
Selecting Heavily Covered Points by Pseudo-circles, Spheres andRectangles�Shakhar Smorodinskyy Micha SharirzOctober 23, 2002AbstractIn this paper we prove several point-selection theorems concerning objects \spanned" by a�nite set of points. For example, we show that for any set P of n points in IR2 and any set Cof m � 4n distinct pseudo-circles, each passing through two points of P , there is a point in Pthat is covered by (i.e., lies in the interior of) 
(m2=n2) pseudo-circles of C. Similar problemsinvolving higher dimensions are also studied.Most of our bounds are asymptotically tight, and they improve and generalize results ofChazelle et al. [7], where weaker bounds for some of these cases were obtained.1 IntroductionIn this paper we study several point selection problems of the following avor. Let P be a set ofn points in IRd, and let D be a family of m distinct objects of some �xed kind (such as spheres,discs, triangles, etc.), so that the boundary of each object in D passes through some distinct tupleof points of P . We wish to assert that there always exists a point that is contained in many objectsof D, or that there exists a line that stabs many objects of D, etc.Problems of this kind have been studied in the past. B�ar�any [2] has shown that for any �niteset P of n points in IRd there is always a point that lies in the interior of 
(� nd+1�) = 
(nd+1)simplices spanned by P , that is, simplices whose vertices belong to P (see also [4]). In otherwords, a �xed percentage of all the simplices spanned by P have a nonempty intersection. In theplane, this means that for any set P of n points, there exists a point that lies in the interior of
(n3) triangles with vertices from P , which is asymptotically tight. This raises the following moregeneral question: For given positive parameters n and t, what is the maximum number f(n; t),such that, for any set P of n points in IR2 and any set T of t triangles spanned by P , there existsa point that lies in the interior of at least f(n; t) triangles of T . Aronov et al. [1] have shownthat f(n; t) = 
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points, and partition the remaining points into two subsets of equal size). Indeed, using the abovebound, combined with Lov�asz Lemma [9] for halving triangles (i.e., the triangles spanned by thetriples of points that span the halving planes), Aronov et al. were able to show that any set of npoints in IR3 determines at most O(n8=3 log5=3 n) halving planes.A di�erent motivation for this type of problems was introduced by Chazelle et al. in [7]. Theirgoal was to reduce the size of Delauney triangulations for �nite point sets in IR3. For such a setP , the Delauney triangulation, D(P ), consists of all tetrahedra spanned by the points of P whosecircumscribed spheres enclose no point of P in their interior (see, e.g., [6]). Depending on howthe points are distributed, the number of tetrahedra can vary between linear and quadratic in n.The goal in [7] was to �nd, for any set P on n points in IR3, an additional small set Q of pointssuch that D(Q [ P ) is guaranteed to have only a small number of tetrahedra. The approach in [7]was to �nd a point q that lies inside \many" spheres circumscribing the tetrahedra of the originalDelauney triangulation. Adding q to P would remove all corresponding tetrahedra and replace themby at most a linear number of new tetrahedra, all incident to q. Thus, the problem of slimmingdown 3-dimensional Delauney triangulations can be attacked by showing that if there are \many"circumscribing spheres then there must be a point enclosed by \many" of them. The main toolused in [7] was the following d-dimensional selection lemma for axis-parallel boxes: For any set Pof n points in IRd and any set of m distinct d-dimensional boxes, each of which is axis-parallel anddetermined by a unique pair of points of P (as opposite vertices), there is a point that is coveredby 
