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Abstract. Recent years have brought some progress in the knowledge

of the complexity of linear programming in the unit cost model, and the

best result known at this point is a randomized `combinatorial' algorithm

which solves a linear program over d variables and n constraints with

expected

O(d

2

n + e

O(

p

d log d)

)

arithmetic operations. The bound relies on two algorithms by Clarkson,

and the subexponential algorithms due to Kalai, and to Matou�sek, Sharir

& Welzl.

We review some of the recent algorithms with their analyses. We also

present abstract frameworks like LP-type problems and abstract opti-

mization problems (due to G�artner) which allow the application of these

algorithms to a number of non-linear optimization problems (like poly-

tope distance and smallest enclosing ball of points).

1 Introduction.

We consider the problem of minimizing some linear objective function in d non-

negative variables subject to n linear inequalities. In geometric terms, this corre-

sponds to �nding a point extremal in some direction inside a polyhedron de�ned

as the intersection of n halfspaces and the positive orthant in d-space, see e.g.

[6, 25]. There is vivid interest in this problem, and two major questions have

dominated the picture for a long time. First, are linear programming problems

solvable in polynomial time? Second, is the simplex method for solving linear

programs a polynomial algorithm? The �rst question was answered in the af-

�rmative by Khachiyan [18] who developed a polynomial time algorithm in the

bit-model (Turing machine model), its complexity depending on the encoding

size of the input. The second question is still open, not only for the simplex

method but for any `combinatorial' algorithm whose runtime has a bound in the

unit cost model (RAM model), i.e. depends only on n and d. For many pivot

rules, the simplex method was shown to require exponential time on certain in-

puts (the �rst such input has been constructed by Klee and Minty [19] for the

pivot rule originally proposed by Dantzig [9]). Two lines of research have been
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pursued in order to overcome the exponential worst case behavior. First, the av-

erage complexity has been studied which assumes that the input is random with

respect to some probability distribution. In this model, a polynomial bound for

the simplex method (under a particular pivot rule) has �rst been obtained by

Borgwardt [4], partially explaining the good performance of the method on prac-

tical problems. Second, the randomized complexity has been investigated, which

replaces the average over an input distribution by the average over internal `coin


ips' performed by a randomized algorithm. Although the progress obtained in

this direction does not match the one achieved for the average complexity in

the sense that polynomial bounds could not be shown, at least the exponential

worst case behavior has been beaten, and the best result known at this point

is a randomized combinatorial algorithm which computes the solution to a lin-

ear program with an expected subexponential number of O(d

2

n + e

O(

p

d log d)

)

arithmetic operations. The bound relies on two algorithms by Clarkson [8], and

the subexponential algorithms due to Kalai [17], and to Matou�sek, Sharir, and

Welzl [20].

The subexponential bound is the last link so far in a chain of results that

have brought about considerable progress over the last decade. Here is a brief

account of the history of LP in the unit cost model. The runtime of the simplex

method is bounded by the number of vertices of an n-facet polyhedron, which is

O(n

bd=2c

) (ignoring an extra factor for the pivot steps). Megiddo [23] has given

the �rst algorithm whose runtime is of the form O(C

d

n), and is thus linear in n

for any �xed d (see also [11] for the cases d = 2; 3). The factor C

d

, however, is 2

2

d

.

An improvement to C

d

= 3

d

2

was given in [12] and [7]. Randomized algorithms

were then suggested by Dyer and Frieze [13], achieving C

d

= d

3d

, and Clarkson

[8] with a complexity of O(d

2

n+ d

4

p

n logn+ d

d=2+O(1)

logn). Later, Seidel [24]

discovered a remarkably simple randomized LP algorithm with expected time

O(d!n), [26] provide a bound of O(d

3

2

d

n). Kalai published the �rst subexpo-

nential bound in [17], and then a similar bound was proved in [20]. Combining

those subexponential bounds with Clarkson's algorithms in [8] gives the above

mentioned currently best bound of O(d

2

n + e

O(

p

d log d)

) for randomized algo-

rithms. The best deterministic bound is O(d

O(d)

n) which has been obtained by

Chazelle and Matou�sek [5] via derandomization of one of Clarkson's randomized

procedures.

In this survey we review the algorithms and the analyses which lead to the

expected time bound claimed in the abstract. We restrict ourselves to a presenta-

tion of the subexponential algorithm in [20] and do not explicitly review Kalai's

subexponential simplex algorithms [17]. However, as pointed out by Goldwasser

[16], one of his variants is exactly dual to an algorithm we give in Section 3;

moreover, ideas underlying another variant are incorporated into an algorithm

presented in Section 5, so Kalai's contribution is implicitly contained in this

paper.

One nice feature of the combinatorial algorithms presented below is that

they can be formulated in a quite general abstract framework, and so they are



applicable to a number of nonlinear optimization problems,

2

as e.g. computing

the smallest ball (ellipsoid) enclosing n points in d-space, computing the largest

ellipsoid in a convex d-polytope with n facets, computing the distance between

two convex d-polytopes with n facets or with n vertices, rectilinear 2- and 3-

center problem etc. Similar bounds as the one claimed above hold for all these

problems, provided one can perform certain primitive operations e�ciently. This

has been shown by G�artner [14] who also gave explicit primitives for the polytope

distance and the minimum spanning ball problem [15]. We will elaborate on

abstract frameworks underlying those extensions in the second half of the paper.

