, and �3 are shattering sequen
es; �4 and�5 are short-and-tou
hing sequen
es. Two edges of the graph G are drawn as dashedar
s.
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Analysis 6Lemma 2.2 implies that T (C) = O(Ns +Nl + n). Indeed, the lemma bounds thenumber of tou
hing verti
es on �U that are endpoints of two short-and-tou
hing ar
s.Any other tou
hing vertex of �U is an endpoint of a shattering or a long ar
, so thisupper bound 
aters to these verti
es too. We 
harge ea
h long sequen
e � to theblo
k of the �rst k of its verti
es. Clearly, ea
h su
h vertex 
an be 
harged at mosttwi
e (on
e along ea
h boundary it is in
ident to), and they are all at level at mostk. Hen
e, Nl is at most 2=k times the number of tou
hing verti
es at level at most k.Applying the probabilisti
 analysis te
hnique of Clarkson and Shor [2℄ (see also [10℄),we thus obtain Nl = 2k �O(k2E(T (R))) = O(kE(T (R)));where R is a random sample of n=k regions from C. Similarly, we 
harge ea
h shat-tering sequen
e � to the �rst shattering vertex that it 
ontains. Again, su
h a vertex
an be 
harged at most twi
e, and it lies at level at most k, so, arguing as above,we obtain Ns = O(k2E(S(R))), where R is as above. This 
on
ludes the proof ofTheorem 2.1. 2Remark: The proof te
hnique of Theorem 2.1 
an be applied to obtain an alternativesimple proof of the result of [7℄, that ifA(C) has no shattering verti
es then the numberof verti
es of U is at most 6n� 12 (for n � 3). For this, we de�ne a graph G� with nnodes, one node for ea
h region in C, where the node of region 
 is drawn as a point on�
 that also lies on �U (if no su
h point exist, we 
an ignore 
, as above). We draw anedge of G� for ea
h vertex w of U , in
ident to two boundaries �a, �b, by 
onne
ting,as above, the nodes representing a and b to w along (a
tually, slightly shifted awayfrom) the respe
tive boundaries. Arguing exa
tly as in the proof of Lemma 2.2, it iseasily veri�ed that every pair of edges of G� 
ross an even number of times. Hen
eG� is planar, and no pair of its nodes is 
onne
ted by more than two edges, whi
himplies, using Euler's formula as above, that the number of edges of G� is at most6n� 12, as asserted.2.2 Caps, ins
ribed fat polygons, and their propertiesWe now return to the 
ase where C satis�es the 
onditions (i) and (ii) in the intro-du
tion. Let 
 2 C. We ins
ribe in 
 a 
onvex polygon P
 de�ned as follows. We
hoose some 
onstant integer parameter t > 12, whi
h also satis�esar
sin(
os(�=t)=�) > 2�=t;and de�ne �j = 2�j=t, for j = 0; 1; : : : ; t � 1. For ea
h j, let wj = wj(
) denote the(unique) point on �
 that has a tangent (that is, a supporting line) at orientation �j(tangents are assumed to be oriented so that 
 lies to their left). P
 is de�ned to bethe 
onvex polygon whose verti
es are w0; : : : ; wt�1. (Note that P
 may have fewerthan t verti
es if �
 
ontains nonsmooth points whose tangent orientations span asuÆ
iently large interval.) The di�eren
e 
 n P
 is the union of at most t 
aps ofUnion of Fat Obje
ts June 23, 2003
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apP



 
hord
inner fat triangle

Figure 2: The ins
ribed polygon P
 and the 
orresponding 
aps; one inner fat triangleis also illustrated.
, where a 
ap is an interse
tion of 
 with a halfplane. The 
hord of a 
ap is theinterse
tion of 
 with the line bounding the 
orresponding halfplane. An illustrationof su
h an ins
ribed polygon and of the 
orresponding 
aps is shown in Figure 2.Lemma 2.3 The polygons P
 are �0-fat, for �0 = �= 
os(�=t).Proof: Sin
e 
 is �-fat, there exist two 
on
entri
 disks D1 � 
 � D2, with respe
tiveradii r1; r2, su
h that r2 � �r1. Clearly, P
 � D2. Let K be one of the 
aps that
onstitute 
nP
, and assume thatD1 interse
ts the 
hord pq ofK. It must do so at twopoints, or else its interior would have 
ontained p or q, 
ontradi
ting the assumptionthat D1 � 
. By de�nition, there exist two tangents to 
, �p at p and �q at q, whoseorientations di�er by 2�=t. Let d denote the distan
e from the 
enter O of D1 to pq.It is easy to verify that d � r1 
os(�=t). Indeed (see Figure 3), translate the tangents�p and �q so that they support K \ D1 at two respe
tive points p0, q0. The anglep0Oq0 is at most 2�=t, so at least one of the angles between the perpendi
ular fromO to p0q0 and p0O or q0O is at most �=t. Sin
e both jp0Oj and jq0Oj = r1, the 
laimfollows. This implies that the disk 
on
entri
 with D1 and having radius r1 
os(�=t)is 
ontained in P
, and this 
ompletes the proof of the lemma. 2Let 
 2 C, and let O denote the 
ommon 
enter of two disks D1 � P
 � D2, su
hthat their respe
tive radii r1, r2 satisfy r2 � �0r1. Let pq be an edge of P
. The
onvexity of P
 and the fa
t that D1 � P
 are easily seen to imply that the angleOpq must be at least the angle � between Op and the tangent to D1 from p, whi
hsatis�es sin� = r1=jOpj � r1=r2 � 1=�0. Similarly, the angle Oqp must also be atUnion of Fat Obje
ts June 23, 2003
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o D1

