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Abstract

We show that, for any fixed δ > 0, the combinatorial complexity of the union of n triangles in
the plane, each of whose angles is at least δ, is O(n2α(n) log∗ n), with constant of proportionality
depending on δ. This considerably improves the twenty-year-old bound O(n log log n), due to
Matoušek et al. [29, 30].
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1 Introduction

Let T be a collection of n triangles in the plane. Let A(T ) denote the two-dimensional arrangement

induced by the edges of the triangles in T . This is the decomposition of the plane into vertices,
edges, and faces (also called cells), each being a maximal connected set contained in the intersection
of some fixed subset of the edges of the triangles of T and not meeting any other edge. To simplify
the presentation, and with no real loss of generality, we assume that the triangles of T are in
general position, so that, in paticular, no point of the plane is incident to more than two edges of
the triangles.

The combinatorial complexity of the union of the triangles in T is the number of vertices and
edges of the arrangement appearing along the union boundary. In this paper we study the union
complexity in the special case where all the given triangles are δ-fat for some fixed δ > 0. That is,
each angle of every triangle is at least δ.

Previous results. The problem of bounding the combinatorial complexity of the union of ge-
ometric objects has received considerable attention in the past 25 years. See [2] for a recent
comprehensive survey of the area.

The case involving pseudodiscs (that is, a collection of simply-connected planar regions, where
each pair of their boundaries intersect at most twice) arises for Minkowski sums of a fixed convex
object with a set of pairwise disjoint convex objects (which is the problem one faces in translational
motion planning of a convex robot in the plane), and has been studied by Kedem et al. [25], who
showed that in this case the union has only linear complexity.

In general, the complexity of the union of n simply-shaped objects in the plane (of triangles, say)
can be Θ(n2). However, as shown in a series of papers during the past 20 years, the bound becomes
near-linear when the objects are “fat.” Efrat et al. [16] showed that the union of n unbounded δ-fat
wedges in the plane (that is, each of their opening angles is at least δ) is O(n), with a constant of
proportionality that depends on δ. Later, Matoušek et al. [29, 30] proved that the union of n δ-fat
triangles in the plane has only O(n) holes (connected components of its complement), and that its
combinatorial complexity is O(n log log n). The constant of proportionality, which depends on the
fatness factor δ, was later improved by Pach and Tardos [31]. The work by Matoušek et al. [29,30]
has been generalized in various ways. In particular, there have been several recent studies involving
fat objects in R

3; see, e.g., [19,21] and the references therein. Other studies of the planar case extend
the analysis to the realm of curved fat objects. Efrat and Sharir [17] studied the union of planar
fat convex objects. Here we say that a planar convex object c is γ-fat, for some fixed γ > 1, if
there exist two concentric disks, D ⊆ c ⊆ D′, such that the ratio between the radii of D′ and D
is at most γ. In this case, the combinatorial complexity of the union of n such objects, such that
the boundaries of each pair of objects intersect in a constant number of points, is O(n1+ε), for any
ε > 0. With an appropriate (stronger) definition of fatness, some of the previous work extends to
non-convex objects, resulting in sharper nearly-linear bounds; see Efrat and Katz [15], Efrat [14]
and the very recent work of De Berg [12] (improving the bound previously established in [11]).

Still, the case of fat triangles can be regarded as the “flagship” problem in this collection, being
among the simplest and most natural instances, and yet posing challenges, of obtaining sharper
bounds on the union complexity, which have not been successfully addressed for nearly twenty
years.

Our result. The best known lower bound for the maximum complexity of the union of n δ-fat
triangles is Ω(nα(n)), where α(·) is the extremely slowly growing inverse Ackermann function [32].
This bound is obtained by constructing a lower envelope of n segments of complexity Ω(nα(n))
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(see, e.g., [32] for the construction), sufficiently flattening the construction in the y-direction, and
then extending each segment upwards into an equilateral (and thus fat) triangle. The prevailing
conjecture, originally posed by Matoušek et al. [30], is that the maximum complexity is Θ(nα(n)).

