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Analysis 2There are not too many results of this kind. If C is a olletion of �-fat triangles,1then the omplexity of U is O(n log logn) (with the onstant of proportionality de-pending on �) [9℄, and this bound improves to O(n) if the triangles are nearly ofthe same size [1℄. See also [13℄ for additional results onerning fat polygons. IfC is a olletion of n pseudo-disks (arbitrary simply-onneted regions bounded bylosed Jordan urves, eah pair of whose boundaries interset at most twie), thenthe omplexity of U is O(n) [7℄. Of ourse, without any additional onditions, theomplexity of U an be 
(n2), even for the ase of (non-fat) triangles. Even for fatonvex objets, something like ondition (ii) must be assumed, or else the omplexityof the union might be arbitrarily large, an easy observation that has been noted in[9℄. The main result of this paper isTheorem 1.1 The ombinatorial omplexity of the union of a olletion C that satis-�es onditions (i){(ii) is O(n1+"), for any " > 0, where the onstant of proportionalitydepends on ", � and s.Theorem 1.1 onstitutes a signi�ant progress in the study of the union of planarobjets, an area that has many algorithmi appliations, suh as �nding the maximaldepth in an arrangement of fat objets (see [3℄), hidden surfae removal in a olletionof fat objets in 3-spae [6℄, and point-enlosure queries in a olletion of fat objetsin the plane [5℄.Remark: In an earlier version of this paper, the authors have proved the slightlybetter bound O(�s(n)) on the omplexity of the union of C, under the additionalassumptions that all the regions in C are roughly of the same size and have boundedurvature. The proof for this speial ase is onsiderably simpler than the one givenbelow. This result will be part of the �nal version of the paper, although it is notgiven in the present version.2 Analysis2.1 Touhing and shattering vertiesIn this subsetion, we derive a general property of the union of planar sets, whih webelieve to be of independent interest.Let C be a olletion of n ompat simply-onneted sets in the plane, eahbounded by a losed Jordan urve (we refer to the sets in C as Jordan regions),and let U denote their union. We assume that these regions are in general position,so that eah pair of boundaries interset in a �nite number of points and properly1For triangles, there is an equivalent de�nition of fatness that requires all angles to be at least�0; in [9℄, this is alled �0-fatness.Union of Fat Objets June 23, 2003



Analysis 3ross at eah point of intersetion, and no three boundaries have a ommon point.(In this subsetion we make no other assumption on C.) As already mentioned, wemeasure the ombinatorial omplexity of U by the number of verties of the arrange-ment A(C) of C (i.e., points of intersetion between pairs of boundaries of regions inC) that lie on its boundary. We lassify the arrangement verties into two ategories:touhing verties: these are intersetions between pairs of boundaries that intersetat only two points.shattering verties: these are all the other boundary intersetion points.The level of a vertex of A(C) is the number of regions that ontain it in their interior.Thus the verties of U are exatly the verties at level 0.Let T (C) (resp. S(C)) denote the number of touhing (resp. shattering) vertiesof U .Theorem 2.1 For any integer parameter k < n=2, we haveT (C) = O �n+ kE(T (R)) + k2E(S(R))� ;where R is a random sample of n=k regions of C, and where E denotes expetationwith respet to the hoie of R.Proof: Fix a set  2 C, and onsider the irular sequene � of verties of A(C) inounterlokwise order along �. Partition � into ontiguous subsequenes �1; : : : ; �m,suh that the ars of � between the �rst and last verties of eah �i (where wego in ounterlokwise diretion from the �rst to the last vertex) are preisely theonneted omponents of �\ int(U). See Figure 1 for an illustration. Let us denoteby i the ar orresponding to �i, for i = 1; : : : ; m, and let ui, vi denote the lokwiseand ounterlokwise endpoints of i, respetively. Note that the overall number Nof subsequenes, over all  2 C, is the number of verties of U (eah subsequeneontributes two verties and eah vertex is ounted twie).Let k be the given `threshold parameter'. We lassify the subsequenes �i (andthe ars i) into the following three ategories:Short-and-touhing sequenes: Sequenes �i with fewer than k verties, all of whihare touhing.Shattering sequenes: Sequenes �i that ontain a shattering vertex among their �rstk elements.Long sequenes: Sequenes �i with at least k elements, whose �rst k elements areall touhing.Union of Fat Objets June 23, 2003



