Random Triangulations of Planar Point Sets

Micha Sharir ${ }^{*}$
School of Computer Science
Tel Aviv University, Tel Aviv 69978, Israel Courant Institute of Mathematical Sciences
New York University, New York, NY 10012, USA
michas@tau.ac.il

Emo Welzl
Institut für Theoretische Informatik
ETH Zürich
CH-8092 Zürich, Switzerland
emo@inf.ethz.ch

Abstract

Let S be a finite set of $n+3$ points in general position in the plane, with 3 extreme points and n interior points. We consider triangulations drawn uniformly at random from all triangulations of S, and investigate the expected number, \hat{v}_{i}, of interior points of degree i in such a triangulation. We provide bounds that are linear in n on these numbers. In particular, $n / 43 \leq \hat{v}_{3} \leq(2 n+3) / 5$.

Moreover, we relate these results to the question about the maximum and minimum possible number of triangulations in such a set S, and show that the number of triangulations of any set of n points in the plane is at most 43^{n}, thereby improving on a previous bound by Santos and Seidel. Categories and Subject Descriptors: G. 2 [Discrete Mathematics]: Combinatorics-Counting problems

General Terms: Theory
Keywords: Random triangulations, counting, degree sequences

1. INTRODUCTION

Given a set S of n points in the plane, a triangulation is a maximal crossing-free geometric graph on S (in a geometric graph the edges are realized by straight line segments). Here we consider random triangulations, where "random" refers to uniformly at random from the set of all triangulations of S. We are primarily interested in the degree sequences of such random triangulations.

To be precise, we assume that S is a set of $n+3$ points in general position in the plane so that the convex hull of S is a triangle. For such a set and $i \in \mathbb{N}$, we let \hat{v}_{i} denote the expected number of interior points of degree i in a random triangulation. While - for n large enough - the number of

[^0]vertices of degree 3 in a triangulation may be any integer between 0 and roughly $\frac{2 n}{3}$, we show that
$$
\frac{n}{43} \leq \hat{v}_{3} \leq \frac{2 n+3}{5}
$$

Note that general position is essential for the lower bound. Consider the case where the n interior points lie on a common line containing one of the extreme points in S, see Fig. 1. Then there is a unique triangulation and this triangulation has one interior point of degree 3 ; hence, $\hat{v}_{3}=1$.

We relate these results to the question about the maximum

Figure 1: Point set with unique triangulation. and minimum possible number of triangulations in a set of n points in the plane. We show that the number of triangulations of any such set is at most 43^{n}, thereby improving on a previous bound of 59^{n} by Santos and Seidel [17]. We can also use the upper bound on \hat{v}_{3} to infer a lower bound of roughly 2.5^{n} on the number of triangulations every set of $n+3$ points in general position with triangular convex hull has. However, this is inferior to the recent $0.093 \cdot 2.63^{n}$ bound by McCabe and Seidel [10].

Our results use charging schemes among vertices in triangulations that heavily build on the structure imposed by edge flips on the set of all triangulations (see also the discussion of (dis-)charging below). Our approach should be regarded as a continuation of the proof by Santos and Seidel [17] for the 59^{n} upper bound for the number of triangulations. This connection may not be obvious in our presentation, since we deal with a different scenario, but it should become more apparent when we get as an intermediate result a lower bound of $n / 59$ for \hat{v}_{3}. The two 59 's are the "same"! Still, we believe that it was the new setting that allowed us to proceed further and derive a better bound for the number of triangulations.

Little seems to be known about random triangulations of (fixed) point sets, although the generation of random triangulations has raised some interest (see, e.g., [1, Section 4.3]). Moreover, it is a folklore open problem to determine the mixing rate of the Markov process that starts at some triangulation and keeps flipping a random flippable edge; see $[13,12]$ where this is treated for points in convex position.We are currently investigating whether our methods have anything to say about this problem. Finally, for ab-
stract graphs (without enforced straight line embedding on a given point set), there are results about random planar graphs ${ }^{1}$, see, e.g., $[9,11,7]$; it is not clear how those compare to our setting (see also the discussion of a result by Tutte below).
Number of Triangulations-History. David Avis was perhaps one of the first to ask whether the maximum number of triangulations of n points in the plane is bounded by c^{n} for some $c>0$, see [3, page 9]. This fact was established in 1982 by Ajtai, Chvátal, Newborn, and Szemerédi [3], who show that there are at most $10^{13 n}$ crossing-free graphs on n points - in particular, this bound holds for triangulations.

Further developments have yielded progressively better upper bounds for the number of triangulations ${ }^{2}[20,5,18]$, so far culminating in the previously mentioned 59^{n} bound [17] in 2003. This compares to $\Omega\left(8.48^{n}\right)$, the largest known number of triangulations for a set of n points, recently derived by Aichholzer et al. [2]; this improves an earlier lower bound of about 8^{n} (up to a polynomial factor) given by García et al. [6].

For n points in convex position, the number of triangulations is known to be C_{n-2}, where $C_{m}:=\frac{1}{m+1}\binom{2 m}{m}=$ $\Theta\left(m^{-3 / 2} 4^{m}\right), m \in \mathbb{N}_{0}$, is the m th Catalan number (the Euler-Segner problem, cf. [21, page 212] for a discussion).

Other Crossing-free Graphs. Besides the intrinsic interest in obtaining bounds on the number of triangulations, they are useful for bounding the number of other kinds of crossing-free geometric graphs on a given point set, exploiting the fact that any such graph is a subgraph of some triangulation. For example, the best known upper bound on the number of crossing-free straight-edge spanning trees on a set of n points in the plane is $O\left((5 . \dot{3} \tau)^{n}\right)$, if τ^{n} is a bound on the number of triangulations; with $\tau=43$ this is now $O\left(229 . \dot{3}^{n}\right)$. This follows from a result by Ribó and Rote, $[14,16]$, who show that any planar graph on n vertices contains at most $5 . \dot{3}^{n}$ spanning trees. Similar results have been observed for crossing-free spanning cycles, where a bound of $O\left((\sqrt{6} \tau)^{n}\right)=O\left((2.45 \tau)^{n}\right)$ can be obtained, as communicated by Raimund Seidel; the resulting bound of $O\left(105.33^{n}\right)$ falls still short of the bound of $O\left(86.81^{n}\right)$ for cycles given in [19], though. The total number of crossing-free planar graphs on n points is at most $2^{3 n-6} \tau^{n}<(8 \tau)^{n}$. So this is now improved to 344^{n} (from 472^{n}).

