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ABSTRACT
Let S be a finite set of n + 3 points in general position in
the plane, with 3 extreme points and n interior points. We
consider triangulations drawn uniformly at random from all
triangulations of S, and investigate the expected number,
v̂i, of interior points of degree i in such a triangulation. We
provide bounds that are linear in n on these numbers. In
particular, n/43 ≤ v̂3 ≤ (2n + 3)/5.

Moreover, we relate these results to the question about the
maximum and minimum possible number of triangulations
in such a set S, and show that the number of triangulations
of any set of n points in the plane is at most 43n, thereby
improving on a previous bound by Santos and Seidel.

Categories and Subject Descriptors: G.2 [Discrete Math-
ematics]: Combinatorics—Counting problems

General Terms: Theory

Keywords: Random triangulations, counting, degree se-
quences

1. INTRODUCTION
Given a set S of n points in the plane, a triangulation is a

maximal crossing-free geometric graph on S (in a geometric
graph the edges are realized by straight line segments). Here
we consider random triangulations, where “random” refers
to uniformly at random from the set of all triangulations of
S. We are primarily interested in the degree sequences of
such random triangulations.

To be precise, we assume that S is a set of n + 3 points
in general position in the plane so that the convex hull of S
is a triangle. For such a set and i ∈ N, we let v̂i denote the
expected number of interior points of degree i in a random
triangulation. While—for n large enough—the number of
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vertices of degree 3 in a triangulation may be any integer
between 0 and roughly 2n

3
, we show that

n

43
≤ v̂3 ≤ 2n + 3

5
.

Note that general position is

Figure 1: Point set
with unique triangula-
tion.

essential for the lower bound.
Consider the case where the n
interior points lie on a common
line containing one of the ex-
treme points in S, see Fig. 1.
Then there is a unique trian-
gulation and this triangulation
has one interior point of degree
3; hence, v̂3 = 1.

We relate these results to the
question about the maximum
and minimum possible number of triangulations in a set of
n points in the plane. We show that the number of trian-
gulations of any such set is at most 43n, thereby improving
on a previous bound of 59n by Santos and Seidel [17]. We
can also use the upper bound on v̂3 to infer a lower bound
of roughly 2.5n on the number of triangulations every set
of n + 3 points in general position with triangular convex
hull has. However, this is inferior to the recent 0.093 ·2.63n -
bound by McCabe and Seidel [10].

Our results use charging schemes among vertices in tri-
angulations that heavily build on the structure imposed by
edge flips on the set of all triangulations (see also the dis-
cussion of (dis-)charging below). Our approach should be
regarded as a continuation of the proof by Santos and Seidel
[17] for the 59n upper bound for the number of triangula-
tions. This connection may not be obvious in our presenta-
tion, since we deal with a different scenario, but it should
become more apparent when we get as an intermediate re-
sult a lower bound of n/59 for v̂3. The two 59’s are the
“same”! Still, we believe that it was the new setting that
allowed us to proceed further and derive a better bound for
the number of triangulations.

Little seems to be known about random triangulations of
(fixed) point sets, although the generation of random tri-
angulations has raised some interest (see, e.g., [1, Section
4.3]). Moreover, it is a folklore open problem to determine
the mixing rate of the Markov process that starts at some
triangulation and keeps flipping a random flippable edge;
see [13, 12] where this is treated for points in convex po-
sition.We are currently investigating whether our methods
have anything to say about this problem. Finally, for ab-



stract graphs (without enforced straight line embedding on
a given point set), there are results about random planar
graphs1, see, e.g., [9, 11, 7]; it is not clear how those com-
pare to our setting (see also the discussion of a result by
Tutte below).

Number of Triangulations—History. David Avis was
perhaps one of the first to ask whether the maximum number
of triangulations of n points in the plane is bounded by cn

for some c > 0, see [3, page 9]. This fact was established in
1982 by Ajtai, Chvátal, Newborn, and Szemerédi [3], who
show that there are at most 1013n crossing-free graphs on n
points—in particular, this bound holds for triangulations.

Further developments have yielded progressively better
upper bounds for the number of triangulations2 [20, 5, 18],
so far culminating in the previously mentioned 59n bound
[17] in 2003. This compares to Ω(8.48n), the largest known
number of triangulations for a set of n points, recently de-
rived by Aichholzer et al. [2]; this improves an earlier lower
bound of about 8n (up to a polynomial factor) given by
Garćıa et al. [6].

For n points in convex position, the number of triangu-
lations is known to be Cn−2, where Cm := 1

m+1

`

2m
m

´

=

Θ(m−3/24m), m ∈ N0, is the mth Catalan number (the
Euler-Segner problem, cf. [21, page 212] for a discussion).

