
Computing the Discrete Fréchet Distance in Subquadratic Time∗

Pankaj K. Agarwal† Rinat Ben Avraham‡ Haim Kaplan§ Micha Sharir¶

April 5, 2012

Abstract

The Fréchet distance is a similarity measure between two curves A and B: Informally, it
is the minimum length of a leash required to connect a dog, constrained to be on A, and its
owner, constrained to be on B, as they walk without backtracking along their respective curves
from one endpoint to the other. The advantage of this measure on other measures such as the
Hausdorff distance is that it takes into account the ordering of the points along the curves.

The discrete Fréchet distance replaces the dog and its owner by a pair of frogs that can only
reside on n and m specific pebbles on the curves A and B, respectively. These frogs hop from a
pebble to the next without backtracking. The discrete Fréchet distance can be computed by a
rather straightforward quadratic dynamic programming algorithm. However, despite a consid-
erable amount of work on this problem and its variations, there is no subquadratic algorithm
known, even for approximation versions of the problem.

In this paper we present a subquadratic algorithm for computing the discrete Fréchet distance
between two sequences of points in the plane, of respective lengths m ≤ n. The algorithm runs

in O

(
mn log log n

logn

)
time and uses O(n+m) storage. Our approach uses the geometry of the

problem in a subtle way to encode legal positions of the frogs as states of a finite automata.

∗Work on this paper by Pankaj Agarwal and Micha Sharir has been supported by Grant 2006/194 from the U.S.–
Israel Binational Science Foundation. Work by Pankaj Agarwal is also supported by NSF under grants CNS-05-40347,
CCF-06 -35000, IIS-07-13498, and CCF-09-40671, by ARO grants W911NF-07-1-0376 and W911NF-08-1-0452, by an
NIH grant 1P50-GM-08183-01, and by a DOE grant OEG-P200A070505. Work by Haim Kaplan has been supported
by Grant 2006/204 from the U.S.–Israel Binational Science Foundation, and by Grant 822/10 from the Israel Science
Fund. Work by Micha Sharir has also been supported by NSF Grant CCF-08-30272, by Grant 338/09 from the Israel
Science Fund, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University. Work by
Haim Kaplan and Micha Sharir has also been supported by the Israeli Centers of Research Excellence (I-CORE)
program (Center No. 4/11). Work by Rinat Ben Avraham was supported by the Israel Science Fund Grants 338/09
and 822/10.

†Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129, USA;
pankaj@cs.duke.edu

‡School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; rinatba@gmail.com
§School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; haimk@post.tau.ac.il
¶School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; and Courant Institute of Mathematical

Sciences, New York University, New York, NY 10012, USA; michas@post.tau.ac.il



1 Introduction

Problem statement. Let A = (a1, . . . , am) and B = (b1, . . . , bn) be two sequences of m and n
points, respectively, in the plane. The discrete Fréchet distance ±dF (A,B) between A and B is
defined as follows. Fix a distance ± > 0 and consider the Cartesian product A × B as the vertex
set of a directed graph G± whose edge set is

E± =
{(

(ai, bj), (ai+1, bj)
) ∣∣∣ ∥ai − bj∥, ∥ai+1 − bj∥ ≤ ±

}∪
{(

(ai, bj), (ai, bj+1)
) ∣∣∣ ∥ai − bj∥, ∥ai − bj+1∥ ≤ ±

}
;

here we consider the case where ∥ ⋅ ∥ is the Euclidean norm. Then ±dF (A,B) is the smallest ± > 0
for which (am, bn) is reachable from (a1, b1) in G±. Informally, think of A and B as two sequences
of stepping stones, and of two frogs, the A-frog and the B-frog, where the A-frog has to visit all the
A-stones in order, and the B-frog has to visit all the B-stones in order. The frogs are connected to
each other by a rope of length ±, and are initially placed at a1 and b1, respectively. At each move,
exactly one of the frogs can jump from its current stone to the next one, which can be done if and
only if its distances to the other frog, before and after the jump, are both at most ± (see Figure 1
for an example of a possible sequence of jumps of the two frogs). Then ±dF (A,B) is the smallest
± > 0 for which there exists a sequence of jumps that gets the frogs to am and bn, respectively.
(Note that the frogs cannot backtrack.)1

The continuous Fréchet distance. The discrete Fréchet distance problem is a variant of the
(more standard, continuous) Fréchet distance problem. Informally, consider a person and a dog
connected by a leash, each walking along a path (curve) from its starting point to its end point.
Both are allowed to control their speed, but they cannot backtrack. The Fréchet distance between
the two curves is the minimal length of a leash that is sufficient for traversing both curves in this
manner.

More formally, a curve f ⊆ ℝ2 is a continuous mapping from [0, 1] to ℝ2. A reparameterization
is a continuous nondecreasing surjection ® : [0, 1] → [0, 1], such that ®(0) = 0 and ®(1) = 1. The
Fréchet distance ±F (f, g) between two curves f and g is then defined as follows:

±F (f, g) = inf
®,¯

max
t∈[0,1]

{
∥f(®(t))− g(¯(t))∥

}
,

where ∥ ⋅ ∥ is the underlying norm (typically, the Euclidean norm), and ® and ¯ are reparameteri-
zations of [0, 1].

One can also consider the semi-continuous Fréchet distance, between a sequenceA = (a1, . . . , am)
of discrete points and a continuous curve ¯, where we want to find the smallest ± for which ¯ can
be partitioned into m arcs (¯1, . . . , ¯m), so that, for each i, the distance from ai to every point in
¯i is at most ±. Informally, ± is the length of the shortest leash with which a person traversing ¯
can walk a frog jumping through the points of A.

Background. Motivated by a variety of applications, the Fréchet distance has been studied exten-
sively in computational geometry for the past two decades, as a useful measure for the similarity
between curves [7, 9]. If data is uniformly sampled, which is often the case in practice, it suffices
to compute the discrete Fréchet distance between the sequences of vertices of the two curves. The
extended model that also allows diagonal moves1 can potentially allow us to sample more sparsely
along relatively straight portions of the curves.

1In this formulation we forbid the frogs to jump simultaneously, from a placement (ai, bj) to (ai+1, bj+1). However,
our algorithm can easily be modified so that it also applies to the variant where such “diagonal” moves are also allowed.

1



Eiter and Mannila [14] showed that the discrete Fréchet distance in the plane can be computed
in O(mn) time. Later, Aronov et al. [5] have given a (1+ ")-approximation algorithm which solves
the discrete Fréchet distance problem between the vertices of two backbone curves in near linear
time. Backbone curves are required to have edges whose lengths are close to 1, and a constant
lower bound on the minimal distance between any pair of vertices; they model, e.g., the backbone
chains of proteins. Concerning the continuous Fréchet distance problem, Alt and Godau [3] have
shown that the Fréchet distance of two polygonal curves with a total of n edges in the plane can
be computed in O(n2 logn) time. A lower bound of Ω(n log n) time for the decision version of the
problem, where the task is to decide whether the Fréchet distance between two curves is smaller than
or equal to a given value, was given by Buchin et al. [8]. They also showed that this bound holds for
the discrete version of the problem as well. It has been an open problem to compute (exactly) the
continuous or discrete Fréchet distance in subquadratic time. Even the simpler variant, in which
we only want to solve the decision version of the discrete Fréchet distance problem in the plane in
subquadratic time has still been open. In fact, only a few years ago, Alt [2] has conjectured that
the decision subproblem of the (continuous) Fréchet distance problem is 3SUM-hard [15].