(m2=(n2 log2d�2 n)) of the boxes. Then, observing that any diametrical sphere spanned by twopoints p and q (i.e., the sphere for which pq is a diameter) must contain the box determined by pand q, it follows that the same lower bound also holds for points covered by diametrical spheres.Using additional arguments, the analysis was extended to any collection of m spheres, each passingthrough a distinct pair of points of P , showing that there always exists a point enclosed by at least
(m2=(n2 log2d n)) of the spheres.Both problems that originally motivated the study in [1, 7], namely the problem of halvingplanes and of sliming Delauney Triangulation in 3-space, have since been further improved (see[14] or [3], respectively). Nevertheless, point selection theorems of this kind remain of independentinterest. In particular, the bounds obtained in [1, 7] are not shown to be optimal (and, as thepresent paper shows, many of them are not optimal).In this paper we improve and generalize some of the bounds obtained in [7], using a fairly simpleand more direct approach to tackle the problem. We outline the main ideas employed in all of ourresults, using the following speci�c problem: Given a set P of n points and a set C of m distinctdiscs in the plane, each passing through a distinct pair of points of P , we wish to show that there isa point in P that lies in \many" of the given discs. First, we de�ne a con�guration to be a pair ofa point in P and a circle in C, such that the point lies inside the circle. We aim to show that thereare many such con�gurations. We show that ifm is large enough (speci�cally, larger than 3n), thenthere exists at least one con�guration. Then, using a random sampling technique, similar to thatused in the proof of the Crossing Lemma of Leighton and Ajtai et al. (see [12, 13]), we derive alower bound f(n;m) on the number of such con�gurations. Finally, by the pigeonhole principle, atleast one of the points of P participates in at least f(n;m)=n con�gurations, yielding the desiredlower bound.We now summarize the main results and present the outline of this paper. In Section 2 weintroduce our technique, by showing that, for any set P of n points in the plane and any set of mdistinct discs, each of which is spanned by a pair of points (resp., a triple of points) of P , thereis a point in P that lies in the interior of 
(m2=n2) (resp., 
(m3=2=n3=2)) of the discs. A simpleapplication of the latter analysis is an alternative derivation of the bound O(nk2) on the overall2



Table 1: Summary of point selection bounds results.objects dim prev bound new bound stab. pt in Pcircles through point pairs 2 
( m2n2 log4 n) 
(m2n2 ) yescircles through triples of points 2 - 
(m3=2n3=2 ) yespseudo-circles through point pairs 2 - 
(m2n2 ) yespseudo-circles through triples of points 2 - 
(m3=2n3=2 ) yesarbitrary spheres through point pairs d 
( m2n2 log2d(m2=n) ) 
(m2n2 ) nolines stabbing discs through point pairs 3 - 
(m2n2 ) -axis-parallel rectangles 2 
( m2n2 log2 n) O( m2n2 log(n2=m) ) nocomplexity of the �rst j-order Voronoi diagrams of a set P of n points in the plane, for j = 1; : : : ; k(see [8]). We describe this application in Section 2. In Section 3, we show how to generalize theseresults to arbitrary families of pseudo-circles (closed Jordan curves, every two of which intersect atmost twice). Section 4 deals with the higher dimensional analog of this problem, involving n pointsand m distinct spheres in IRd. We show that there exists a point (not necessarily of P ) that liesinside 
(m2=n2) spheres. We also study a variant where we have n points in IR3 and m distinctdiscs, each passing through a pair of points. We show that there exists a line that stabs 
(m2=n2)of the given discs. In Section 5 we show that all the results mentioned so far are asymptoticallytight in the worst case. In Section 6 we show that for any set P of n points in the plane and anyset of m distinct axis-parallel rectangles, each of which contains a pair of points of P as oppositevertices, there exists a point (not necessarily of P ) that lies inside 