Other Crossing-free Graphs. Besides the intrinsic in-
terest in obtaining bounds on the number of triangulations,
they are useful for bounding the number of other kinds of
crossing-free geometric graphs on a given point set, exploit-
ing the fact that any such graph is a subgraph of some tri-
angulation. For example, the best known upper bound on
the number of crossing-free straight-edge spanning trees on
a set of n points in the plane is O((5.3̇ τ )n), if τn is a bound
on the number of triangulations; with τ = 43 this is now
O(229.3̇

n
). This follows from a result by Ribó and Rote,

[14, 16], who show that any planar graph on n vertices con-
tains at most 5.3̇

n
spanning trees. Similar results have been

observed for crossing-free spanning cycles, where a bound
of O((

√
6τ )n) = O((2.45 τ )n) can be obtained, as communi-

cated by Raimund Seidel; the resulting bound of O(105.33n)
falls still short of the bound of O(86.81n) for cycles given
in [19], though. The total number of crossing-free planar
graphs on n points is at most 23n−6τn < (8 τ )n. So this is
now improved to 344n (from 472n).

Next we mention a result and a notion, both seemingly
related to what we are doing; hence, they were popping up
repeatedly when presenting our result. While we want to
take the opportunity to clarify in this way, a fruitful closer
connection may be established in the end.

Tutte’s Number of Rooted Triangulations. Let us
briefly discuss a classical result from 1962 by Tutte in his
census-series in the Canadian Journal of Mathematics [22].
He considers so-called rooted triangulations, i.e., maximal
planar graphs, with a fixed face with vertices a, b, and c and
n additional vertices. Two such triangulations are consid-
ered to be equal if there is an isomorphism between them,

1Here one has to discriminate between the labeled and the
unlabeled case.
2Interest was also motivated by the obviously related prac-
tical question (from geometric modeling [20]) of how many
bits it takes to encode a triangulation of a point set.

which maps each of the points a, b, and c to itself, though.
The number of such triangulations is easily seen to be 1 for
n = 1 and 3 for n = 2. Based on an ingenious analysis
employing generating functions, Tutte shows that for n ≥ 2
the number of such triangulations is exactly
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Figure 2: Two distinct triangulations of a point set
that are equal in Tutte’s setting.

How does this relate to the number of triangulations of
given n + 3 points? On the one hand, Tutte’s model counts
more triangulations, because there are fewer constraints:
“The interior points can be moved arbitrarily.” On the other
hand, distinct triangulations in the geometric setting may
be equal in Tutte’s setting; see Fig. 2. Thus the results are
incomparable, although we cannot rule out that a connec-
tion may be established.

(Dis-)Charging. The notion of “charging” does ring a
bell in the context of planar graphs. The proof of the cel-
ebrated Four-Color-Theorem employs Heesch’s idea of dis-
charging (Entladung, [8]) in order to prove that certain con-
figurations are unavoidable in a maximal planar graph, cf.
[4] or a later proof in [15]. There one initially puts charge
6− i on each vertex of degree i in a maximal planar graph—
thus the overall charge is 12. Now vertices of positive charge
push their charge to other vertices (they discharge) without
changing the overall charge. Given that a certain set of con-
figurations L does not occur, one proves that all vertices can
discharge with a nonpositive charge in the end—a contra-
diction and thus the configurations in L are unavoidable.

Our scheme differs in two respects. First of all we need
a quantitative version. We let every vertex have a value of
7 − i, in this way we can make sure that the overall value
in a maximal planar graph is at least n, or, equivalently,
there is at least 1 for every vertex on the average. Secondly,
the “discharging” goes across a family of planar graphs, the
set of all triangulations of a given point set. We show that
the charge can be redistributed so that no vertex of degree
exceeding 3 has positive charge, and degree-3 vertices have
charge at most 43. This allows us to conclude that at least
1
43

of all vertices over all triangulations have degree 3. Again,
we have to leave it open to which extent the rich knowledge
on discharging from the 4-Color-Theorem may be useful for
our purposes.

Further Steps. We know that the “43” in the bounds is
not tight for our approach, and we are currently working on
a more exhaustive analysis, which seems to suggest that the
best constant that the technique yields gets close to 30. We
hope to report on this in the full version of this paper. There
we also plan to provide an argument that, for all i ≥ 3, there
is a positive constant δi so that v̂i ≥ δin, provided n is large
enough (if n < i − 2, there is no vertex of degree i).



2. DEGREES IN TRIANGULATIONS
We fix a triple H of non-collinear points in the plane, and,

without further mention, restrict ourselves to finite point
sets P that are contained in the convex hull of H . We say
that P is in general position, if no three points in P

+

:=
P∪H are collinear (P

+

is what we used to denote by S in the

introduction). Let T +

(P ) denote the set of all triangulations

of P
+

. Recall that a triangulation of N points whose convex
hull is a triangle has exactly 3N − 6 edges and 2N − 5 inner
faces, all triangular.