2�=t
p qp0 q02�=t K

Figure 3: The proof of Lemma 2.3
Union of Fat Obje
ts June 23, 2003



Analysis 9least �. It follows that we 
an �nd a point v inside Opq, su
h that all the angles ofthe triangle vpq are at least�0 = min far
sin(1=�0); �=3g:We repeat this analysis to ea
h edge of ea
h polygon, and repla
e the polygonsP
 by the 
olle
tion of resulting triangles vpq. We refer to these triangles as inner fattriangles. Let T = T (C) denote the 
olle
tion of inner fat triangles. Clearly, jT j � nt.As an immediate 
onsequen
e of [9℄, we have:Lemma 2.4 The union UT of the triangles in T has O(n log logn) verti
es.Let v be a shattering vertex of �U , in
ident to two sets a; b 2 C. Let Ka, Kb bethe respe
tive 
aps of a, b that 
ontain v, and let paqa, pbqb denote their respe
tive
hords. Consider the 
onvex set R = Ka \Kb.Lemma 2.5 At least one of the 
hords paqa, pbqb meets �R.Proof: Indeed, suppose to the 
ontrary that both 
hords are disjoint from R. Itfollows that R = a \ b, and that �R 
ontains at least four points of interse
tionbetween �a and �b. Moreover, let O be an interior point of R, and 
onsider �Ka and�Kb as graphs of two respe
tive fun
tions r = Ka(�), r = Kb(�), in polar 
oordinatesabout O. Note that �R is the graph of the pointwise minimum of Ka and Kb. Thereis an angular interval Ia over whi
h Ka(�) is attained at the 
hord of Ka, and a similarinterval Ib for the 
hord of Kb. These intervals must be disjoint, or else �R wouldoverlap one of these 
hords, 
ontrary to assumption. See Figure 4.Let u (resp. w) denote the �rst vertex of �R that we en
ounter as we rotateabout O 
lo
kwise (resp. 
ounter
lo
kwise) from Ia (
learly, no vertex of �R has anorientation in Ia). In the angular interval that runs 
ounter
lo
kwise from u to w,the boundary of R is attained by �b. Moreover, as we traverse, in 
ounter
lo
kwisedire
tion, the portion of �b that lies on �Kb, we �rst en
ounter u and then w, andthe reverse order is obtained along �a. See Figure 4.Let �au, �aw denote the orientations of the tangents to a at u and w, respe
tively,and let �bu, �bw denote the 
orresponding tangent orientations for b. (If any of thesetangents is not unique, we �x an arbitrary tangent among those that are available.)The 
ir
ular 
ounter
lo
kwise order of these four orientations is (�au; �bu; �bw; �aw), andthey partition the 
ir
ular range of orientations into four angular intervals that wedenote by (�au; �bu), (�bu; �bw), (�bw; �aw), and (�aw; �au). Ea
h of the se
ond and fourthintervals has length at most 2�=t (sin
e the endpoints of any of these intervals aretwo tangent orientations within a single 
ap), and ea
h of the �rst and third intervalshas length at most � (the total amount by whi
h the tangent to a 
onvex set 
an turnat a �xed point of its boundary is at most �). It follows that ea
h of the lengths ofthe �rst and third intervals is at least � � 4�=t > 2�=3.Union of Fat Obje
ts June 23, 2003
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OIa Kb

Ka w�au �buu �aw �bwFigure 4: Two interse
ting 
aps without a 
hordal interse
tionWe now repeat the whole analysis in the last two paragraphs by inter
hanginga and b. This yields two verti
es u0, w0 of �R, su
h that the turning angle of thetangents to R at ea
h of these verti
es is also greater than 2�=3. It is easily veri�edthat among the verti
es u; w; u0; w0 there exist at least three distin
t verti
es, or else�a and �b would have interse
ted at only two points, 
ontrary to assumption. We havethus obtained at least three verti
es of R su
h that the turning angle of the tangentsat ea
h of them is greater than 2�=3, whi
h is impossible, be
ause the overall turningangle for a 
onvex set is 2�. This 
ontradi
tion 
ompletes the proof of the lemma. 2Lemma 2.6 Let Ka be a 
ap of some set a 2 C, with 
hord ea, and let �b be aninner fat triangle in T , obtained from the polygon Pb, for some b 2 C, su
h that the
hord eb of �b 
rosses �Ka. Then one of the following 
ases must o