Analysis 4The ars i inherit the same lassi�ation from their orresponding sequenes �i. Wedenote the overall number of short-and-touhing (resp. shattering, long) subsequenes,over all sets  2 C, by Nst (resp. Ns, Nl). Clearly, N = Nst +Ns +Nl.Lemma 2.2 Nst = O(Ns +Nl + n).Proof: We onstrut a (plane embedding of a) planar graph G as follows. The nodesof G are the ounterlokwise endpoints vi of shattering and of long ars; in addition,if a region  has only short-and-touhing ars along its boundary, we add to G a nodethat lies somewhere on �, but not on any of these ars. (If this is impossible then� � int(U), and we an simply ignore  in what follows, sine it does not ontributeany vertex to U .) The number of nodes of G is thus � Ns +Nl + n.Let w be a vertex of U inident to the boundaries of two sets a; b 2 C, suh that wis an endpoint of a short-and-touhing sequene on both �a and �b. Let va (resp. vb)be the node of G nearest to w along �a (resp. �b) in lokwise diretion. We thenadd to G an edge that onnets va to vb, and draw it by onneting va to w along�a in ounterlokwise diretion, and by onneting w to vb along �b in lokwisediretion. We refer to eah of these two portions of the edge as a half-edge. We shiftthe resulting olletion of edges slightly, to make sure that they do not overlap alongthe boundaries; the rule is that when several half-edges emerge from the same nodeva, their relative interiors are slightly shifted into the interior of the orrespondingregion a, so that the shorter the half-edge is, the loser it is to the boundary. SeeFigure 1 for an illustration.This drawing of G may ontain rossing pairs of edges, but we laim that anypair of edges ross an even number of times. To see this, onsider the olletionof half-edges of G, eah onneting a node va 2 �a, along the boundary of a, toa `middle' vertex w, as de�ned above. We laim that a pair of half-edges is eitherdisjoint or ross eah other exatly twie. Indeed, by onstrution, half-edges alongthe boundary of the same a are drawn so that they do not ross at all. Let � and �0be two rossing half-edges, drawn along the boundaries of two respetive distint sets; 0 2 C. By onstrution, all the sets that � rosses are suh that their boundariesross � exatly twie, and � passes through (or, sine it was perturbed, very near)those two intersetion points, and similarly for �0. Hene � and �0 ross eah otherexatly twie, and the same holds for �, �0. (It is possible that one of these two pointsw is an endpoint of, say, �0. In this ase �0 must reah w from inside , for otherwiseit would not have rossed  at all, as is easily veri�ed, ontrary to our assumption.Sine � has been perturbed into , it follows that � and �0 ross at w too.)It is known [8, Corollary 3.1℄ that a graph that an be drawn in the plane sothat every pair of edges ross an even number of times is planar. Hene G is planar.By onstrution, and by de�nition of touhing verties, any pair of nodes of G areonneted by at most two edges, so Euler's formula is easily seen to imply that thenumber of edges of G is at most 6 times the number of its nodes. This ompletes theproof of the lemma. 2Union of Fat Objets June 23, 2003
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Figure 1: The proof of Theorem 2.1: �1, �2, and �3 are shattering sequenes; �4 and�5 are short-and-touhing sequenes. Two edges of the graph G are drawn as dashedars.
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Analysis 6Lemma 2.2 implies that T (C) = O(Ns +Nl + n). Indeed, the lemma bounds thenumber of touhing verties on �U that are endpoints of two short-and-touhing ars.Any other touhing vertex of �U is an endpoint of a shattering or a long ar, so thisupper bound aters to these verties too. We harge eah long sequene � to theblok of the �rst k of its verties. Clearly, eah suh vertex an be harged at mosttwie (one along eah boundary it is inident to), and they are all at level at mostk. Hene, Nl is at most 2=k times the number of touhing verties at level at most k.Applying the probabilisti analysis tehnique of Clarkson and Shor [2℄ (see also [10℄),we thus obtain Nl = 2k �O(k2E(T (R))) = O(kE(T (R)));where R is a random sample of n=k regions from C. Similarly, we harge eah shat-tering sequene � to the �rst shattering vertex that it ontains. Again, suh a vertexan be harged at most twie, and it lies at level at most k, so, arguing as above,we obtain Ns = O(k2E(S(R))), where R is as above. This onludes the proof ofTheorem 2.1. 2Remark: The proof tehnique of Theorem 2.1 an be applied to obtain an alternativesimple proof of the result of [7℄, that ifA(C) has no shattering verties then the numberof verties of U is at most 6n� 12 (for n � 3). For this, we de�ne a graph G� with nnodes, one node for eah region in C, where the node of region  is drawn as a point on� that also lies on �U (if no suh point exist, we an ignore , as above). We draw anedge of G� for eah vertex w of U , inident to two boundaries �a, �b, by onneting,as above, the nodes representing a and b to w along (atually, slightly shifted awayfrom) the respetive boundaries. Arguing exatly as in the proof of Lemma 2.2, it iseasily veri�ed that every pair of edges of G� ross an even number of times. HeneG� is planar, and no pair of its nodes is onneted by more than two edges, whihimplies, using Euler's formula as above, that the number of edges of G� is at most6n� 12, as asserted.2.2 Caps, insribed fat polygons, and their propertiesWe now return to the ase where C satis�es the onditions (i) and (ii) in the intro-dution. Let  2 C. We insribe in  a onvex polygon P de�ned as follows. Wehoose some onstant integer parameter t > 12, whih also satis�esarsin(os(�=t)=�) > 2�=t;and de�ne �j = 2�j=t, for j = 0; 1; : : : ; t � 1. For eah j, let wj = wj() denote the(unique) point on � that has a tangent (that is, a supporting line) at orientation �j(tangents are assumed to be oriented so that  lies to their left). P is de�ned to bethe onvex polygon whose verties are w0; : : : ; wt�1. (Note that P may have fewerthan t verties if � ontains nonsmooth points whose tangent orientations span asuÆiently large interval.) The di�erene  n P is the union of at most t aps ofUnion of Fat Objets June 23, 2003