Degrees in Triangulations of P . For i ∈ N and trian-
gulation T ∈ T +

(P ), we let vi = vi(T ) denote the number

of points in P (not P
+

) that have degree i in T . Obviously,
vi ∈ N0, v1 = v2 = 0, and

P

i vi = n := |P |. Moreover,
X

i

i vi ≤ 6n − 5 if n ≥ 2. (1)

For the latter inequality, note that if d1, d2, and d3 are the
degrees in T of the three points of H , then

d1 + d2 + d3 +
X

i

i vi = 2(3(n + 3) − 6) = 6n + 6 ,

and d1 + d2 + d3 ≥ 11, since in a triangulation of at least 5
points all points have degree at least 3, and no two vertices
of degree 3 are adjacent.

The vector (vi)i∈N, however, is constrained beyond (1).
For example, v3 ≤ 2n+1

3
, which can be seen as follows. Given

T ∈ T +

(P ) remove all the v3 points from P in T that have
degree 3. Note that no two such points can be adjacent in
T . Therefore, the resulting graph is a triangulation T ′ of the

remaining points P ′+, and each of its faces contains at most
one point in P \P ′. So for k := |P ′| = n−v3, the number of
points removed is at most 2(k + 3)− 5 = 2k + 1. Therefore,
v3 ≤ 2(n−v3)+1; that is, v3 ≤ 2n+1

3
as claimed. In order to

see that this bound of ⌊ 2n+1
3

⌋ is tight, set k = ⌈n−1
3

⌉, choose

any triangulation in T +

(Q) for any set Q of k points, and
place another n − k = ⌊ 2n+1

3
⌋ points, no two in the same

face of the triangulation. This is possible by the choice of
k. Connect all added points to the three vertices of their
respective faces, and we are done. We summarize

0 ≤ v3 ≤
—

2n + 1

3

�

(2)

which is tight except for the lower bound when n is small.

Degrees in Random Triangulations and the Number
of Triangulations. For i ∈ N let

v̂i = v̂i(P ) := E(vi(T ))

for T uniformly at random in T +

(P ).

Due to linearity of expectation, any linear identity or in-
equality in the vi’s (such as (1) or (2)) will also be satisfied
by the v̂i’s. However, as we will show, the v̂i’s are signifi-
cantly more constrained than the vi’s. In particular, there
is a constant δ > 0 such that v̂3 ≥ δ n if n > 0 and the
point set is in general position; recall Fig. 1 to see that gen-
eral position is indeed necessary here. Before we establish
this bound, let us relate it to the question about the num-
ber of triangulations. For that, let tr

+

(P ) := |T +

(P )| and

tr
+

(n) := max|P |=n tr
+

(P ).

Lemma 2.1. (i) If δ > 0 is a real constant such that, for
all n ∈ N, v̂3 ≥ δ n for any set of n points in general position,
then, for all n ∈ N0,

tr
+

(n) ≤
`

1
δ

´n
.

(ii) If δ′ > 0 is a real constant and n0 ∈ N such that, for
all n, n0 ≤ n ∈ N, v̂3 ≤ δ′ n for any set of n points in gen-
eral position, then for any set P of n ∈ N points in general
position, tr

+

(P ) = Ω
``

1
δ′

´n´
.

Proof. (i) Let P be a set of n > 0 points with tr
+

(P ) =

tr
+

(n). Without loss of generality, let P be in general po-
sition (a small perturbation of a point set cannot decrease
the number of triangulations).

Note that we can get triangulations of P
+

by choosing a
triangulation of P

+\ {q} for some q ∈ P , and then inserting
q as a vertex of degree 3 in the unique face it lands in. In
fact, a triangulation T ∈ T +

(P ) can be obtained in exactly
v3(T ) ways in this manner. In particular, if v3(T ) = 0, T
cannot be obtained at all in this fashion. This is easily seen
to imply that

X

T∈T
+

(P )

v3(T ) =
X

q∈P

tr
+

(P \ {q}) .

The left hand side of this identity equals v̂3(P ) · tr+(P ), and

its right hand side is upper bounded by n · tr+(n−1). Hence,

tr
+

(P ) ≤ n

v̂3(P )
· tr+(n − 1) ≤ 1

δ
· tr+(n − 1)

(since we assume v̂3(P ) ≥ δ n), and thus tr
+

(n) ≤ 1
δ
·tr+(n−1)

for all n ∈ N. Since tr
+

(0) = 1, the lemma follows.
(ii) Along the same lines—omitted.

tr
+

(n) is also an upper bound for the number of triangula-
tions of an arbitrary point set S of n points, without restrict-
ing it to be contained in the convex hull of H , and without
adding H to make its convex hull triangular. To see this,
take S and apply an affine transformation so that it lies in
the convex hull of H . This does not change the number of
triangulations, and adding H cannot decrease the number
of triangulations.