ur:(i) ea 
rosses ��b (as in Figure 5(i)).(ii) Ka 
ontains a vertex of �b (as in Figure 5(ii)).(iii) �b 
ontains a vertex of Ka (as in Figure 5(iii)).(iv) �Ka and ��b 
ross exa
tly twi
e, at two points that lie on �a and on eb, and eais disjoint from Ka \ �b. Furthermore, let Kb denote the 
ap of b that sharesthe same 
hord eb with �b. Then either Kb 
ontains an endpoint of ea (as inFigure 5(iv.a)), or �a and �b interse
t only twi
e (as in Figure 5(iv.b)).Union of Fat Obje
ts June 23, 2003
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Kaea eb�b(i)
�bKa(ii) �b

Ka
(iii)

Ka eb�b
(iv.a) Kb Ka

�b
(iv.b)

Kbebwp qzu vH
Figure 5: Illustrating the various 
ases in Lemma 2.6

Union of Fat Obje
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�bK 0a fK00au vw ze

�b
K 0a K00au ve

�0

Figure 6: Two patterns of interse
tion of a 
ap Ka and an inner fat triangle �bProof: Suppose that 
ases (i) and (ii) do not o

ur. That is, ea does not 
ross ��band no vertex of �b lies in Ka. Then eb must interse
t �Ka at two points, u, v, bothlying on �a. Therefore eb splits Ka into two subregions, the region K 0a that 
ontainsea, and the 
omplementary region K 00a . Denote the range of the orientations of thetangents to a at the points of Ka by (�0; �0 + 2�=t). Clearly, the orientations of eaand of eb also lie in this range. Two 
ases 
an arise:(1) �b overlaps K 0a and is disjoint from K 00a (see Figure 6(i)): If K 0a is fully 
ontainedin �b then u and v are the only two points of interse
tions between �Ka and ��b,and, moreover, �b 
ontains both verti
es of Ka, so we are in 
ase (iii). Otherwise,sin
e, by assumption, �b does not interse
t ea and does not have a vertex inside K 0a,one of its other edges, f , must also 
ross �Ka twi
e, at two points w; z, lying on �a,so that the four points w; u; v; z appear in this order along �Ka. In this 
ase theorientation of f also lies in the range (�0; �0 + 2�=t), and thus the angle between eand f , whi
h is � �0, is at most 2�=t, a 
ontradi
tion.(2) �b overlaps K 00a and is disjoint from K 0a (see Figure 6(ii)): We 
laim that in this
ase �b fully 
ontains K 00a , so u and v are the only two interse
tion points of �Ka and��b. Sin
e the orientations of eb and of the tangents (or, rather, any tangents) to aat u and at v all lie in the range (�0; �0 + 2�=t), it follows that the angles between eand these tangents are both at most 2�=t. However, the angles of �b at the endpointsof e are both � �0, and are therefore larger. It follows that the triangle bounded bye and by two su
h tangents is fully 
ontained in �b, from whi
h the 
laim followsreadily.Finally, suppose that Kb does not 
ontain any of the endpoints ea. Let p and q bethe endpoints of ea, so that p; u; v; q appear in this order along �a. Then the portionUnion of Fat Obje
ts June 23, 2003