In this paper we improve the O(n log log n) upper bound established in [30] to O(n2α(n) log∗ n),
thereby making considerable progress towards settling this conjecture.

Besides being a significant advance on a problem which is interesting and challenging in its own
right, our result has several useful applications, all obtained by plugging the new bound into the
appropriate existing machinery. They include (see Section 3 for details):
(i) A O(log log∗ Opt) approximation factor for the set cover problem for δ-fat triangles and points in
the plane, where Opt is the size of the smallest set cover. This improves the factor O(log log log Opt)
previously obtained in [3].
(ii) A O((1/ε) log log∗(1/ε)) bound on the size of an ε-net for the “dual” range space involving fat
triangles and points in the plane, improving the previous bound O((1/ε) log log log (1/ε)) derived
in [3].
(iii) An improved bound on the running time of the output-sensitive algorithm of [24] for hidden sur-

face removal for horizontal δ-fat triangles in 3-space. With our new bound on the union complexity,
this algorithm can compute the visibility map of the scene as seen from a given view point, in time
O((n2α(n) log∗ n + k) log2 n) and O(n2α(n) log∗ n log n) storage, where k is the output size. This is
an improvement over the previous respective bounds O((n log log n + k) log2 n), O(n log log n log n)
obtained in [24].

2 Bounding the Union Complexity

2.1 Preliminaries

Let T be, as above, a set of n δ-fat triangles in the plane in general position. We denote the
(boundary) complexity of the union of the triangles in T by BC(T ) and measure it by the number
of edges of the union boundary. We denote the number of holes in that union (that is, connected
components of its complement) by H(T ).

Our analysis makes use of the following two known basic technical results.

Lemma 2.1 (Combination Lemma; Edelsbrunner et al. [13]). Let T1 and T2 be two families of n1

and n2 triangles, respectively. Then we have

BC(T1 ∪ T2) ≤ BC(T1) + BC(T2) + O(n1 + n2 + H(T1 ∪ T2)).

Remarks. (1) Spelled out, this says that the complexity of the union of the triangles in T1 ∪ T2

is at most the sum of the complexities of the unions of the individual families plus an overhead
term proportional to the number of holes in the union of the combined families and to the overall
number of triangles.
(2) The lemma does not assume fatness, and thus can be applied for arbitrary triangles. (In fact,
the formulation in [13] is even more general, and relates to arbitrary arrangements of segments and
to any subset of cells in the overlay of two sub-arrangements.)
(3) The terms BC(T1), BC(T2) appear in the above bound without any multiplicative factors. This
crucial property is exploited by our analysis—see below. (It fails in more general settings involving
curved arcs rather than straight line segments.)

Lemma 2.2 (Matoušek et al. [30]). For any fixed δ > 0, every family of n δ-fat triangles in the

plane has O(n) holes, with a constant of proportionality that depends on δ.
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Figure 1: (a) The semi-canonization step. The triangle ABC is covered by three triangles, each of which
contains the center O of the inscribed circle of ABC and has two edge orientations that are taken from a fixed
set of O(1/δ) directions. Only one of these triangles (ABD) is depicted in the figure. (b) A semi-canonical right
triangle, after an appropriate affine transformation.

The semi-canonization step. Following the analysis of [30], we cover each δ-fat triangle T ∈ T
by a triple of “semi-canonical” (δ/2)-fat triangles, each of which has a pair of edges with orientations
taken from a fixed finite set D of O(1/δ) directions, and a third edge that also bounds T ; see [30,
Lemma 3.2] and Figure 1(a).

This “semi-canonization” step yields a constant number κ (O(1/δ3), to be precise) of semi-
canonical subfamilies T1, . . . ,Tκ of (δ/2)-fat triangles, where the triangles in each subfamily have
two edges at fixed orientations in D, and a third edge at an orientation close to a fixed one. By
construction, the union of the triangles in T is equal to the union of the triangles in T1 ∪ · · · ∪ Tκ.
Putting ni = |Ti|, for i = 1, . . . , κ, we have

∑κ
i=1 ni = 3n because each triangle is replaced by three

semi-canonical triangles.