(m2=n2 log2 n) rectangles. Thisbound was proved in [7], but the proof technique that we present is totally di�erent (and followsthe same general approach used in the preceding sections). We also present an improved upperbound. Namely, for any n and m we construct a set P of n points in the plane and m axis-parallelrectangles spanned by pairs of points of P such that no point in the plane lies inside more thanO(m2=n2 log(n2=m)) rectangles.Each of our results either improves the previous corresponding result of [7], or is the �rstnontrivial bound for the problem. Furthermore, the two-dimensional results of Sections 2 and 3 arestronger than that of [7] in the additional sense that they guarantee the existence of a stabbingpoint that belongs to P , rather than an arbitrary point in the plane.Table 1 summarizes the results obtained in this paper.2 Discs Spanned by Points in IR2Theorem 2.1 Let P be a set of n points and let D be a set of m � 4n distinct discs in IR2.(i) If the boundary of each disc passes through a distinct pair of points of P , then there existsa point of P that is covered by 
(m2=n2) discs.(ii) If the boundary of each disc passes through a triple of points of P , then there exists a pointof P that is covered by 
(m3=2=n3=2) discs.Both bounds are tight in the worst case, in the strong sense that there are constructions involvingn points and m discs, for which no point in the plane is covered by more than O(m2=n2) discs incase (i), or O(m3=2=n3=2) discs in case (ii).First, we prove the following `boot-strapping' lemma. De�ne a con�guration to be a pair3



(p; d) 2 P �D such that p lies in d, and p is not one of the two points (in case (i)) or three points(in case (ii)) that de�ne d.Lemma 2.2 Let P and D be as in Theorem 2.1 and let X denote the number of con�gurations inP �D. Then X � m� 3n in case (i), and X � m� 2n in case (ii).Proof: Suppose �rst that the points of P are in general position, in the sense that no four of themare cocircular. It is well known (see, e.g., [6]) that the number of pairs of points p; q 2 P , suchthat there is an empty circle passing through p and q (i.e., a circle containing no points of P in itsinterior), is at most 3n � 6 (those pairs are the Delauney edges of P ) and the number of triplesof points p; q; r 2 P such that the circle passing through them is empty, is at most 2n � 4 (thosetriples form the Delauney triangles of P ). If the points are not in general position, the followingmodi�ed property holds: The number of distinct circles that pass through pairs (resp., triples) ofpoints of P is at most 3n� 6 (resp., 2n� 4).We �rst present the proof of the �rst inequality, which proceeds by induction on m � 3n. Form � 3n < 0 the claim is trivial. Assume that the claim holds for some non-negative integer k(namely, for m and n satisfying m � 3n = k). Suppose that m � 3n = k + 1. Since m > 3n,there must exist a nonempty disc d 2 D, which generates at least one con�guration with the pointsof P . After removing d from D we are left with m � 1 discs, n points, and X 0 con�gurations,where X � X 0 + 1. We have m� 1� 3n = k, so we can apply the induction hypothesis to obtainX 0 � m� 1 � 3n. Thus X � X 0 + 1 � m� 3n. This completes the proof of the �rst claim of theLemma. The proof of the second claim is similar. 2Proof of Theorem 2.1: Let X denote the number of con�gurations, as in Lemma 2.2. We aimto show that the number of such con�gurations is \large". We take a random sample P 0 of thepoints in P by choosing each point independently with some �xed probability p (to be determinedlater on). Let D0 denote the subset of discs in D, all of whose de�ning points are in P 0. Putn0 = jP 0j;m0 = jD0j, and let X 0 denote the number of con�gurations all of whose de�ning points arein P 0. Consider �rst case (i) of the theorem. By Lemma 2.2 we have X 0 � m0� 3n0. Note that X 0,m0 and n0 are random variables, so the above inequality holds for their expectations as well. Hence,Exp[X 0] � Exp[m0]� 3Exp[n0]. It is easily seen that Exp[n0] = pn. We have Exp[m0] = p2m andExp[X 0] = p3X. Indeed, the probability that a given disc d 2 D belongs to D0 is the probabilitythat the two points de�ning d are chosen in P 