2 Notation and Basics

For parameters n; d > 0, a linear programming problem in standard form consists

of �nding a nonnegative vector x 2 IR

d

that minimizes a linear function c

T

x

subject to n linear inequalities

P

d

j=1

a

ij

x

j

� b

i

, i = 1; : : : ; n. In compact form

this can be written as

(LP) minimize c

T

x

subject to Ax � b;

x � 0;

(1)

where c is a d-vector, b is an n-vector and A is an (n � d)-matrix. The n + d

inequalities Ax � b and x � 0 are the constraints of the linear program. (Due

to their special nature, the latter are called nonnegativity constraints.) The set

of vectors x satisfying all the constraints is called the feasible region of the LP,

and this region is an intersection of halfspaces, hence a polyhedron in IR

d

whose

facets are induced by some of the constraint hyperplanes. If the polyhedron is

nonempty, the LP is called feasible. In geometric terms, linear programming is

therefore the problem of �nding a point in a polyhedron that is extreme in a

given direction c.

To avoid various technicalities, we assume that the cost vector c satis�es

c � 0. This ensures that (1) is bounded, equivalently that c

T

x assumes a (non-

negative) minimum value in the feasible region, provided it is nonempty.

Let H be the set of n halfspaces de�ned by the constraints Ax � b, and let

H

+

denote the set of d halfspaces de�ned by x � 0. For G � H [ H

+

, we let

v

G

denote the (unique) lexicographically minimal point x minimizing c

T

x over

P

G

:=

T

h2G

h, the intersection of halfspaces in G. At least forH

+

� G, v

G

exists

(by our assumption on c), and v

H

+

= (0; : : : ; 0)

T

. If P

G

is empty, we let v

G

:=1,

which denotes infeasibility. If P

G

is nonempty but no lexicographically smallest

point minimizing c

T

x exists, we let v

G

:= �1, standing for unboundedness. If

(1) is feasible, v

H[H

+

is its unique optimal solution. Let us write v

F

< v

G

if

c

T

v

F

< c

T

v

G

, or if c

T

v

F

= c

T

v

G

but v

F

is lexicographically smaller than v

G

.

Moreover, �1 precedes (and 1 succeeds) any �nite vertex in this ordering.

A set of constraints (halfspaces) B � H [H

+

is called a basis if v

B

is �nite

but v

B

0

< v

B

for any proper subset B

0

of B. For example, H

+

is a basis. If v

G

is

2
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�nite, then a basis of G is a minimal subset B � G with v

B

= v

G

. A constraint

h 2 H[H

+

is violated by G if and only if v

G

< v

G[fhg

. Uniqueness of v

G

implies

that this is equivalent to v

G

62 h (if v

G

is �nite), which explains the intuitive

term `violation'. Finally, h is extreme in G if v

G�fhg

< v

G

, i.e. if h is violated by

G� fhg.

With this terminology we can state a �rst easy { but important { lemma.

Part (i) and (ii) are obvious, while (iii) is standard in linear programming theory.

Lemma1.

(i) For F � G � H [H

+

, v

F

� v

G

.

(ii) If v

F

; v

G

are �nite with v

F

= v

G

, then h is violated by F if and only if h is

violated by G.

(iii) If v

G

is �nite, then any basis of G has exactly d constraints, and G has at

most d extreme constraints.

We remark that our scenario here is dual to a standard setup for the simplex

method. The assumption c � 0 corresponds to the feasible origin assumption,

while our convention of resolving ambiguities by distinguishing the lexicographi-

cally smallest optimal solution is the simplex analogue of resolving degeneracies

by symbolic perturbation. While the feasible origin assumption is for technical

convenience only and can be removed if necessary, symbolic perturbation is one

way of achieving correctness of the simplex method (see [6] for details). Exactly

the same relations hold between our setup and the algorithms we are going to

develop below.

3 Algorithms

We describe three algorithms which in combination prove the claimed O(d

2

n+

e

O(

p

d log d)

) bound. Clarkson's �rst algorithm cl1 lp solves `large' problems

(`large' means that n is large compared to d). It uses Clarkson's second al-

gorithm cl2 lp for problems of size roughly d

p

n. This algorithm invokes the

subexponential algorithm subex lp, when the number of constraints is at most

6d

2

.

In this section we will not explicitly refer to the vector c (it is hidden in the

v

G

-notation). Moreover, the linear program we consider is assumed to be feasible

(although the reader will realize that this is not essential, if we let the algorithms

stop as soon as infeasibility is discovered). We use v

+

G

short for v

G[H

+

. Given

some set H of constraints, the goal of the algorithms is to compute v

+

H

.

Clarkson's algorithm 1. In order to solve the problem for a set H of n constraints

we choose some sample R of d

p

n constraints, compute v = v

+

R

(with some other

algorithm), and determine the set V of constraints in H violated by v. If V is not

too large, (jV j � 2

p

n), we add V to some initially empty set G, choose another

sample R, compute v = v

+

G[R

, add the violated constraints (provided there are

not too many) to G, and so on. We continue until no constraint is violated by



v, when the solution is found. A more concrete speci�cation of the procedure is

given below (

�

H

r

�

denotes the family of r-elements subsets of H , the random R

chooses each of them with the same probability):

function procedure cl1 lp(H) H: set of n constraints in d-space

if n � 9d

2

then returns v

+

H

return cl2 lp(H)

else

r := bd

p

nc; G := ;

repeat

choose random R 2

�

H

r

�

v := cl2 lp(G [R)

V := fh 2 H j v violates hg

if jV j � 2

p

n then G := G [ V

until V = ;

return v

There are two crucial facts which make this procedure e�cient. First, the

expected size of V is no more than

p

n (proved below); thus, the probability

that jV j > 2

p

n is at most

1

2

(by Markov's inequality), and the expected number

of attempts to �nd a su�ciently small V is at most 2. Second, if any constraint

is violated by v = v

+

G[R

, then for each basis B of H [ H

+

, there must be a

constraint h 2 B � (G [ R [H

+

) which is violated by v. (If no constraint in B

is violated by v then v

+

H

= v

+

B

� v

+

G[R[B

= v

+

G[R

� v

+

H

, and v is already the

solution of H .) It follows that we augment G at most d times. Summing up, the

expected number of iterations through the repeat-loop is bounded by 2d. We

conclude:

Lemma2. For n = jH j > 9d

2

, procedure cl1 lp computes v

+

H

with an expected

number of O(d

2

n) arithmetic operations, and an expected number of at most 2d

calls to cl2 lp with at most 3d

p

n constraints.