Analysis 13of �Kb along �b must 
ross the portion of �Ka along �a at least twi
e, at one pointw between p and u and at another point z between v and q (see Figure 5(iv.b)). We
laim that w and z are the only two interse
tion points of �a and �b. Indeed, suppose,with no loss of generality, that ea lies along the x-axis and that Ka lies above it. Then
a � �a\Ka is a downward-
on
ave x-monotone ar
. Moreover, the absolute value ofthe orientation of eb is at most 2�=t, so the orientation of any tangent to 
b � �b\Kbhas absolute value � 4�=t, whi
h is easily seen to imply that 
b is also x-monotoneand downward-
onvex. It follows that 
a and 
b 
ross ea
h other exa
tly twi
e (at wand z). We 
laim that there 
an be no other point of interse
tion between �a and �b.Indeed, any su
h point must lie either in the halfplane below ea or in the halfplaneabove eb. Consider the halfplane H lying below ea (the se
ond 
ase is treated in afully symmetri
 manner). It is easy to see that any su
h interse
tion must lie on 
b.However, if 
b rea
hes H it must 
ross ea twi
e. Arguing as above, it follows thatthe portion of 
b in H is fully 
ontained in the inner fat triangle of Pa that has eaas a 
hord, and hen
e it 
annot interse
t �a at all. This shows that 
ondition (iv)holds, and thus 
ompletes the proof of the lemma. (Note that these arguments alsoimply that, in any 
on�guration of 
ase (iv), �Ka and �Kb 
an interse
t in at mosttwo points; they interse
t in one or zero points if and only if Kb 
ontains an endpointof ea.) 22.3 The proof of Theorem 1.1The proof follows the te
hnique used in the analysis of the 
omplexity of lower en-velopes of surfa
es in higher dimensions and of related stru
tures, as given in [4, 11℄.Let K = K(C) denote the 
olle
tion of all 
aps of sets in C, as de�ned above; re
allthat jKj � nt. Let UK denote the union of these 
aps. The verti
es of U are alsoverti
es of UK.Let Ka � a and Kb � b be two 
aps of two (distin
t) regions a; b 2 C, su
h that�Ka and �Kb interse
t in at least one vertex that is shattering in A(C) (in otherwords, this is a vertex in
ident to �a and �b, and these boundaries 
ross at least fourtimes; note also that a vertex 
an be shattering in A(C) and not in A(K) or vi
eversa). Put R = Ka\Kb. We 
all an ar
 of �R marked if it 
ontains a vertex of A(K)that lies on the 
hord of some 
ap, su
h that 
ondition (iv) of Lemma 2.6 does nothold for that vertex (or, rather, for the 
ap and the triangle on whose boundaries thevertex lies), and unmarked otherwise; see Figure 7. We will refer to verti
es of A(K)that lie on some 
hord as 
hordal verti
es. Chordal verti
es that satisfy 
ondition (iv)of Lemma 2.6 will be 
alled spe
ial 
hordal verti
es, and all the other 
hordal verti
eswill be 
alled standard 
hordal verti
es.Lemma 2.5 and Lemma 2.6 imply that at least one ar
 of �R is marked. A
tu-ally, they imply that one of the verti
es of R is a standard 
hordal vertex. Indeed,Lemma 2.5 implies that R has at least one 
hordal vertex. If all the 
hordal verti
esUnion of Fat Obje
ts June 23, 2003
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KaM MR
0 1 2 Kb
 v M

Figure 7: The region R = Ka \Kb; the marked ar
s are labeled by M ; �R has threeshattering verti
es, with indi
es 0,1,2, as shownof R are spe
ial then ea
h of the 
hords of Ka, Kb 
ontains zero or two su
h verti
es,and, arguing as in the proof of Lemma 2.6, one 
an show that �a and �b interse
tin exa
tly two verti
es, 
ontradi
ting the assumption that �Ka and �Kb interse
t inat least one shattering vertex in A(C). Note also that if �R has any spe
ial 
hordalvertex, then it must also have an endpoint of a 
hord as a vertex (see Lemma 2.6).We de�ne the index of a vertex w of a \ b that lies on �R to be the number ofunmarked ar
s of �R that we en
ounter before hitting a marked ar
, as we traversethis boundary from w in 
ounter
lo
kwise dire
tion. However, if �R has a spe
ial
hordal vertex, it 
an have at most one vertex of �a \ �b, as follows easily from theanalysis of the proof of Lemma 2.6, and we de�ne the index of that vertex to be 0.The index of a vertex is an integer between 0 and s� 1.We also de�ne the level of a vertex v of the arrangement A(K) to be the numberof 
aps of K 
ontaining v in their interior. Clearly, verti
es at level 0 are exa
tly theverti
es of �UK.We de�ne the following quantities:� T (C) is the number of tou
hing verti
es in A(C) that lie on �U .� S(C) is the number of shattering verti
es in A(C) that lie on �U .� S(j)(C), for j = 0; : : : ; s � 1, is the number of these shattering verti
es whoseindex is at most j (so S(C) = S(s�1)(C)).� Q�(C) is the number of spe
ial 
hordal verti
es that lie at level 0 in the arrange-ment A(K [ T ) of the 
aps and inner fat triangles of the regions in C.22One might be tempted to think that these verti
es lie on the boundary of the union of theseUnion of Fat Obje
ts June 23, 2003