We note that it is also an open problem to solve the approximation versions of the Fréchet
distance problems in subquadratic time. That is, no subquadratic algorithm (in m and n, with any
reasonable dependence on ") is known for computing a (1 + ")-approximation of either variant of
the Fréchet distance (for arbitrary curves / sequences, with no restrictions on their shape).

To date, the only subquadratic algorithms known for the Fréchet distance problem (either
continuous or discrete) are for restricted classes of curves, such as the algorithm of Aronov et al. [5]
mentioned above. Other classes of curves considered so far in the literature include closed convex
curves and ·-bounded curves [4]. A curve is ·-bounded if, for any pair of points a, b on the curve,
the portion of the curve between a and b is contained in D(a, ·2∥a − b∥) ∪ D(b, ·2∥a − b∥), where
D(p, r) denotes the disk of radius r centered at p. Alt et al. [4] showed that the Fréchet distance
between two convex curves equals their Hausdorff distance, and that the Fréchet distance between
two ·-bounded curves is at most (1 + ·) times their Hausdorff distance, and thus an O(n logn)
algorithm for computing or approximating the Hausdorff distance (as given in [2]) can be applied
to obtain an efficient exact solution in the convex case or a constant-factor approximation in the
·-bounded case. Later, Driemel et al. [13] provided a (1+ ")-approximation algorithm for c-packed
curves in ℝd that runs in O(cn/" + cn log n) time, where a curve ¼ is called c-packed if the total
length of ¼ inside any ball is bounded by c times the radius of the ball.

Another variant of the Fréchet distance is the weak Fréchet distance, which, in the person-dog
scenario, allows the person and the dog to also walk backwards. Recently, Har-Peled and Raichel [16]
gave a quadratic algorithm for computing (a generalization of) the weak Fréchet distance between
curves. More specifically, given two simplicial complexes in ℝd, and start and end vertices in each
complex, they show how to compute two curves in these complexes that connect the corresponding
start and end points, such that the weak Fréchet distance between these curves is minimized. Since
a polygonal curve is a simplicial complex, this can be viewed as a generalization of the regular
notion of the weak Fréchet distance between curves.

See also [10, 12] for a few additional results on the Frechet distance.

Our results. We present a new algorithm for computing the discrete Fréchet distance whose
running time is O(mn log log n/ log n) (assuming m ≤ n). We first present a procedure for solving
the decision version of the problem: Given ± > 0, determine whether the discrete Fréchet distance
between A and B is ≤ ±. The decision procedure runs in O(mn log log n/ log2 n) time and uses
O(m + n) space. To solve the optimization problem, we combine the decision procedure with a
relatively simple explicit binary search, based on a simple procedure for distance selection [1]. This

2



increases the total running time by only a factor of O(log n), so the overall algorithm runs in
O(mn log log n/ logn) time, which is still subquadratic. The space required for using (a variant of)
the procedure in [1] remains linear in m+n. The following presentation is therefore mainly focused
on the decision procedure, which is the more involved part of our algorithm.

Although not detailed in this abstract, our technique can be extended so as to compute, within
the same time bound, (i) the discrete Fréchet distance between two sequences of points in ℝd,
for any d ≥ 3, and (ii) the semi-continuous Fréchet distance between a sequence of points and a
curve in the plane. (We do not have at the moment a similar extension to the continuous Fréchet
distance, which is one of the main open problems raised by our work.)

An overview of the decision procedure. Let us first provide a brief description of the decision
procedure for a given ± > 0. We partition A into l = Θ(m/ log2 n) layers A1, . . . , Al, each of
length c1 log

2 n, where c1 > 0 is an appropriate constant, such that the last point of any layer Ai

is the first point of the next layer Ai+1. We process A1, . . . , Al in order. When processing a layer
Ai, we need to determine, for each point bj of B, whether (a′, bj) is reachable from the starting
placement (a1, b1) of the whole trip, where a′ is the last point of Ai. (At the end, determining
whether (am, bn) is reachable from (a1, b1) in Al will solve the overall decision problem.) To do so,
we further partition each layer Ai into t = Θ(logn) blocks, of length c2 logn each, where c2 > 0
is a sufficiently small constant to be specified later. As before, the last point a′′ of a block is
the first point of the next block, and we need to determine, when processing that block, for each
bj , whether (a′′, bj) is reachable from (a1, b1). We handle each block in O(n log log n/ logn) time,
using an approach that resembles the execution of a deterministic finite automaton K∗. Somewhat
informally, the automaton is constructed from the corresponding block of A, and we execute it on
a string constructed from the elements of B. The algorithm processes the blocks within a layer
one by one in order. To achieve the desired running time (in particular, to avoid having to spend
Θ(n) time in “reading” the individual elements of B), we partition B into ¹ = Θ(n log log n/ logn)
subsequences of length ¿ = c3 logn/ log log n each, where c3 > 0 is yet another constant, and require
K∗ to operate on each subsequence, in constant time, as if it were a single symbol.

Note that the decision problem for the discrete Fréchet distance can be solved using dynamic
programming (see Appendix A). Consider the dynamic programming 0/1 matrix M , whose rows
(resp., columns) correspond to the points of A (resp., of B). An entry Mi,j of M is equal to
1 if the pair (ai, bj) is reachable from the starting placement (a1, b1) of the trip with a “leash”
of length ±. Otherwise, Mi,j is equal to 0. The above description can be viewed as a partition
of M into l “horizontal” strips, each of width c1 log

2 n, and ¹ “vertical” strips each of length
¿ = c3 log n/ log log n. (In turn, each horizontal strip of M is partitioned into Θ(logn) substrips, of
width c2 log n each.) The last row of a horizontal strip is the first row of the next horizontal strip.
To obtain a solution to the decision problem, we need to compute the entries of M in each of the
l + 1 “boundary” rows. Then, determining the value of Mm,n solves the overall decision problem.
(See Figure 2 of Appendix A for an illustration.)

We note that the compaction of M outlined above is similar to compactions used to solve several
related problems. For instance, Baran et al. [6] present an o(n2) algorithm for the 3SUM problem
on integers of bounded length. (See also algorithms for the edit distance problem; [11, 17, 19]).
However, while the other compactions are purely symbolic, ours is strongly based on the geometry
of the problem. A major difference between our algorithm and the other ones is that in our case
the input of the problem in itself does not include repetitions (that can be used in the compaction).
That is, the input points are not likely to repeat themselves. We create repetitions artificially by
constructing the arrangement A of the disks centered at the points of A, and locating the points
of B in this arrangement. Now, the faces of A that contain the points of B generally repeat

3



themselves. The finite-state automaton K∗ that we construct operates on the faces of A rather
than on the points of B, and this leads to the desired subquadratic performance. Using such an
automaton for the compaction appears to be also a novel technique.