We show below that the complexity of the union of the triangles of the ith family Ti is
O(ni2

α(ni) log∗ ni). We then note that any vertex of the union is also a vertex of the union of
at most two of the sub-families (namely, those containing the triangles whose boundaries meet at
the vertex). Hence the complexity of the union is upper bounded by the sum of the complexities
of the unions of pairs of sub-families. Each of the latter complexities can be bounded by applying
the Combination Lemma (Lemma 2.1) to the corresponding pair of families. Since the number of
families is constant, we readily obtain the bound O(n2α(n) log∗ n) on the complexity of the union
of T .

Thus, in what follows we focus on a fixed semi-canonical family Ti, and, to simplify the notation,
we rename it F , and denote its size, with a slight abuse of notation, by n. As in [30], by applying an
appropriate affine transformation, we may assume that each triangle T ∈ T is an “almost isosceles”
right triangle with one horizontal edge and one vertical edge, which meet at the lower-left vertex
of T , so that the orientation of the hypotenuse of T differs from 135◦ by at most one degree, say;
see Figure 1(b). (In particular, from now on, we ignore the dependence on δ of the constants of
proportionality in our bounds.) Recall that our goal is to show that the complexity of the union of
F is O(n2α(n) log∗ n), in the abused notation.

2.2 The Analysis

As shown in [30], using an interval-tree approach, we can decompose F into k := O(log n) subfam-
ilies F1,F2, . . . ,Fk, each of which corresponds to a fixed level of the tree, so that all the triangles
in a fixed subfamily are stabbed by a collection of horizontal lines, each triangle in the subfamily
is stabbed by precisely one line of the collection, and two triangles stabbed by different lines are
disjoint (in fact, their y-projections are disjoint); see Figure 2(a). Moreover, as shown in [30], the
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Figure 2: (a) An interval tree with two levels partitions the triangles into the subfamilies F1 (of the triangles
stabbed by the center line) and F2 (of the triangles stabbed by one of the dashed lines but not by the center
line). (b) Any intersection vertex v of ∂U1 and ∂U2 appears on the boundary of their union.

complexity of the union Uj of each subfamily Fj is O(nj2
α(nj )), where nj = |Fj |. To simplify

the notation, write β(m) = O(2α(m)), with an appropriate constant of proportionality, and upper
bound the complexity of Uj (the number of edges forming its boundary) by njβ(nj) ≤ njβ(n),
j = 1, . . . , k.

We next replace the triangles in each Fj by the collection Ej of segments that constitute the
boundary of the corresponding union Uj (so we eliminate all portions of triangle boundaries lying

in the interior of Uj). We thus have |Ej| ≤ njβ(n). Put E :=
⋃k

j=1 Ej , N := |E| ≤ nβ(n).
We may also assume that every triangle contributes at least one segment to E, so that N ≥ n.
(Triangles that fail to do so can be removed from T , which can only increase the complexity of
the union—see below for similar arguments.) Construct the arrangement A(E), and consider a
vertex v of A(E), formed by the intersection of two segments of E, from two distinct sub-unions
Uj1, Uj2 (two segments of the same sub-union can meet only at a common endpoint, and the overall
number of such endpoints is |E|). It is easy to verify that v must be a vertex of the union Uj1 ∪Uj2;
see Figure 2(b). Using the Combination Lemma (Lemma 2.1) and the fact that this union has
only O(nj1 + nj2) holes (by Lemma 2.2), we conclude that the complexity of this union is at most
O((nj1 +nj2)β(n)). Summing over all pairs of unions, and noting that the number of unions is only
k = O(log n), we conclude that the complexity of A(E) is

X := O

(

∑

1≤j1<j2≤k

(nj1 + nj2)

)

β(n) = O

(

∑

1≤j1≤k

(nj1k + n)

)

β(n) = O(nkβ(n)) = O(nβ(n) log n).