Next we mention a result and a notion, both seemingly related to what we are doing; hence, they were popping up repeatedly when presenting our result. While we want to take the opportunity to clarify in this way, a fruitful closer connection may be established in the end.
Tutte's Number of Rooted Triangulations. Let us briefly discuss a classical result from 1962 by Tutte in his census-series in the Canadian Journal of Mathematics [22]. He considers so-called rooted triangulations, i.e., maximal planar graphs, with a fixed face with vertices a, b, and c and n additional vertices. Two such triangulations are considered to be equal if there is an isomorphism between them,

[^1]which maps each of the points a, b, and c to itself, though. The number of such triangulations is easily seen to be 1 for $n=1$ and 3 for $n=2$. Based on an ingenious analysis employing generating functions, Tutte shows that for $n \geq 2$ the number of such triangulations is exactly

Figure 2: Two distinct triangulations of a point set that are equal in Tutte's setting.

How does this relate to the number of triangulations of given $n+3$ points? On the one hand, Tutte's model counts more triangulations, because there are fewer constraints: "The interior points can be moved arbitrarily." On the other hand, distinct triangulations in the geometric setting may be equal in Tutte's setting; see Fig. 2. Thus the results are incomparable, although we cannot rule out that a connection may be established.
(Dis-)Charging. The notion of "charging" does ring a bell in the context of planar graphs. The proof of the celebrated Four-Color-Theorem employs Heesch's idea of discharging (Entladung, [8]) in order to prove that certain configurations are unavoidable in a maximal planar graph, cf. [4] or a later proof in [15]. There one initially puts charge $6-i$ on each vertex of degree i in a maximal planar graphthus the overall charge is 12 . Now vertices of positive charge push their charge to other vertices (they discharge) without changing the overall charge. Given that a certain set of configurations L does not occur, one proves that all vertices can discharge with a nonpositive charge in the end-a contradiction and thus the configurations in L are unavoidable.

Our scheme differs in two respects. First of all we need a quantitative version. We let every vertex have a value of $7-i$, in this way we can make sure that the overall value in a maximal planar graph is at least n, or, equivalently, there is at least 1 for every vertex on the average. Secondly, the "discharging" goes across a family of planar graphs, the set of all triangulations of a given point set. We show that the charge can be redistributed so that no vertex of degree exceeding 3 has positive charge, and degree- 3 vertices have charge at most 43. This allows us to conclude that at least $\frac{1}{43}$ of all vertices over all triangulations have degree 3. Again, we have to leave it open to which extent the rich knowledge on discharging from the 4 -Color-Theorem may be useful for our purposes.
Further Steps. We know that the " 43 " in the bounds is not tight for our approach, and we are currently working on a more exhaustive analysis, which seems to suggest that the best constant that the technique yields gets close to 30 . We hope to report on this in the full version of this paper. There we also plan to provide an argument that, for all $i \geq 3$, there is a positive constant δ_{i} so that $\hat{v}_{i} \geq \delta_{i} n$, provided n is large enough (if $n<i-2$, there is no vertex of degree i).

2. DEGREES IN TRIANGULATIONS

We fix a triple H of non-collinear points in the plane, and, without further mention, restrict ourselves to finite point sets P that are contained in the convex hull of H. We say that P is in general position, if no three points in $P^{+}:=$ $P \cup H$ are collinear (P^{+}is what we used to denote by S in the introduction). Let $\mathcal{T}^{+}(P)$ denote the set of all triangulations of P^{+}. Recall that a triangulation of N points whose convex hull is a triangle has exactly $3 N-6$ edges and $2 N-5$ inner faces, all triangular.
Degrees in Triangulations of P. For $i \in \mathbb{N}$ and triangulation $T \in \mathcal{T}^{+}(P)$, we let $v_{i}=v_{i}(T)$ denote the number of points in $P\left(\operatorname{not} P^{+}\right)$that have degree i in T. Obviously, $v_{i} \in \mathbb{N}_{0}, v_{1}=v_{2}=0$, and $\sum_{i} v_{i}=n:=|P|$. Moreover,

$$
\begin{equation*}
\sum_{i} i v_{i} \leq 6 n-5 \quad \text { if } n \geq 2 \tag{1}
\end{equation*}
$$

For the latter inequality, note that if d_{1}, d_{2}, and d_{3} are the degrees in T of the three points of H, then

$$
d_{1}+d_{2}+d_{3}+\sum_{i} i v_{i}=2(3(n+3)-6)=6 n+6
$$

and $d_{1}+d_{2}+d_{3} \geq 11$, since in a triangulation of at least 5 points all points have degree at least 3, and no two vertices of degree 3 are adjacent.

