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1 Geometric Permutations of Pairwise Disjoint Balls
in R¢
1.1 Upper Bounds

Let S be a given set of n pairwise disjoint (closed) balls in R?. We prove that g4(S) =
O(n?!). The main step of the proof is to show that S admits a separation set of size O(n).
As a matter of fact, we prove the stronger result that there exists a set H of O(n) hyperplanes
such that each pair of balls in S is separated by a hyperplane in H, rather than a hyperplane
parallel to one in H.

Let S = {Bi,..., By} be a set of n pairwise-disjoint balls in IR ball B; has radius r; and
center b;. We assume, without loss of generality, that 1 > ry > --- > r,. (If several balls
have the same radius, we slightly increase their radii, making them all distinct and keeping
the balls disjoint. This can only increase gq4(.S).)

Let S4_;1 be the unit sphere of directions. Let C = {C4,...,Cxk} be a covering of S4_;
by a set of K spherical patches of diameter é, where ¢ is chosen so that the angle 8 between
any pair of unit vectors 4,9 € Cf is at most sin"*((v/3 — 1)/2) ~ XXX (or about XXX
degrees). Each set Cj determines a convex cone Ck(p) with respect to any given apex point
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Figure 1: The construction of h;

p; this is the union of all rays emanating from p and having orientations in Cj. Note that
we can always cover Sq_; with a constant number (depending on dimension) of sets C; i.e.,
K is a constant, depending (exponentially) on d.

We construct a set H of O(n) hyperplanes as follows. Consider a ball B; and a set Cj
of directions, which define a cone, Ck(b;), with apex at b;. If Ck(b;) contains the center of
at least one ball that is larger than B;, then we let B; (7 < ¢) be that ball with center
b; € Cr(b;) closest to b;, and we define h; ; to be the hyperplane supporting B;, orthogonal
to the vector b; — b; and separating b; and b;; see Figure 7. Clearly, h; separates B; from
B;. We let H be the set of all such hyperplanes h;; since K is a constant depending on
dimension, |H| = O(n), for any fixed dimension d.

Theorem 1.1 H is a separating set for S.

Proof: We must show that for every choice of B;, and j < 2, there is a hyperplane in H
that separates B; from B;.

Our proof is by induction on iz. The base of the induction is the trivial claim that H
contains hyperplanes separating B; from each ball that has larger radius (there are none).
We now make the following induction hypothesis (on ¢): H contains a hyperplane separating
B; from each B; with j < 1.

Suppose the hypothesis holds for all i’ < 7, and consider ball B = B;,;. Without loss
of generality, we can assume that 7;;1 = 1 and b;;; i1s the origin, O. Consider an arbitrary
B' = Bj, with j <1+ 1, radius » = r; > 1, and center v = b; lying in a cone C = Ci(b;11),
for some k € {1,...,K}.

By the construction of H, since C contains the center of a larger ball, we know that there
exists a hyperplane h = h; ;1 € H separating B from some ball, B”, with radius »” > 1 and
center u € C. (In fact, by construction, h is supporting B and is orthogonal to u.) Our goal
is to show that H contains a hyperplane separating B from B’. If B’ = B”, we are done.
So, we assume that B’ and B"” are distinct.

By the induction hypothesis, there exists a hyperplane b’ € H that separates B’ from B"
(since each has radius larger than that of B). If h already separates B’ from B, then we are
done. So we assume that it does not, which means that B’ intersects h.

We let 0 be the angle between u and v. We let p denote the ray containing u with
endpoint at the origin. We let p = h N B denote the point on p where h supports B, and
we let p' denote the point on p, further from p, at distance [v — p| from p. Finally, we let 6’
denote the angle between vector v — p and p. See Figure 8 for an illustration.

We will need the following technical lemma:

Lemma 1.2 2sin%’ < cosf'.

Proof: Referring to Figure 8, we need to show that |vp'| < |pp”|, where p” is the foot of



Figure 2: Illustration of the notation in the proof of Theorem 2.1. (The dotted loop sur-
rounding B’ is meant to convey the fact that B’ is assumed to cross h, even though, for
clarity, we have not drawn it large enough to do so.)



the perpendicular from v to p. It is easily seen that this can be rewritten as

|v|sin @
o < |v[cosd — 1.
cos 5

Since 6 is acute and |v| > 2, it follows that ZOvp < 6 and hence 6’ < 2. We thus have

|v|sin @
o < |v|tand,
cos 5

so it suffices to show that |v|tand < |v|cos@ — 1; since |v| > 2, it suffices to show that
cos @ —tanf > 1/2, or that 1 —sin® —sin § > %cos 6. By construction, we have sin § < @,
which implies that 1 — sin?6 — sin § > %, thus completing the proof of the lemma. O

Note that Lemma 2.5 trivially implies that 6’ < /4.

First, we claim that B’ intersects p in an interval that lies after u (i.e., an interval of
points that are farther from the origin than is the point w); thus, h' separates the origin
(and B") from B’. We argue as follows. Since §' < 7/4, we know that point v is at least as
close to ray p as it is to hyperplane h; thus, B’ intersects ray p. By Lemma 2.5, v is in fact
closer to point p’ than to any point on h; thus, B’ contains point p’. Now, by construction
of H, |u| < |v|, which implies that |u — p| = |u| — 1 < |v| — 1 < |v—p| = |p' — p|. Thus,
ray p intersects B’ after B”. Since h' separates B’ and B”, ray p must intersect B before B”
before h' before B'.

Second, we claim that A’ does not intersect B; thus, h' separates B from B’. To see this
claim, consider for each g € B the ray p, that is parallel to p, with apex ¢. Since B” is larger
than B, each ray p, must intersect B"”. Now ray p intersects B before B” before h’, so, by
continuity, each ray p, must also intersect B before B” before h'. This shows that A’ cannot
intersect B, since every point ¢ € B is the apex of a ray that intersects A’ only after passing
through B” (which is disjoint from A').

Since we have shown that h’ separates B and B’, this completes the induction step and
thus concludes the proof of the theorem. O

As a result of Lemma ?? and Theorem 2.1 we have:

Theorem 1.3 The number of geometric permutations of a set of n pairwise disjoint balls in

R? is O(nd_l).

Remark 1.4 For general pairwise disjoint convex sets in IR®, the size of a separating set
can be ©(n?). For example, in the standard construction of a Voronoi diagram in IR® with
O(n?) complexity, one needs ©(n?) different plane orientations to separate all pairs of cells.
Hence the current proof of Theorem 2.2 does not extend to families of general convex sets.