An Example. Suppose P lies

Figure 3: Points on a
convex arc.

on a convex arc in the convex
hull of H as depicted in Fig. 3.
Then all edges indicated there
have to be present in all trian-
gulations of P

+

and all that re-
mains is to fill in a triangula-
tion of a convex polygon with
n + 2 vertices, n := |P |. The
number of such triangulations
is Cn, thus tr

+

(P ) = Cn. Now
consider some point in P . For it to have degree 3, its adja-
cent vertices in the convex polygon have to be connected to
each other, which leaves an (n + 1)-gon to be triangulated
in Cn−1 ways. Therefore, the probability that this point

has degree 3 is exactly
Cn−1

Cn
= n+1

2(2n−1)
= 1

4
+ O

`

1
n

´

and

v̂3 = n
4

+ O(1). It is easy to show that v̂4 = v̂3 for these
point sets, provided n ≥ 2.



3. LOWER BOUND ON v̂3
The basic idea of our proof is to have all vertices of tri-

angulations charge to vertices of degree 3. If every vertex
charges at least 1 and each vertex of degree 3 is charged
at most c, then we know that v̂3 ≥ n

c
. The actual charging

scheme is more involved. First, since there are triangulations
that have no degree 3 vertices, the charging has to go across
triangulations. Moreover, vertices will charge amounts dif-
ferent from 1 (even negative charges will occur). However,
on average, each vertex will charge at least 1. The difficulty
in the analysis will be to bound the maximum charge c to a
vertex of degree 3.

Vints and Flipping. We consider the set P ×T +

(P ) and
call its elements vints (vertex-in-triangulation). The degree
of a vint (p, T ) is the degree (number of neighbors) of p in
T ; a vint of degree i is called an i-vint. The overall number
of vints is obviously n · tr+(P ), and the number of i-vints is

v̂i · tr+(P ).
We define a relation on the set of vints. If u and v are

vints, then we say that u → v if v can be obtained by flip-
ping one edge incident to u in its triangulation. That is, u
and v are associated with the same point but in different tri-
angulations, and u has to be an (i + 1)-vint and v an i-vint,
for some i ≥ 3. We denote by →∗ the transitive reflexive
closure of →, and if u →∗ v, we say that u can be flipped
down to v. Charges will go from vints to 3-vints they can
be flipped down to.

The support of a vint u is the number of 3-vints it can be
flipped down to, i.e.

supp(u) := |{v | v is 3-vint with u →∗ v}| .

1
2

1
2 1

v

v′

u1

u2

Figure 4: A 3-vint v that is charged ch4(v) = 1
2

+1 by
4-vints u1 and u2 in the provisional charging scheme.

A Provisional Charging Scheme. Given our original
plan, a natural charging scheme would let a vint u charge

1
supp(u)

to each 3-vint it can be flipped down to—in this way

it will charge a total of 1. Let us call this the provisional
charging scheme; see Fig. 4. Since every vint can be flipped
down to some 3-vint, the charges are well-defined in this
way. For technical reasons, our final charging scheme will
be somewhat different.

Let us gain some understanding of the notion of supp(u).
Note that the removal of an interior point p and its incident
edges in a triangulation T creates a star-shaped polygon
(with respect to p). We call this the hole of the vint (p, T ).

Lemma 3.1. For a vint u, supp(u) equals the number of
triangulations of the hole of u. Therefore,

(i) if u is an i-vint, 1 ≤ supp(u) ≤ Ci−2, where the upper
bound attained iff the hole is convex (see Section 1 for the
definition of the Catalan numbers Cm), and

(ii) if u →∗ u′ for vints u and u′, then supp(u) ≥ supp(u′).

Proof. (i) follows from the fact that a convex i-gon has Ci−2

triangulations, which is the maximum for all i-gons. (ii) uses
the fact that if u → u′ then the hole of u′ is contained in
the hole of u, with the vertices of the former a subset of the
vertices of the latter; i.e. every triangulation of the hole of
u′ can be extended to at least one triangulation of u.

For a 3-vint v and i ∈ N, we let chi(v) be the amount
charged to v by i-vints in the provisional charging scheme
described above.

Lemma 3.2. For every 3-vint v and all i ≥ 3, we have 0 ≤
chi(v) ≤ Ci−1 − Ci−2. In particular, ch3(v) = 1, ch4(v) ∈
{0, 1

2
, 1, 3

2
, 2, 5

2
, 3}, ch5(v) ≤ 9, ch6(v) ≤ 28, etc.