0, which is p2 for any �xed d 2 D. Similarly, theprobability that a con�guration of a point p 2 P that is covered by a disc passing through twoother points r; q 2 P is counted in X 0 is p3. Substituting these values in the above inequality, weget p3X � p2m � 3pn, or X � mp � 3np2 . This inequality holds for any 0 < p � 1, and we choosep = 4n=m (by assumption, p � 1) to obtain X � m216n . By the pigeonhole principle, one of thepoints in P is covered by at least X=n � m216n2 discs. This completes the proof of case (i) of thetheorem.For case (ii), we have X 0 � m0 � 2n0, Exp[m0] = p3m, and Exp[X 0] = p4X, which impliesthat p4X � p3m � 2pn, or X � mp � 2np3 . This inequality holds for any 0 < p � 1, and we choosep = 2pn=m (again, p � 1), to obtain X � m3=24n1=2 . As above, one of the points in P is covered by atleast X=n � m3=24n3=2 of the discs. This completes the proof of case (ii) of the theorem. The proofs ofthe worst-case optimality of these bounds are delegated to Section 5.Remark 2.3 A simple application of the above analysis is an alternative derivation of the boundO(nk2) on the overall complexity of the �rst j-order Voronoi diagrams of a set P of n points in4



the plane, for j = 1; : : : ; k (see [8]). Speci�cally the vertices of those diagrams are exactly thecenters of discs passing through three points of P and containing at most k� 1 points of P in theirinterior. Let m denote the number of such discs. By the proof of Theorem 2.1, the number ofcon�gurations of a point in P inside such a disc is 
(m3=2=n1=2). On the other hand, the numberof such con�gurations is at most mk, since no disc contains more than k points in its interior.Solving the resulting inequality, we obtain m = O(nk2). Many other variants can also be tackledusing the above analysis. For example, the maximum number of discs, each passing through a tripleof points of P , so that no point of P is contained in more than k of them is O(nk2=3)-use the upperbound nk on the number of such con�gurations. See also [13] for related work.3 Pseudo-circles and Points in IR2In this section we generalize Theorem 2.1 to an arbitrary collection of pseudo-circles. We beginwith several technical de�nitions and lemmas:De�nition 3.1 A simple closed Jordan curve (resp., a simple Jordan arc) is the image of a con-tinuous 1-1 mapping from the unit circle (resp., from [0; 1]) to IR2.We next state the famous Jordan theorem for closed Jordan curves (see, e.g., [11]):Theorem 3.2 (Jordan Theorem) Let  be a simple closed Jordan curve. Then the complementof  (i.e., IR2 n ) consists of exactly two connected components, one of which is bounded and theother is unbounded.For a simple closed Jordan curve , we say that a point p lies in the interior (resp., exterior) of if p lies in the bounded (resp., unbounded) connected component of the complement of .Lemma 3.3 Let  be a simple closed Jordan curve and let p and q be two points in IR2 n. Then pand q lie in di�erent connected components of IR2 n if and only if every simple Jordan arc betweenp and q that intersects  only at points where the curves cross each other, meets  an odd numberof times. See Figure 1(i).Lemma 3.4 Let p; q be two points in the plane and let 1; 2; 3 be three pairwise openly disjointsimple Jordan arcs with end-points p and q. Then the relative interior of exactly one of the arcs,say 1, lies fully in the interior of the closed Jordan curve 2 [ 3. See Figure 1(ii).The above two lemmas are easy consequences of the Jordan theorem.De�nition 3.5 A family of closed Jordan curves is called a family of pseudo-circles if any two ofits members are either disjoint or cross in exactly two points.De�nition 3.6 Let � be a family of graphs of totally de�ned continuous univariate functions. �is called a family of pseudo-parabolas if any two of its members are either disjoint or intersect inexactly two crossing points.11Actually, it suÆces to assume that each pair intersect at most twice, because one can always modify a familyof curves that satisfy this latter condition, to turn it into a family of curves where each intersecting pair cross eachother exactly twice. 5