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apP

 hord
inner fat triangle

Figure 2: The insribed polygon P and the orresponding aps; one inner fat triangleis also illustrated., where a ap is an intersetion of  with a halfplane. The hord of a ap is theintersetion of  with the line bounding the orresponding halfplane. An illustrationof suh an insribed polygon and of the orresponding aps is shown in Figure 2.Lemma 2.3 The polygons P are �0-fat, for �0 = �= os(�=t).Proof: Sine  is �-fat, there exist two onentri disks D1 �  � D2, with respetiveradii r1; r2, suh that r2 � �r1. Clearly, P � D2. Let K be one of the aps thatonstitute nP, and assume thatD1 intersets the hord pq ofK. It must do so at twopoints, or else its interior would have ontained p or q, ontraditing the assumptionthat D1 � . By de�nition, there exist two tangents to , �p at p and �q at q, whoseorientations di�er by 2�=t. Let d denote the distane from the enter O of D1 to pq.It is easy to verify that d � r1 os(�=t). Indeed (see Figure 3), translate the tangents�p and �q so that they support K \ D1 at two respetive points p0, q0. The anglep0Oq0 is at most 2�=t, so at least one of the angles between the perpendiular fromO to p0q0 and p0O or q0O is at most �=t. Sine both jp0Oj and jq0Oj = r1, the laimfollows. This implies that the disk onentri with D1 and having radius r1 os(�=t)is ontained in P, and this ompletes the proof of the lemma. 2Let  2 C, and let O denote the ommon enter of two disks D1 � P � D2, suhthat their respetive radii r1, r2 satisfy r2 � �0r1. Let pq be an edge of P. Theonvexity of P and the fat that D1 � P are easily seen to imply that the angleOpq must be at least the angle � between Op and the tangent to D1 from p, whihsatis�es sin� = r1=jOpj � r1=r2 � 1=�0. Similarly, the angle Oqp must also be atUnion of Fat Objets June 23, 2003
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Figure 3: The proof of Lemma 2.3
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Analysis 9least �. It follows that we an �nd a point v inside Opq, suh that all the angles ofthe triangle vpq are at least�0 = min farsin(1=�0); �=3g:We repeat this analysis to eah edge of eah polygon, and replae the polygonsP by the olletion of resulting triangles vpq. We refer to these triangles as inner fattriangles. Let T = T (C) denote the olletion of inner fat triangles. Clearly, jT j � nt.As an immediate onsequene of [9℄, we have:Lemma 2.4 The union UT of the triangles in T has O(n log logn) verties.Let v be a shattering vertex of �U , inident to two sets a; b 2 C. Let Ka, Kb bethe respetive aps of a, b that ontain v, and let paqa, pbqb denote their respetivehords. Consider the onvex set R = Ka \Kb.Lemma 2.5 At least one of the hords paqa, pbqb meets �R.Proof: Indeed, suppose to the ontrary that both hords are disjoint from R. Itfollows that R = a \ b, and that �R ontains at least four points of intersetionbetween �a and �b. Moreover, let O be an interior point of R, and onsider �Ka and�Kb as graphs of two respetive funtions r = Ka(�), r = Kb(�), in polar oordinatesabout O. Note that �R is the graph of the pointwise minimum of Ka and Kb. Thereis an angular interval Ia over whih Ka(�) is attained at the hord of Ka, and a similarinterval Ib for the hord of Kb. These intervals must be disjoint, or else �R wouldoverlap one of these hords, ontrary to assumption. See Figure 4.Let u (resp. w) denote the �rst vertex of �R that we enounter as we rotateabout O lokwise (resp. ounterlokwise) from Ia (learly, no vertex of �R has anorientation in Ia). In the angular interval that runs ounterlokwise from u to w,the boundary of R is attained by �b. Moreover, as we traverse, in ounterlokwisediretion, the portion of �b that lies on �Kb, we �rst enounter u and then w, andthe reverse order is obtained along �a. See Figure 4.Let �au, �aw denote the orientations of the tangents to a at u and w, respetively,and let �bu, �bw denote the orresponding tangent orientations for b. (If any of thesetangents is not unique, we �x an arbitrary tangent among those that are available.)The irular ounterlokwise order of these four orientations is (�au; �bu; �bw; �aw), andthey partition the irular range of orientations into four angular intervals that wedenote by (�au; �bu), (�bu; �bw), (�bw; �aw), and (�aw; �au). Eah of the seond and fourthintervals has length at most 2�=t (sine the endpoints of any of these intervals aretwo tangent orientations within a single ap), and eah of the �rst and third intervalshas length at most � (the total amount by whih the tangent to a onvex set an turnat a �xed point of its boundary is at most �). It follows that eah of the lengths ofthe �rst and third intervals is at least � � 4�=t > 2�=3.Union of Fat Objets June 23, 2003