Organization. In Section 2 we describe the decision procedure in detail. In particular, we first
show how to deal (slightly less efficiently) with a single block of A. We then show how to handle
a layer of A, which contains Θ(logn) such blocks, by combining portions of the processing of the
separate blocks into a common procedure that is executed at the layer level. Finally, we describe
the overall decision procedure. (The justification of using blocks of size Θ(logn) is deferred to
Appendix C, where we present a lower-bound construction that indicates that using blocks of
larger size may cause our respective automata K∗ to be too large for a subquadratic algorithm.) In
Section 3 we show how to combine the decision procedure with an elementary binary search, and
obtain the main result of this paper, namely, a subquadratic algorithm for computing the discrete
Fréchet distance.

2 The decision procedure

In this section we focus on the decision problem: Given ± > 0, determine whether ±dF (A,B) ≤ ±.
By an appropriate scaling, we may assume, without loss of generality, that ± = 1. As mentioned in
the introduction, we begin by showing how to handle a single block of A.

Handling a single block of A. To simplify the notation, we denote the block by A; its size, m,
now satisfies m = c2 logn (the very last block of the entire sequence may be smaller). Enumerate
the points of A as a1, . . . , am.

Regard the points a1, . . . , am as the centers of respective unit disksD1, . . . , Dm, and let D denote
the sequence of these disks. Consider the arrangement A = A(D) of the disks, and associate with
each face f of A the subset Df of disks containing f . For each point bi ∈ B, denote by fi the face
of A containing bi.

2

Fix two indices 1 ≤ i ≤ j ≤ n, and call the pair
(
(a1, bi), (am, bj)

)
valid if there exists a path

in G± (G1, that is) from (a1, bi) to (am, bj). We can simulate such a path as a sequence of moves
between basic states, where each basic state is a pair (f,Dk), where f is a face of A and Dk is a disk
in Df . In each move we either pass from (f,Dk) to (f ′, Dk), where f ′ is another face of A which
is also contained in Dk, or pass from (f,Dk) to (f,Dk+1), if Dk+1 also belongs to Df (i.e., also
contains f). See Figure 1. In the original problem (involving the complete unpartitioned A) we
would have to start at (f1, D1) and to reach (fn, Dm) (now with m equal to the original size of A),
using a sequence of legal moves between basic states, of the types just described, that corresponds
to a path in G1 from (a1, b1) to (am, bn). (For this, though, we would need to construct the huge
arrangement of the disks for the entire sequence A, which would have been far too expensive.)
In the refined version we start at (fi, D1) and have to reach (fj , Dm) along a similar sequence of
moves, for arbitrary indices i ≤ j (and for the much smaller size m of a block). This represents the
situation where the portion of the trip of the B-frog that corresponds to the passage of the A-frog
through the points of the present block A starts at bi and ends at bj .

2The description given at this point provides the essential ingredients of the processing of a block, but is somewhat
lax or vague about precise implementation details, which have to be applied with care to ensure the running time
we are after. For example, a naive implementation of the step that finds the faces fi, by n point locations of the
points of B in A, is too expensive for our purpose. The layers are used to conglomerate some parts of the processing
within their blocks into a single processing step, thereby improving the efficiency of the procedure. More details are
provided as we continue the presentation.

4



a2

b2

a4

b1

a3

a1 b3

Figure 1: An illustration of the decision problem of the discrete Fréchet distance. The stepping stones of
the A-frog are the black points. The disks (of radius ±) centered at the points of A form the arrangement
A. The stepping stones of the B-frog are the hollow points. In this example, a legal path of the two frogs is(
(a1, b1), (a2, b1), (a2, b2), (a2, b3), (a3, b3), (a4, b3)

)
.

Note that, in view of this interpretation, we are only interested in placements (a1, bi) that can
be reached (through the preceding blocks of the complete A-sequence) from the starting placement
of the whole trip. We refer to such a placement as a reachable position of the frogs. Let the flag
'i = '(bi) indicate whether the placement (a1, bi) is reachable through the preceding blocks of A
(in which case 'i = 1), or not ('i = 0); in this notation we hide the dependence of 'i on the
preceding layers and blocks. Note that if A is the first block, then 'i = 0 for each i > 1, since
(a1, bi) is not reachable through the (empty set of) preceding blocks. For i = 1 we set '1 = 1 if
b1 ∈ D1, and otherwise abort the entire procedure, since the frogs lie at their starting positions at
distance > 1.

We can store the data maintained by this process in more compact form. To do so, we define
an aggregate state (to which we refer as a state for short) to be a pair (f, Sf ), where Sf is a subset
of Df ; we refer to Sf as the set of valid disks (associated with our state). The set Sf is assumed to
have the property, dictated by the transition rules for the frogs, that if Dk ∈ Sf and Dk+1 ∈ Df

then Dk+1 also belongs to Sf .
A state (f, Sf ) and a pair (g, '), where g is a face of A, and ' is a binary flag, determine a

transition into a new state (g, Sg), where Sg ⊆ Dg consists of those disks Dk ∈ Dg for which there
exists j ≤ k such that (i) Dj ∈ Sf , and (ii) the entire run Dj , Dj+1, . . . , Dk is contained in Dg.
Furthermore, if ' = 1, then Sg also contains the maximal prefix of disks in D (starting with D1)
that is contained in Dg. The passage from (f, Sf ) to (g, Sg) is called a valid transition.

The interpretation of this setup is as follows. The state (f, Sf ) signifies that (a) the B-frog is
now at a point that belongs to f , and the A-frog lies at the center ai of some disk Di ∈ Sf , and (b)
this position has been reached via a legal sequence of interweaving A-moves and B-moves, starting
from (a1, b1) (if A is the first block of the whole sequence), or from some placement (a1, bi) (if A
is an intermediate block), which is reachable from the starting positions of the frogs (so 'i is 1).
Moreover, for the specific sequences of stepping stones for the A-frog and the B-frog, the A-frog
cannot lie at the center ai of any disk Di /∈ Sf .