The problem decomposition. We next construct a (1/r)-cutting Ξ of A(E), for r = N2/X
(for simplicity, and with no real effect on the analysis, we ignore rounding issues), following the
standard approach of [6]. We spell out the fairly standard details of the construction, to clarify
that it also works for our special complexity-sensitive choice of r (a similar idea has recently been
used in [20]). Specifically, we draw a random sample R of segments of E, where each segment is
chosen independently with probability p = r/N , construct the arrangement A(R) and its vertical

decomposition (see [32]). This creates a tiling of the plane into trapezoids. The expected number
of trapezoids is proportional to the expected number of vertices in A(R), which, by our choice of r,
is

O(pN + p2X) = O

(

r +
( r

N

)2
X

)

= O(r).
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τ

Figure 3: The vertical decomposition of an arrangement of segments. The cell τ is the only cell of the
decomposition which is met by all three edges of the light-colored triangle.

Fix a cell τ ∈ Ξ. Let Eτ denote the subset of segments in E \ R that cross τ (i.e., intersect the
interior of τ). It is easy to verify that on average (in a sense that we do not make too precise
here) |Eτ | = O(N/r). Moreover, using the random sampling technique of Clarkson and Shor [9]
(see also [23]), it can also be shown that, with high probability, |Eτ | = O((N/r) log r) for every τ .
To ensure that each cell is crossed by at most N/r segments, we take each “heavy” cell τ , namely,
cells with |Eτ | > N/r, and apply the resampling technique of [1, 6, 28] within τ , to refine it into
subtrapezoids, so that each of them is crossed by at most N/r segments of E, and so that the
overall number of trapezoids remains O(r). The technical details of this step (mostly routine but
adapted to our special choice of r) are spelled out in Appendix A. We continue to denote by Ξ the
resulting refined cutting.

The recursive scheme. In what follows we consider intersections between triangles of F and
trapezoids of Ξ. Such an intersection of a triangle T and a cell τ can be either visible, when at least
one segment of E lying on the boundary of T crosses τ , or hidden, when there are no such segments.
Hidden intersections are not handled by our analysis; in particular, we cannot bound the number of
triangles intersecting a fixed trapezoid in a hidden manner by N/r. A hidden intersection between
T and τ occurs, for example, when T fully contains τ . However, it can also arise in cases where some
edges of T cross τ but do not appear on the boundary of the union of the subfamily Fj containing
T , within τ . For example, it can happen that T participates in the union Uj of some subfamily Fj

(clipped to τ), in the sense that its removal would change the union, but T does not appear on the
union boundary. In what follows we simply ignore hidden intersections. This does not harm our
analysis because within τ , each vertex v of the full union U must be either an endpoint of some
segment of E or an intersection between two segments of E, so that these segments both cross τ .
In particular, v is also a vertex of the union of the triangles that intersect τ visibly. Hence, within
τ , the complexity of the union of the visible triangles is an upper bound on the complexity of the
union of the entire collection.

Let f(n) denote an upper bound on the complexity of the union of n fat triangles in a fixed
semi-canonical family; as mentioned earlier, we may ignore the dependence of this complexity on
the fatness parameter δ. Using our (1/r)-cutting Ξ, we derive the following recurrence for f .

For each trapezoid τ of Ξ, let nτ denote the number of triangles T which (visibly) meet τ so
that all three of their edges cross τ (and at least one of them does so in a visible manner). We
refer to such triangles as real triangles within τ . Let mτ denote the number of the other triangles
T which (visibly) meet τ . That is, at most two of the edges of T intersect τ (and at least one of
these intersections is visible); we refer to such triangles as wedge triangles within τ , because the
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intersection of any such triangle T with τ is equal to the intersection with τ of a (δ/2)-fat wedge
or a halfplane containing T . We note that a triangle can be a real triangle within at most one
trapezoid τ . Indeed, if there were two such trapezoids we would have obtained an impossible plane
embedding of K3,3; see Figure 3 and [21] for a similar argument. In particular,

∑

τ nτ ≤ n. For
wedge triangles the slightly weaker bound

∑

τ mτ = O(N) applies, which follows since mτ ≤ N/r
for every τ and the number of trapezoids is O(r). Similarly, nτ ≤ N/r ≤ β(n) log n for every τ ,
since by construction we have N/r = X/N ≤ β(n) log n.