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Ka w�au �buu �aw �bwFigure 4: Two interseting aps without a hordal intersetionWe now repeat the whole analysis in the last two paragraphs by interhanginga and b. This yields two verties u0, w0 of �R, suh that the turning angle of thetangents to R at eah of these verties is also greater than 2�=3. It is easily veri�edthat among the verties u; w; u0; w0 there exist at least three distint verties, or else�a and �b would have interseted at only two points, ontrary to assumption. We havethus obtained at least three verties of R suh that the turning angle of the tangentsat eah of them is greater than 2�=3, whih is impossible, beause the overall turningangle for a onvex set is 2�. This ontradition ompletes the proof of the lemma. 2Lemma 2.6 Let Ka be a ap of some set a 2 C, with hord ea, and let �b be aninner fat triangle in T , obtained from the polygon Pb, for some b 2 C, suh that thehord eb of �b rosses �Ka. Then one of the following ases must our:(i) ea rosses ��b (as in Figure 5(i)).(ii) Ka ontains a vertex of �b (as in Figure 5(ii)).(iii) �b ontains a vertex of Ka (as in Figure 5(iii)).(iv) �Ka and ��b ross exatly twie, at two points that lie on �a and on eb, and eais disjoint from Ka \ �b. Furthermore, let Kb denote the ap of b that sharesthe same hord eb with �b. Then either Kb ontains an endpoint of ea (as inFigure 5(iv.a)), or �a and �b interset only twie (as in Figure 5(iv.b)).Union of Fat Objets June 23, 2003
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Figure 5: Illustrating the various ases in Lemma 2.6
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Figure 6: Two patterns of intersetion of a ap Ka and an inner fat triangle �bProof: Suppose that ases (i) and (ii) do not our. That is, ea does not ross ��band no vertex of �b lies in Ka. Then eb must interset �Ka at two points, u, v, bothlying on �a. Therefore eb splits Ka into two subregions, the region K 0a that ontainsea, and the omplementary region K 00a . Denote the range of the orientations of thetangents to a at the points of Ka by (�0; �0 + 2�=t). Clearly, the orientations of eaand of eb also lie in this range. Two ases an arise:(1) �b overlaps K 0a and is disjoint from K 00a (see Figure 6(i)): If K 0a is fully ontainedin �b then u and v are the only two points of intersetions between �Ka and ��b,and, moreover, �b ontains both verties of Ka, so we are in ase (iii). Otherwise,sine, by assumption, �b does not interset ea and does not have a vertex inside K 0a,one of its other edges, f , must also ross �Ka twie, at two points w; z, lying on �a,so that the four points w; u; v; z appear in this order along �Ka. In this ase theorientation of f also lies in the range (�0; �0 + 2�=t), and thus the angle between eand f , whih is � �0, is at most 2�=t, a ontradition.(2) �b overlaps K 00a and is disjoint from K 0a (see Figure 6(ii)): We laim that in thisase �b fully ontains K 00a , so u and v are the only two intersetion points of �Ka and��b. Sine the orientations of eb and of the tangents (or, rather, any tangents) to aat u and at v all lie in the range (�0; �0 + 2�=t), it follows that the angles between eand these tangents are both at most 2�=t. However, the angles of �b at the endpointsof e are both � �0, and are therefore larger. It follows that the triangle bounded bye and by two suh tangents is fully ontained in �b, from whih the laim followsreadily.Finally, suppose that Kb does not ontain any of the endpoints ea. Let p and q bethe endpoints of ea, so that p; u; v; q appear in this order along �a. Then the portionUnion of Fat Objets June 23, 2003



Analysis 13of �Kb along �b must ross the portion of �Ka along �a at least twie, at one pointw between p and u and at another point z between v and q (see Figure 5(iv.b)). Welaim that w and z are the only two intersetion points of �a and �b. Indeed, suppose,with no loss of generality, that ea lies along the x-axis and that Ka lies above it. Thena � �a\Ka is a downward-onave x-monotone ar. Moreover, the absolute value ofthe orientation of eb is at most 2�=t, so the orientation of any tangent to b � �b\Kbhas absolute value � 4�=t, whih is easily seen to imply that b is also x-monotoneand downward-onvex. It follows that a and b ross eah other exatly twie (at wand z). We laim that there an be no other point of intersetion between �a and �b.Indeed, any suh point must lie either in the halfplane below ea or in the halfplaneabove eb. Consider the halfplane H lying below ea (the seond ase is treated in afully symmetri manner). It is easy to see that any suh intersetion must lie on b.However, if b reahes