
Balanced Lines, Halving Triangles, and

the Generalized Lower Bound Theorem

Micha Sharir∗ Emo Welzl†

December 11, 2000

1 Introduction

The following three facts are related to each other.

Fact A Let R and B be two disjoint finite planar sets, so that |R ∪B| is even and R∪B
is in general position (i.e., no three points are collinear). Points in R and B are referred to
as ‘red’ and ‘blue,’ respectively. A line ℓ is balanced (w.r.t. (R,B)) if ℓ passes through a red
point and a blue point, and on both sides of ℓ, the number of red points minus the number
of blue points is the same.

The number of balanced lines is at least min{|R|, |B|}.

This number is attained, if R and B can be separated by a line.

Fact B n ∈ N. Let Q be a set of 2n + 1 points in 3-space in general position (i.e., no
four points are coplanar). A halving triangle of Q is a triangle spanned by three points in
Q such that the plane containing the three points equipartitions the remaining points of Q.

The number of halving triangles is at least n2.

This number is attained, if Q is in convex position.

Fact C d ∈ N. Let P be a convex polytope1 which is the intersection of d+4 halfspaces in
general position in d-space2 (i.e., no d + 1 bounding hyperplanes meet in a common point).
Let its edges be oriented according to a generic linear function (edges are directed from
smaller to larger value; ‘generic’ means that the function evaluates to distinct values at the
vertices of P).

The number of vertices with ⌈d
2⌉ − 1 outgoing edges is at most the number of vertices

with ⌈d
2⌉ outgoing edges.3
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1By ‘polytope’ we imply that it is bounded!
2Therefore, either P is empty, or it is a simple convex d-polytope with at most d + 4 facets. All vertices

are incident to d edges. Our set-up is chosen in this way, in order to have a clean relation to the other
statements.

3In fact, for all 1 ≤ j ≤ ⌈d/2⌉, the number of vertices with j − 1 outgoing edges is at most the number of
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This is tight if P is empty.

(A) has been recently proved4 by J.Pach and R. Pinchasi [7], answering a question of
G. Baloglou’s. (C) is a very special case of the Generalized Lower Bound Theorem (GLBT)
for simple polytopes, which—in turn—is part of the g-Theorem proved by R. P. Stanley [8]
(thereby answering a conjecture by P. McMullen, who later provided also an alternative
proof [6]); cf. also [10]. It was recently shown that (B) and (C) can be derived from each
other [9]. In Section 2 we present a simple proof of the equivalence (A⇔B). That is, (A)–(C)
are equivalent to each other.5 In Section 3, we give an alternative proof of the equivalence
(A⇔C). Clearly, that is already implied by (A⇔B⇔C), but we include here an argument
for this specific setting for the sake of completeness.

On one hand, this means that the result of [7] admits a proof that is considerably simpler
than their original proof, via the GLBT. On the other hand, Pach and Pinchasi’s proof has
merits of its own, because (i) no purely combinatorial proof of the GLBT (such as that in
[7]) has been previously known (not even for the special case (C) equivalent to the balanced
line problem), and (ii) that proof is based on allowable sequences in the dual, and thus (A)
applies also for oriented matroids.

2 Balanced Lines and Halving Triangles

We first transform the balanced lines problem (A) to yet another problem (D) involving
halving triangles in three dimensions, which appears to be new.

Assume that the points of R ∪ B (as in (A)) lie in the plane z = 1. Project these
points onto the unit sphere centered at the origin O by mapping each point r ∈ R to
r∗ = r/‖r‖, and each point b ∈ B to b∗ = −b/‖b‖. Let S0 denote the resulting set of
projected points, and put S = S0 ∪ {O}. By a small perturbation of R ∪ B that does not
change the combinatorial type of this set, we may assume that S is in general position.

Observe the following properties, whose proofs are straightforward:

(i) The xy-plane π0 separates S0 into sets of cardinalities |R| and |B|.

(ii) For r ∈ R and b ∈ B, the line passing through r and b is a balanced line iff the triangle
Or∗b∗ is a halving triangle of S. In particular, this establishes a correspondence
between the balanced lines in R∪B and those halving triangles of S that are incident
to O and are crossed by π0 (i.e., π0 intersects their relative interior).

(iii) The point O is an extreme point of S if and only if R and B are separated by a line.