Proof. It follows from an analysis in [17, Lemma 4] that
the number of i-vints that can charge a 3-vint is at most
Ci−1 − Ci−2, and since a vint can charge at most 1 to a
3-vint, the bound follows.

ch3(v) = 1 is obvious. For the claim on ch4(v) it suffices to
observe that there are at most three 4-vints that can charge
a given 3-vint v, and that the support of a 4-vint is either 1
or 2. The remaining numbers simply evaluate the expression
Ci−1 − Ci−2, and are given for future reference.

The Actual Charging Scheme. In our provisional
charging scheme, a 3-vint is charged

P

i chi(v). We note
that the bounds in Lemma 3.2 are tight (provided n is large
enough compared to i). This will follow from the analysis
given below, and is illustrated in Fig. 5 for the case i = 5
(the figure too will be better understood after the following
analysis). Therefore, there is no uniform upper bound on
the amount charged to individual 3-vints in the provisional
scheme. For that reason, we switch to a charging where

an i-vint u charges 7−i
supp(u)

to each 3-vint v with u →∗ v.

Note that in this scheme, a 3-vint charges 4 to itself (so that
sounds like bad news), but 7-vints do not charge at all and
all i-vints with i ≥ 8 charge a negative amount, so that is
good news for the 3-vints.

There is Enough Charge for Everybody. The overall
charge of an i-vint is 7−i, so the overall charge accumulated
for all vints associated with a triangulation T is exactly
P

i(7 − i)vi(T ) =
P

i 7vi(T ) −Pi i vi(T ) ≥ 7n − 6n = n,

where we have used (1). So vints charge so that, on average,
each gets to charge at least 1.

No 3-Vint Gets Charged too Much. For a 3-vint v,
we set

charge(v) :=
P

i(7 − i)chi(v) (3)

= 4 ch3(v) + 3 ch4(v) + 2 ch5(v) + ch6(v)

−ch8(v) − 2 ch9(v) − · · ·
For an initial upper bound, we can ignore the negative terms
and invoke the bounds on the chi(v)’s from Lemma 3.2, to
get

charge(v) ≤ 4 · 1 + 3 · 3 + 2 · 9 + 28 = 59,



1
1

v

u1

u2

Figure 5: A 3-vint v that gets charged 1 by nine 5-vints (two of which are displayed) in the provisional
charging scheme. Hence, ch5(v) = 9.

which implies v̂3 ≥ n
59

, and by Lemma 2.1, this gives an up-
per bound of 59n for the number of triangulations of any set
of n points. This is the Santos-Seidel bound which we have
derived now with ideas similar to theirs but in a different
setting.

We improve on this by observing that if all ch4(v), ch5(v),
and ch6(v) are large, then the chi(v), i ≥ 8, are large as
well, and therefore charge(v) is not so large after all. For
example, if indeed ch4(v) = 3, ch5(v) = 9, and ch6(v) = 28
(which is possible), then charge(v) is extremely small: at
most −142636 (the analysis below will clarify this state-
ment).

How do we find those vints that flip down to a given 3-
vint v = (pv, Tv)? Clearly, there is v itself. If an edge
in a triangle incident to pv can be flipped in Tv (such an
edge cannot be incident to pv!), then flipping such an edge
yields a 4-vint u = (pv, Tu) that can be flipped down to v
(by reversing the preceding flip). If in the triangulation Tu

there is a flippable edge that is not incident to pv but part
of a triangle incident to pv, then we can flip this edge to get
a 5-vint that can be flipped down to v, etc.

In order to represent this structure, we associate with a
3-vint v = (pv, Tv) a flip-tree τ (v) as follows. The root of
the tree is labeled by the pair (tv, Nv), where tv is the hole
of v (a triangle) and Nv is the set of its three vertex points
(the neighbors of pv in Tv). All other nodes of the tree are
associated with a pair (t, q), where t is a face of Tv and q is
a point incident to that face (note that tv from the root is
not a face of Tv—it contains pv and its incident faces).

(i) Every edge e of tv gives rise to a child if this edge can
be flipped in Tv. If so, this child is labeled by the triangle
incident to e that is not incident to pv, and by the point in
this triangle which is not incident to e. So the root has at
most three children.

(ii) Consider now a non-root node of the tree labeled by
(t, q) and an edge e of t incident to q. If e is a boundary
edge, no child will be obtained via e. Otherwise, let t′ be the
other triangle incident to e. If t′ together with the triangle
formed by e and pv is a convex quadrilateral (where e can
be flipped), then this gives rise to a child of (t, q) labeled by
(t′, q′) where q′ is the point of t′ that is not incident to e.

rigid core

Figure 6: The tree of a 3-vint. Bold edges are rigid
edges.