H it must ross ea twie. Arguing as above, it follows thatthe portion of b in H is fully ontained in the inner fat triangle of Pa that has eaas a hord, and hene it annot interset �a at all. This shows that ondition (iv)holds, and thus ompletes the proof of the lemma. (Note that these arguments alsoimply that, in any on�guration of ase (iv), �Ka and �Kb an interset in at mosttwo points; they interset in one or zero points if and only if Kb ontains an endpointof ea.) 22.3 The proof of Theorem 1.1The proof follows the tehnique used in the analysis of the omplexity of lower en-velopes of surfaes in higher dimensions and of related strutures, as given in [4, 11℄.Let K = K(C) denote the olletion of all aps of sets in C, as de�ned above; reallthat jKj � nt. Let UK denote the union of these aps. The verties of U are alsoverties of UK.Let Ka � a and Kb � b be two aps of two (distint) regions a; b 2 C, suh that�Ka and �Kb interset in at least one vertex that is shattering in A(C) (in otherwords, this is a vertex inident to �a and �b, and these boundaries ross at least fourtimes; note also that a vertex an be shattering in A(C) and not in A(K) or vieversa). Put R = Ka\Kb. We all an ar of �R marked if it ontains a vertex of A(K)that lies on the hord of some ap, suh that ondition (iv) of Lemma 2.6 does nothold for that vertex (or, rather, for the ap and the triangle on whose boundaries thevertex lies), and unmarked otherwise; see Figure 7. We will refer to verties of A(K)that lie on some hord as hordal verties. Chordal verties that satisfy ondition (iv)of Lemma 2.6 will be alled speial hordal verties, and all the other hordal vertieswill be alled standard hordal verties.Lemma 2.5 and Lemma 2.6 imply that at least one ar of �R is marked. Atu-ally, they imply that one of the verties of R is a standard hordal vertex. Indeed,Lemma 2.5 implies that R has at least one hordal vertex. If all the hordal vertiesUnion of Fat Objets June 23, 2003
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Figure 7: The region R = Ka \Kb; the marked ars are labeled by M ; �R has threeshattering verties, with indies 0,1,2, as shownof R are speial then eah of the hords of Ka, Kb ontains zero or two suh verties,and, arguing as in the proof of Lemma 2.6, one an show that �a and �b intersetin exatly two verties, ontraditing the assumption that �Ka and �Kb interset inat least one shattering vertex in A(C). Note also that if �R has any speial hordalvertex, then it must also have an endpoint of a hord as a vertex (see Lemma 2.6).We de�ne the index of a vertex w of a \ b that lies on �R to be the number ofunmarked ars of �R that we enounter before hitting a marked ar, as we traversethis boundary from w in ounterlokwise diretion. However, if �R has a speialhordal vertex, it an have at most one vertex of �a \ �b, as follows easily from theanalysis of the proof of Lemma 2.6, and we de�ne the index of that vertex to be 0.The index of a vertex is an integer between 0 and s� 1.We also de�ne the level of a vertex v of the arrangement A(K) to be the numberof aps of K ontaining v in their interior. Clearly, verties at level 0 are exatly theverties of �UK.We de�ne the following quantities:� T (C) is the number of touhing verties in A(C) that lie on �U .� S(C) is the number of shattering verties in A(C) that lie on �U .� S(j)(C), for j = 0; : : : ; s � 1, is the number of these shattering verties whoseindex is at most j (so S(C) = S(s�1)(C)).� Q�(C) is the number of speial hordal verties that lie at level 0 in the arrange-ment A(K [ T ) of the aps and inner fat triangles of the regions in C.22One might be tempted to think that these verties lie on the boundary of the union of theseUnion of Fat Objets June 23, 2003



Analysis 15� Q0(C) is the number of standard hordal verties that lie at level 0 in A(K [ T ).� T (n) is the maximum of T (C), over all olletions C of n sets satisfying (i) and(ii) (with �xed � and s).� S(n) is the maximum of S(C), over all olletions C as above.� S(j)(n) is the maximum of S(j)(C), for j = 0; : : : ; s� 1, over all olletions C asabove.� Q�(n) is the maximum of Q�(C), over all olletions C as above.� Q0(n) is the maximum of Q0(C), over all olletions C as above.We will derive a (somewhat omplex) system of reurrene relationships for theabove quantities. Eah of these reurrenes involves a `threshold parameter' k < n=2,whih is arbitrary, and we will hoose a di�erent value of k for eah reurrene, in amanner detailed below.First, using Theorem 2.1, we have:T (n) �  �n+ kT (n=k) + k2S(n=k)� ; (1)for some onstant  (for simpliity, we will use the same onstant in all the reur-renes).We next estimate S(j)(n), for j = 0; : : : ; s�1. Let v be a shattering vertex of A(C)that lies on �U , inident to two boundaries �a, �b, and ontained in two respetiveaps Ka � a and Kb � b, whose index is at most j. Let R = Ka \ Kb, and let denote the ar of �R inident to v and lying ounterlokwise to it; see Figure 7. We�x a threshold parameter k, trae  from v, and examine the sequene � of vertiesof A(K) that we enounter. Several ases an arise:(a) � ontains at least k verties, and none of the �rst k verties of � is a standardhordal vertex. (Note that � may ontain a standard hordal vertex only if theindex of v is zero.) In this ase we harge v to the blok of the �rst k vertiesof �. Several important observations need to be made:(i) Eah of these harged verties lies at level � k (in A(K), or in A(C) if it isa vertex of this latter arrangement).