A sampling lemma. It remains to prove the bound on the expected size of the

sets V of violated constraints. For further application, we formulate (and prove)

the lemma for multisets.

Lemma3. Let G be a set of constraints in d-space, let H be a multiset of n

constraints in d-space, and let 1 � r � n. Then, for random R 2

�

H

r

�

, the

expected size of V

R

:= fh 2 H j v

+

G[R

violates hg is bounded by d

n�r

r+1

.

Proof. For R 2

�

H

r

�

and h 2 H , let �

G

(R; h) denote the characteristic function

for the event that v

+

G[R

violates h (one if true, and zero otherwise). Then

�

n

r

�

E(jV

R

j) =

X

R2

(

H

r

)

X

h2H�R

�

G

(R; h) =

X

Q2

(

H

r+1

)

X

h2Q

�

G

(Q� fhg; h) �

X

Q2

(

H

r+1

)

d = d

�

n

r + 1

�

;



the �rst equality is a write-out of the de�nition, the second equality is a rewriting

of sums, and the inequality follows from the fact that there are at most d extreme

constraints in every set G[Q[H

+

; (in fact, only those extreme constraints which

are in Q contribute to the sum). E(jV

R

j) � d

n�r

r+1

follows.

Hence, for r = bd

p

nc, we have E(jV

R

j) <

p

n. Below, we will use the lemma

for multisets and with r = 6d

2

which entails E(jV

R

j) <

1

6d

n.

Clarkson's algorithm 2. This algorithm proceeds very similar to the �rst one. It

chooses a random sample R of constraints { now of size 6d

2

{ and computes v

+

R

by some other algorithm (the subexponential algorithm to be described later).

Then it determines the violated constraints V from H . Instead of `forcing' these

constraints for the next iterations (like in the previous algorithm), it just in-

creases their probability to be selected in further random samplings on H . This

e�ect is achieved by assigning a multiplicity �

h

to every constraint h in H ; �

h

is doubled, when h is violated by an intermediate solution. The analysis will

show, that for any basis B of H , the elements of B increase their multiplicities

so quickly, that they are chosen with high probability after a logarithmic number

of iterations. Let us �rst provide the details of the procedure, and then have the

analysis materialize. In this procedure, we view H as a multiset, each h with

multiplicity �

h

; �(H) :=

P

h2H

�

h

. When we talk about random R 2

�

H

r

�

, then

we refer also to the multiset (and so, in general, R is a multiset).

function procedure cl2 lp(H) H: set of n constraints in d-space

if n � 6d

2

then �

h

= 1 for all h 2 H

return subex lp(H) returns v

+

H

else

r = 6d

2

repeat

choose random R 2

�

H

r

�

v := subex lp(R)

V := fh 2 H j v violates hg

if �(V ) �

1

3d

�(H) then

for all h 2 V do �

h

:= 2�

h

until V = ;

return v

It follows from Lemma 3 and Markov's inequality that the expected num-

ber of attempts until we obtain a su�ciently small V is 2 at most. The next

lemma will bound the number of successful iterations, i.e. iterations where H

gets reweighted.

Lemma4. Let k be some positive integer. After kd successful iterations, we have

2

k

� �(B) < ne

k=3

for every basis B of H.



Proof. Every successful iteration adds a weight of at most

1

3d

�(H) to H , and so

the upper bound

�(B) � �(H) � n(1 +

1

3d

)

kd

< ne

k=3

follows.

To see the lower bound on �(B), recall that (as we argued before) if there

are constraints violated by v, then there must be a violated constraint in any

basis of H . So every successful iteration doubles the weight of a constraint in

B. That is, there is a constraint in B which has been doubled at least k times

(since there are only d constraints in B). Hence, �(B) � 2

k

.

Since 2 > e

1=3

, the lower bound will exceed the upper bound for large enough

k, which means that we must have found the solution before that.

Lemma5. For n = jH j > 6d

2

, procedure cl2 lp computes v

H

with an expected

number of O(d

2

n logn) arithmetic operations, and an expected number of at most

6d lnn calls to subex lp with at most 6d

2

constraints.

Proof. For k = 3 lnn, we have 2

k

= n

3 ln 2

> n

2

= ne

k=3

. Hence, by Lemma 4,

there are at most 3d lnn successful iterations, and the expected number of it-

erations is at most twice this number. Each iteration costs O(dn) arithmetic

operations and one call to subex lp.

A subexponential algorithm. Given a set H of n constraints we remove a random

constraint h, and compute the solution for H � fhg recursively (so after taking

random samples of size d

p

n and 6d

2

, we ended up with a sample of size n� 1.)

If h is not violated by v

+

H�fhg

, then we are done. If h is violated, then we

try again by removing a (hopefully di�erent) random constraint. Note that the

probability that h is violated by v

+

H�fhg

is at most

d

n

since there are at most d

extreme constraints in H (actually a special case of Lemma 3).

So much for the basic idea; in order to guarantee e�ciency, we need some

additional ingredients. First, the procedure SUBEX lp actually solving the prob-

lem has two parameters: a set G of constraints, and a basis B � G; in general,

B is not a basis of G, and we call it a candidate basis.