Analysis 15� Q0(C) is the number of standard 
hordal verti
es that lie at level 0 in A(K [ T ).� T (n) is the maximum of T (C), over all 
olle
tions C of n sets satisfying (i) and(ii) (with �xed � and s).� S(n) is the maximum of S(C), over all 
olle
tions C as above.� S(j)(n) is the maximum of S(j)(C), for j = 0; : : : ; s� 1, over all 
olle
tions C asabove.� Q�(n) is the maximum of Q�(C), over all 
olle
tions C as above.� Q0(n) is the maximum of Q0(C), over all 
olle
tions C as above.We will derive a (somewhat 
omplex) system of re
urren
e relationships for theabove quantities. Ea
h of these re
urren
es involves a `threshold parameter' k < n=2,whi
h is arbitrary, and we will 
hoose a di�erent value of k for ea
h re
urren
e, in amanner detailed below.First, using Theorem 2.1, we have:T (n) � 
 �n+ kT (n=k) + k2S(n=k)� ; (1)for some 
onstant 
 (for simpli
ity, we will use the same 
onstant in all the re
ur-ren
es).We next estimate S(j)(n), for j = 0; : : : ; s�1. Let v be a shattering vertex of A(C)that lies on �U , in
ident to two boundaries �a, �b, and 
ontained in two respe
tive
aps Ka � a and Kb � b, whose index is at most j. Let R = Ka \ Kb, and let 
denote the ar
 of �R in
ident to v and lying 
ounter
lo
kwise to it; see Figure 7. We�x a threshold parameter k, tra
e 
 from v, and examine the sequen
e � of verti
esof A(K) that we en
ounter. Several 
ases 
an arise:(a) � 
ontains at least k verti
es, and none of the �rst k verti
es of � is a standard
hordal vertex. (Note that � may 
ontain a standard 
hordal vertex only if theindex of v is zero.) In this 
ase we 
harge v to the blo
k of the �rst k verti
esof �. Several important observations need to be made:(i) Ea
h of these 
harged verti
es lies at level � k (in A(K), or in A(C) if it isa vertex of this latter arrangement).(ii) Ea
h 
harged vertex is 
harged at most twi
e, on
e along ea
h of theboundaries 
ontaining it.
aps and triangles, but this is not the 
ase, sin
e ea
h 
hordal vertex z lies in the interior of theunion of the 
ap and triangle that share the 
hord that 
ontains z. This is why we use the more
areful notion of level 0.Union of Fat Obje
ts June 23, 2003



Analysis 16(iii) The portion of 
 that 
ontains � may lie inside some inner fat triangles,but it does not 
ross any non-
hordal edge of any su
h triangle (this followsfrom 
ondition (iv) of Lemma 2.6).(iv) Ea
h of the 
harged spe
ial 
hordal verti
es lies at level � k in A(K [ T )(this is a 
onsequen
e of observation (iii)).It follows that the overall number of shattering verti
es of A(C) that lie on �Uand fall into this 
ategory is at most 2=k times the number of tou
hing andshattering verti
es of A(C) that lie at level at most k (in either arrangement)plus 2=k times the number of spe
ial 
hordal verti
es that lie at level at mostk in A(K [ T ) (this is a 
onsequen
e of observation (iii)). Using again theprobabilisti
 analysis te
hnique of Clarkson and Shor [2℄, this upper bound is atmost (2=k)�O(k2) times the expe
ted number of tou
hing and shattering verti
esof the union of a random sample of n=k regions of C, plus (2=k) �O(k2) times theexpe
ted number of spe
ial 
hordal verti
es at level 0 in the arrangement of the
aps and inner fat triangles of a random sample of n=k regions of C. In otherwords, the number of verti
es v of the present type is O(kT (n=k) + kS(n=k) +kQ�(n=k)).(b) The �rst k (or all, if � is shorter) verti
es in � in
lude at least one standard
hordal vertex w (in this 
ase the index of v must be zero). We 
harge v tothe �rst su
h w. It is easily veri�ed that w 
an be 
harged in this manner onlyon
e. Sin
e w is at level at most k in A(K [ T ) (see observation (iv)), anotherappli
ation of the Clarkson-Shor te
hnique implies that the number of verti
esv of this kind is at most O(k2Q0(n=k)).(
) � 
ontains fewer than k verti
es of A(K), none of whi
h is standard 
hordal. Inthis 
ase we 
onsider the other endpoint w of 
. If w is also a shattering vertexin A(C), then its index is at most j � 1, and it lies at level at most k in A(C).In this 
ase we 
harge v to w. Otherwise, w is a spe
ial 
hordal vertex, in whi
h
ase, as observed above, �R must 
ontain an endpoint z of the 
hord of Ka orof Kb. Moreover, suppose, without loss of generality, that 
 � �a. Then theproof of Lemma 2.6 is easily seen to imply that z is an endpoint of the 
hord ofKa, and that the entire 
ounter
lo
kwise portion of �a from v to z is lies in theinterior of UK (see Figure 5(iv.b)). In this 
ase we 
harge v to z. The argumentjust given implies that z 
an be 
harged at most on
e in this manner, and thenumber of su
h points z is at most nt = O(n). Applying the Clarkson-Shorte
hnique again to the former type of 
harging, we 
on
lude that the numberof verti
es v of this kind is O(n+ k2S(j�1)(n=k)).Thus, summing up these bounds, we obtain the following system of re
urren
es:S(j)(n) � 
 �n+ kT (n=k) + kS(n=k) + kQ�(n=k) + k2S(j�1)(n=k) + k2Q0(n=k)� ;(2)Union of Fat Obje
ts June 23, 2003
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Ka
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Figure 8: The region R = Ka \�b; the marked ar
s are labeled by M ; �R has foursemi-sharp verti
es, with indi
es 0,1,2,3, as shownfor j = 0; : : : ; s � 1, and for some 
onstant 
 that depends on � (for j = 0, we putS(�1) = 0 in the right-hand side).Next we estimate Q0(C), using an analysis similar to the one just presented. Re
allthat we are 
ounting standard 
hordal verti
es at level 0 in A(K [ T ). (Formally, we
an also take ea
h pair of a 
ap and a triangle with a 
ommon 
hord, and shift themslightly away from ea
h other, so that ea
h of the standard 
hordal verti
es that lieon this 
hord and are 
ounted in Q(C) is split into two verti
es, both of whi
h lie onthe boundary of the union of K [ T .)We analyze the number of these 
hordal verti
es by 
onsidering them as verti
es inA(K [ T ), ea
h lying on the boundary of the interse
tion of an inner fat triangle anda 
ap. So let v be a standard 
hordal vertex, lying on the boundary of a 
ap Ka � aand on the 
hord of an inner fat triangle �b � b, for two (distin
t) sets a; b 2 C.By de�nition, Ka and �b satisfy one of the 
onditions (i){(iii) of Lemma 2.6, whi
hmeans that the boundary of the interse
tion R = Ka\�b has at least one vertex thatis a vertex of A(T ), and none of its verti
es is a spe
ial 
hordal vertex (see Figure 8).Observe that �R 
onsists of at most six ar
s, sin
e ea
h edge of �b 
an interse
t �Kaat most twi
e. We 
all an ar
 of �R marked if it 
ontains a vertex of A(T ), andunmarked otherwise. We will refer to these verti
es as sharp verti
es. As just argued,at least one ar
 of �R is marked. We de�ne the index of any non-sharp vertex w ofR (in
luding non-
hordal verti
es as well) to be the number of unmarked ar
s of �Rthat we en
ounter before hitting a marked ar
, as we traverse this boundary from win 
ounter
lo
kwise dire
tion. The index of a vertex is an integer between 0 and 5. AsUnion of Fat Obje
ts June 23, 2003