(ii) Eah harged vertex is harged at most twie, one along eah of theboundaries ontaining it.aps and triangles, but this is not the ase, sine eah hordal vertex z lies in the interior of theunion of the ap and triangle that share the hord that ontains z. This is why we use the moreareful notion of level 0.Union of Fat Objets June 23, 2003



Analysis 16(iii) The portion of  that ontains � may lie inside some inner fat triangles,but it does not ross any non-hordal edge of any suh triangle (this followsfrom ondition (iv) of Lemma 2.6).(iv) Eah of the harged speial hordal verties lies at level � k in A(K [ T )(this is a onsequene of observation (iii)).It follows that the overall number of shattering verties of A(C) that lie on �Uand fall into this ategory is at most 2=k times the number of touhing andshattering verties of A(C) that lie at level at most k (in either arrangement)plus 2=k times the number of speial hordal verties that lie at level at mostk in A(K [ T ) (this is a onsequene of observation (iii)). Using again theprobabilisti analysis tehnique of Clarkson and Shor [2℄, this upper bound is atmost (2=k)�O(k2) times the expeted number of touhing and shattering vertiesof the union of a random sample of n=k regions of C, plus (2=k) �O(k2) times theexpeted number of speial hordal verties at level 0 in the arrangement of theaps and inner fat triangles of a random sample of n=k regions of C. In otherwords, the number of verties v of the present type is O(kT (n=k) + kS(n=k) +kQ�(n=k)).(b) The �rst k (or all, if � is shorter) verties in � inlude at least one standardhordal vertex w (in this ase the index of v must be zero). We harge v tothe �rst suh w. It is easily veri�ed that w an be harged in this manner onlyone. Sine w is at level at most k in A(K [ T ) (see observation (iv)), anotherappliation of the Clarkson-Shor tehnique implies that the number of vertiesv of this kind is at most O(k2Q0(n=k)).() � ontains fewer than k verties of A(K), none of whih is standard hordal. Inthis ase we onsider the other endpoint w of . If w is also a shattering vertexin A(C), then its index is at most j � 1, and it lies at level at most k in A(C).In this ase we harge v to w. Otherwise, w is a speial hordal vertex, in whihase, as observed above, �R must ontain an endpoint z of the hord of Ka orof Kb. Moreover, suppose, without loss of generality, that  � �a. Then theproof of Lemma 2.6 is easily seen to imply that z is an endpoint of the hord ofKa, and that the entire ounterlokwise portion of �a from v to z is lies in theinterior of UK (see Figure 5(iv.b)). In this ase we harge v to z. The argumentjust given implies that z an be harged at most one in this manner, and thenumber of suh points z is at most nt = O(n). Applying the Clarkson-Shortehnique again to the former type of harging, we onlude that the numberof verties v of this kind is O(n+ k2S(j�1)(n=k)).Thus, summing up these bounds, we obtain the following system of reurrenes:S(j)(n) �  �n+ kT (n=k) + kS(n=k) + kQ�(n=k) + k2S(j�1)(n=k) + k2Q0(n=k)� ;(2)Union of Fat Objets June 23, 2003
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Figure 8: The region R = Ka \�b; the marked ars are labeled by M ; �R has foursemi-sharp verties, with indies 0,1,2,3, as shownfor j = 0; : : : ; s � 1, and for some onstant  that depends on � (for j = 0, we putS(�1) = 0 in the right-hand side).Next we estimate Q0(C), using an analysis similar to the one just presented. Reallthat we are ounting standard hordal verties at level 0 in A(K [ T ). (Formally, wean also take eah pair of a ap and a triangle with a ommon hord, and shift themslightly away from eah other, so that eah of the standard hordal verties that lieon this hord and are ounted in Q(C) is split into two verties, both of whih lie onthe boundary of the union of K [ T .)We analyze the number of these hordal verties by onsidering them as verties inA(K [ T ), eah lying on the boundary of the intersetion of an inner fat triangle anda ap. So let v be a standard hordal vertex, lying on the boundary of a ap Ka � aand on the hord of an inner fat triangle �b � b, for two (distint) sets a; b 2 C.By de�nition, Ka and �b satisfy one of the onditions (i){(iii) of Lemma 2.6, whihmeans that the boundary of the intersetion R = Ka\�b has at least one vertex thatis a vertex of A(T ), and none of its verties is a speial hordal vertex (see Figure 8).Observe that �R onsists of at most six ars, sine eah edge of �b an interset �Kaat most twie. We all an ar of �R marked if it ontains a vertex of A(T ), andunmarked otherwise. We will refer to these verties as sharp verties. As just argued,at least one ar of �R is marked. We de�ne the index of any non-sharp vertex w ofR (inluding non-hordal verties as well) to be the number of unmarked ars of �Rthat we enounter before hitting a marked ar, as we traverse this boundary from win ounterlokwise diretion. The index of a vertex is an integer between 0 and 5. AsUnion of Fat Objets June 23, 2003