3

For technical reasons

the subexponential procedure computes v

G

(rather than v

+

G

) and a basis for G;

it assumes that v

B

> �1 and so v

G

> �1. Note that B has no in
uence on

the output of the procedure (but in
uences its e�ciency). The original problem

of computing v

+

H

can now be solved by:

function procedure subex lp(H) H: set of n constraints in d-space

(v;B) := SUBEX lp(H [H

+

; H

+

) returns v

+

H

return v

Besides the violation test, the following pseudocode for SUBEX lp assumes the

availability of a second primitive operation, basis(B; h), which computes a basis

of B[fhg for a d-element basis B and a constraint h. This step corresponds to a

3

In simplex terminology, this corresponds to a dual feasible basis.



dual pivot step, and with an appropriate representation of B, it can be performed

with O(d

2

) arithmetic operations. Our feasibility assumption guarantees that

basis(B; h) 6= 1. Note that the quantity m below is initially n + d before we

go down the recursion.

function procedure SUBEX lp(G;B); G: set of m constraints

if G = B then B � G: basis

return (v

B

; B) returns v

G

and basis of G

else

choose random h 2 G�B

(v;B

0

) := SUBEX lp(G� fhg; B)

if h violates v then

return SUBEX lp(G; basis(B

0

; h))

else

return (v;B

0

)

A simple inductive argument shows that the procedure returns the required

answer. This happens after a �nite number of steps, since the �rst recursive call

decreases the number of constraints, while the second call increases the value

of the candidate basis (and there are only �nitely many di�erent values). The

procedure SUBEX lp can be viewed as a dual simplex algorithm, its corresponding

primal version being exactly one of Kalai's subexponential simplex variants [17,

16].

For the analysis of the expected behavior of the algorithm, let us take a

closer look at the probability to make the second recursive call with candidate

basis `basis(B

0

; h)'. To be precise we have to take back the previously claimed

d

n

-bound and replace it by

d

m�d

, since we choose h from G � B (and B always

has d elements). However, if d � j extreme constraints in G are in B, then the

bound improves to

j

m�d

; in fact, there are never more `bad' choices than there

are choices at all, and so the bound can be lowered to

minfj;m�dg

m�d

. We want to

show that the numerator decreases rapidly as we go down the recursion, and this

will entail the subexponential time bound.

We enumerate the constraints in G in such a way that

v

G�fh

1

g

� v

G�fh

2

g

� � � � � v

G�fh

d�k

g

< v

B

� v

G�fh

d�k+1

g

� � � � � v

G�fh

m

g

:

The ordering is not unique, but the parameter k emerging from this ordering is

unique and we call it the hidden dimension of the pair (G;B); hidden dimension

zero implies that B is a basis for G.

Note that for h 2 G�B, v

B

� v

G�fhg

, and so h

1

; h

2

; : : : ; h

d�k

are in B. Hence

the only choices for h which possibly entail a second call are h

d�k+1

; : : : ; h

d

(for

i > d, v

G�fh

i

g

= v

G

). Suppose that, indeed, h

d�k+i

, 1 � i � k, is chosen, and

the �rst call (with candidate basis B) returns with basis B

0

, v

B

0

= v

G�fh

d�k+i

g

.

Then we compute B

00

= basis(B

0

; h

d�k+i

). Since v

G�fh

d�k+i

g

= v

B

0

< v

B

00

, the

pair (G;B

00

) for the second call has hidden dimension at most k � i.

The hidden dimension is monotone, i.e., if B � F � G, then the hidden

dimension of (F;B) does not exceed the hidden dimension of (G;B). This holds,



because the constraints h

1

; h

2

; : : : ; h

d�k

are in B (and so in F ), and v

F�fh

i

g

�

v

G�fh

i

g

because F � G.

We denote by b(m; k) the maximum (over all possible inputs) expected num-

ber of calls to basis entailed by a call SUBEX lp(G;B) with m constraints and

hidden dimension at most k. b(d; k) = 0 for 0 � k � d, and with the discussion

above we conclude the recursion

b(m; k) � b(m� 1; k) +

1

m� d

minfk;m�dg

X

i=1

(1 + b(m; k � i)) for m > d: (2)

A simple proof by induction shows that b(m; k) � 2

k

(m� d). However, it turns

out that for n not much larger than d, this is a gross overestimate, and with

extra e�ort one can show

1+ b(m; k) � exp

 

2

s

k ln

m� d

p

k

+ (ln 3 + 2)

p

k + ln

m� d

p

k

!

= e

O(

p

k ln(m�d))

;

where ln x = max(lnx; 1). For a proof of this bound see [15, 20]. Each basis

computation takes O(d

2

). For each basis B computed in the algorithm, we test

every constraint at most once for violation of v

B

. Hence, the number of violation

tests is bounded

4

by (m � d)b(m; d), with O(d) arithmetic operations for each

such test.

Lemma6. For n = jH j, procedure subex lp(H) computes v

+

H

= v

H[H

+

with

an expected number of O((d

2

+ nd)e

O(

p

d lnn)

) arithmetic operations.

Putting it together. If we plug the bound obtained for subex lp into Lemma 5,

then we have a bound of O(d

2

n logn+ e

O(

p

d lnd)

logn) for the expected number

of arithmetic operation required by cl2 lp. If we apply this to Lemma 2, we get

an estimate of O(d

2

n + d

4

p

n logn + e

O(

p

d ln d)

logn)) for cl1 lp. The middle

term is dominated by the �rst or last term for all values of d and n; for the

values of n for which the last term is dominant, the logn factor is absorbed by

O(

p

d ln d) in the exponent. We conclude

Theorem7. The optimal nonnegative vertex v

+

H

of a linear program with n

constraints H in d-space can be computed by a randomized algorithm with an

expected number of O(d

2

n+ e

O(

p

d lnd)

) arithmetic operations.

4 An Abstract Framework

In this section we show that the algorithms we discussed so far actually work in

a more general and abstract combinatorial setting, which makes them applicable

to a wide range of problems (most of them are convex programming).

4

A direct proof also gives the 2

k

(m� d) bound for the expected number of violation

tests.