The valid transition from (f, Sf ) to (g, Sg) means that, for any disk Dk ∈ Sg, we can get the
A-frog to lie at its center ak, and get the B-frog to lie in g, by taking a disk Dj as in the definition
of the valid transition, assuming that the A-frog lies at aj and the B-frog lies in f (in accordance
with the above interpretation of (f, Sf )), moving the B-frog to g (which is possible since Dj also
belongs to Dg), and then moving the A-frog through the centers aj+1, . . . , ak, all at distance at
most 1 from the B-frog (or, if j = k, let the A-frog stay put). Moreover, if the last move of the
B-frog is from f to g, and the A-frog lies at the center of some disk in Sf , then the centers of the
disks in Sg are the only possible locations that the A-frog can reach (with this single hop of the

5



B-frog).
In addition, the flag ' allows the B-frog to appear “out of nowhere” in the middle of the first

row of the block, in case a position (a1, bi), where bi ∈ g, is reachable from the starting placement
of the whole trip. This means that we can get the A-frog to lie at a1, and the B-frog to lie in g, by
some path starting at the starting position of the entire trip of the frogs, and moves solely through
the points of the preceding blocks of the full sequence A (once the B-frog has reached g, the A-frog
can move through the centers of the disks in the prefix of Dg contained in Sg, and stop at any of
these centers before the B-frog makes its next move).

The compression of basic states into aggregate states resembles the construction of a deter-
ministic finite automaton (DFA) from a nondeterministic finite automaton (NFA). This is not
accidental; we have already hinted that the algorithm simulates the moves of such an automaton,
and the resemblance will become more relevant as we continue to present the algorithm.
Remark. If we want to also consider the variant where the frogs are allowed to jump simultaneously
from a placement (ai, bj) to (ai+1, bj+1) (provided that ∥ai − bj∥ ≤ 1 and ∥ai+1 − bj+1∥ ≤ 1), we
only need to modify the above rules of a valid transition. Specifically, a state (f, Sf ) and a pair
(g, '), where g is a face of A, and ' is a binary flag, determine a transition into a new state (g, S′

g),
where S′

g ⊆ Dg is the union of Sg, as defined above, and of another set S̄g ⊆ Dg, consisting of
those disks Dk ∈ Dg for which there exists j ≤ k such that (i) Dj ∈ Sf , and (ii) the entire run
Dj+1, . . . , Dk is contained in Dg (so the disk Dj is not required to belong to the run).

A DFA interpretation. We can interpret the setup just described as a construction of a deter-
ministic finite automaton K, as follows. The states of K are the aggregate states (f, Sf ), where f
is a face of the corresponding disk arrangement A and Sf ⊆ Df . The i-th ‘character’ in the string
that K has to process is the pair (gi, 'i), where gi is the face of A that contains bi, and 'i is a
flag indicating whether (a1, bi) is a reachable position of the two frogs (in the sense defined above,
with respect to the whole trip). The transition from a state (f, Sf ) on reading the pair (gi, 'i) is to
(gi, Sgi), where Sgi is defined as above. The string that K has to process to handle the current block

A is thus the string of pairs Σ =
(
(f2, '2), . . . , (fn, 'n)

)
, where f2, . . . , fn are the (not necessarily

neighboring) faces of A containing the corresponding actual points b2, . . . , bn of the B-sequence,
and '2, . . . , 'n are the respective flags associated with b2, . . . , bn, as defined above.

The starting state of K is the state (f1, Sf1), where f1 is the face containing b1, and where
Sf1 = ∅ if '(b1) = 0, or Sf1 is the largest prefix of D contained in Df1 if '(b1) = 1. Furthermore,
when K does read the B-string Σ and reaches a state (fi, Sfi) it outputs a new flag '(bi), which is
1 if Dm ∈ Sfi and is 0 otherwise. The points bi with '(bi) = 1 are exactly those for which (am, bi)
is reachable in G1 (from the beginning of the whole trip). In this context, we can think of K as
a Moore machine [21] — a finite-state transducer that associates an output value with each state.
We can thus associate the output flag '(bi) with the state (fi, Sfi). The output flag '(bi) will be
used later, as an input for the next block (see the description of the overall procedure).

As noted earlier, if A is the first block of the whole sequence, each flag of the input sequence
Σ, except for the first one, is equal to zero. For the first position (a1, b1) of the first block, we
assume that b1 ∈ D1 ; otherwise, as already mentioned, we abort the decision procedure right
away, reporting that the Fréchet distance ±dF (A,B) is greater than 1. We thus set, after verifying
this constraint, '1 = '(b1) = 1.
Remark. The automaton K is constructed from the block A only, without knowing anything
about the sequence B. Consequently, for each face f of the arrangement A, we need to prepare
states (f, Sf ) for each subset Sf ⊆ Df that might arise via some sequence of stepping stones of the
B-frog. As shown in Appendix C, there are situations where the number of such feasible subsets

6



may be exponential in m. This is why we need to take m = c2 log n, with c2 sufficiently small, to
control the size of K and the time needed to construct it (so that they are both sublinear in n).

Constructing an efficient DFA. To obtain an overall procedure with subquadratic running
time, we modify the construction of K to obtain a somewhat more efficient automaton K∗ to
handle a block A. There are two major improvements in the construction of K∗. The first, whose
detailed description is deferred to the handling of a layer, is to construct K∗ in terms of the finer
arrangement A∗ of the disks centered at all the Θ(log2 n) points of the A-sequence within the layer
containing the current block. Informally, the reason for doing it (explained in detail later) is that it
saves us the need to locate the B-points in each of the coarser block arrangements, a process that
would be too expensive for our purpose.

The second improvement aims to allow K∗ to process the B-dependent string Σ in a faster
manner. Specifically, we modify K so that each input character that it reads is a string of
c3 logn/ log log n consecutive input characters of Σ, where c3 > 0 is a sufficiently small con-
stant, whose value will be determined later. That is, we partition the input string Σ of K into
¹ = Θ(n log logn

logn ) substrings Σ1,Σ2, . . . ,Σ¹ of size ¿ = c3 log n/ log log n each; the last substring
may be shorter. The states of K∗ are the same aggregate states (f, Sf ) of K. When K∗ is at state
(f, Sf ) and is given a substring Σk = ((f1, '1), . . . , (f¿ , '¿ )), it moves to state (f¿ , Sf¿ ), where
(f¿ , Sf¿ ) is the state that K would have reached from (f, Sf ) after processing the input substring
Σk character by character. (The subscripts used in the enumeration of the pairs of Σk start at 1
for the sake of simplicity. This involves a slight abuse of notation, because (f1, '1) denotes here
the first pair of Σk and not the first pair of the entire string Σ.)

Furthermore, a transition of K∗ from a state (f, Sf ) to a state (f¿ , Sf¿ ) as above, produces an
output string Φk = ('1, . . . , '¿ ), where 'j is the output of K when it reaches the state (fj , Sfj )
(again, under the new enumeration convention). Recall that we regarded K as a Moore machine,
where the output flags 'j are associated with the corresponding states (fj , Sfj ). However, here the
state (f¿ , Sf¿ ) that K∗ moves to after reading ((f1, '1), . . . , (f¿ , '¿ )) cannot determine by itself the
output string Φk, which requires knowledge of the full sequence ((f1, '1), . . . , (f¿ , '¿ )) that led K∗

to (f¿ , Sf¿ ). More specifically, the flags comprising Φk are determined by the states (fj , Sfj ) that
K traversed on the way to (f¿ , Sf¿ ). To avoid having to look at each intermediate state (fj , Sfj )
separately, we observe that all these states are implicitly encoded in the transition edge of K∗

that takes us from (f, Sf ) to (f¿ , Sf¿ ) upon reading Σk. We can therefore regard K∗ as a Mealy
machine [20] — a finite-state transducer that associates an output value with each transition edge.