Within each trapezoid τ of our cutting Ξ, the complexity of the union can be bounded as
follows. The complexity of the union of the (full) real triangles meeting τ is at most f(nτ ) (for
the time being, we take the full triangles, and do not clip them to τ yet). The complexity of
the union of the (full) wedges supporting the wedge triangles meeting τ is O(mτ ) [16], and the
number of holes of the union of both (full) real triangles and wedges (meeting τ) is O(mτ +nτ ), by
Lemma 2.2. (Recall that we only handle visible intersections with τ and that the ignored hidden
intersections do not harm the analysis.) In order to clip the union to τ , we add to the set of
the wedge triangles the four respective halfplanes bounding the four edges of τ , each of which is
oppositely oriented to τ . This does not increase the asymptotic union bounds stated above. It now
follows from the Combination Lemma (Lemma 2.1) that the complexity of the union within τ is at
most f(nτ )+O(mτ +nτ ). (Recall the important property that f(nτ ) appears in the bound without
any additional multiplicative factor; see Remark (3) following Lemma 2.1.) Hence, summing these
bounds over all trapezoids, we obtain:

f(n) ≤
∑

τ

(

f(nτ ) + O(mτ + nτ )
)

=
∑

τ

f(nτ ) + O(nβ(n)). (1)

We next unroll the recurrence and stop as soon as nτ ≤ c, where c > 0 is some absolute constant.
Note that, at any fixed level of the recursion, the sum

∑

τ nτ , over all trapezoids of all subproblems,
is at most (the initial value of) n, so the corresponding sum of the overhead terms, at any fixed level,
is O(nβ(n)). Since the maximum problem size nh at each level h ≥ 2 is only O(β(nh−1) log nh−1),
the number of levels in the recurrence is O(log∗ n), which yields

f(n) = O(nβ(n) log∗ n) = O(n2α(n) log∗ n).

That is, we have obtained the following main result:

Theorem 2.3. The complexity of the union of n δ-fat triangles in the plane is O(n2α(n) log∗ n),
with a constant of proportionality depending on δ.

Similar results can be obtained for any collection of polygons in the plane that can be decom-
posed into, or covered by, a total of n δ-fat triangles. In particular, Van Kreveld [33] has shown
that this property holds for collections of polygons with n vertices in total, none of which has a
δ-corridor, that is, a passage between two edges, such that the ratio between its width and length
is less than δ. Thus we obtain:

Theorem 2.4. The complexity of the union of polygons in the plane, none of which has a δ-corridor,
with a total of n vertices, is O(n2α(n) log∗ n), with a constant of proportionality depending on δ.

Remarks. (1) We note that a key step of the analysis is reducing the number of intersections
among the triangle boundaries that may eventually appear as vertices of the union from O(n2)
(which is just the arrangement complexity) to X = O(nβ(n) log n), with only a slight increase
in the number of segments (that is, from O(n) to N ≤ nβ(n)). This has eventually led to the
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decomposition of the problem into roughly O(N/ log n) subproblems, each of size close to O(log n),
which facilitated the derivation and efficient solution of recurrence (1).

(2) Investigating the dependence of the complexity of the union on δ is a refinement of the current
analysis which we plan to carry out in the full version of the paper.