Let us consider optimization problems speci�ed by pairs (H;w), where H is

a �nite set, and w : 2

H

! W [ f�1g is a function with values in a linearly

ordered set (W [ f�1g;�), the value �1 (standing for `unde�ned') preceding

all values in W . The elements of H are called constraints, and for G � H , w(G)

is called the value of G. The goal is to compute a minimal subset B

H

of H with

the same value as H (from which, in general, the value is easy to determine),

assuming the availability of two basic operations to be speci�ed below. It turns

out that the algorithms we have seen can be used to perform this computational

task, as long as the following axioms are satis�ed:

Axiom 1. (Monotonicity) For any F;G with F � G � H , we have

w(F ) � w(G).

Axiom 2. (Locality) For any F � G � H with �1 6= w(F ) = w(G)

and any h 2 H , w(G) < w(G[fhg) implies that also w(F ) < w(F [fhg).

If Axioms 1 and 2 hold, then we call (H;w) an LP-type problem. Linear program-

ming is an LP-type problem (H[H

+

; w), if we set w(G) = v

G

for a constraint set

G � H [H

+

. Then the axioms coincide with Lemma 1 (i) and (ii). The notions

introduced in Section 2 carry over in the obvious way: A basis B is a set of con-

straints with w(B

0

) < w(B) for all proper subsets B

0

of B. For G � H , a basis of

G is a minimal subset B = B

G

of G with w(B) = w(G). Constraint h is violated

by G, if w(G) < w(G[fhg). Constraint h is extreme in G, if w(G�fhg) < w(G).

For the e�ciency of the algorithm the following parameter is crucial: the max-

imum cardinality of any basis is called the combinatorial dimension of (H;w),

and is denoted by � = �

(H;w)

.

We assume that the following primitive operations are available.

(Violation test) `h is violated by B', for a constraint h and a basis B,

tests whether h is violated by B or not.

(Basis computation) `basis(B; h)', for a constraint h and a basis B,

computes a basis of B [ fhg.

Carefully reconsidering the algorithms developed in the previous section, we

�nd that the two axioms and primitive operations above constitute all that is

needed to make them work in the abstract setting. Of course, concrete vertices

v

B

as referred to in case of LP do not exist in the abstract setting and need to

be replaced by their abstract representations B.

As far as the subexponential analysis of SUBEX lp is concerned, we have

already seen that another property of LP is needed to make it valid, and this is

part (iii) of Lemma 1 which states that any basis has exactly d constraints. We

call this property basis-regularity. More precisely, it is crucial for the analysis

that a call to SUBEX lp(G;B) with jGj = d entails no further calls to primitive

operations, and this follows from basis-regularity. The axioms above do not imply

basis-regularity, and all of the concrete LP-type problems we present below are

indeed not basis-regular. Still, a bound which is linear in n (but exponential in

�) can be proved in any case [26, 15].



Theorem8. Given an LP-type problem (H;w), jH j = n, of combinatorial di-

mension �, and some initial basis B � H, a basis B

H

of H can be computed

with an expected number of at most 2

�+2

(n� �) violation tests resp. basis com-

putations.

The next section shows that the subexponential analysis can in fact be ex-

tended to all LP-type problems. However, already at this stage, the theorem

establishes optimal linear-time algorithms for any LP-type problem of �xed com-

binatorial dimension �. To this end observe that the primitive operations involve

problems of size � + 1 at most, and for constant �, even brute-force realizations

entail only constant e�ort. There is quite a number of problems which �t into

the framework. We just provide a list, for further details see [20].

Smallest enclosing ball. Given a set P of n points (or other objects) in d-space,

�nd center and radius of the smallest ball containing all the points (combinatorial

dimension d+ 1).

Polytope distance. Given two polytopes P and Q (speci�ed by a total of n

points in d-space), compute points p 2 P; q 2 Q minimizing dist(p; q), p 2 P; q 2

Q (combinatorial dimension d+ 2).

Smallest enclosing ellipsoid. Given n points in d-space, compute the ellipsoid

of smallest volume containing the points (combinatorial dimension d(d+ 3)=2).

Largest ellipsoid in polytope. Given a polytope in d-space as the intersection

of n halfspaces, compute the ellipsoid of largest volume contained in the polytope

(combinatorial dimension d(d+ 3)=2).

Smallest intersecting ball. Given n closed convex objects in d-space, compute

the ball of smallest radius that intersects all of them (combinatorial dimension

d+ 1).

Angle-optimal placement of point in polygon. Let P be a star-shaped polygon

with n vertices in the plane (a polygon is star-shaped if there is a point inside the

polygon which sees all edges and vertices; the locus of all such points is called

the kernel). Compute a point p in the kernel of P , such that after connecting p to

all the vertices of P by straight edges, the minimal angle between two adjacent

edges in the triangulated polygon is maximized (combinatorial dimension 3).

Rectilinear 3-centers in the plane. Given a set P of n points in the plane,

�nd three points c

1

; c

2

; c

3

so that max

p2P

min

i=1;2;3

kc

i

� pk

1

is minimal [27].

Spherical separability. Given n red and n blue segments in d-space, �nd the

smallest radius ball covering all red segments and disjoint from all blue segments.

Holds also for many computationally simple objects instead of line segments [28].

Width of `thin' point sets in the plane. The width of a planar set P is the

smallest width of a stripe covering P . Computing the width of an n-point set

has an 
(n logn) lower bound. However, if the smallest distance between two

points in P is larger than the width of P , the problem can be formulated as an

LP-type problem of combinatorial dimension 5 (relies on the fact that n disjoint

unit disks allow a line transversal i� any 5 of them do [10]).