The rest of the description of K∗ remains the same as that of K.
We can construct K∗ so that a state transition, upon reading a substring Σk, can be carried

out in constant time. To do so, we use a simple encoding scheme that converts each string Σk =
((f1, '1), . . . , (f¿ , '¿ )) of ¿ pairs into an integer e(Σk) of O(logn) bits. A detailed description of the
construction of K∗ and of the encoding scheme is deferred to Appendix B. Since the execution of

a single transition of K∗ takes constant time, the overall execution of K∗, when given O
(
n log logn

logn

)

substrings as above, takes O
(
n log logn

logn

)
time.

The size of K∗ is the number of states of K∗, multiplied by the number of possible input
substrings for K∗. As shown in Appendix B, the latter number is 2(¯+1)¿ ≤ 2c

′′ logn, where ¯ ≈
4 log logn and c′′ is thus proportional to c3, which we choose sufficiently small so as to have c′′ < 1/4,
say. The number of states of K∗ is O

(
m22m

)
, where m = c2 log n is the size of a block:3 There are

3The first improvement in K∗, deferred to the handling of a layer, will cause the number of states to increase to
O(m42m), which will have negligible effect on the performance of the algorithm; see below for details.

7



O(m2) faces in the disk arrangement, and, in view of the construction given in Appendix C, we use
the pessimistic bound of 2m on the number of possible subsets Sf for any fixed face f . Choosing
c2 sufficiently small, we can ensure that the number of states of K∗ is at most O(n1/4), say. Hence
the size of K∗ is O(n1/2) = O(n log log n/ log n), and it can be built within the same asymptotic
time bound.

Handling a layer of A. In order to make the whole procedure efficient, we need to construct
quickly the encodings of the input strings for the automata of the blocks of A. Note that we cannot
even afford linear (i.e., O(n)) time for this preparation for each block, because this would result in
the overall bound O(mn/ logn) for the running time of the decision procedure, which, multiplied
by the number O(log n) of binary search steps, would yield O(mn) overall running time, which
defeats our goal of obtaining a subquadratic solution.

This is the reason for using a two-stage partitioning of A, first into layers of size c1 log
2 n each,

and then into blocks of size c2 log n each — the preparation of the strings is done mainly at the
layer level, thereby making the cost sublinear for each block.

Here are the details of this preprocessing step. Fix a layer Ā of A, which contains t = Θ(logn)
blocks, of size c2 log n each, which we enumerate as A1, . . . , At. As before, the last point of Ai, for
1 ≤ i < t, is the first point of Ai+1. We process A1, . . . , At in order, in much the same way as
described above, except that some of the preparatory steps are grouped together, and take place
during the preprocessing of Ā.

In more detail, we first construct the arrangement Ā = Ā(D̄), where D̄ is the set of c1 log
2 n unit

disks centered at the points of Ā; the number of faces of Ā is at most c log4 n, for an appropriate
constant c. We preprocess Ā for efficient point location, using any of the standard techniques, in
O(log4 n log log n) time. Fix a block Aj of Ā, and note that each face f of Ā is a subface of a face
f (j) of the arrangement Aj of the disks centered at the points of Aj . We find these correspondences
by preprocessing each Aj for fast point location, and then, for each face f of Ā we pick an arbitrary
point in f and locate it in Aj , thereby obtaining f (j). In this way each face of Ā stores t pointers
to its “super-faces” f (j), for j = 1, . . . , t.

Next, for each point bi of the B-sequence, we locate the face fi of Ā containing bi, using the
point location structure. This takes O(n log log n) time. We obtain a sequence F = (f1, f2, . . . , fn)
of faces of Ā, and we partition it into ¹ subsequences F1, . . . , F¹, each consisting of ¿ consecutive
faces, where ¹ = Θ(n log log n/ logn) and ¿ = c3 logn/ log log n, as above.

We use each of the ¹ subsequences Fk of F , say Fk = (f1, . . . , f¿ ), to compute a “partial” index
e0(Fk) which is a part of the encoding e(Σk) of an input substring Σk. (See Appendix B for more
details.) Note that this index, which depends only on Fk, is common to all the blocks of Ā; we
stress again that each such partial index is computed only once within the layer Ā.

Now fix a block Aj of Ā, and consider the construction of its automaton K∗
j . Except for

the fact that the faces of Ā that we use here are smaller than the respective faces of the block
arrangement Aj , the states (f, Sf ) and the transition rules for K∗

j are very similar to those used in
the description of handling a block. More specifically, each face f0 of Aj is now the union of some
faces of Ā. Every state of the form (f0, Sf0) that we had before is now copied, for each face f ⊆ f0
of Ā, to a state (f, Sf0). A similar copying is applied to the transition rules. That is, consider first
the non-compacted automaton Kj . If it is at a state (f, Sf ) and reads a pair (g, '), where f and
g are now faces of Ā, we apply the same transition rule that the original Kj obeys when it is at
state (f0, Sf ) and reads (g0, '), where f0 (resp., g0) is the face of Aj containing f (resp., g). We
now obtain the new version of K∗

j from the new version of Kj in the same manner as above. That
is, when K∗

j is at state (f, Sf ) and reads a substring Σk = ((f1, '1), . . . , (f¿ , '¿ )) of Σ, where now

8



f, f1, . . . , f¿ are faces of Ā, it moves to the state (f¿ , Sf¿ ) obtained by running the new Kj on the
pairs of Σk one by one.

The total time for computing the ¹ indices e0(Fk) is linear in n. This is tolerable since we
carry out this computation only once for the entire layer Ā. However, each of the subsequences
Σk that we feed into the various block automata K∗

j has a second “component” that depends on
the input flags at the first row of the respective block Aj . Specifically, each Σk is of the form
((f1, '1), . . . , (f¿ , '¿ )), which we can represent by the pair (Fk,Φk), where Fk = (f1, . . . , f¿ ) and
Φk = ('1, . . . , '¿ ). The subsequences Fk are computed once, at the layer level, and do not change
from block to block, but the subsequences Φk do depend on the blocks.

We can easily construct the automata K∗
j in such a way that the output of each transition is

the “partial” index e0(Φk) of the corresponding sequence Φk. (See Appendix B for more details.)
Assuming that this is the case, we process a block Aj as follows. Let Φ1, . . . ,Φ¹ denote the output
flag subsequences from the execution of the preceding automaton K∗

j−1 (or from the execution of
the last automaton in the preceding layer, or from the initialization of the entire procedure). By
assumption, we are actually given the encodings e0(Φ1), . . . , e0(Φ¹) (the computation of these bit-
strings during initialization is trivial and inexpensive), and we use them to obtain e(Σ1), . . . , e(Σ¹),
in O(1) time for each substring. This computation takes O(¹) = O(n log log n/ logn) time for each
block, for a total of O(n log log n) time for the whole layer. We now run (the modified automa-
ton) K∗

j on the string (e(Σ1), . . . , e(Σ¹)) and obtain the output sequence e0(Φ
′
1), . . . , e0(Φ

′
¹)), where

Φ′
1, . . . ,Φ

′
¹ are the flag subsequences output by the state transitions of K∗

j , which are the input for
the next automaton.