3 Applications

Set cover and ε-nets. A range space (P,R) is a pair consisting of an underlying universe P of
objects, and a certain collection R ⊆ 2P of its subsets (ranges). We assume in this discussion that
P and R are finite. The set cover problem for (P,R) is to find a minimum-size subcollection S ⊆ R
whose union covers P . Put Opt := |S|. The general problem is known to be np-hard and the prob-
lem remains np-hard in most geometric settings; see the discussion in [3] and the references therein.
The standard greedy algorithm [7] yields a set cover with an approximation factor O(log |P |) with-
out any further assumptions on the range space. This factor is (asymptotically) best possible to
compute in polynomial time, under appropriate complexity-theoretic assumptions [4,22]. However,
as observed in [5, 18] (see also [8]), the approximation factor can be improved to O(log Opt), still
achievable in expected polynomial time, for many geometric scenarios.

This improvement is closely related to the notion of ε-nets in a “dual” variant of such a range
space. Specifically, in this dual context, a subset N ⊆ R is called a dual ε-net for (P,R), for some
given 0 < ε < 1, if every point p ∈ P which is contained in more than ε|R| ranges of R is contained
in a range of N . The classical result of Haussler and Welzl [23], specialized to this context, asserts
that, if (P,R) has so-called finite VC-dimension, then it admits dual ε-nets of the above kind of
size O((1/ε) log(1/ε)), where the constant of proportionality depends on the VC-dimension.

As shown in [5, 18], if (P,R) admits dual ε-nets of size O((1/ε)ϕ(1/ε)), then one can obtain
approximation factor O(ϕ(Opt)) in expected polynomial time for the corresponding set cover
problem. Thus, since we always have ϕ(1/ε) = O(log(1/ε)), the “default” result, for range spaces
of finite VC-dimension, is an approximation factor O(log Opt), as mentioned above.

As observed in several recent works [3, 10, 34], the size of dual ε-nets is strongly related to the
complexity of the union of the given ranges. Improving upon a slightly weaker bound given in [10],
the following result was established by the authors in [3] (see also [34]). Let P be a finite set of
points in the plane, and let R be a collection of planar regions of constant description complexity

(meaning that they are semi-algebraic sets defined in terms of a constant number of polynomial
equations and inequalities of constant maximum degree), such that the complexity of the union of
any subset of r of these regions is O(rφ(r)). Then there exist dual ε-nets for (P,R) whose size
is O((1/ε) log φ(1/ε)). This in turn yields the approximation factor (still computable in expected
polynomial time) O(log φ(Opt)) for the corresponding set cover problem. Incorporating the bound
of Theorem 2.3 we obtain the following two corollaries.

Theorem 3.1. Any dual range space of δ-fat triangles and points in the plane admits an ε-net of

O((1/ε) log log∗ (1/ε)) triangles, for any 0 < ε ≤ 1.

Theorem 3.2. There exists a randomized expected polynomial-time algorithm that, given a set P
of points in the plane and a set T of δ-fat triangles that cover P , computes a set cover T ′ ⊆ T for

P of size O(Opt log log∗ Opt), where Opt is the size of the smallest such cover.

Hidden surface removal. In a typical hidden surface removal problem, we are given a set of n
pairwise-disjoint objects in 3-space, and a viewing point v, and the goal is to construct the view
of the given scene, as seen from v. This view consists of a subdivision of the viewing plane into
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maximal connected regions in each of which at most one object (or some portion thereof) can be
seen. The resulting structure is the so-called visibility map of the given objects as seen from v.

Katz et al. [24] have proposed an output-sensitive algorithm to construct the visibility map,
whose running time is O((U(n) + k) log2 n), where U(r) is an upper bound on the complexity of
the union of the projections to the viewing plane of any r of the input objects (here U(·) is also
assumed to be a super-additive function), and k is the complexity of the visibility map. The space
requirement in this case is O(U(n) log n).

When the objects are horizontal δ-fat triangles, and the viewing plane is also horizontal, the
projection of the input triangles are also δ-fat. Hence, applying the bound of Theorem 2.3, we
obtain the following improved bounds on the performance of the algorithm in [24].