The vector $\left(v_{i}\right)_{i \in \mathbb{N}}$, however, is constrained beyond (1). For example, $v_{3} \leq \frac{2 n+1}{3}$, which can be seen as follows. Given $T \in \mathcal{T}^{+}(P)$ remove all the v_{3} points from P in T that have degree 3. Note that no two such points can be adjacent in T. Therefore, the resulting graph is a triangulation T^{\prime} of the remaining points $P^{\prime+}$, and each of its faces contains at most one point in $P \backslash P^{\prime}$. So for $k:=\left|P^{\prime}\right|=n-v_{3}$, the number of points removed is at most $2(k+3)-5=2 k+1$. Therefore, $v_{3} \leq 2\left(n-v_{3}\right)+1$; that is, $v_{3} \leq \frac{2 n+1}{3}$ as claimed. In order to see that this bound of $\left\lfloor\frac{2 n+1}{3}\right\rfloor$ is tight, set $k=\left\lceil\frac{n-1}{3}\right\rceil$, choose any triangulation in $\mathcal{T}^{+}(Q)$ for any set Q of k points, and place another $n-k=\left\lfloor\frac{2 n+1}{3}\right\rfloor$ points, no two in the same face of the triangulation. This is possible by the choice of k. Connect all added points to the three vertices of their respective faces, and we are done. We summarize

$$
\begin{equation*}
0 \leq v_{3} \leq\left\lfloor\frac{2 n+1}{3}\right\rfloor \tag{2}
\end{equation*}
$$

which is tight except for the lower bound when n is small.
Degrees in Random Triangulations and the Number of Triangulations. For $i \in \mathbb{N}$ let

$$
\begin{aligned}
& \hat{v}_{i}=\hat{v}_{i}(P):=\mathbb{E}\left(v_{i}(T)\right) \\
& \text { for } T \text { uniformly at random in } \mathcal{T}^{+}(P) .
\end{aligned}
$$

Due to linearity of expectation, any linear identity or inequality in the v_{i} 's (such as (1) or (2)) will also be satisfied by the \hat{v}_{i} 's. However, as we will show, the \hat{v}_{i} 's are significantly more constrained than the v_{i} 's. In particular, there is a constant $\delta>0$ such that $\hat{v}_{3} \geq \delta n$ if $n>0$ and the point set is in general position; recall Fig. 1 to see that general position is indeed necessary here. Before we establish this bound, let us relate it to the question about the number of triangulations. For that, let $\operatorname{tr}^{+}(P):=\left|\mathcal{T}^{+}(P)\right|$ and $\operatorname{tr}^{+}(n):=\max _{|P|=n} \operatorname{tr}^{+}(P)$.

Lemma 2.1. (i) If $\delta>0$ is a real constant such that, for all $n \in \mathbb{N}, \hat{v}_{3} \geq \delta n$ for any set of n points in general position, then, for all $n \in \mathbb{N}_{\mathrm{o}}$,

$$
\operatorname{tr}^{+}(n) \leq\left(\frac{1}{\delta}\right)^{n}
$$

(ii) If $\delta^{\prime}>0$ is a real constant and $n_{0} \in \mathbb{N}$ such that, for all n, $n_{0} \leq n \in \mathbb{N}, \hat{v}_{3} \leq \delta^{\prime} n$ for any set of n points in general position, then for any set P of $n \in \mathbb{N}$ points in general position, $\operatorname{tr}^{+}(P)=\Omega\left(\left(\frac{1}{\delta^{\prime}}\right)^{n}\right)$.

Proof. (i) Let P be a set of $n>0$ points with $\operatorname{tr}^{+}(P)=$ $\operatorname{tr}^{+}(n)$. Without loss of generality, let P be in general position (a small perturbation of a point set cannot decrease the number of triangulations).

Note that we can get triangulations of P^{+}by choosing a triangulation of $P^{+} \backslash\{q\}$ for some $q \in P$, and then inserting q as a vertex of degree 3 in the unique face it lands in. In fact, a triangulation $T \in \mathcal{T}^{+}(P)$ can be obtained in exactly $v_{3}(T)$ ways in this manner. In particular, if $v_{3}(T)=0, T$ cannot be obtained at all in this fashion. This is easily seen to imply that

$$
\sum_{T \in \mathcal{T}^{+}(P)} v_{3}(T)=\sum_{q \in P} \operatorname{tr}^{+}(P \backslash\{q\})
$$

The left hand side of this identity equals $\hat{v}_{3}(P) \cdot \operatorname{tr}^{+}(P)$, and its right hand side is upper bounded by $n \cdot \operatorname{tr}^{+}(n-1)$. Hence,

$$
\operatorname{tr}^{+}(P) \leq \frac{n}{\hat{v}_{3}(P)} \cdot \operatorname{tr}^{+}(n-1) \leq \frac{1}{\delta} \cdot \operatorname{tr}^{+}(n-1)
$$

(since we assume $\hat{v}_{3}(P) \geq \delta n$), and thus $\operatorname{tr}^{+}(n) \leq \frac{1}{\delta} \cdot \operatorname{tr}^{+}(n-1)$ for all $n \in \mathbb{N}$. Since $\operatorname{tr}^{+}(0)=1$, the lemma follows.
(ii) Along the same lines-omitted.
$\operatorname{tr}^{+}(n)$ is also an upper bound for the number of triangulations of an arbitrary point set S of n points, without restricting it to be contained in the convex hull of H, and without adding H to make its convex hull triangular. To see this, take S and apply an affine transformation so that it lies in the convex hull of H. This does not change the number of triangulations, and adding H cannot decrease the number of triangulations.
An Example. Suppose P lies on a convex arc in the convex hull of H as depicted in Fig. 3. Then all edges indicated there have to be present in all triangulations of P^{+}and all that remains is to fill in a triangulation of a convex polygon with $n+2$ vertices, $n:=|P|$. The number of such triangulations is C_{n}, thus $\operatorname{tr}^{+}(P)=C_{n}$. Now

Figure 3: Points on a convex arc. consider some point in P. For it to have degree 3, its adjacent vertices in the convex polygon have to be connected to each other, which leaves an $(n+1)$-gon to be triangulated in C_{n-1} ways. Therefore, the probability that this point has degree 3 is exactly $\frac{C_{n-1}}{C_{n}}=\frac{n+1}{2(2 n-1)}=\frac{1}{4}+O\left(\frac{1}{n}\right)$ and $\hat{v}_{3}=\frac{n}{4}+O(1)$. It is easy to show that $\hat{v}_{4}=\hat{v}_{3}$ for these point sets, provided $n \geq 2$.