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Figure 1: (i): A Jordan arc between p and q (dashed) intersects a closed Jordan curve, thatseparates p and q, an odd number of times. (ii): The relative interior of the arc 1 is contained inthe interior of the closed Jordan curve 2 [ 3.Lemma 3.7 Let P be a set of n points in the plane. Let C be a family of m distinct pseudo-circles,such that every member of C passes through a distinct pair of points p; q 2 P , and such that allcurves in C are empty (i.e., no point of P lies in the interior of any curve in C). Then m � 3n�6.Proof: Let G be the graph whose vertices are the points in P and whose edges are the m pointpairs that de�ne the curves of C. For an edge (p; q) of G, let cpq be the curve in C passing throughp and q. We embed G in the plane, so that the edge (p; q) is drawn along one of the two possibleportions of cpq delimited by p and q, which we choose arbitrarily and denote it by pq. We will showthat in the above drawing of G, any two edges on four distinct vertices intersect an even numberof times. This, combined with the Hanani-Tutte's theorem [15] (see also [5, 10]), implies that G isplanar (and simple) and hence m � 3n� 6.Assume to the contrary that there are four vertices of G, p1; q1; p2; q2, such that the arc p1q1(1 for short) and the arc p2q2 (2 for short) intersect an odd number of times. Since C is a familyof pseudo-circles, any two such edges intersect at most twice. Hence if 1 and 2 intersect an oddnumber of times then they intersect exactly once. See Figure 2 for an illustration. Let c1 (resp., c2)denote the pseudo-circle passing through p1 and q1 (resp., through p2 and q2). If 2 intersects c1exactly once, then, by Lemma 3.3, p2 and q2 must lie in di�erent connected components of IR2 n c1.Hence one of the two points p2; q2 must lie in the interior of c1, contradicting the assumption thatc1 is empty. Therefore, 2 must intersect c1 exactly twice. This implies that the second portion 02of the curve c2 between p2 and q2 (i.e., c2 n 2) does not intersect 1. Hence 1 intersects c2 exactlyonce. Again, by Lemma 3.3 one of the points p1; q1 must lie in the interior of c2 (and one in theexterior of c2), a contradiction. This completes the proof of the lemma. 2Similar to the case of discs, we de�ne a con�guration, with respect to a set P of points and aset C of pseudo-circles, to be a pair (p; c) 2 P � C such that p lies in the interior of c.Lemma 3.8 Let P be a set of n points in the plane. Let C be a family of m distinct pseudo-circlessuch that every member of C passes through a distinct point pair p; q 2 P . Let X denote the numberof con�gurations in P �C. Then X � m� 3n. 6
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Figure 2: If the pseudo-circles c1; c2 are empty, the arcs 1; 2 cannot intersect just once.Proof: The proof proceeds by induction on m � 3n, using Lemma 3.7, and follows the samereasoning as in the proof of Lemma 2.2. 2Using Lemma 3.8 and the same random sampling technique as in the proof of Theorem 2.1, weobtain the following generalization of Theorem 2.1(i):Theorem 3.9 Let P be a set of n points in the plane. Let C be a family of m � 4n distinctpseudo-circles such that every member of C passes through a distinct point pair p; q 2 P . Thenthere is a point p 2 P that lies in the interior of 
(m2=n2) pseudo-circles in C. The bound isasymptotically tight, as in Theorem 2.1.The proof of the upper bound is delegated to Section 5.Theorem 2.1(ii) can also be generalized to the case of pseudo-circles:Theorem 3.10 Let P be a set of n points in the plane, and let C be a family of m � 4n dis-tinct pseudo-circles such that every member of C passes through a distinct triple of points of P .Then there is a point in P that lies in the interior of 