Analysis 18just mentioned, not all the verties that we enounter during this traversal need behordal; eah non-hordal and non-sharp vertex lies on �a and on some edge (otherthan the hord) of �b. We refer to all suh verties as semi-sharp; learly, hordalverties are also semi-sharp.We introdue more quantities that we want to bound:� Q(C) is the number of semi-sharp verties on �UK[T (perturbed as above),exluding speial hordal verties. Clearly, Q0(C) � Q(C).� Q(j)(C), for j = 0; : : : ; 5, is the number of semi-sharp verties on �UK[T (ex-luding speial hordal verties), whose index is at most j (so Q(C) = Q(5)(C)).� Q(n) the maximum of Q(C), over all olletions C of n regions satisfying (i) and(ii) (with �xed � and s).� Q(j)(n) is the maximum of Q(j)(C), over all suh olletions C, for j = 0; : : : ; 5.Let v be a semi-sharp vertex of �UK[T , inident to the boundary of a ap Ka � a(and to �a itself) and to the boundary of an inner fat triangle �b � b, for twodistint sets a; b 2 C, whose index is at most j. Let R = Ka \ �b, and let  denotethe ar of �R inident to v and lying ounterlokwise to it. We �x some thresholdparameter k, trae  from v, and examine the sequene � of verties of A(K [ T )that we enounter. Several ases an arise:(a) � ontains at least k verties, and none of the �rst k verties of � is sharp.(Note that � may ontain a sharp vertex only if the index of v is zero.) Inthis ase we harge v to the blok of the �rst k verties of �. As above, wehave the important observations that (i) eah of these verties lies at level � kin A(K [ T ), and (ii) eah suh vertex is harged at most twie, one alongeah of the boundaries ontaining it. It follows that the overall number ofsemi-sharp verties of �UK[T that fall into this ategory is at most (2=k) timesthe number of touhing and shattering verties of A(C) at level at most k,and of semi-sharp and speial hordal verties of A(K [ T ) at level at mostk. As above, the probabilisti analysis tehnique of Clarkson and Shor impliesthat this upper bound is at most (2=k) � O(k2) times the expeted number oftouhing and shattering verties of the union of a random sample of n=k regionsof C, plus (2=k) � O(k2) times the expeted number of semi-sharp and speialhordal verties of the union of the aps and triangles of a random sample ofn=k regions of C. Hene the number of semi-sharp verties of �UK[T of thiskind is O(kT (n=k) + kS(n=k) + kQ(n=k) + kQ�(n=k)).(b) The �rst k (or all, if � is shorter) verties in � inlude at least one sharp vertexw (in this ase the index of v must be zero). We harge v to the �rst suh w.As above, it is easily seen that w an be harged in this manner at most twie,Union of Fat Objets June 23, 2003



Analysis 19and that it lies at level at most k in A(K [ T ). Hene, using Lemma 2.4 andthe Clarkson-Shor analysis tehnique, the number of verties v of this kind iseasily seen to be O(k2 � nk log log nk ) = O(nk log logn).() � ontains fewer than k verties of A(K [ T ), none of whih is sharp. In thisase we harge v to the other endpoint w of . Clearly, w is also a semi-sharpvertex (as noted above, no vertex of R is speial hordal), whose index is atmost j � 1, and it lies at level at most k in A(K [ T ). Applying the Clarkson-Shor tehnique again, we onlude that the number of verties v of this kind isO(k2Q(j�1)(n=k)).Thus, summing up these bounds, we obtain:Q(j)(n) �  �nk log logn+ kT (n=k) + kS(n=k) + kQ(n=k) + kQ�(n=k) + k2Q(j�1)(n=k)� ;(3)for j = 0; : : : ; 5, and for some onstant  > 0 that depends on � (for j = 0, we putQ(�1) = 0 in the right-hand side).Finally, we estimate Q�(C), that is, the number of speial hordal verties on�UK[T (perturbed as above). We do this by applying a variant of the analysis in theproof of Theorem 2.1. Note that the speial hordal verties are touhing vertiesin A(K [ T ), but not all suh touhing verties are neessarily speial hordal. Weapply the same graph onstrution as in the proof of Theorem 2.1, exept that insteadof touhing verties we onsider only the subset of speial hordal verties. Thus, forexample, a subsequene �i (as in the proof of Theorem 2.1) that ontains (among its�rst k members) a touhing vertex that is not speial hordal will be treated as a`shattering' subsequene, and will orrespond to a node of the graph (rather than toan edge of it), and edges are indued only by short sequenes that onsist exlusivelyof speial hordal verties. We leave it to the reader to verify that the proof remainsvalid under this modi�ation, and that the onlusion now is thatQ�(C) = O �n + kE(Q�(R)) + k2(E(T (R)) +E(S(R)) +E(Q(R)))� ;where R is a random sample of n=k regions of C, as above. In other words, we have:Q�(n) �  �n+ kQ�(n=k) + k2T (n=k) + k2S(n=k) + k2Q(n=k)� ; (4)for some onstant , as above.Following the analysis in [4, 11℄, the solution of the ombined reurrenes (1), (2),(3), and (4), with appropriate hoie of the threshold parameters k, an be shown tobe T (n) = O(n1+")S(n) = O(n1+")Q(n) = O(n1+")Q�(n) = O(n1+");Union of Fat Objets June 23, 2003