Theorem 3.3. Given a set of n pairwise-disjoint horizontal δ-fat triangles in 3-space, the view

of this set from any fixed point v can be computed in O((n2α(n) log∗ n + k) log2 n) time, using

O(n2α(n) log∗ n log n) space, where k is the complexity of the visibility map.

4 Concluding Remarks

Our bound on the complexity of the union of δ-fat triangles is the first improvement over the old
bound of [29, 30]. There is still a (smaller) gap between this bound and the known lower bound,
and closing this gap remains a hard challenge. It is interesting to note that the new bound moves
one step up the inverse-Ackermann hierarchy. We hope that the new ideas presented in this paper
can be enhanced to further improve the bound up the hierarchy, ultimately reaching a bound of
the form O(nG(α(n))), for some elementary function G. This is what we conjecture at the moment.
Improving the upper bound all the way down to the known lower bound Ω(nα(n)) seems a much
harder challenge.

Acknowledgments. We wish to thank Sariel Har-Peled for numerous helpful discussions and
Mark de Berg for several useful suggestions.
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A Appendix - The Refined Cutting

The refined decomposition is constructed in the following standard manner. Define the weight factor

tτ of a trapezoid τ , generated at the first stage of the construction, to be ⌈|Eτ | · r/N⌉. Trapezoids τ
with tτ ≤ 1 remain intact, and are included in the refined cutting. If t = tτ > 1, we pick a (1/t)-net
Nτ for Eτ of size ct log t, where c > 0 is a sufficiently large absolute constant (whose existence is
guaranteed by the standard ε-net theory [23]). We then construct the arragement of the segments
in Nτ (clipped to within τ), decompose each of the cells in the resulting arrangement within τ
into trapezoidal subcells, and add them all to the refined cutting. The overall number of new cells
within τ is O(t2 log2 t). Since Nτ is a (1/t)-net (see [23]), it follows that each new subcell meets at
most |Eτ |/t ≤ N/r segments of Eτ (and thus of E). It remains to show that the expected number
of new subcells remains O(r).

To this end, for a subset Q ⊆ E, let VD(Q) be the set of trapezoidal cells in the vertical
decompostion of the arrangement A(Q), and let VDt(Q) be the subset of these cells τ with tτ ≥ t,
for a positive parameter t. Following the analysis in [1, 6, 28], let D =

⋃

Q⊆E VD(Q) be the set
of all trapezoidal cells defined by all possible subsets of E. The defining set D(τ) of a cell τ in
D consists of the at most four segments in E that define τ , and its killing set K(τ) is the set of
segments in E that cross τ (see [1, 6, 28] for a more detailed description). As in previous studies,
the following “axiom” is easily seen to hold: A cell τ ∈ D belongs to VD(R) if and only if D(τ) ⊆ R
and K(τ) ∩ R = ∅. Using the analysis in [1, 6, 28] we obtain the following lemma (where p = r/N
is the probability of choosing a segment in R):

Lemma A.1 (Exponential Decay Lemma; Agarwal et al. [1]). Let R, E, and t be defined as above,

then

Exp
{

|VDt(R)|
}

= O
(

2−t Exp
{

|VD(R′)|
})

,

where R′ ⊆ E is a random sample of E, where each segment is chosen into R′ independently with

probablity p′ := p/t = r/(Nt).
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Applying the bound in Lemma A.1, we have:

Exp
{

|VDt(R)|
}

= O

(

p2X + tpN

t22t

)

. (2)

We next bound the expected number of cells in the refined cutting using (2). As noted above,
the expected number of intact cells is O(r). We bound below the expected number of cells generated
at the second sampling step (where c′ > 0 below is a sufficiently large constant):

Exp

{

∑

t≥1

∑

τ∈VD(R)
t≤tτ≤t+1

c′ · t2τ log2 tτ

}

=
∑

t≥1

Exp

{

∑

τ∈VD(R)
t≤tτ≤t+1

c′ · t2τ log2 tτ

}

=

O





∑

t≥1

t2 log2 t ·
p2X + tpN

t22t



 = O(p2X + pN) = O(r).
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