So a non-root node has at most two children.
Note that the union of all triangles of the nodes of any

subtree of τ (v) (containing the root) form a polygon that
is star-shaped with respect to pv; this follows easily by the
inductive definition of τ (v). The triangles form a triangu-
lation of the polygon, and the subtree is actually the dual
tree of this triangulation. If we retriangulate this polygon
in Tv by connecting pv to all vertices of the polygon, we get
a vint that flips down to v. And we get all vints that flip
down to v in this way. That is:

Lemma 3.3. The subtrees of τ (v) containing its root are
in bijective correspondence with the vints that flip down to
v.

The next step is to determine how much these vints charge
to v. This depends on the number of triangulations of the
holes of these vints—the fewer triangulations, the more v
is charged in the provisional scheme. The analysis given
here only discriminates between vints that charge 1 to v in
the provisional scheme, and all other vints (which charge at
most 1

2
in that scheme).

We first define rigid edges of τ (v): An edge of the tree
connects two nodes labeled by two triangles t and t′ with
a common edge e. If e cannot be flipped in the union of



these two triangles, then we call the “dual” tree edge rigid.
Beware that e may be flippable in Tv while it is not flippable
in t∪t′—this may happen if one of the two triangles is tv (and
thus not a triangle of Tv). Now the rigid core, τ∗(v), of τ (v)
is defined to be the maximal subtree of τ (v) that includes
the root and consists exclusively of rigid edges. τ∗(v) is
non-empty, since it always contains the root of τ (v).

Lemma 3.4. The subtrees of the rigid core τ∗(v) contain-
ing the root are in bijective correspondence with the vints u
that flip down to v and provisionally charge 1, i.e. supp(u) =
1.

Proof. Consider a vint u that flips down to v. We recall
that supp(u) = 1 iff the hole of u has exactly one triangu-
lation. Note that one triangulation of this polygon can be
obtained by taking the set of triangles in the subtree cor-
responding to u. If all edges in this subtree are rigid, then
none of the dual edges in the triangulation can be flipped.
That is, there is only one triangulation of the hole, since the
set of triangulations of a polygon is connected via edge-flips.
Also, if any of the edges is not rigid, then its dual edge can
be flipped, and so obviously there are at least two triangu-
lations.

In order to upper bound charge(v), we first restrict ourselves
to vints that correspond to subtrees of τ (v) of depths at most
3. Note that in this way we do not lose any 3-, 4-, 5-, or
6-vints, i.e., no vint that charges a positive amount in the
actual scheme is lost. Moreover, we let all i-vints, i = 4, 5, 6,
whose subtree is not part of the rigid core charge 7−i

2
; this

is an upper bound on the actual charge. Finally, we include
in the charge only the negative charges that come from i-
vints, i ≥ 8, whose subtrees are part of the rigid core, and
thus charge 7 − i. These modifications cannot decrease the
overall charge made to the 3-vint v.

rigid core

Figure 7: The rigid core that gives 43 with the five
subtrees corresponding to 5-vints that provisionally
charge 1.

How much can be charged with these restrictions? We
further simplify the analysis, by assuming that our tree is
complete3 up to level 3. If not, we can extend the tree with
non-rigid edges, and thus increase the modified charge (since
those edges will not be used for negative charges). Now we
simply have to maximize the modified charge over all possi-
bilities of rigid cores of complete trees of depth 3. We have

3“Complete” means that the root has three children, and all
other non-leaf nodes have two children.

written a small program to determine the maximum charge,
which shows that this charge is at most 43. The maximiz-
ing rigid core is shown in Fig. 7. The 3-vint is provisionally
charged 1 by one 3-vint (itself), three 4-vints, five 5-vints
(out of possible 9), six 6-vints (out of 28), and one 8-vint.
Its modified charge is thus

4 · 1 + 3 · 3 + 2 ·
`

5 + 4
2

´

+
`

6 + 22
2

´

− 1 = 43

One can also bypass the program, and argue, using a tedious
case analysis, that this is indeed the maximum (modified)
charge. Thus charge(v) ≤ 43 for every 3-vint v and

Theorem 3.5. v̂3 ≥ n
43

for every set of n points.