Moreover, we can apply a reverse transformation as follows. Let Q be any set of 2n + 1
points in 3-space in general position. Let q0 ∈ Q be a fixed point, and let π0 be a plane
of Q that passes through q0 and through no other point of Q. Let π be a plane parallel to

vertices with j outgoing edges. And for d odd, and j = ⌈d/2⌉, these numbers are even equal. But that will
not be relevant in our context.

4 The statement in [7] is restricted to the case |R| = |B| = n. Then a balanced line must have the same
number of red and blue points on each side, and there are at least n such balanced lines.

5Of course, true statements are always equivalent; we mean that these facts can be derived from each
other in a fashion that is significantly simpler compared to the proofs of the individual statements.
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π0. Map each point q ∈ Q \ {q0} to the point of intersection of π with the line that passes
through q and q0. Denote by R (resp. B) the subset of points on π that are images of points
of Q that lie in the side of π0 that contains (resp. does not contain) π.

(iv) A triangle q0q1q2, for q1, q2 ∈ Q, is a halving triangle crossed by π0 if and only if the
line that passes through the images of q1 and q2 is a balanced line for (R,B).

These properties imply the equivalence (A⇔D) of the result of Pach and Pinchasi and the
following assertion (D).

Fact D n ∈ N. Let Q be a set of 2n + 1 points in 3-space in general position. Let q0 ∈ Q
be a fixed point, and let π0 be a plane of Q that passes through q0 and through no other
point of Q, and separates Q \ {q0} into two sets of cardinalities k and 2n − k.

There are at least min{k, 2n − k} halving triangles of Q that are incident to q0 and are
crossed by π0.

This number is attained, if q0 is an extreme point of Q.

Let us first show that, indeed, for q0 extreme, the number of halving triangles of Q
that are incident to q0 and are crossed by π0 equals min{k, 2n − k}. Project Q0 = Q \ {q0}
centrally from q0 onto a plane parallel to a supporting plane of Q at q0; denote the projected
set by Q∗

0. The plane π0 projects to a line λ that separates Q∗
0 into sets of cardinalities k

and 2n − k. It is then easy to check that, for points q1, q2 ∈ Q0, the triangle q0q1q2 is a
halving triangle of Q crossed by π0 if and only if the segment q∗1q

∗
2, connecting the images

q∗1, q∗2 of q1, q2, is a halving edge6 of Q∗
0 that is crossed by the line λ. By Lovász’ lemma

[3, 5], the number of such edges is exactly min{k, 2n − k}.

We proceed to a proof of implication (D ⇒ B). Suppose (D) holds. Consider a set Q of
2n+1 points. Let πq, for q ∈ Q, be pairwise parallel planes such that πq ∩Q = {q} for each
q ∈ Q. Every halving triangle ∆ of Q is crossed by exactly one of these planes which is also
incident to a vertex of ∆ (a plane crosses a triangle if it contains one of the three vertices,
and separates the other two). Hence, there are at least

2n+1∑

i=1

min{i − 1, 2n + 1 − i} = n2

halving triangles, which implies (B). (By the preceding argument, equality is attained when
Q is in convex position.)

Finally, let us provide the proof of implication (B ⇒ D). Suppose that assertion (D) is
false. Thus there exist a set Q of 2n+1 points, a parameter 0 ≤ k ≤ 2n, a point q0 ∈ Q and
a plane π0 passing through q0 and partitioning Q \ {q0} into two sets of cardinalities k and
2n− k, such that the number c of halving triangles of Q incident to q0 and crossed by π0 is
strictly smaller than min{k, 2n− k}. First, we project Q0 = Q \ {q0} from q0 onto a sphere
centered at q0; let Q′

0 denote the resulting set of projected points, and Q′ = Q′
0 ∪ {q0}.

In this way, the collection of halving triangles incident to q0 did not change, nor did the
number of points on either side of π0. Therefore Q′, q0 and π0 still provide a configuration
contradicting (D). Now let πq, for q ∈ Q′

0, be planes parallel to π0 with πq ∋ q for each q.

6An edge whose containing line equipartitions Q∗
0 \ {q∗1 , q∗2}.
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If necessary, rotate π0 slightly about q0 so that πq ∩ Q′ = {q} for each q ∈ Q′
0. As in the

previous argument, every halving triangle of Q′ is crossed by exactly one of the planes in
{π0} ∪ {πq | q ∈ Q′

0} (which is also incident to a vertex of the triangle). Since all points
apart from q0 are extreme in Q′, the number of halving triangles of Q′ is exactly

c − min{k, 2n − k}
︸ ︷︷ ︸

<0

+
2n+1∑

i=1

min{i − 1, 2n + 1 − i}

︸ ︷︷ ︸

=n2

< n2 . (1)

The equivalence (B⇔D), and thus (B⇔A) is established.