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Appendix: Solving the Reurrenes 21[12℄ F. van der Stappen,Motion Planning amidst Fat Obstales, Ph.D. Dissertation, UtrehtUniversity, 1994.[13℄ M. van Kreveld, On fat partitioning, fat overing, and the union size of polygons,Pro. 3rd Workshop Algorithms Data Strut., Leture Notes in Computer Siene, Vol.709, Springer-Verlag, 1993, 452{463.Appendix: Solving the ReurrenesIn this appendix we prove that the solution of the above system of reurrenes isnear-linear. Reall that the reurrenes are:T (n) �  �n+ kT (n=k) + k2S(n=k)�S(j)(n) �  �kT (n=k) + kS(n=k) + kQ�(n=k) + k2S(j�1)(n=k) + k2Q(n=k)�Q(j)(n) �  (nk log logn + kT (n=k) + kS(n=k) + kQ(n=k) + kQ�(n=k)+ k2Q(j�1)(n=k)�Q�(n) �  �n+ kQ�(n=k) + k2T (n=k) + k2S(n=k) + k2Q(n=k)� :Before deriving the formal solution, here is an intuitive explanation of the analysis.The right-hand sides of these reurrenes inlude three kinds of terms:(i) `overhead', non-reursive terms that are linear or near-linear in n,(ii) reursive terms with oeÆients of the form O(k), and(iii) reursive terms with oeÆients of the form O(k2).If it were not for the terms of the third kind, the reurrenes would trivially solve toO(n1+"), for any " > 0. Terms of the third kind are `dangerous', beause they `suggest'a quadrati solution. Fortunately, though, there is a strit hierarhy between thevarious funtions appearing in the reurrenes, suh that any term with a oeÆientO(k2) involves a funtion that is lower in the hierarhy than the funtion appearingin the left-hand side. This hierarhy isQ�!T!S = S(s�1)!S(s�2)!� � �!S(0)!Q = Q(5)!Q(4)!� � �!Q(0):There are m = s + 8 funtions in this hierarhy, and we assign to eah funtionF a serial number i(F ) in the hierarhy, so that the serial number of Q� is m � 1and that of Q(0) is 0. We exploit this hierarhy by hoosing di�erent k's in di�erentreurrenes, so that the k's hosen for reurrenes whose left-hand-side funtions arelower in the hierarhy are muh larger than those hosen for funtions higher in thehierarhy. In this way, the e�et of the oeÆients O(k2) an be made negligible,making the overall solution near-linear.Union of Fat Objets June 23, 2003



Appendix: Solving the Reurrenes 22In more detail, we �x " > 0. In the reurrene for the funtion F whose serialnumber is i = i(F ), for i = 0; 1; : : : ; m � 1, we hoose k = kF = k"i0 , for somesuÆiently large k0 that we will hoose later. We laim that the solution of thesereurrenes is F (n) � AFn1+", where F is any of the m funtions Q�, T , S(j), andQ(j), and AF is the onstant AF = A(6)i(F )k"�"i(F )+10 ;for some suÆiently large onstant A that will be determined later.We prove these upper bounds by indution on n. First, by hoosing A to besuÆiently large, we may assume that these bounds hold for all the funtions and forany n � n0, for some suÆiently large n0 (that will be �xed below).We put Amax = max AF , over all the funtions F in the reurrenes. Note thatAF is a monotone inreasing funtion of the serial number of F , so Amax = AQ� =A(6)m�1k"�"m0 .Eah of the reurrenes has the formF (n) �  �N(n) + k(Gj1(n=k) + � � �+Gjq(n=k)) + k2(Fi1(n=k) + � � �+ Fip(n=k))� ;for k = kF , as de�ned above, where N(n) is a near-linear overhead term (whih mayalso depend on k), and the serial numbers of the funtions Fi1 ; : : : ; Fip are smallerthan that of F . Moreover, in all the reurrenes we have 1 + q + p � 6. Using theindution hypothesis, we need to show that, for n > n0,N(n)n1+" + (AGj1 + � � �+ AGjq )k"F + kF (AFi1 + � � �+ AFip )k"F � AF :Let G be the funtion immediately following F in the hierarhy (so i(G) = i(F )� 1).The monotoniity of the oeÆients AF implies that it suÆes to show thatN(n)n1+" + qAmaxk"F + pkFAGk"F � AF :Let i = i(F ). Then kF = k"i0 , AF = A(6)ik"�"i+10 , and Amax = A(6)m�1k"�"m0 . Wethus need to show thatN(n)n1+" + qA(6)m�1k"�"m0k"i+10 + pk"i0 A(6)i�1k"�"i0k"i+10 � A(6)ik"�"i+10 :Write the left-hand side as L1 + L2 + L3, and the right-hand side as R. Note that Ris minimized when i = 0, in whih ase it is equal to A. The term L1 is a dereasingfuntion of n, for n > n0, assuming that n0 is suÆiently large, and we hoose A sothat it satis�es 6N(n0)n1+"0 � A;Union of Fat Objets June 23, 2003



Appendix: Solving the Reurrenes 23implying that L1 � R=6 (for n > n0).Conerning L2, we haveL2R = q(6)m�1�ik"m0 � q(6)m�1k"m0 :We hoose k0 so that (6)m � k"m0 ;whih implies that L2 � qR=6.Finally, it is straightforward to hek that L3=R = p=6, or L3 � pR=6.Adding up these three inequalities, we have L1 + L2 + L3 � (1 + q + p)R=6 � R,whih ompletes the indutive proof. (To omplete the argument, we need to �x n0,we hoose it large enough so that it is greater than 2k0 and so that all the overheadterms N(n) are suh that N(n)=n1+" are dereasing funtions of n.)
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