The modified charge used in the last step of the analysis
has a lot of room for improvement. First, we have assumed
that each 3-, 4-, 5-, and 6-vint that does not come fully from
the rigid core charges 1

2
. However, to really charge 1

2
, the

associated hole must have only two triangulations, and thus
only one flippable edge. Any other vint charges at most 1

3
to the 3-vint. One should therefore examine all rigid cores
and all possible ways to attach to them non-rigid children,
and count separately the number of vints with charge 1,
those with charge 1

2
, and bound pessimistically the num-

ber of remaining positively-charging vints (which charge at
most 1

3
). Initial exploration with this approach suggests

that the bound drops to 38. A more careful analysis, that
includes also vints with negative charges should decrease the
bound further. Of course, the ultimate manifestation of the
technique would be to test by a program all possible neigh-
borhoods (up to level 3) and calculate exactly the maximum
charge possible.

4. MISCELLANEOUS BOUNDS
We exhibit here a number of further restrictions on the

expected degree sequences (v̂i)i∈N of finite planar point sets.

Lemma 4.1. For all integers 3 ≤ i ≤ j there is a positive

integer δi,j such that v̂i ≥ v̂j

δi,j
. In particular, v̂i ≥ v̂i+1

i
,

v̂i ≥ 2v̂i+2

i(i+3)
, v̂3 ≥ v̂i

Ci−1−Ci−2
, v̂4 ≥ v̂i

Ci−1−2Ci−2
.

Proof. For the inequality v̂i ≥ v̂i+1

i
, we let every (i+1)-vint

charge some i-vint it can be flipped down to. Since every
vertex of degree at least 4 is incident to a flippable edge,
such an i-vint is always available. Note that an i-vint can
be reached at most i times in this way.

For the general inequality we observe that we can choose
δi,j = ti,j−i+1 where ti,k denotes the number of binary
trees with k nodes with an exceptional root of degree i
(just like the binary nodes distinguish between a left and
a right child, the root discriminates its children via an in-
dex in {1, 2, . . . , i}). To see this, consult a generalization
of the flip-trees from the previous section. It is known that
t2,k = Ck (for the generic binary trees), which yields also

t1,k = Ck−1. ti,1 = 1, ti,2 = i, and ti,3 =
`

i
2

´

+ 2i = i(i+3)
2

can be easily seen. The number observes the recurrence
ti,k = ti−1,k+1 − ti−2,k+1 (proof omitted, generalizes an ar-
gument in [17]). Now the asserted values for δi,j can be

readily obtained: δi,i+1 = ti,2 = i, δi,i+2 = ti,3 = i(i+3)
2

,
δ3,j = t3,j−2 = t2,j−1 − t1,j−1 = Cj−1 − Cj−2, and, finally,
δ4,j = t4,j−3 = t3,j−2 − t2,j−2 = Cj−1 − 2Cj−2.



Theorem 4.2. v̂3 ≤ 2n+3
5

for every set of n points.

Proof. We apply a scheme where every 3-vint charges 3
units to vints of larger degrees or to boundary edges (there
are three). We show that no vint is charged more than 2,
and no boundary edge more than 1. This will imply that

3v̂3 ≤ 3 + 2
X

j≥4

v̂j = 2(n − v̂3) + 3, (4)

which yields the asserted inequality.
Let v = (p, T ) be a 3-vint, and let tv denote its hole, which

is a triangle. For each edge e of tv we do the following,
depending on the properties of e; see Fig. 8.

(1) e is a boundary edge. Then we let v charge 1 to e,
called boundary-charge.

(2) There is a triangle t incident to e on its other side.

(2.1) t forms with p a convex quadrilateral. We can flip e to
get a 4-vint (p, T ′) to which v charges 1. We call this
a flip-charge.

(2.2) t forms with p a non-convex quadrilateral. Let a the
endpoint of e which is reflex in this quadrilateral; note
that a cannot lie on the boundary, and it has to be of
degree at least 4, since interior vertices of degree 3 are
never adjacent (the “interior” condition is necessary
only in case n = 1). Here v charges 1 to vint (a, T ),
called neighbor-charge. Let us label such a charge with
the responsible edge e.

Consider now a vint w = (q, T ). We call an edge ρ incident
to q in T a separable edge at w if it can be separated from
the other edges incident to q by a line that passes through
q. An equivalent condition is that the two angles between ρ
and its clockwise and counterclockwise next edges (at q) sum
up to more than π. In the context of the neighbor-charge
as described above, the responsible edge e is separable at
(a, T ). We observe the easy following properties (see Fig. 9
for an illustration).

(S0) No edge is separable at both vints induced by its end-
points.

(S1) If w has degree 3, every edge incident to its point is
separable at w; (recall here that points of vints are
interior).

(S2) If w has degree at least 4, at most two incident edges
can be separable at w.

(S3) If w is of degree at least 4 and there are two edges
separable at w, then they must be consecutive.

We note that the charges resulting from the three edges
of a hole tv are all different. This is clear for charges ob-
tained by edge flips. For neighbor-charges, it is impossible
that (a, T ) is charged twice, by each of its incident edges
in tv, because these two edges cannot both be separable (as
follows, e.g., from (S3)).