Analysis 18just mentioned, not all the verti
es that we en
ounter during this traversal need be
hordal; ea
h non-
hordal and non-sharp vertex lies on �a and on some edge (otherthan the 
hord) of �b. We refer to all su
h verti
es as semi-sharp; 
learly, 
hordalverti
es are also semi-sharp.We introdu
e more quantities that we want to bound:� Q(C) is the number of semi-sharp verti
es on �UK[T (perturbed as above),ex
luding spe
ial 
hordal verti
es. Clearly, Q0(C) � Q(C).� Q(j)(C), for j = 0; : : : ; 5, is the number of semi-sharp verti
es on �UK[T (ex-
luding spe
ial 
hordal verti
es), whose index is at most j (so Q(C) = Q(5)(C)).� Q(n) the maximum of Q(C), over all 
olle
tions C of n regions satisfying (i) and(ii) (with �xed � and s).� Q(j)(n) is the maximum of Q(j)(C), over all su
h 
olle
tions C, for j = 0; : : : ; 5.Let v be a semi-sharp vertex of �UK[T , in
ident to the boundary of a 
ap Ka � a(and to �a itself) and to the boundary of an inner fat triangle �b � b, for twodistin
t sets a; b 2 C, whose index is at most j. Let R = Ka \ �b, and let 
 denotethe ar
 of �R in
ident to v and lying 
ounter
lo
kwise to it. We �x some thresholdparameter k, tra
e 
 from v, and examine the sequen
e � of verti
es of A(K [ T )that we en
ounter. Several 
ases 
an arise:(a) � 
ontains at least k verti
es, and none of the �rst k verti
es of � is sharp.(Note that � may 
ontain a sharp vertex only if the index of v is zero.) Inthis 
ase we 
harge v to the blo
k of the �rst k verti
es of �. As above, wehave the important observations that (i) ea
h of these verti
es lies at level � kin A(K [ T ), and (ii) ea
h su
h vertex is 
harged at most twi
e, on
e alongea
h of the boundaries 
ontaining it. It follows that the overall number ofsemi-sharp verti
es of �UK[T that fall into this 
ategory is at most (2=k) timesthe number of tou
hing and shattering verti
es of A(C) at level at most k,and of semi-sharp and spe
ial 
hordal verti
es of A(K [ T ) at level at mostk. As above, the probabilisti
 analysis te
hnique of Clarkson and Shor impliesthat this upper bound is at most (2=k) � O(k2) times the expe
ted number oftou
hing and shattering verti
es of the union of a random sample of n=k regionsof C, plus (2=k) � O(k2) times the expe
ted number of semi-sharp and spe
ial
hordal verti
es of the union of the 
aps and triangles of a random sample ofn=k regions of C. Hen
e the number of semi-sharp verti
es of �UK[T of thiskind is O(kT (n=k) + kS(n=k) + kQ(n=k) + kQ�(n=k)).(b) The �rst k (or all, if � is shorter) verti
es in � in
lude at least one sharp vertexw (in this 
ase the index of v must be zero). We 
harge v to the �rst su
h w.As above, it is easily seen that w 
an be 
harged in this manner at most twi
e,Union of Fat Obje
ts June 23, 2003