3. LOWER BOUND ON \hat{v}_{3}

The basic idea of our proof is to have all vertices of triangulations charge to vertices of degree 3. If every vertex charges at least 1 and each vertex of degree 3 is charged at most c, then we know that $\hat{v}_{3} \geq \frac{n}{c}$. The actual charging scheme is more involved. First, since there are triangulations that have no degree 3 vertices, the charging has to go across triangulations. Moreover, vertices will charge amounts different from 1 (even negative charges will occur). However, on average, each vertex will charge at least 1 . The difficulty in the analysis will be to bound the maximum charge c to a vertex of degree 3 .
Vints and Flipping. We consider the set $P \times \mathcal{T}^{+}(P)$ and call its elements vints (vertex-in-triangulation). The degree of a vint (p, T) is the degree (number of neighbors) of p in T; a vint of degree i is called an i-vint. The overall number of vints is obviously $n \cdot \operatorname{tr}^{+}(P)$, and the number of i-vints is $\hat{v}_{i} \cdot \operatorname{tr}^{+}(P)$.

We define a relation on the set of vints. If u and v are vints, then we say that $u \rightarrow v$ if v can be obtained by flipping one edge incident to u in its triangulation. That is, u and v are associated with the same point but in different triangulations, and u has to be an $(i+1)$-vint and v an i-vint, for some $i \geq 3$. We denote by \rightarrow^{*} the transitive reflexive closure of \rightarrow, and if $u \rightarrow^{*} v$, we say that u can be flipped down to v. Charges will go from vints to 3 -vints they can be flipped down to.

The support of a vint u is the number of 3 -vints it can be flipped down to, i.e.

$$
\operatorname{supp}(u):=\mid\left\{v \mid v \text { is } 3 \text {-vint with } u \rightarrow^{*} v\right\} \mid
$$

Figure 4: A 3-vint v that is charged $\operatorname{ch}_{4}(v)=\frac{1}{2}+1$ by 4-vints u_{1} and u_{2} in the provisional charging scheme.

A Provisional Charging Scheme. Given our original plan, a natural charging scheme would let a vint u charge $\frac{1}{\operatorname{supp}(u)}$ to each 3 -vint it can be flipped down to-in this way it will charge a total of 1 . Let us call this the provisional charging scheme; see Fig. 4. Since every vint can be flipped down to some 3 -vint, the charges are well-defined in this way. For technical reasons, our final charging scheme will be somewhat different.

Let us gain some understanding of the notion of $\operatorname{supp}(u)$. Note that the removal of an interior point p and its incident edges in a triangulation T creates a star-shaped polygon (with respect to p). We call this the hole of the vint (p, T).

Lemma 3.1. For a vint u, $\operatorname{supp}(u)$ equals the number of triangulations of the hole of u. Therefore,
(i) if u is an i-vint, $1 \leq \operatorname{supp}(u) \leq C_{i-2}$, where the upper bound attained iff the hole is convex (see Section 1 for the definition of the Catalan numbers C_{m}), and
(ii) if $u \rightarrow^{*} u^{\prime}$ for vints u and u^{\prime}, then $\operatorname{supp}(u) \geq \operatorname{supp}\left(u^{\prime}\right)$.

Proof. (i) follows from the fact that a convex i-gon has C_{i-2} triangulations, which is the maximum for all i-gons. (ii) uses the fact that if $u \rightarrow u^{\prime}$ then the hole of u^{\prime} is contained in the hole of u, with the vertices of the former a subset of the vertices of the latter; i.e. every triangulation of the hole of u^{\prime} can be extended to at least one triangulation of u.

For a 3 -vint v and $i \in \mathbb{N}$, we let $\operatorname{ch}_{i}(v)$ be the amount charged to v by i-vints in the provisional charging scheme described above.

Lemma 3.2. For every 3 -vint v and all $i \geq 3$, we have $0 \leq$ $\operatorname{ch}_{i}(v) \leq C_{i-1}-C_{i-2}$. In particular, $\operatorname{ch}_{3}(v)=1, \operatorname{ch}_{4}(v) \in$ $\left\{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3\right\}, \operatorname{ch}_{5}(v) \leq 9, \operatorname{ch}_{6}(v) \leq 28$, etc.
Proof. It follows from an analysis in [17, Lemma 4] that the number of i-vints that can charge a 3 -vint is at most $C_{i-1}-C_{i-2}$, and since a vint can charge at most 1 to a 3 -vint, the bound follows.
$\operatorname{ch}_{3}(v)=1$ is obvious. For the claim on $\operatorname{ch}_{4}(v)$ it suffices to observe that there are at most three 4 -vints that can charge a given 3 -vint v, and that the support of a 4 -vint is either 1 or 2 . The remaining numbers simply evaluate the expression $C_{i-1}-C_{i-2}$, and are given for future reference.

The Actual Charging Scheme. In our provisional charging scheme, a 3 -vint is charged $\sum_{i} \operatorname{ch}_{i}(v)$. We note that the bounds in Lemma 3.2 are tight (provided n is large enough compared to i). This will follow from the analysis given below, and is illustrated in Fig. 5 for the case $i=5$ (the figure too will be better understood after the following analysis). Therefore, there is no uniform upper bound on the amount charged to individual 3 -vints in the provisional scheme. For that reason, we switch to a charging where

$$
\text { an } i \text {-vint } u \text { charges } \frac{7-i}{\operatorname{supp}(u)} \text { to each } 3 \text {-vint } v \text { with } u \rightarrow^{*} v .
$$