(m3=2n3=2 ) pseudo-circles in C. This bound isasymptotically tight, as in Theorem 2.1.The proof of the upper bound is delegated to Section 5. For the lower bound, we �rst prove thefollowing Lemma, which extends the result of Lemma 2.2.Lemma 3.11 Let P be a set of n points and let C be a family of m distinct pseudo-circles, suchthat every curve c 2 C passes through a distinct triple of points from P and has an empty interior(i.e., no point of P lies in the interior of c). Then m � 2n� 4.Proof: The proof is an easy consequence of the following claim: For a given pair p; q 2 P , thereare at most two curves in C that pass through both p and q. Indeed, assume to the contrarythat there are three such curves c1; c2; c3 2 C. Each such curve passes through both p and q andthrough another point of P . Denote those points, respectively, by r1, r2 and r3. Denote by i theportion of the curve ci that is delimited by p and q and contains ri, for i = 1; 2; 3; See Figure 3for an illustration. Since the pseudo-circles c1 and c2 intersect at points p and q, it follows that 1is either fully interior or fully exterior to c2 (except for the endpoints p and q). However, since c27



has an empty interior and 1 contains r1, 1 must be exterior to c2. Similarly, 2 is exterior to c1.This is easily seen to imply that the union of 1 and 2 is a closed Jordan curve , whose interioris the union of the interiors of c1 and of c2 (See Figure 3). Similarly, this holds for the pair 1; 3and for the pair 2; 3. By Lemma 3.4, one of the arcs 1; 2; 3 lies in the interior of the union ofthe two other arcs. Assume without loss of generality that this arc is 3. Then, since 3 containsthe point r3, r3 must lie in the interior of 1 [ 2. This however implies that r3 lies in the interiorof at least one of the pseudo-circles c1; c2, a contradiction.Construct a graph G on the vertex set P , by connecting, for each c 2 C, each pair of pointsp; q 2 P that are consecutive along c, by the corresponding arc pq � c that is delimited by p and q.Arguing as in the proof of Lemma 3.7, each pair of edges of G cross an even number of times, so Gis planar. By what we have just shown, each edge of G has multiplicity at most two, so the numberof edges of G is at most 6n� 12. On the other hand, this number is at least 3m, by construction,so we have 3m � 6n� 12, or m � 2n� 4, as asserted. 2
p
qr22 1

r1c2 c1Figure 3: 1 is the portion of the closed Jordan curve c1 between p and q that contains the pointr1. Similarly, 2 is the portion of c2 that contains r2.An immediate consequence of Lemma 3.11 is the following boot-strapping lemma:Lemma 3.12 Let P be a set of n points in the plane. Let C be a family of m pseudo-circles as inTheorem 3.10. Let X denote the number of con�gurations in P � C. Then X � m� 2n.Proof: The proof proceeds by induction on m � 2n, using Lemma 3.11, and follows the samereasoning as in the proof of Lemma 2.2. 2An application of the same sampling technique as in Theorem 2.1 completes the proof of The-orem 3.10. 2One can use the same proof techniques developed in this section to obtain the following similarresults on points \missing" many curves:Theorem 3.13 Let P be a set of n points in the plane and let C be a family of m � 4n distinctpseudo-circles. (i) If every curve in C passes through a distinct point pair in P , then there is apoint p 2 P that lies in the exterior of 
(m2n2 ) pseudo-circles in C.(ii) If every curve in C passes through a distinct triple of points in P , Then there is a pointq 2 P that lies in the exterior of 
(m3=2n3=2 ) pseudo-circles in C.
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4 Spheres and Points in Higher DimensionsTheorem 4.1 Let P be a set of n points in IRd and let D be a collection of m distinct spheresspanned by distinct pairs of points of P . Then there exists a point (not necessarily in P ) that iscovered by 