The question whether a problem is LP-type can be a subtle issue and the

answer may depend on the way the problem is formulated. In LP, for example,

it may seem natural to de�ne w(G) just as the minimum value of c

T

x subject



to the constraints in G. Then however, basis regularity and { much worse { the

locality axiom no longer hold. To see this, consider the 2-dimensional problem

of minimizing y (i.e. c

T

= (0; 1)) subject to the constraint set H = fh

1

; h

2

; h

3

g,

h

1

: x � y � �1, h

2

: x � 0 and h

3

: y � 0. Then w(H) = w(fh

1

; h

2

g) = 1,

and the latter set is a basis (of H). Another basis of di�erent size is fh

3

g with

w(fh

3

g) = w(fh

1

; h

3

g) = w(fh

2

; h

3

g) = 0. This means that fh

1

; h

3

g violates

h

2

but fh

3

g does not violate h

2

, so locality fails. De�ning w(G) := v

G

(as we

have done it) `saves' the situation. As an example that works with canonical w

consider the smallest enclosing ball problem addressed above, in dimension 2.

For a subset Q of the points we de�ne w(Q) as the radius of the smallest disk

D

Q

containing all the points in G. D

Q

is unique, and G violates p if and only if p

lies outside D

Q

. From this, locality easily follows (and monotonicity is obvious).

However, the situation is di�erent for the smallest enclosing disk in the L

1

-norm

(smallest enclosing axis-parallel square). De�ning w(Q) as the sidelength of the

smallest square covering Q does not work, because this square is in general not

unique and locality may fail, just like in LP. Computing the smallest enclosing

axis-parallel rectangle instead (from which a smallest square can be obtained)

�xes the problem.

These examples are not meant to suggest that similar transformations can

be applied to create an LP-type problem out of any problem that just `looks'

LP-type. As an example, consider the closest pair problem. For a point set P in

the plane and a subset Q, let w(Q) be the closest interpoint distance in Q. Then

w is monotone (the other way round) but locality fails (it is an easy exercise

to verify this). Moreover, there is no way to cast the closest pair problem as an

LP-type problem with �xed combinatorial dimension (if w(Q) as above would

work, we had combinatorial dimension 2), because then Theorem 8 would imply

the existence of an O(n) algorithm, n = jP j, contradicting the 
(n logn) lower

bound.

5 A Subexponential Bound for LP-type Problems

Fix some LP-type problem (H;w) of combinatorial dimension �, jH j = n. In

the previous section we have argued that SUBEX lp can solve the problem with

an expected subexponential number of primitive operations, provided that calls

to pairs (G;B) with jGj = � are `free'. This is the case if the problem is basis-

regular, i.e. all bases have size exactly �, like in LP with � = d. For many

other problems (including the ones listed above), basis-regularity is not naturally

satis�ed. Here we prove that the subexponential analysis can in fact be extended

to all LP-type problems, whether they are basis-regular or not. Let us start by

`pretending' that small problems are free; speci�cally, we assume existence of

an algorithm Small LPtype that can handle pairs (G;B) with jGj � �. Then

any LP-type problem can be solved by the following algorithm LPtype which

is just the abstract analogue of SUBEX lp, with Small LPtype plugged in as a

subroutine.



function procedure LPtype(G;B) B � G: basis

if jGj � � then returns B

G

return Small LPtype(G;B)

else

choose random h 2 G �B

B

0

:= LPtype(G� fhg; B)

if h is violated by B

0

then

return LPtype(G; basis(B

0

; h))

else

return B

0

If we evaluate the performance of LPtype in terms of violation tests, then the

bounds developed for SUBEX lp apply with a multiplicative overhead of t

S

(�)+1,

where t

S

(�) denotes the maximum expected number of violation tests incurred

by algorithm Small LPtype (which we develop later) on a single instance. This

algorithm will { just like LPtype { have the property that any basis computation

is preceded by a violation test, so bounding the latter bounds the former as well.

Speci�cally, the following holds.

Lemma9. Given some initial basis B � H, a basis B

H

of H can be computed

with an expected number of no more than (n� �)e

O(

p

� lnn)

(t

S

(�) + 1) violation

tests, resp. basis computations.

Note that for basis-regular LP-type problems, t

S

(�) = 0. Below we prove that

in the general case t

S

(�) can be bounded by

2� exp

�

2

p

� + 2

4

p

� ln � + ln

2

�

�

= e

O(

p

�)

; (3)

where the exponent is asymptotically smaller than the exponent we already get

from the analysis of SUBEX lp. Thus, the contribution of the small problems does

not introduce asymptotic overhead in the exponent of Lemma 9. In particular,

the best bound we were able to give for LP in Theorem 7 then applies to any

LP-type problem.

Theorem10. Given an LP-type problem (H;w), jH j = n, of combinatorial di-

mension �, and some initial basis B � H, a basis B

H

of H can be computed with

an expected number of no more than O(�

2

n+ e

O(

p

� ln �)

) primitive operations.

For the concrete LP-type problems smallest enclosing ball and polytope dis-

tance mentioned above, this bound becomes a `real' bound in terms of arithmetic

operations, since in these cases a violation test can be performed in time O(d)

and a basis computation in time O(d

3

) [15].

The small problems. Recall that the crucial feature in the analysis of SUBEX lp

was that if jG�Bj is large, then the second recursive call is e�cient on average

due to a substantial decrease in hidden dimension. Our algorithm Small LPtype

exploits the same idea. It will have a �rst and a second recursive call, the �rst one

solving the problem on G�fhg, for h randomly chosen from some sample space.



However, if the canonical sample space G�B turns out to be too small (which

could be the typical situation for jGj � �), some preliminary computations

will enlarge it to make the second call more e�cient on average. The degree

of enlargement is obtained from a tradeo� between the extra e�ort and the gain

in e�ciency.