We are now ready to show that no vint u can be charged
more than twice.

Consider first the case of a 4-vint u = (pu, Tu). Let hu

denote the quadrangular hole of pu. We note that at most
two edges incident to pu are flippable: One out of each pair
of opposite edges is separable at u and thus unflippable; see
Fig. 10(a).

Figure 9: Illustrating the properties of separable
edges.

(a) (b)

Figure 10: (a) Only two edges incident to a 4-vint
can be flippable. (b) No neighbor of a 4-vint with a
convex hole can be of degree 3.

(a) If u receives two flip-charges, it cannot be charged as a
neighbor, because in this case hu must be convex, and
then no vertex of hu can be interior and of degree 3;
see Fig. 10(b).

(b) u can be charged at most once as a neighbor. Indeed,
if a is a vertex of hu of degree 3, then it must be a
reflex vertex of hu, and there can be at most one such
vertex.

(a) and (b) establish the

Figure 11: A 4-vint
with a non-convex hole is
charged twice.

claim for 4-vints. (We note
the following stronger prop-
erty: If the hole of pu is con-
vex, then u is charged ex-
actly twice (by edge flips).
On the other hand, if the hole
of pu is non-convex then it
can be charged twice, once
by an edge flip and once as
a neighbor, if and only if pu

and its charging neighbor are
enclosed in a triangle as in
Fig. 11.)
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Figure 8: The various types of charges of a 3-vint in the proof of Theorem 4.2.

Consider next the case where

pu

Figure 12: Neighbor-
charges to a vint u
with two separable
edges.

u = (pu, Tu) is a vint of degree
at least 5. Each flip-charge is
to a 4-vint and therefore vints
of degree at least 5 can receive
neighbor-charges only. We claim
that in this case pu can be a
neighbor of at most two points
of degree 3 that charge it as a
neighbor. Recall the ingredients
necessary for such a neighbor-
charge to u: (i) an egde e that is
separable at u and (ii) a neigh-
bor a of pu that has degree 3 so

that the edges e and pua are consecutive around pu. Clearly,
if there is only one edge separable at u then there are at most
two such constellations; see Fig. 13. If there are two separa-
ble edges at u, then they have to be consecutive around
pu (recall (S3)). This rules out the possibility that any
of these two edges is involved in more than one neighbor-
charge, since an edge cannot be both, separable at pu and
connect to a point of degree 3; see Fig. 12.

The weakness in the proof of

Figure 13: Neighbor-
charges to a vint u
with one separable
edge.

Theorem 4.2 is that it “assumes”
that every vint of degree at least
4 is charged exactly twice. We
can show that this cannot be the
case which gives a slight improve-
ment on the result—omitted here.

We also note that there is a
limit on how small v̂3 can be:
A construction in [10] gives sets
of n points, with n arbitrarily
large, with only 3.17n triangu-
lations. Hence, the best upper
bound that we can hope to prove
is v̂3 ≤ n/3.17.

Finally, we derive a lower bound on v̂4; it follows from
the previously obtained linear constraints, without further
reference to the underlying problem necessary.

Lemma 4.3. For n ≥ 2, v̂4 > n
540

.

Proof. Given some value for v̂4 we have a supply of upper
bounds for all the other v̂i’s due to Lemma 4.1 and Theo-
rem 4.2, namely

v̂3 ≤ 2n+3
5

v̂5 ≤ (C4 − 2C3)v̂4 = 4v̂4

v̂6 ≤ (C5 − 2C4)v̂4 = 14v̂4 v̂7 ≤ (C6 − 2C5)v̂4 = 48v̂4

v̂8 ≤ (C7 − 2C6)v̂4 = 165v̂4 . . .

Moreover, we have
X

i

v̂i = n (5)

X

i

iv̂i ≤ 6n − 5 (6)

Now consider the v̂i’s as nonnegative real variables that have
to obey the constraints listed. Clearly, in order to satisfy (6)
we will push as much of the value n to be distributed among
the v̂i’s to those of smaller index. Along those lines, if we
suppose that v̂4 = n

540
, then we will choose v̂3 = 2n+3

5
,

v̂5 = 4n
540

, v̂6 = 14n
540

, v̂7 = 48n
540

, v̂8 = 165n
540

, v̂9 = 92n
540

− 3
5
, and

v̂i = 0 for i ≥ 10; (in this way (5) is fulfilled).
Now the sum in (6) evaluates to

3 2n+3
5

+ n
540

(4+5·4+6·14+7·48+8·165+9·92)− 9·3
5

= 6n− 18
5

,

a contradiction.
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[3] M. Ajtai, V. Chvátal, M.M. Newborn, and E.
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