(m2n2 ) spheres in D.De�nition 4.2 Let p and q be two points in IRd. The diametrical sphere of the pair fp; qg, denotedÆpq, is the smallest (d�1)-sphere that passes through p and q. Thus, Æpq is centered at z = (p+q)=2,the midpoint between p and q, and has radius � = jpqj2 , half the distance between p and q.Lemma 4.3 Let P be a set of n points in Rd , and let C be a set of m spheres, each passing througha distinct pair of points of P . If m > cdn, for an appropriate positive constant cd that depends ond, then one of the following two cases must occur:(1) There exists � 2 C that contains a point p 2 P in its interior.(2) There exist four distinct points p1; q1; p2; q2 2 P such that �p1q1 ; �p2q2 2 C, and the diametricalsphere Æp2q2 spanned by p2 and q2 intersects the ball bounded by �p1q1 in a set whose measureis at least �d times the measure of Æp2q2, for some absolute positive constant �d that dependson d.Proof: We show that if no con�guration of type (1) arises, then one of type (2) must exist. Anillustration of a con�guration of type (2) is shown in Figure 4(b).Let � be a set of O(1) directions, represented as points on the unit sphere Sd�1, with theproperty that for any direction u there exists a direction u0 2 � such that the angle between u andu0 is smaller than � = 1=2000 radians. Clearly, there exists such a set � whose size, denoted bykd, is O(1=�d�1) = O(1). Put cd = 2kd, and assume that m > cdn.Let G be the graph whose vertices are the points of P and whose edges connect those pairsp; q 2 P for which �pq 2 C. We make G into a directed graph, by replacing each edge of G by twooppositely-oriented directed edges. For each u 2 �, let Gu denote the subgraph of G consisting ofall directed edges (p; q) such that the direction ~pq forms an angle at most � with u. fGugu2� is adecomposition of G into kd (not necessarily edge-disjoint) directed graphs.Since G has more than 4kdn edges, there exists u 2 � such that Gu has more than 4n edges.Color at random each point of P red or blue (with equal probabilities), and consider the bipartitesubgraph G�u of Gu consisting of all directed edges that emanate from a blue point to a red point.The expected number of edges of G�u is more than 4n=4 = n, so there exists a coloring for whichthe resulting G�u has at least n+ 1 edges.For each blue or red vertex p of G�u, erase from the graph the edge (p; q) (or (q; p)) incident top for which the Euclidean length jpqj is the largest (if the points are not in general position, eraseonly one such edge). We erase at most n edges. Let ~pq be a surviving edge, with p blue and q red.By construction, there exist another blue point p0 and another red point q0, such that ~pq0 and ~p0qare edges of G�u and jpq0j � jpqj, jp0qj � jpqj. Suppose, without loss of generality, that jpq0j � jp0qj.See Figure 4(a).Choose  = 0:01. We distinguish between two cases:Case (i) jpq0j > (1+)jpqj: The angles between any pair among the three vectors x = ~pq0, y = ~pq,z = ~p0q is at most 2�. Put x = jxj, y = jyj, z = jzj. Let c denote the center of �pq0 , and let Rdenote its radius. Consider the plane � spanned by c; p; q0. By assumption, q lies outside �pq0 .Let q� denote the point that lies on the shorter circular arc of �\�pq0 at distance jpqj from p (q�exists because jpq0j � jpqj) . The angle � = \q0pq� is smaller than or equal to the angle \q0pq � 2�.9
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Figure 4: The three edges (p; q0), (p; q), (p0; q) in G�u.To see this, refer to Figure 5, and let s be the point of intersection between q�c and pq0. The ballcentered at s and having radius jsq�j is fully contained in �pq0 . This implies that jsqj � jsq�j.Comparing the two triangles spq and spq�, we conclude that \spq � \spq�, as asserted.

c p
qq�q0s�Figure 5: Showing that \spq � \spq�.Clearly, R is the radius of the circumcircle of the triangle q0pq�, so we have, by the Sine Theorem,R = jq0q�j2 sin � :We have jq0q�j � jpq0j � jpq�j = jpq0j � jpqj � 1 +  jpq0j:Hence, R � 2(1 + ) sin 2� jpq0j: (1)We now turn to estimate the measure of the portion of Æp0q that lies inside �pq0 . Let v denotethe center of Æp0q; that is, the midpoint of the segment p0q. The portion under consideration is aspherical cap, whose measure (as a fraction of the total measure of Æp0q) depends only on its centralangle ' subtended at v. This angle in turn is twice the angle at v of the triangle cvw, shown inFigure 6, where w is any point on �pq0 \ Æp0q, which thus satis�es jcwj = R and jvwj = r = radiusof Æp0q. Put jcvj = R + t. We may assume t � 0, for otherwise the angle ' only gets larger; see10