Note that in this scheme, a 3 -vint charges 4 to itself (so that sounds like bad news), but 7 -vints do not charge at all and all i-vints with $i \geq 8$ charge a negative amount, so that is good news for the 3 -vints.
There is Enough Charge for Everybody. The overall charge of an i-vint is $7-i$, so the overall charge accumulated for all vints associated with a triangulation T is exactly

$$
\sum_{i}(7-i) v_{i}(T)=\sum_{i} 7 v_{i}(T)-\sum_{i} i v_{i}(T) \geq 7 n-6 n=n
$$

where we have used (1). So vints charge so that, on average, each gets to charge at least 1.
No 3-Vint Gets Charged too Much. For a 3-vint v, we set

$$
\begin{align*}
\operatorname{charge}(v):= & \sum_{i}(7-i) \operatorname{ch}_{i}(v) \tag{3}\\
= & 4 \operatorname{ch}_{3}(v)+3 \operatorname{ch}_{4}(v)+2 \operatorname{ch}_{5}(v)+\operatorname{ch}_{6}(v) \\
& -\operatorname{ch}_{8}(v)-2 \operatorname{ch}_{9}(v)-\cdots
\end{align*}
$$

For an initial upper bound, we can ignore the negative terms and invoke the bounds on the $\mathrm{ch}_{i}(v)$'s from Lemma 3.2, to get

$$
\operatorname{charge}(v) \leq 4 \cdot 1+3 \cdot 3+2 \cdot 9+28=59
$$

Figure 5: A 3 -vint v that gets charged 1 by nine 5 -vints (two of which are displayed) in the provisional charging scheme. Hence, $\operatorname{ch}_{5}(v)=9$.
which implies $\hat{v}_{3} \geq \frac{n}{59}$, and by Lemma 2.1, this gives an upper bound of 59^{n} for the number of triangulations of any set of n points. This is the Santos-Seidel bound which we have derived now with ideas similar to theirs but in a different setting.

We improve on this by observing that if all $\operatorname{ch}_{4}(v), \operatorname{ch}_{5}(v)$, and $\operatorname{ch}_{6}(v)$ are large, then the $\operatorname{ch}_{i}(v), i \geq 8$, are large as well, and therefore charge (v) is not so large after all. For example, if indeed $\operatorname{ch}_{4}(v)=3, \operatorname{ch}_{5}(v)=9$, and $\operatorname{ch}_{6}(v)=28$ (which is possible), then charge (v) is extremely small: at most -142636 (the analysis below will clarify this statement).

How do we find those vints that flip down to a given 3vint $v=\left(p_{v}, T_{v}\right)$? Clearly, there is v itself. If an edge in a triangle incident to p_{v} can be flipped in T_{v} (such an edge cannot be incident to $p_{v}!$), then flipping such an edge yields a 4 -vint $u=\left(p_{v}, T_{u}\right)$ that can be flipped down to v (by reversing the preceding flip). If in the triangulation T_{u} there is a flippable edge that is not incident to p_{v} but part of a triangle incident to p_{v}, then we can flip this edge to get a 5 -vint that can be flipped down to v, etc.

In order to represent this structure, we associate with a 3 -vint $v=\left(p_{v}, T_{v}\right)$ a flip-tree $\tau(v)$ as follows. The root of the tree is labeled by the pair $\left(t_{v}, N_{v}\right)$, where t_{v} is the hole of v (a triangle) and N_{v} is the set of its three vertex points (the neighbors of p_{v} in T_{v}). All other nodes of the tree are associated with a pair (t, q), where t is a face of T_{v} and q is a point incident to that face (note that t_{v} from the root is not a face of T_{v}-it contains p_{v} and its incident faces).
(i) Every edge e of t_{v} gives rise to a child if this edge can be flipped in T_{v}. If so, this child is labeled by the triangle incident to e that is not incident to p_{v}, and by the point in this triangle which is not incident to e. So the root has at most three children.
(ii) Consider now a non-root node of the tree labeled by (t, q) and an edge e of t incident to q. If e is a boundary edge, no child will be obtained via e. Otherwise, let t^{\prime} be the other triangle incident to e. If t^{\prime} together with the triangle formed by e and p_{v} is a convex quadrilateral (where e can be flipped), then this gives rise to a child of (t, q) labeled by $\left(t^{\prime}, q^{\prime}\right)$ where q^{\prime} is the point of t^{\prime} that is not incident to e.

Figure 6: The tree of a 3-vint. Bold edges are rigid edges.

So a non-root node has at most two children.
Note that the union of all triangles of the nodes of any subtree of $\tau(v)$ (containing the root) form a polygon that is star-shaped with respect to p_{v}; this follows easily by the inductive definition of $\tau(v)$. The triangles form a triangulation of the polygon, and the subtree is actually the dual tree of this triangulation. If we retriangulate this polygon in T_{v} by connecting p_{v} to all vertices of the polygon, we get a vint that flips down to v. And we get all vints that flip down to v in this way. That is:

Lemma 3.3. The subtrees of $\tau(v)$ containing its root are in bijective correspondence with the vints that flip down to v.

The next step is to determine how much these vints charge to v. This depends on the number of triangulations of the holes of these vints - the fewer triangulations, the more v is charged in the provisional scheme. The analysis given here only discriminates between vints that charge 1 to v in the provisional scheme, and all other vints (which charge at most $\frac{1}{2}$ in that scheme).

We first define rigid edges of $\tau(v)$: An edge of the tree connects two nodes labeled by two triangles t and t^{\prime} with a common edge e. If e cannot be flipped in the union of
these two triangles, then we call the "dual" tree edge rigid. Beware that e may be flippable in T_{v} while it is not flippable in $t \cup t^{\prime}$ - this may happen if one of the two triangles is t_{v} (and thus not a triangle of T_{v}). Now the rigid core, $\tau^{*}(v)$, of $\tau(v)$ is defined to be the maximal subtree of $\tau(v)$ that includes the root and consists exclusively of rigid edges. $\tau^{*}(v)$ is non-empty, since it always contains the root of $\tau(v)$.

Lemma 3.4. The subtrees of the rigid core $\tau^{*}(v)$ containing the root are in bijective correspondence with the vints u that flip down to v and provisionally charge 1, i.e. $\operatorname{supp}(u)=$ 1.