Fix some pair (G;B). If we would (like it is done in LPtype) insist on using the

same basis B for the �rst recursive call on the set G�fhg, then of course, h would

be restricted to lie in G�B, and there would be no way to enlarge the sample

space. But we might as well recur with (G�fhg; B

0

), where B

0

� G�fhg is some

other basis. As long as B

0

is no worse than B (i.e. w(B

0

) � w(B) holds), such a

choice can make the whole procedure only more e�cient. In this situation, a call

with (G�fhg; B) or with (G�fhg; B

0

) can be performed for all h 2 G�B\B

0

,

which typically is a larger set than G� B. Thus, the more alternative bases B

0

are available, the larger the sample space gets; the `preliminary computations'

addressed above just represent a way of collecting enough such alternative bases.

The following de�nes elements that might potentially end up in the sample space.

De�nition 11. h 2 B � G is called free with respect to (G;B) if there exists a

basis B

0

� G�fhg with w(B

0

) � w(B). In this case B

0

is called a witness for h

with respect to (G;B).

A witness of h proves that h is free. Elements of G�B are free with witness B.

With this terminology, our task consists of �nding free elements (in addition to

the ones in G � B, if their number does not su�ce), along with corresponding

witnesses.

To do this, we incrementally update a set D of free elements; initially, D :=

G � B. In case D is already large enough, which for our purposes will mean

jDj � d�jGje; for 0 < � < 1 a constant to be determined later, there is nothing

to do. Otherwise we will have to enlarge D by at least one more free element

`hidden' in B; to this end we step through a sequence of basis computations, until

a witness for a yet unknown free element is discovered,

5

as follows: recursively call

the algorithm with (G;B), but supply an additional parameter E that contains

all the elements of G whose status is yet unknown (initially, E = B). This

recursive call now has two ways to terminate: either it �nds the desired basis B

G

or { while improving its basis { discovers some B

0

� G which fails to contain E.

This, however, means that the elements in E � B

0

have been uncovered as free

elements with witness B

0

, so the call has found at least one new free element and

has therefore accomplished its task. Shrink E accordingly and repeat. The key

observation is that as long as D is small, the set E of elements of unknown status

will be large. Since the recursive call with parameter E terminates as soon as

the �rst basis B

0

appears that is no longer wedged between E and G, it actually

operates only on G � E instead of G. This makes it substantially cheaper. In

other words, the algorithm tentatively `enforces' the elements of E and either

�nds the optimal basis in G under this tentative hypothesis, or it disproves the

hypothesis by delivering (at least) one new free element. If enough free elements

5

or we already �nd an optimal basis B

G



have been found (i.e. E has become small enough), the algorithm proceeds as

before: it removes a random free element h and recurs on (G� fhg; B

h

), where

B

h

is a witness of h. This idea of tentatively enforcing constraints in order to

�nd new free elements in an e�cient manner has �rst been used by Kalai in one

of his subexponential simplex algorithms for LP [17].

The Algorithm. Any problem Small LPtype(G;B) is solved by a call to an aux-

iliary algorithm Small LPtype E which has three parameters E � B � G.

function procedure Small LPtype(G;B) B � G: basis

return Small LPtype E(G;B; ;) returns B

G

The top-level of Small LPtype E (where E = ;) matches the description

given above. Down the recursion the size of the problem is measured by jG�Ej,

and the quantity d�jG�Eje replaces d�jGje as the critical value for the required

number of free elements.

The procedure Small LPtype E(G;B;E) either returns B

G

or delivers a basis

B

0

with w(B

0

) > w(B) and E 6� B

0

� G (if E = ;, only the former alternative is

possible, therefore Small LPtype(G;B) indeed returns B

G

). The current set D

of free elements is implicitly maintained as G� E

0

. The witness for an element

h will be denoted by B

h

.

function procedure Small LPtype E(G;B;E) E � B � G; B: basis

if G = B then returns B

G

or basis B

0

, with

return B w(B

0

) > w(B); E 6� B

0

� G

else

E

0

:= B

for all h 2 G�E

0

do B

h

:= B

while jG �E

0

j < d�jG �Eje do

B := Small LPtype E(G;B;E

0

)

if E 6� B then

return B

elsif E

0

6� B then

for all h 2 E

0

�B do B

h

:= B

E

0

:= E

0

\B

else return B

choose random h 2 G �E

0

B

0

:= Small LPtype E(G� fhg; B

h

; E)

if E 6� B

0

then

return B

0

else

if B

0

is violated by h then

B

00

:= basis(B

0

; h)

if E 6� B

00

then

return B

00

else return Small LPtype E(G;B

00

; E [ fhg)



Termination of Small LPtype E follows by observing that the recursive calls

solve smaller problems, measured in terms of jG�Ej (note that the �rst recur-

sive call is not executed if E

0

= E because then the algorithm does not enter

the while-loop). The while-loop terminates because E

0

gets smaller in every

iteration. The correctness of the algorithm follows by inductively checking the

invariant `E � B � G'.

Let t

E

(m; k) denote the maximum expected number of violation tests during

a call to Small LPtype E(G;B;E) of size jG � Ej = m and freedom at most

k, where the freedom of a triple (G;B;E) is the number of free elements with

respect to (G;B) that are not in E (this implies k � m). The following recur-

rence relation can be proved, invoking arguments similar to the ones used in the

development of recurrence (2).

Lemma12. t

E

(m; 0) = 0. For m � k > 0, t

E

(m; k) is bounded by

d�me�1

X

i=0

t

E

(i;min(k; i)) + t

E

(m� 1; k � 1) + 1 +

1

d�ke

d�ke

X

i=1

t

E

(m� 1; k � i):

From this, an upper bound of

t

E

(m; k) � 2 exp

�

2

p

k=�+ lnm(log

1=�

m+ 1)

�

can be derived, and noting that t

S

(�) � t

E

(�; �), we obtain (with � := 1=(1 +

ln �=

4

p

�))

t

S

(�) � 2� exp

�

2

p

� + 2

4

p

� ln � + ln

2

�

�

;

which is the bound claimed in (3) for the maximum expected number of violation

tests incurred by a call to Small LPtype(G;B). For the details of the analysis

see [14, 15].