The analysis given in the description of handling a block shows that, with an appropriate choice
of the constants c1, c2, c3, the construction of the automata K∗

j , for j = 1, . . . , t, takes a total of
O(n) time (in fact, much smaller if we so wish). Processing a single block costs O(n log log n/ logn)
time (see the above analysis and Appendix B). Since Ā contains Θ(logn) blocks,4 the total cost for
processing Ā is O(n log log n). (This includes the cost of the point location stage within Ā, which
is also O(n log log n).) In conclusion, processing a single layer, including the processing of each of
its blocks, takes a total of O(n log log n) time.

The space required for this procedure is linear in n, since we need to store the subsequences
of faces of Ā, which are used as input for each K∗

i . The space used for handling a block Ai of Ā
is sub-linear in n (see the analysis above), and can be freed after processing Ai. Hence, the total
space required for processing Ā is still linear in n.

The overall procedure. To obtain an overall algorithm with subquadratic time, we partition
the original sequence A into Θ(m/ log2 n) layers Ā1, Ā2, . . ., each (except possibly for the last one)
consisting of c1 log

2 n points, and so that the last point of Āi is the first point of Āi+1 for each i.
We then process Ā1, Ā2, . . . in succession.

To process a layer Āi, we use the procedure presented above. If Āi is not the last layer of A,
we use the output sequence Φ1, . . . ,Φ¹ of Āi as input for Āi+1 (as described above). Otherwise,
Āi is the last layer of A, and we use the last flag '¿ of the last subsequence Φ¹ to determine the
outcome of the decision process — if the last bit of '¿ is 1 we report that ±dF (A,B) ≤ ±; otherwise
±dF (A,B) > ±.5

4This step in the analysis is the reason for restricting the size of a layer to Θ(log2 n) points of A, that is, to
Θ(log n) blocks.

5The above procedure determines whether ±dF (A,B) > ± or ±dF (A,B) ≤ ±. In the latter situation, there is no
need to discriminate between ±dF (A,B) < ± and ±dF (A,B) = ±, since this could easily be done upon termination of
the binary search, as described in Section 3, by comparing two consecutive critical values of ± reached at the end of
the search. See Section 3 for more details.

9



Processing each layer Āi of A takes O(n log log n) time, so processing the Θ(m/ log2 n) layers,
takes O(mn log log n/ log2 n) time. As mentioned before, the space required for handling a layer Āi

of A is linear in n, and it can be freed after handling Āi. Hence, the space required by the decision
procedure is only O(n+m) (we need O(m) space for storing A).

Hence, we obtain the following intermediate result.

Theorem 2.1. Given two sequences A, B of stepping stones, of respective sizes m and n, with

m ≤ n, and a parameter ± > 0, we can decide, using O
(
mn log logn

log2 n

)
time and O(n + m) space,

whether ±dF (A,B) ≤ ±.

3 Solving the optimization problem

We use the decision procedure in Section 2 to solve the optimization problem, as follows. First note
that the critical values of ±, in which an edge is added to the graph G± (as ± increases), are the
pairwise distances between a point of A and a point of B. Hence, it suffices to perform a binary
search over all possible mn such distances, and execute the decision procedure in each step of the
search. At each such step, the corresponding pairwise distance is the l-th smallest pairwise distance
in A×B for some value of l. We can find this distance, e.g., using a variant of one of the algorithms
of Agarwal et al. [1], which runs in time close to O(n3/2). This algorithm can easily be adapted
to the “bichromatic” scenario, where we consider only distances between the pairs in A × B (as
opposed to finding distances between the points of a single set).

More specifically, we use a variant of the simpler (sequential) decision procedure of [1]. We
partition the set A into ⌈m/n1/2⌉ smaller subsets, each of size at most n1/2, and operate on each
subset independently, coupled with the whole B. In processing such a subset Ai, we construct
the arrangement of the disks of radius ± centered at the points of Ai, and locate the points of B
in this arrangement, exactly as in [1]. Altogether, this yields the number of pairs in A × B at
distance at most ±, which is what the decision procedure needs. The overall cost of this procedure
is O(n3/2 logn). Finally, we solve the optimization version of the distance selection algorithm using
parametric searching, increasing the running time to O(n3/2 log3 n). This running time is subsumed
by the cost of the decision procedure of Section 2.6

Since we call the decision procedure O(logn) times during the search, we obtain the following
main result of the paper.

Theorem 3.1. Given two sequences A, B of stepping stones, of respective sizes m and n, with

m ≤ n, we can compute the discrete Fréchet distance between A and B in O

(
mn log log n

logn

)
time

and O(n+m) space.

4 Discussion and open problems

We obtained an algorithm for computing the discrete Fréchet distance between two sets of points,
which runs in subquadratic time. A natural open problem that arises right away is whether this
algorithm can be extended to compute the continuous Fréchet distance between two polygonal
curves in subquadratic time. It is also interesting to know if this time bound, which is still rather
close to quadratic, can be further reduced (see the remark at the end of Appendix C).

6Although there are more efficient algorithms for distance selection, which run in close to O(n4/3) time [1, 18],
this simple-minded solution suffices for our purpose, and it has the advantage that it only uses linear storage.

10



References

[1] P. K. Agarwal, B. Aronov, M. Sharir and S. Suri, Selecting distances in the plane, Algorithmica
9(5) (1993), 495–514.

[2] H. Alt, The computational geometry of comparing shapes, Efficient Algorithms: Essays Dedi-
cated to Kurt Mehlhorn on the Occasion of His 60th Birthday, Springer-Verlag (2009), 235–248.

[3] H. Alt and M. Godau, Computing the Fréchet distance between two polygonal curves, Internat.
J. Comput. Geom. Appl. 5 (1995), 75–91.

[4] H. Alt, C. Knauer and C. Wenk, Comparison of distance measures for planar curves, Algorith-
mica 38(1) (2004), 45–58.

[5] B. Aronov, S. Har-Peled, C. Knauer, Y. Wang and C. Wenk, Fréchet distance for curves,
revisited, Proc. 14th Annu. European Sympos. Algorithms (2006), 52–63.

[6] I. Baran, E. D. Demaine and M. Patrascu, Subquadratic algorithms for 3SUM, Algorithmica
50(4) (2008), 584-596.

[7] S. Brakatsoulas, D. Pfoser, R. Salas and C. Wenk, On map-matching vehicle tracking data,
Proc. 31st Intl. Conf. Very Large Data Bases (2005), 853–864.