Remark 1 Consider Q′
0 ∪ {q0} as in the argument just given. Let π′ be another plane

through q0 that partitions Q′
0 into sets of cardinalities k′ and 2n − k′, and let c′ be the

number of halving triangles incident to q0 and crossed by π′ (this is also the number of such
halving triangles in the original Q). Since the left-hand side of (1) is equal to the number
of halving triangles of Q′

0 ∪ {q0}, it follows that

c − min{k, 2n − k} = c′ − min{k′, 2n − k′} .

Hence, if there were a configuration contradicting (D), then there would also be one with a
plane π0 that equipartitions Q \ {q0}, and, thus, if there were a configuration contradicting
(A), then there would also be one with |R| = |B|. That is, the ‘special case’ of (A) treated
in [7] (see footnote 4) immediately entails the more general formulation in (A).

3 Balanced Lines and the GLBT

We want to exhibit a more direct relation between (A) and (C). We will not do so with (C)
itself, though, but replace it by the following assertion (E), which is known to be equivalent
to (C) by the Gale transform [9].

Fact E m ∈ N. Let S be a set of m points in 3-space, and let ρ be a directed ray pointing
at its apex x, such that S ∪ {x} is in general position, and ρ is disjoint from S and from
all segments connecting points in S. An oriented triangle spanned by three points in S is
called a j-triangle of S, if there are exactly j points of S on its positive side.7 We say that
ρ enters a j-triangle ∆ of S, if it intersects ∆ from the positive side to the negative side
of it (i.e., x is on the negative side of ∆). If ρ crosses ∆ from the negative to the positive
side, then we say that ρ leaves ∆. Let gj(x, S) be the number of j-triangles entered by ρ
minus the number of j-triangles left by ρ.

g⌈(m−4)/2⌉(x, S) ≥ 0.

Equality holds if x is extreme in S ∪ {x}.

First note that if m is odd, then ⌈(m − 4)/2⌉ = m − 3 − ⌈(m − 4)/2⌉. Hence, for
every ⌈(m− 4)/2⌉-triangle entered there is one that is left (the same triangle with opposite
orientation). Therefore, g⌈(m−4)/2⌉(x, S) = 0 for all x. So the statement is interesting for
even m only.

7The orientation of the triangle declares one side of the plane it spans as the positive side. Obviously,
the opposite orientation of a j-triangle is an (m − 3 − j)-triangle.
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In fact, as already suggested by the above notation, it can be shown that gj(x, S) is
a function of x that is independent of the choice of the ray ρ pointing at it. From this it
immediately follows that gj(x, S) = 0 for all j, if x is extreme in S ∪ {x}. Using the Gale
transform (see [9]), one can show that if x is not extreme in S ∪ {x}, then there is a simple
polytope P in R

m−4 with at most m facets, such that the so-called g-vector of P is exactly

the vector (gj(x, S))
⌊(m−4)/2⌋
j=0 ; see [9] for details (if x is extreme, P is the empty polytope).

The nonnegativity of this vector is the GLBT.8 We refer to [9] for the equivalence9 (E⇔C);
see also [4].

We have prepared the ground for a proof of equivalence (D⇔E). Assume the set-up of
statement (D); recall that Q has 2n + 1 points. Put Q0 = Q \ {q0}, and let H(q), for any
q ∈ π0, denote the number of halving triangles of Q0 ∪ {q} that are incident to q and are
crossed by π0. We draw a line ℓ in π0 passing through q0, move a point q along ℓ from
infinity to q0, and keep track of the changes in H(q) during this motion (see [2] for related
results obtained via the this continuous motion paradigm, and [1, Chapter 3.6-3.8] for a
thorough treatment of the combinatorial changes occurring in such a motion).

Initially, q is an extreme point of Q0 ∪ {q} and so H(q) = min{k, 2n − k}.

As q moves along ℓ, H(q) changes only when q becomes coplanar with three points
a, b, c ∈ Q0, so that the plane passing through these four points bounds two open halfspaces,
one of which contains n − 1 points of Q0 and the other n − 2. Three cases may arise, as
illustrated in Figure 1.