Proof. Consider a vint u that flips down to v. We recall that $\operatorname{supp}(u)=1$ iff the hole of u has exactly one triangulation. Note that one triangulation of this polygon can be obtained by taking the set of triangles in the subtree corresponding to u. If all edges in this subtree are rigid, then none of the dual edges in the triangulation can be flipped. That is, there is only one triangulation of the hole, since the set of triangulations of a polygon is connected via edge-flips. Also, if any of the edges is not rigid, then its dual edge can be flipped, and so obviously there are at least two triangulations.

In order to upper bound charge (v), we first restrict ourselves to vints that correspond to subtrees of $\tau(v)$ of depths at most 3 . Note that in this way we do not lose any 3 -, 4 -, 5 -, or 6 -vints, i.e., no vint that charges a positive amount in the actual scheme is lost. Moreover, we let all i-vints, $i=4,5,6$, whose subtree is not part of the rigid core charge $\frac{7-i}{2}$; this is an upper bound on the actual charge. Finally, we include in the charge only the negative charges that come from i vints, $i \geq 8$, whose subtrees are part of the rigid core, and thus charge $7-i$. These modifications cannot decrease the overall charge made to the 3 -vint v.

Figure 7: The rigid core that gives 43 with the five subtrees corresponding to 5 -vints that provisionally charge 1 .

How much can be charged with these restrictions? We further simplify the analysis, by assuming that our tree is complete ${ }^{3}$ up to level 3. If not, we can extend the tree with non-rigid edges, and thus increase the modified charge (since those edges will not be used for negative charges). Now we simply have to maximize the modified charge over all possibilities of rigid cores of complete trees of depth 3. We have

[^2]written a small program to determine the maximum charge, which shows that this charge is at most 43 . The maximizing rigid core is shown in Fig. 7. The 3 -vint is provisionally charged 1 by one 3 -vint (itself), three 4 -vints, five 5 -vints (out of possible 9), six 6 -vints (out of 28), and one 8 -vint. Its modified charge is thus
$$
4 \cdot 1+3 \cdot 3+2 \cdot\left(5+\frac{4}{2}\right)+\left(6+\frac{22}{2}\right)-1=43
$$

One can also bypass the program, and argue, using a tedious case analysis, that this is indeed the maximum (modified) charge. Thus charge $(v) \leq 43$ for every 3 -vint v and

Theorem 3.5. $\hat{v}_{3} \geq \frac{n}{43}$ for every set of n points.
The modified charge used in the last step of the analysis has a lot of room for improvement. First, we have assumed that each 3 -, 4 -, 5 -, and 6 -vint that does not come fully from the rigid core charges $\frac{1}{2}$. However, to really charge $\frac{1}{2}$, the associated hole must have only two triangulations, and thus only one flippable edge. Any other vint charges at most $\frac{1}{3}$ to the 3 -vint. One should therefore examine all rigid cores and all possible ways to attach to them non-rigid children, and count separately the number of vints with charge 1 , those with charge $\frac{1}{2}$, and bound pessimistically the number of remaining positively-charging vints (which charge at most $\frac{1}{3}$). Initial exploration with this approach suggests that the bound drops to 38 . A more careful analysis, that includes also vints with negative charges should decrease the bound further. Of course, the ultimate manifestation of the technique would be to test by a program all possible neighborhoods (up to level 3) and calculate exactly the maximum charge possible.

4. MISCELLANEOUS BOUNDS

We exhibit here a number of further restrictions on the expected degree sequences $\left(\hat{v}_{i}\right)_{i \in \mathbb{N}}$ of finite planar point sets.

Lemma 4.1. For all integers $3 \leq i \leq j$ there is a positive integer $\delta_{i, j}$ such that $\hat{v}_{i} \geq \frac{\hat{v}_{j}}{\delta_{i, j}}$. In particular, $\hat{v}_{i} \geq \frac{\hat{v}_{i+1}}{i}$, $\hat{v}_{i} \geq \frac{2 \hat{v}_{i+2}}{i(i+3)}, \hat{v}_{3} \geq \frac{\hat{v}_{i}}{C_{i-1}-C_{i-2}}, \hat{v}_{4} \geq \frac{\hat{v}_{i}}{C_{i-1}-2 C_{i-2}}$.

Proof. For the inequality $\hat{v}_{i} \geq \frac{\hat{v}_{i+1}}{i}$, we let every $(i+1)$-vint charge some i-vint it can be flipped down to. Since every vertex of degree at least 4 is incident to a flippable edge, such an i-vint is always available. Note that an i-vint can be reached at most i times in this way.

For the general inequality we observe that we can choose $\delta_{i, j}=t_{i, j-i+1}$ where $t_{i, k}$ denotes the number of binary trees with k nodes with an exceptional root of degree i (just like the binary nodes distinguish between a left and a right child, the root discriminates its children via an index in $\{1,2, \ldots, i\})$. To see this, consult a generalization of the flip-trees from the previous section. It is known that $t_{2, k}=C_{k}$ (for the generic binary trees), which yields also $t_{1, k}=C_{k-1} \cdot t_{i, 1}=1, t_{i, 2}=i$, and $t_{i, 3}=\binom{i}{2}+2 i=\frac{i(i+3)}{2}$ can be easily seen. The number observes the recurrence $t_{i, k}=t_{i-1, k+1}-t_{i-2, k+1}$ (proof omitted, generalizes an argument in [17]). Now the asserted values for $\delta_{i, j}$ can be readily obtained: $\delta_{i, i+1}=t_{i, 2}=i, \delta_{i, i+2}=t_{i, 3}=\frac{i(i+3)}{2}$, $\delta_{3, j}=t_{3, j-2}=t_{2, j-1}-t_{1, j-1}=C_{j-1}-C_{j-2}$, and, finally, $\delta_{4, j}=t_{4, j-3}=t_{3, j-2}-t_{2, j-2}=C_{j-1}-2 C_{j-2}$.

