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Figure 1: The construction of hi;kp; this is the union of all rays emanating from p and having orientations in Ck. Note thatwe can always cover Sd�1 with a constant number (depending on dimension) of sets Ck; i.e.,K is a constant, depending (exponentially) on d.We construct a set H of O(n) hyperplanes as follows. Consider a ball Bi and a set Ckof directions, which de�ne a cone, Ck(bi), with apex at bi. If Ck(bi) contains the center ofat least one ball that is larger than Bi, then we let Bj (j < i) be that ball with centerbj 2 Ck(bi) closest to bi, and we de�ne hi;k to be the hyperplane supporting Bi, orthogonalto the vector bj � bi and separating bi and bj; see Figure 7. Clearly, hi;k separates Bi fromBj. We let H be the set of all such hyperplanes hi;k; since K is a constant depending ondimension, jHj = O(n), for any �xed dimension d.Theorem 1.1 H is a separating set for S.Proof: We must show that for every choice of Bi, and j < i, there is a hyperplane in Hthat separates Bi from Bj.Our proof is by induction on i. The base of the induction is the trivial claim that Hcontains hyperplanes separating B1 from each ball that has larger radius (there are none).We now make the following induction hypothesis (on i): H contains a hyperplane separatingBi from each Bj with j < i.Suppose the hypothesis holds for all i0 � i, and consider ball B = Bi+1. Without lossof generality, we can assume that ri+1 = 1 and bi+1 is the origin, O. Consider an arbitraryB0 = Bj, with j < i+ 1, radius r0 = rj > 1, and center v = bj lying in a cone C = Ck(bi+1),for some k 2 f1; : : : ;Kg.By the construction of H, since C contains the center of a larger ball, we know that thereexists a hyperplane h = hi+1;k 2 H separating B from some ball, B00, with radius r00 > 1 andcenter u 2 C. (In fact, by construction, h is supporting B and is orthogonal to u.) Our goalis to show that H contains a hyperplane separating B from B0. If B0 = B 00, we are done.So, we assume that B0 and B00 are distinct.By the induction hypothesis, there exists a hyperplane h0 2 H that separates B0 from B 00(since each has radius larger than that of B). If h already separates B 0 from B, then we aredone. So we assume that it does not, which means that B0 intersects h.We let � be the angle between u and v. We let � denote the ray containing u withendpoint at the origin. We let p = h \ B denote the point on � where h supports B, andwe let p0 denote the point on �, further from p, at distance jv � pj from p. Finally, we let �0denote the angle between vector v � p and �. See Figure 8 for an illustration.We will need the following technical lemma:Lemma 1.2 2 sin �02 � cos �0.Proof: Referring to Figure 8, we need to show that jvp0j � jpp00j, where p00 is the foot of2
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v p0(0; 0) � �p �0Figure 2: Illustration of the notation in the proof of Theorem 2.1. (The dotted loop sur-rounding B0 is meant to convey the fact that B0 is assumed to cross h, even though, forclarity, we have not drawn it large enough to do so.)3



the perpendicular from v to �. It is easily seen that this can be rewritten asjvj sin �cos �02 � jvj cos � � 1:Since � is acute and jvj > 2, it follows that 6 Ovp < � and hence �0 < 2�. We thus havejvj sin �cos �02 � jvj tan �;so it su�ces to show that jvj tan � � jvj cos � � 1; since jvj > 2, it su�ces to show thatcos ��tan � > 1=2, or that 1�sin2 ��sin � � 12 cos �. By construction, we have sin � � p3�12 ,which implies that 1� sin2 � � sin � � 12, thus completing the proof of the lemma. utNote that Lemma 2.5 trivially implies that �0 � �=4.First, we claim that B0 intersects � in an interval that lies after u (i.e., an interval ofpoints that are farther from the origin than is the point u); thus, h0 separates the origin(and B00) from B0. We argue as follows. Since �0 � �=4, we know that point v is at least asclose to ray � as it is to hyperplane h; thus, B0 intersects ray �. By Lemma 2.5, v is in factcloser to point p0 than to any point on h; thus, B0 contains point p0. Now, by constructionof H, juj � jvj, which implies that ju � pj = juj � 1 � jvj � 1 � jv � pj = jp0 � pj. Thus,ray � intersects B0 after B00. Since h0 separates B 0 and B00, ray � must intersect B before B00before h0 before B0.Second, we claim that h0 does not intersect B; thus, h0 separates B from B 0. To see thisclaim, consider for each q 2 B the ray �q that is parallel to �, with apex q. Since B00 is largerthan B, each ray �q must intersect B00. Now ray � intersects B before B00 before h0, so, bycontinuity, each ray �q must also intersect B before B00 before h0. This shows that h0 cannotintersect B, since every point q 2 B is the apex of a ray that intersects h0 only after passingthrough B00 (which is disjoint from h0).Since we have shown that h0 separates B and B0, this completes the induction step andthus concludes the proof of the theorem. utAs a result of Lemma ?? and Theorem 2.1 we have:Theorem 1.3 The number of geometric permutations of a set of n pairwise disjoint balls inIRd is O(nd�1).Remark 1.4 For general pairwise disjoint convex sets in IR3, the size of a separating setcan be �(n2). For example, in the standard construction of a Voronoi diagram in IR3 with�(n2) complexity, one needs �(n2) di�erent plane orientations to separate all pairs of cells.Hence the current proof of Theorem 2.2 does not extend to families of general convex sets.4