Analysis 19and that it lies at level at most k in A(K [ T ). Hen
e, using Lemma 2.4 andthe Clarkson-Shor analysis te
hnique, the number of verti
es v of this kind iseasily seen to be O(k2 � nk log log nk ) = O(nk log logn).(
) � 
ontains fewer than k verti
es of A(K [ T ), none of whi
h is sharp. In this
ase we 
harge v to the other endpoint w of 
. Clearly, w is also a semi-sharpvertex (as noted above, no vertex of R is spe
ial 
hordal), whose index is atmost j � 1, and it lies at level at most k in A(K [ T ). Applying the Clarkson-Shor te
hnique again, we 
on
lude that the number of verti
es v of this kind isO(k2Q(j�1)(n=k)).Thus, summing up these bounds, we obtain:Q(j)(n) � 
 �nk log logn+ kT (n=k) + kS(n=k) + kQ(n=k) + kQ�(n=k) + k2Q(j�1)(n=k)� ;(3)for j = 0; : : : ; 5, and for some 
onstant 
 > 0 that depends on � (for j = 0, we putQ(�1) = 0 in the right-hand side).Finally, we estimate Q�(C), that is, the number of spe
ial 
hordal verti
es on�UK[T (perturbed as above). We do this by applying a variant of the analysis in theproof of Theorem 2.1. Note that the spe
ial 
hordal verti
es are tou
hing verti
esin A(K [ T ), but not all su
h tou
hing verti
es are ne
essarily spe
ial 
hordal. Weapply the same graph 
onstru
tion as in the proof of Theorem 2.1, ex
ept that insteadof tou
hing verti
es we 
onsider only the subset of spe
ial 
hordal verti
es. Thus, forexample, a subsequen
e �i (as in the proof of Theorem 2.1) that 
ontains (among its�rst k members) a tou
hing vertex that is not spe
ial 
hordal will be treated as a`shattering' subsequen
e, and will 
orrespond to a node of the graph (rather than toan edge of it), and edges are indu
ed only by short sequen
es that 
onsist ex
lusivelyof spe
ial 
hordal verti
es. We leave it to the reader to verify that the proof remainsvalid under this modi�
ation, and that the 
on
lusion now is thatQ�(C) = O �n + kE(Q�(R)) + k2(E(T (R)) +E(S(R)) +E(Q(R)))� ;where R is a random sample of n=k regions of C, as above. In other words, we have:Q�(n) � 
 �n+ kQ�(n=k) + k2T (n=k) + k2S(n=k) + k2Q(n=k)� ; (4)for some 
onstant 
, as above.Following the analysis in [4, 11℄, the solution of the 
ombined re
urren
es (1), (2),(3), and (4), with appropriate 
hoi
e of the threshold parameters k, 
an be shown tobe T (n) = O(n1+")S(n) = O(n1+")Q(n) = O(n1+")Q�(n) = O(n1+");Union of Fat Obje
ts June 23, 2003
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es 20for any " > 0, where the 
onstants of proportionality depend on ", �, and s. Sin
ethese re
urren
es are somewhat more involved than those in [4, 11℄, we in
lude, inthe Appendix below, a proof of these bounds, for the sake of 
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Appendix: Solving the Re
urren
es 21[12℄ F. van der Stappen,Motion Planning amidst Fat Obsta
les, Ph.D. Dissertation, Utre
htUniversity, 1994.[13℄ M. van Kreveld, On fat partitioning, fat 
overing, and the union size of polygons,Pro
. 3rd Workshop Algorithms Data Stru
t., Le
ture Notes in Computer S
ien
e, Vol.709, Springer-Verlag, 1993, 452{463.Appendix: Solving the Re
urren
esIn this appendix we prove that the solution of the above system of re
urren
es isnear-linear. Re
all that the re
urren
es are:T (n) � 
 �n+ kT (n=k) + k2S(n=k)�S(j)(n) � 
 �kT (n=k) + kS(n=k) + kQ�(n=k) + k2S(j�1)(n=k) + k2Q(n=k)�Q(j)(n) � 
 (nk log logn + kT (n=k) + kS(n=k) + kQ(n=k) + kQ�(n=k)+ k2Q(j�1)(n=k)�Q�(n) � 
 �n+ kQ�(n=k) + k2T (n=k) + k2S(n=k) + k2Q(n=k)� :Before deriving the formal solution, here is an intuitive explanation of the analysis.The right-hand sides of these re
urren
es in
lude three kinds of terms:(i) `overhead', non-re
ursive terms that are linear or near-linear in n,(ii) re
ursive terms with 
oeÆ
ients of the form O(k), and(iii) re
ursive terms with 
oeÆ
ients of the form O(k2).If it were not for the terms of the third kind, the re
urren
es would trivially solve toO(n1+"), for any " > 0. Terms of the third kind are `dangerous', be
ause they `suggest'a quadrati
 solution. Fortunately, though, there is a stri
t hierar
hy between thevarious fun
tions appearing in the re
urren
es, su
h that any term with a 
oeÆ
ientO(k2) involves a fun
tion that is lower in the hierar
hy than the fun
tion appearingin the left-hand side. This hierar
hy isQ�!T!S = S(s�1)!S(s�2)!� � �!S(0)!Q = Q(5)!Q(4)!� � �!Q(0):There are m = s + 8 fun
tions in this hierar
hy, and we assign to ea
h fun
tionF a serial number i(F ) in the hierar
hy, so that the serial number of Q� is m � 1and that of Q(0) is 0. We exploit this hierar
hy by 
hoosing di�erent k's in di�erentre
urren
es, so that the k's 
hosen for re
urren
es whose left-hand-side fun
tions arelower in the hierar
hy are mu
h larger than those 
hosen for fun
tions higher in thehierar
hy. In this way, the e�e
t of the 
oeÆ
ients O(k2) 
an be made negligible,making the overall solution near-linear.Union of Fat Obje
ts June 23, 2003