TheOrem 4.2. $\hat{v}_{3} \leq \frac{2 n+3}{5}$ for every set of n points.
Proof. We apply a scheme where every 3-vint charges 3 units to vints of larger degrees or to boundary edges (there are three). We show that no vint is charged more than 2, and no boundary edge more than 1 . This will imply that

$$
\begin{equation*}
3 \hat{v}_{3} \leq 3+2 \sum_{j \geq 4} \hat{v}_{j}=2\left(n-\hat{v}_{3}\right)+3 \tag{4}
\end{equation*}
$$

which yields the asserted inequality.
Let $v=(p, T)$ be a 3 -vint, and let t_{v} denote its hole, which is a triangle. For each edge e of t_{v} we do the following, depending on the properties of e; see Fig. 8.
(1) e is a boundary edge. Then we let v charge 1 to e, called boundary-charge.
(2) There is a triangle t incident to e on its other side.
(2.1) t forms with p a convex quadrilateral. We can flip e to get a 4 -vint $\left(p, T^{\prime}\right)$ to which v charges 1 . We call this a flip-charge.
(2.2) t forms with p a non-convex quadrilateral. Let a the endpoint of e which is reflex in this quadrilateral; note that a cannot lie on the boundary, and it has to be of degree at least 4 , since interior vertices of degree 3 are never adjacent (the "interior" condition is necessary only in case $n=1$). Here v charges 1 to vint (a, T), called neighbor-charge. Let us label such a charge with the responsible edge e.

Consider now a vint $w=(q, T)$. We call an edge ρ incident to q in T a separable edge at w if it can be separated from the other edges incident to q by a line that passes through q. An equivalent condition is that the two angles between ρ and its clockwise and counterclockwise next edges (at q) sum up to more than π. In the context of the neighbor-charge as described above, the responsible edge e is separable at (a, T). We observe the easy following properties (see Fig. 9 for an illustration).
(S0) No edge is separable at both vints induced by its endpoints.
(S1) If w has degree 3, every edge incident to its point is separable at w; (recall here that points of vints are interior).
(S2) If w has degree at least 4, at most two incident edges can be separable at w.
(S3) If w is of degree at least 4 and there are two edges separable at w, then they must be consecutive.
We note that the charges resulting from the three edges of a hole t_{v} are all different. This is clear for charges obtained by edge flips. For neighbor-charges, it is impossible that (a, T) is charged twice, by each of its incident edges in t_{v}, because these two edges cannot both be separable (as follows, e.g., from (S3)).

We are now ready to show that no vint u can be charged more than twice.

Consider first the case of a 4 -vint $u=\left(p_{u}, T_{u}\right)$. Let h_{u} denote the quadrangular hole of p_{u}. We note that at most two edges incident to p_{u} are flippable: One out of each pair of opposite edges is separable at u and thus unflippable; see Fig. 10(a).

Figure 9: Illustrating the properties of separable edges.

Figure 10: (a) Only two edges incident to a 4 -vint can be flippable. (b) No neighbor of a 4 -vint with a convex hole can be of degree 3 .
(a) If u receives two flip-charges, it cannot be charged as a neighbor, because in this case h_{u} must be convex, and then no vertex of h_{u} can be interior and of degree 3 ; see Fig. 10(b).
(b) u can be charged at most once as a neighbor. Indeed, if a is a vertex of h_{u} of degree 3 , then it must be a reflex vertex of h_{u}, and there can be at most one such vertex.
(a) and (b) establish the claim for 4 -vints. (We note the following stronger property: If the hole of p_{u} is convex, then u is charged exactly twice (by edge flips). On the other hand, if the hole of p_{u} is non-convex then it can be charged twice, once by an edge flip and once as a neighbor, if and only if p_{u} and its charging neighbor are enclosed in a triangle as in Fig. 11.)

Figure 11: A 4-vint with a non-convex hole is charged twice.

Figure 8: The various types of charges of a 3-vint in the proof of Theorem 4.2.

Figure 12: Neighborcharges to a vint u with two separable edges. bor a of p_{u} that has degree 3 so that the edges e and $p_{u} a$ are consecutive around p_{u}. Clearly, if there is only one edge separable at u then there are at most two such constellations; see Fig. 13. If there are two separable edges at u, then they have to be consecutive around p_{u} (recall (S3)). This rules out the possibility that any of these two edges is involved in more than one neighborcharge, since an edge cannot be both, separable at p_{u} and connect to a point of degree 3; see Fig. 12.

The weakness in the proof of Theorem 4.2 is that it "assumes" that every vint of degree at least 4 is charged exactly twice. We can show that this cannot be the case which gives a slight improvement on the result-omitted here.

We also note that there is a limit on how small \hat{v}_{3} can be: A construction in [10] gives sets of n points, with n arbitrarily large, with only 3.17^{n} triangulations. Hence, the best upper bound that we can hope to prove

Figure 13: Neighborcharges to a vint u with one separable edge. is $\hat{v}_{3} \leq n / 3.17$.

Finally, we derive a lower bound on \hat{v}_{4}; it follows from the previously obtained linear constraints, without further reference to the underlying problem necessary.

Lemma 4.3. For $n \geq 2, \hat{v}_{4}>\frac{n}{540}$.

Proof. Given some value for \hat{v}_{4} we have a supply of upper bounds for all the other \hat{v}_{i} 's due to Lemma 4.1 and Theorem 4.2, namely

$$
\begin{array}{ll}
\hat{v}_{3} \leq \frac{2 n+3}{5} & \hat{v}_{5} \leq\left(C_{4}-2 C_{3}\right) \hat{v}_{4}=4 \hat{v}_{4} \\
\hat{v}_{6} \leq\left(C_{5}-2 C_{4}\right) \hat{v}_{4}=14 \hat{v}_{4} & \hat{v}_{7} \leq\left(C_{6}-2 C_{5}\right) \hat{v}_{4}=48 \hat{v}_{4} \\
\hat{v}_{8} \leq\left(C_{7}-2 C_{6}\right) \hat{v}_{4}=165 \hat{v}_{4} & \ldots
\end{array}
$$

Moreover, we have

$$
\begin{align*}
\sum_{i} \hat{v}_{i} & =n \tag{5}\\
\sum_{i} i \hat{v}_{i} & \leq 6 n-5 \tag{6}
\end{align*}
$$

Now consider the \hat{v}_{i} 's as nonnegative real variables that have to obey the constraints listed. Clearly, in order to satisfy (6) we will push as much of the value n to be distributed among the \hat{v}_{i} 's to those of smaller index. Along those lines, if we suppose that $\hat{v}_{4}=\frac{n}{540}$, then we will choose $\hat{v}_{3}=\frac{2 n+3}{5}$, $\hat{v}_{5}=\frac{4 n}{540}, \hat{v}_{6}=\frac{14 n}{540}, \hat{v}_{7}=\frac{48 n}{540}, \hat{v}_{8}=\frac{165 n}{540}, \hat{v}_{9}=\frac{92 n}{540}-\frac{3}{5}$, and $\hat{v}_{i}=0$ for $i \geq 10$; (in this way (5) is fulfilled).