[8] K. Buchin, M. Buchin, C. Knauer, G. Rote and C. Wenk, How difficult is it to walk the dog?
Proc. 23rd Euro. Workshop Comput. Geom. (2007), 170–173.

[9] D. Chen, A. Driemel, L. J. Guibas, A. Nguyen and C. Wenk, Approximate map matching with
respect to the Fréchet distance, Proc. 7th Workshop on Algorithm Engeneering and Experiments
(2011), 75–83.

[10] A. F. Cook, A. Driemel, S. Har-Peled, J. Sherette and C. Wenk, Computing the Fréchet
distance between folded polygons, Proc. Lect. Notes in Comp. Sci. (2011), 267–278.

[11] M. Crochemore, G. M. Landau and M. Ziv-Ukelson. A subquadratic sequence alignment algo-
rithm for unrestricted scoring matrices, SIAM J. Comput. 32 (2003), 1654–1673.

[12] A. Driemel and S. Har-Peled, Jaywalking your dog: computing the Fréchet distance with
shortcuts, Proc. 23rd Annu. ACM-SIAM Sympos. Discrete Algorithms (2012), 318–337.

[13] A. Driemel, S. Har-Peled and C. Wenk, Approximating the Fréchet distance for realistic curves
in near linear time, Proc. 26th Annu. ACM Sympos. Comput. Geom. (2010), 365–374.

[14] T. Eiter and H. Mannila, Computing discrete Fréchet distance, Technical Report CD-TR
94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

[15] A. Gajentaan and M. H. Overmars, On a class of O(n2) problems in computational geometry,
Comput. Geom. Theory Appl. 5(3) (1995), 165–185.

[16] S. Har-Peled and B. Raichel, The Fréchet distance revisited and extended, Proc. 27th Annu.
ACM Sympos. Comput. Geom. (2011), 448–457.

[17] D. Hermelin, G. M. Landau, S. Landau and O. Weimann, A unified algorithm for accelerating
edit-distance computation via text-compression, Proc. 26th Sympos. Theoret. Asp. Comp. Sci.
(2009), 529–540.

11



[18] M. J. Katz and M. Sharir, An expander-based approach to geometric optimization, SIAM J.
Comput. 26(5) (1997), 1384–1408.

[19] W. J. Masek and M. S. Paterson, A faster algorithm computing string edit distances, J.
Comput. Sys. Sci. 20(1) (1980), 18–31.

[20] G. H. Mealy, A method to synthesizing sequential circuits, Bell Systems Technical Journal. 34
(1955), 1045–1079.

[21] E. F. Moore, Gedanken-experiments on sequential machines, Automata Studies, Annals of
Mathematical Studies, Princeton University Press, Princeton, NJ, 34 (1956), 129–153.

12



Appendices

A Dynamic programming interpretation

A dynamic programming solution for the discrete Fréchet distance problem is as follows.

if ∥a1 − b1∥ ≤ ± then
M1,1 := 1

else
Abort;

end if
for all 1 < j ≤ n do

if (M1,j−1 = 1 and ∥a1 − bj∥ ≤ ±) then
M1,j := 1

else
M1,j := 0

end if
end for
for all 1 < i ≤ m do

if (Mi−1,1 = 1 and ∥ai − b1∥ ≤ ±) then
Mi,1 := 1

else
Mi,1 := 0

end if
end for
for all 1 < i ≤ m, 1 < j ≤ n do

if ((Mi,j−1 = 1 or Mi−1,j = 1) and ∥ai − bj∥ ≤ ±) then
Mi,j := 1

else
Mi,j := 0

end if
end for

¿ ¿ ¿

Σ¹

Layer Ā3

Layer Ā2

Layer Ā1

Σ1 Σ2

A M

B

block A3

block A2

block A1

Layer Ā4

Figure 2: A partition of M into horizontal strips (and substrips), which correspond to layers (and blocks) of A.
B is partitioned into subsequences of length ¿ . Each subsequence of B corresponds to a single symbol Σi which
the automata K∗ process.

13



B Constructing the automaton K∗

Here we detail some finer issues in the construction and efficient operation of the automata K∗.
To construct K∗, we build a transition table T , according to the rules stated in Section 2. Since

T is constructed independently of the input string Σ, we must prepare, for each state (f, Sf ) of
K∗, all possible transitions to a new state. That is, given a state (f, Sf ) we store, for each possible
input substring Σk of length ¿ , the state (g, Sg) that K moves to after processing Σk (assuming
that K was in state (f, Sf ) just before reading Σk). To be more precise, we prepare the transition
table T of K∗ as a collection of arrays L(f,Sf ), one array for each state (f, Sf ) of K∗. The array
L(f,Sf ) of a fixed state (f, Sf ) is defined so that, for each index j encoding a substring Σk (details
of the encoding are provided next), L(f,Sf )[j] is the pair ((g, Sg),Φk), where (g, Sg) is the state that
K∗ moves to after processing Σk (assuming that K was in state (f, Sf ) just before reading Σk), and
Φk is the output substring of flags that corresponds to this transition.

To complete the description of the transition table T of K∗,we describe a simple encoding scheme
that converts each string Σk = ((f1, '1), . . . , (f¿ , '¿ )) of ¿ pairs into an integer e(Σk) of O(logn)
bits. To do so, each face f of the arrangement of the disks of A is given an integer label e(f) in the
range (0, . . . , c log4 n), for an appropriate absolute constant c. since the number of faces of Ā is at
most c log4 n, we label each face f of Ā by an integer e(f) in the range (0, . . . , c log4 n). Clearly, at
most ¯ = log(c log4 n) = c′ log log n bits are needed for such a label, for another absolute constant
c′ (close to 4). We now put

e(Σk) =

¿∑

i=1

e(fi) ⋅ 2¯(i−1)+¿ +

¿∑

i=1

'i ⋅ 2i−1, (1)

and note that e(Σk) does indeed consist of only ¿(¯+1) = O(log n) bits. Clearly, this is a one-to-one
encoding.

With this setup, each state transition can be executed in constant time. Specifically, when K∗

is in state (f, Sf ) and is given the encoding e(Σk) of an input substring Σk, we follow a pointer to
the array L(f,Sf ) and retrieve its entry L(f,Sf )[e(Σk)] in constant time. This gives us the next state
(g, Sg) and the corresponding output bitstring Φk.

Note that the “partial” index computed for each of the ¹ subsequences Fk of F , when handling
a layer in Section 2, is given by

e0(Fk) =
¿∑

i=1

e(fi) ⋅ 2¯(i−1)+¿ . (2)

This produces the left term of the right-hand side of (1). Note that, given the labels e(fi),
e0(Fk) can be computed by O(¿) additions and multiplications (or, rather, shifts).