Abstract optimization problems. Let us investigate the properties crucially un-

derlying algorithm Small LPtype. As it turns out, these are surprisingly few.

First, the basis B

00

need not be a basis of B

0

[fhg. It su�ces that w(B

00

) > w(B

0

).

In case of LP this is equivalent to B

00

= B

B

0

[fhg

, but in a general LP-type prob-

lem, many bases B

00

with the required property might exist. In this situation,

any of them would do. Thus, the basis computation primitive could as well be

replaced with a basis improvement primitive which might be (much) easier to

implement. Anticipating this relaxation, the O(d

3

) bounds stated above for the

basis computation in the smallest enclosing ball and polytope distance problems

were actually bounds for the basis improvement [15].

Second, in order to guarantee the invariant `E � B � G', the improved basis

B

00

has to be a subset of G but not necessarily of B

0

[fhg. By the locality axiom

we know that B

0

[ fhg must contain an improved basis if G contains one (and

the correctness of the algorithm in its present form crucially relies on this fact),

but if we had a method of directly accessing some arbitrary improved basis in

G, the algorithm would work completely without the locality assumption.



Third and last, the function w is quite irrelevant. The important feature is

that the bases are linearly ordered, and solving the problem for a set G � H

means �nding the largest basis among all bases which are subsets of G. We can

as well assume that any subset of H actually is a basis.

Following this discussion, we de�ne an abstract optimization problem (AOP)

to be a triple

(H;�; �);

where H is a �nite set, � is some linear ordering of 2

H

and � is an improvement

oracle which is a function on pairs (G;B); B � G � H with the following

property.

�(G;B) =

�

B; if B = max

�

fB

0

j B

0

� Gg;

B

0

� B;B

0

� G; otherwise:

Under this model, the optimal (with respect to �) subset B

H

of H can be

found with at most 2

n

� 1 calls to the improvement oracle, where n = jH j.

However, we can almost verbatim apply algorithm Small LPtype to solve an

abstract optimization problem in subexponential time. To this end, violation

test and basis computation are replaced by a single call to the oracle: compute

B

00

:= �(G;B

0

). Then the violation test becomes a query `B

00

6= B

0

?', and if

this query has a positive answer, the improved basis B

00

is readily available. The

careful reader might have noticed that under the AOP axioms, G = B does not

necessarily imply that B is optimal for G, so the termination criterion checked in

the �rst line of the algorithm is not valid. However, we can assume the following

stronger oracle.

	(G;B) =

�

B; if B = max

�

fB

0

j B

0

� Gg;

B

0

� B;B

0

� G;B

0

= max

�

fB

00

j B

00

� B

0

g; otherwise;

which guarantees that only bases are considered during the algorithm which

de�ne their own optimum. 	(G;B) can be simulated with at most jGj calls to �

(replace the basis B

0

resulting from �(G;B) with �(B

0

; B

0

) until B

0

is stable).

Invoking the bound (3) for Small LPtype we thus get

Theorem13. Given an AOP (H;�; �), a set B

H

= max

�

fB j B � Hg can be

computed with an expected number of no more than

2n

2

exp

�

2

p

n+ 2

4

p

n lnn+ ln

2

n

�

calls to the improvement oracle �.

If not before, the power of randomization in our context becomes apparent here.

Namely, the following lower bound can be shown, see [14, 15].

Theorem14. Let A be a deterministic algorithm for solving AOPs on an n-

element set H. Then there exists an AOP (H;�; �) which forces A to call � at

least 2

n

� 1 times to �nd the optimal subset B

H

.

For LP-type problems, no similar (and even no superpolynomial) lower bound

for deterministic algorithms is known.



6 Discussion

We have reviewed several (randomized) algorithms for LP and LP-type problems

which in combination lead to the currently best known subexponential bounds.

A challenging open problem is to improve on these bounds, and to prove

or disprove the existence of a polynomial combinatorial algorithm for linear

programming. While algorithm SUBEX lp might still substantially outperform

the bound of Lemma 6 on actual LPs, Matou�sek has constructed abstract LP-

type problems which force SUBEX lp to behave not much better than analyzed

[21]. An interesting problem in this context is to determine the complexity of

AOPs. Due to the very weak and simple axioms it might be possible to prove a

nontrivial (superpolynomial) lower bound on the number of improvement oracle

calls needed by any algorithm for solving AOPs. For deterministic algorithms,

such a bound is given by Theorem 14, for randomized algorithms not even a

superlinear bound (w.r.t. jH j) is known. On the other hand, any improved upper

bounds for AOPs immediately apply to small instances of LP (n = O(d)) and

the other concrete LP-type problems we have mentioned.

Chazelle and Matou�sek [5], gave a deterministic algorithm solving LP-type

problems in time O(�

O(�)

n), provided an additional axiom holds (together with

an additional computational assumption). Still these extra requirements are sat-

is�ed in many LP-type problems.

A natural generalization is the problem of �nding the best solution satisfying

all but k of the given constraints, for abstract LP-type problems as de�ned here.

This has been investigated by Matou�sek [22].

Amenta [2], considers the following extension of the abstract framework:

Suppose we are given a family of LP-type problems (H;w

�

), parameterized by a

real parameter �; the underlying ordered value setW has a maximum element1

representing infeasibility. The goal is to �nd the smallest � for which (H;w

�

) is

feasible, i.e. w

�

(H) <1. [2] provides conditions under which the such a problem

can be transformed into a single LP-type problem, and she gives bounds on the

resulting combinatorial dimension. Related work can be found in [3].
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