Now the sum in (6) evaluates to
$3 \frac{2 n+3}{5}+\frac{n}{540}(4+5 \cdot 4+6 \cdot 14+7 \cdot 48+8 \cdot 165+9 \cdot 92)-\frac{9 \cdot 3}{5}=6 n-\frac{18}{5}$, a contradiction.

5. REFERENCES

[1] O. Aichholzer, The path of a triangulation, Proc. 15th Ann. ACM Symp. on Computational Geometry (1999), 14-23.
[2] O. Aichholzer, T. Hackl, H. Krasser, C. Huemer, F. Hurtado, and B. Vogtenhuber, On the number of plane graphs, Proc. 17th Ann. ACM-SIAM Symp. on Discrete Algorithms (2006), 504-513.
[3] M. Ajtai, V. Chvátal, M. M. Newborn, and E. Szemerédi, Crossing-free subgraphs, Annals Discrete Math. 12 (1982), 9-12.
[4] K. Appel and W. Haken, Every planar map is four colorable. I. Discharging, Illinois J. Math. 21 (1977), 429-490.
[5] M.O. Denny and C.A. Sohler, Encoding a triangulation as a permutation of its point set, Proc. 9th Canadian Conf. on Computational Geometry (1997), 39-43.
[6] A. García, M. Noy, and J. Tejel, Lower bounds on the number of crossing-free subgraphs of K_{N}, Comput. Geom. Theory Appl. 16 (2000), 211-221.
[7] O. Giménez and M. Noy, The number of planar graphs and properties of random planar graphs, Proc. International Conf. on Analysis of Algorithms, Discrete Mathematics and Theoretical Computer Science proc. AD (2005), 147-156.
[8] H. Heesch, Untersuchungen zum Vierfarbenproblem, Hochschulskriptum 810/a/b, Bibliographisches Institut, Mannheim, 1969.
[9] V.A. Liskovets, A pattern of asymptotic vertex valency distributions in planar maps, Journal of Combinatorial Theory, Ser. B 75 (1999), 116-133.
[10] P. McCabe and R. Seidel, New lower bounds for the number of straight-edge triangulations of a planar point set, Proc. 20th European Workshop Comput. Geom. (2004).
[11] C. McDiarmid, A. Steger, and D.J.A. Welsh, Random planar graphs, Journal of Combinatorial Theory, Ser. B 93 (2005), 187-205.
[12] L. McShine and P. Tetali, On the mixing time of the triangulation walk and other Catalan structures, DIMACS-AMS volume on Randomization Methods in Algorithm Design (Eds. P.M. Pardalos, S. Rajasekaran, and J. Rolim) DIMACS Series in Discrete Mathematics and Theoretical Computer Science 43 (1998), 147-160.
[13] M. Molloy, B. Reed, and W. Steiger. On the mixing rate of the triangulation walk, DIMACS-AMS volume on Randomization Methods in Algorithm Design (Eds. P.M. Pardalos, S. Rajasekaran, and J. Rolim), DIMACS Series in Discrete Mathematics and Theoretical Computer Science 43 (1998),179-190.
[14] A. Ribó, Realizations and Counting Problems for Planar Structures: Trees and Linkages, Polytopes and Polyominos, Ph.D. thesis, Freie Universiät Berlin, 2005.
[15] N. Robertson, D.P. Sanders, P.D. Seymour, and R. Thomas, The four-color theorem, Journal of Combinatorial Theory, Ser. B 70 (1997), 2-44.
[16] G. Rote, The number of spanning trees in a planar graph, Oberwolfach Reports 2 (2005), 969-973.
[17] F. Santos and R. Seidel, A better upper bound on the number of triangulations of a planar point set, Journal of Combinatorial Theory, Ser. A 102:1 (2003), 186-193.
[18] R. Seidel, On the number of triangulations of planar point sets, Combinatorica 18:2 (1998), 297-299.
[19] M. Sharir and E. Welzl, On the number of crossing-free matchings (cycles, and partitions), Proc. 17th Ann. ACM-SIAM Symp. on Discrete Algorithms (2006), 860-869.
[20] W.S. Smith, Studies in Computational Geometry Motivated by Mesh Generation, Ph. D. Thesis, Princeton University, 1989.
[21] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, 1999.
[22] W.T. Tutte, A census of planar triangulations, Canadian Journal of Mathematics 14 (1962), 21-38.

[^0]: *Supported by NSF Grants CCR-00-98246 and CCF-0514079 , by a grant from the U.S.-Israel Binational Science Foundation, by Grant 155/05 from the Israel Science Fund, and by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University.

 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
 SCG'06, June 5-7, 2006, Sedona, Arizona, USA.
 Copyright 2006 ACM 1-59593-340-9/06/0006 ... $\$ 5.00$.

[^1]: ${ }^{1}$ Here one has to discriminate between the labeled and the unlabeled case.
 ${ }^{2}$ Interest was also motivated by the obviously related practical question (from geometric modeling [20]) of how many bits it takes to encode a triangulation of a point set.

[^2]: 3 "Complete" means that the root has three children, and all other non-leaf nodes have two children.