(a) The four points a, b, c, q are in convex position, say in this counterclockwise order
(Figure 1(a)).

(b) The four points are not in convex position but q is an extreme point of the quadruple,
and, say, c lies in the interior of qab (Figure 1(b)).

(c) The four points are not in convex position and q is the middle point (Figure 1(c)).

Each case is further divided into two subcases, depending on whether q reaches the plane
of abc from the side containing n− 2 points of Q0 (subcase (i)), or from the side containing
n − 1 points of Q0 (subcase (ii)). Let δ denote the line of intersection of π0 and the plane
of abc (drawn as a dashed line in Figure 1).

In case (a.i), the triangles abc, qac were halving triangles of Q0 ∪ {q} before q reached
the plane of abc, and the triangles qab, qbc are halving triangles after q leaves that plane.
If δ does not cross the quadrangle abcq (at the time of coplanarity) then π0 does not cross
the triangle qac before q reaches the plane of abc, and does not cross qab, qac after q leaves
that plane. Hence H(q) does not change in this case. On the other hand, if δ crosses abcq
then π0 crosses the triangle qac before q reaches the plane of abc, and crosses exactly one
of the triangles qab, qac afterwards. Hence H(q) does not change in this case either. Case
(a.ii) is treated in a fully symmetric manner, and H(q) does not change in this subcase as
well. In cases (b.i) and (b.ii) the local behavior at q is the same as in the corresponding
subcases (a.i) and (a.ii), so H(q) does not change in these cases either.

8And the characterization of all possible g-vectors is the g-Theorem.
9In fact, in the set-up of (C), the number of vertices with j − 1 outgoing edges is at most the number of

vertices with j outgoing edges, for all j ≤ d

2
, and this is true in even and odd dimension.
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Figure 1: Three cases of coplanarity: (a) The four points are in convex position. (b) The
four points are not in convex position but q is an extreme point of the quadruple. (c) The
four points are not in convex position and q is the middle point.
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In case (c.i), the triangle abc was a halving triangle of Q∪{q} before q reached the plane
of abc, and the triangles qab, qbc and qac are halving triangles after q leaves that plane. The
line δ always crosses exactly two of these three triangles, which means that H(q) increases
by 2 in this subcase. By a symmetric reasoning, H(q) decreases by 2 in subcase (c.ii). In
each of these subcases, abc spans, depending on its orientation, an (n − 2)-triangle and an
(n− 1)-triangle of Q0. In case (c.i), q enters the (n− 2)-triangle10 spanned by abc, or more
precisely, the ray on which q moves to q0 enters this (n− 2)-triangle. In case (c.ii), q leaves
the (n − 2)-triangle spanned by abc.

We have shown
H(q0) = min{k, 2n − k} + 2gn−2(q0, Q0) .

So H(q0) ≥ min{k, 2n−k} iff gn−2(q0, Q0) ≥ 0. The latter is the assertion of (E) (note that
n − 2 = ⌈(2n − 4)/2⌉). This completes the proof.

Remark 2 This implication does not hold if we consider the number of j-triangles of Q,
for j ≤ n − 2, that are incident to q0 and are crossed by π0. In this case, H(q) changes by
+2 when q enters a (j − 1)-triangle of Q0 or when q leaves a j-triangle of Q0, and H(q)
changes by −2 when q leaves a (j − 1)-triangle of Q0 or when q enters a j-triangle of Q0.
In this case we have

H(q0) = 2min{j + 1, n − 2 − j, k, 2n − k} + 2

(

gj(q0, Q0) − gj−1(q0, Q0)

)

,

which does not lead to the same implication as in the preceding proof.

4 Discussion

The purpose of this paper is to show the relation between the balanced lines problem (A)
of [7], some problems involving halving triangles in 3-space, and the Generalized Lower
Bound Theorem. This sheds some extra light on the result in [7]. It explains the difficulty
in obtaining a purely combinatorial proof of (A), as experienced in [7]. It highlights the
additional merit of the proof of [7], in providing, implicitly, the first purely combinatorial
proof of the special case of the Generalized Lower Bound Theorem described in (C).

In doing so, we also obtained the property (D), which seems to be new, and can be
regarded as another application of the machinery developed in [9].

Several interesting challenges remain.

• Can one obtain a direct and simpler proof of the balanced line result (A)?

• Can one obtain a purely combinatorial proof of the Generalized Lower Bound Theo-
rem, beyond the special case established (indirectly) here?
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