Appendix: Solving the Re
urren
es 22In more detail, we �x " > 0. In the re
urren
e for the fun
tion F whose serialnumber is i = i(F ), for i = 0; 1; : : : ; m � 1, we 
hoose k = kF = k"i0 , for somesuÆ
iently large k0 that we will 
hoose later. We 
laim that the solution of thesere
urren
es is F (n) � AFn1+", where F is any of the m fun
tions Q�, T , S(j), andQ(j), and AF is the 
onstant AF = A(6
)i(F )k"�"i(F )+10 ;for some suÆ
iently large 
onstant A that will be determined later.We prove these upper bounds by indu
tion on n. First, by 
hoosing A to besuÆ
iently large, we may assume that these bounds hold for all the fun
tions and forany n � n0, for some suÆ
iently large n0 (that will be �xed below).We put Amax = max AF , over all the fun
tions F in the re
urren
es. Note thatAF is a monotone in
reasing fun
tion of the serial number of F , so Amax = AQ� =A(6
)m�1k"�"m0 .Ea
h of the re
urren
es has the formF (n) � 
 �N(n) + k(Gj1(n=k) + � � �+Gjq(n=k)) + k2(Fi1(n=k) + � � �+ Fip(n=k))� ;for k = kF , as de�ned above, where N(n) is a near-linear overhead term (whi
h mayalso depend on k), and the serial numbers of the fun
tions Fi1 ; : : : ; Fip are smallerthan that of F . Moreover, in all the re
urren
es we have 1 + q + p � 6. Using theindu
tion hypothesis, we need to show that, for n > n0,
N(n)n1+" + 
(AGj1 + � � �+ AGjq )k"F + 
kF (AFi1 + � � �+ AFip )k"F � AF :Let G be the fun
tion immediately following F in the hierar
hy (so i(G) = i(F )� 1).The monotoni
ity of the 
oeÆ
ients AF implies that it suÆ
es to show that
N(n)n1+" + 
qAmaxk"F + 
pkFAGk"F � AF :Let i = i(F ). Then kF = k"i0 , AF = A(6
)ik"�"i+10 , and Amax = A(6
)m�1k"�"m0 . Wethus need to show that
N(n)n1+" + 
qA(6
)m�1k"�"m0k"i+10 + 
pk"i0 A(6
)i�1k"�"i0k"i+10 � A(6
)ik"�"i+10 :Write the left-hand side as L1 + L2 + L3, and the right-hand side as R. Note that Ris minimized when i = 0, in whi
h 
ase it is equal to A. The term L1 is a de
reasingfun
tion of n, for n > n0, assuming that n0 is suÆ
iently large, and we 
hoose A sothat it satis�es 6
N(n0)n1+"0 � A;Union of Fat Obje
ts June 23, 2003



Appendix: Solving the Re
urren
es 23implying that L1 � R=6 (for n > n0).Con
erning L2, we haveL2R = 
q(6
)m�1�ik"m0 � 
q(6
)m�1k"m0 :We 
hoose k0 so that (6
)m � k"m0 ;whi
h implies that L2 � qR=6.Finally, it is straightforward to 
he
k that L3=R = p=6, or L3 � pR=6.Adding up these three inequalities, we have L1 + L2 + L3 � (1 + q + p)R=6 � R,whi
h 
ompletes the indu
tive proof. (To 
omplete the argument, we need to �x n0,we 
hoose it large enough so that it is greater than 2k0 and so that all the overheadterms N(n) are su
h that N(n)=n1+" are de
reasing fun
tions of n.)
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