The right term of (1) is simply the bitstring consisting of the flags in Φk, and it is given by

e0(Φk) =
¿∑

i=1

'i ⋅ 2i−1. (3)

Note that, we can construct K∗ such that when it moves from a state to the next state given
a substring Σk, it produces the new output substring Φ′

k encoded as e(Φ′
k). e(Φ′

k) in turn is
substituted into (1) (together with e0(F

′
k), which is the encoding of the corresponding input subset

of faces) to obtain the input for the next automaton.

14



C An exponential lower bound on the number of states

An interesting question that pops up right away in the design of the algorithm is how large can K∗

be. That is, how many aggregate states (and transition rules) can one have. Unfortunately, the
following construction shows that this number can be exponential in m in the worst case.

The construction, depicted in Figure 3, uses an even number of disks; with a slight abuse
of notation, we denote their number by 2m. Enumerate the disks as D1, D2, . . . , D2m and their
respective centers as a1, a2, . . . , a2m. All these centers lie on the x-axis in the right-to-left order
a1, a3, . . . , a2m−1, a2, a4, . . . , a2m. The centers of the even-indexed disks (red disks for short) are
sufficiently close to each other, so that these disks have a large common intersection. The odd-
indexed disks (blue disks for short) are placed so that, for each k = 1, . . . ,m, D2k−1 intersects D2k

(in a small cap) but is disjoint from D2k+2 (the second condition is vacuous for k = m).

248 6 57 3 1

b1b2b3b4

b′1b′2b′3b′4

b5

Figure 3: A configuration of disks with an exponential number of states. The red disks are drawn solid and the
blue disks are drawn dashed.

We next place 2m+1 points b1, b
′
1, b2, b

′
2, . . . , bm, b′m, bm+1 (or, rather, select 2m+1 corresponding

faces f1, f
′
1, f2, f

′
2, . . . , fm, f ′

m, fm+1 of the resulting arrangement of the 2m disks). For each i =
1, . . . ,m, we take fi to be the cap D2i−1 ∩D2i (by construction, and as shown in the figure, these
are indeed faces of the arrangement). We take f ′

i to be the face lying directly above fi, so that in
order to go from fi to f ′

i we need to exit the two disks D2i−1 and D2i (and not to cross the boundary
of any other disk). Finally, we take fm+1 to be the intersection face of all the red (even-indexed)
disks.

We regard (a1, b1) as the starting position of the frogs, where b1 is any point in f1 and a1 is the
center of D1, and the goal position is (a2m, bm+1), where bm+1 is any point in fm+1 and a2m is the
center of D2m.

By construction, Dfm+1 consists of all the m red disks. We claim that for every subset S ⊆
Dfm+1 , (fm+1, S) is a valid state, obtaining the asserted exponential number of states. To be more
precise, the claim is that for any such S we can construct a sequence B = BS of points, which
(i) starts at b1 and ends at bm+1, (ii) contains all the points b1, b2, . . . , bm+1 (in this order), and
(iii) contains some of the points b′1, . . . , b

′
m, so that if it contains b′j then b′j appears between bj and

bj+1. The sequence BS has the property that for any D ∈ S, as the B-frog moves through the
sequence BS , the A-frog can execute a sequence of corresponding moves, so that it reaches at the
end the center of D, and this cannot be achieved (for the same sequence BS) for any D /∈ S. For
simplicity, we only specify the sequence of faces of A containing the points of B, rather than the
points themselves (although the figure depicts the points too).

So let S ⊆ Dfm+1 be given. We associate with S the following sequence FS of faces. We

15



start with the subsequence (f1, f2, . . . , fm, fm+1) and, for each D2k not in S, we insert f ′
k into

FS , between fk and fk+1. Figuratively, the corresponding sequence BS , which proceeds from right
to left, is a mixture of sharp vertical detours (corresponding to red disks not in S) and of short
horizontal moves (for red disks in S).

We next argue that FS does indeed generate the state (fm+1, S). Consider a red disk D2k not
in S. When the B-frog follows the detour from fk to f ′

k and then to fk+1, it leaves D2k−1 and D2k

and then re-enters D2k (and D2k+2). The maximal run of disks which ends at D2k and is contained
in Dfk+1

, includes D2k only, since D2k−1 /∈ Dfk+1
. In addition, D2k does not belong to Df ′

k
, so

in particular D2k /∈ Sf ′
k
. Hence, D2k /∈ Sfk+1

, because there is no valid transition (in this setup)
from (f ′

k, Sf ′
k
) to (fk+1, Sfk+1

) such that D2k ∈ Sfk+1
(see the rules for a valid transition, which is

defined for handling a block in Section 2). From this point on, the path is fully outside of D2k−1,
so, as easily verified by induction, D2k will not appear in any of the following states, including the
state (fm+1, Sfm+1), as claimed. (The reader might wish to interpret this argument in terms of the
actual moves of the frogs.)

Consider next a red disk D2k that belongs to S. It suffices to show that when the B-frog reaches
fk, the A-frog could have executed a sequence of preceding moves that gets it to the center of D2k;
this is because, from this point on, the B-frog remains inside D2k (note that, by construction, we
do not execute the detour via f ′

k), so the A-frog simply has to stay put at the center of D2k and
wait for the end of the sequence of moves of the B-frog.

Note that f1 is contained in all blue disks and inD2. In particular, this implies the asserted prop-
erty for k = 1: The A-frog goes from the center of D1 to the center of D2 before the B-frog moves,
and stays there till the end. In general, fj is contained in the blue disks D2j−1, D2j+1, . . . , D2m−1

and in the red disks D2, D4, . . . , D2j . What the A-frog needs to do is to ensure that, for each j < k,
it lies at the center of D2j+1 by the time the B-frog gets to fj . This is easily argued by induction
on j. The A-frog can do this for j = 1, because f1 lies in D1, D2, D3. For larger values of j, assume
that the A-frog is at the center of D2j−1 when the B-frog is at fj−1. If the path goes straight to fj ,
it exits D2j−3 and then enters D2j . Since the A-frog is at the center of D2j−1, it can now move to
the center of D2j and then to the center of D2j+1, as desired. If the path goes to fj via f ′

j−1, it exits
D2j−3 and D2j−2, then re-enters D2j−2 and then enters D2j . However, since the A-frog is already
at the center of D2j−1, these additional exit and re-entry are irrelevant for it, and it can now move
to the center of D2j+1 as above. Finally, when the B-frog moves to fk, the A-frog, which is now at
the center of D2k−1, moves to the center of D2k and stays there. This completes the argument.
Remark. It is a challenging open problem to circumvent this exponential lower bound on the
number of possible states. Of course, we have exponentially many states because of the existence
of exponentially many possible B-sequences. Is it possible, for example, to reduce the number
of states significantly by some sort of examination of the specific input B-sequence? As already
remarked, the existence of potentially exponentially many states is the major bottleneck for the
efficiency of the algorithm. In the same vein, it would be interesting to find properties of the
sequences A, B that guarantee that the number of aggregate states is much smaller. In a sense,
this would hopefully subsume (so far, for the discrete and semi-continuous cases only) the earlier
studies involving special classes of curves and/or sequences [4, 5, 13].

16