qq0
p�pq0 vp0c tw

Æp0qFigure 6: The interaction between �pq0 and Æp0q.Figure 6. By the Cosine Theorem, we havecos' = (R+ t)2 + r2 �R22r(R+ t) = 2Rt+ t2 + r22r(R+ t) = tr + r2 � t22r(R + t) � tr + r2R: (2)The fraction t=r is estimated as follows.jvcj2 = j ~vp+ ~pcj2 = jvpj2 + jpcj2 + 2 ~vp � ~pc:Hence jvcj = R+ t = R�1 + jvpj2R2 + 2 ~vp � ~pcR2 �1=2 < R�1 + jvpj22R2 + ~vp � ~pcR2 � ;so t < jvpj22R + ~vp � ~pcR ;and tr < jvpj22rR + ~vp � ~pcrR : (3)Since \vqp � 2�, the side vp cannot be the longest in the triangle pvq. Moreover, jvqj = r, byde�nition, and jpqj � jp0qj = 2r. Hence jvpj � max fjpqj; jvqjg � 2r.We have ~vp = 12z� y. Hencej ~vp � ~pcj = ����12z � ~pc� y � ~pc���� = ����Rjp0qj2 cos\( ~p0q; ~pc)�Rjpqj cos\( ~pq; ~pc)���� �rR�cos\( ~p0q; ~pc) + 2 cos\( ~pq; ~pc)� :Substituting everything in (3), we obtaintr < 2rR + �cos\( ~p0q; ~pc) + 2 cos\( ~pq; ~pc)� :Denote the central angle \pcq0 by 2 . The angle between ~pc and ~pq0 is thus �2 � . Since the anglesbetween ~pq and ~pq0 and between ~p0q and ~pq0 are both at most 2�, it follows that\( ~p0q; ~pc); \( ~pq; ~pc) � �2 �  � 2�;11



and thus cos\( ~p0q; ~pc); cos\( ~pq; ~pc) � sin( + 2�):We have sin = jpq0j=(2R), sosin( + 2�) � sin + sin2� � jpq0j2R + sin 2�:We thus have cos' � tr + r2R < 5r2R + 3� jpq0j2R + sin 2�� :Since r = jp0qj=2 � jpq0j=2, we obtaincos' � 11jpq0j4R + sin 2� � 11(1 + ) sin 2�2 + sin 2� < 11 + 132 sin 2� < 3=4;say, by our choice of � and .We have thus shown that the central angle of the cap of Æp0q inside �pq0 is at least 2 arccos 3=4,so p; q0; p0; q form a con�guration of type (2), with an appropriate constant �d .Case (ii): jpq0j � (1 + )jpqj: In this case we havejpqj � jp0qj � jpq0j � (1 + )jpqj: (4)This says, informally, that the three vectors ~pq; ~pq0; ~p0q are nearly the same. One di�erence betweenthe two cases is that now we can no longer claim that the radius R of �pq0 must be large. Instead,we tackle the problem in a di�erent way.
p

q
p0

q0 v� zx y
Figure 7: Case (ii) of the proof.Let v denote, as above, the midpoint of p0q, and refer to Figure 7. We show that the angle� = \vpq0 is small (informally, this is because v is close to the midpoint of pq0). We havejvpjjpq0j cos � = ~pv � ~pq0:Since ~pv = y� 12z, we havejy � 12zjx cos � = (y � 12z) � x = xy cos �1 � 12xz cos �2 � xy cos 2�� 12xz;where �1 is the angle between x and y and �2 is the angle between x and z, both at most 2�. Wealso havejy � 12zj2 = y2 + z24 � y � z = �y � z2�2 + yz(1� cos �3) � �y � z2�2 + 2yz sin2 �:12



where �3 � 2� is the angle between y and z.Recall that y � z � x � (1 + )y. Hence we havejvpj = jy � 12zj � z�14 + 2 sin2 ��1=2 � z2(1 + 4 sin2 �) = r(1 + 4 sin2 �):We thus get, by our choice of � and ,cos � � y cos 2�� z2jy � 12zj � z cos 2�1+ � z2z2(1 + 4 sin2 �) = 2 cos 2�� 1� (1 + )(1 + 4 sin2 �) � 0:98:Returning to the notation R; r; t; ' of case (i), we note that t (which, as above, can be assumedto be nonnegative) is the distance from v to �pq0 , and is thus smaller than the distance from v topq0. The preceding calculations easily imply that this distance is attained at an interior point of pq0(somewhere near its midpoint), so the distance is jvpj sin � � r sin �(1+ 4 sin2 �). (To be precise, itsuÆces to verify that r sin �(1+4 sin2 �) � x, which follows easily by our choice of � and .) Using(2), we thus get cos' < tr + r2R � sin �(1 + 4 sin2 �) + 12 ;where the latter inequality follows by noting that 2R � x, and r=x = z=(2x) � 1=2. Hence, by ourchoice of � and , we have cos' � 3=4, say.We have thus shown that in this case the central angle of the cap of Æp0q inside �pq0 is at least2 arccos 3=4, so p; q0; p0; q form a con�guration of type (2) with the appropriate �d.This completes the proof of the lemma. 2Let X1 denote the number of con�gurations of type 1, i.e., pairs (p; �) 2 P�C where p lies in theinterior of �, and let X2 denote the number of con�gurations of type 2, i.e., pairs (�1; �2) 2 C �C,spanned by four distinct points of P , where �1 cuts o� the diametrical sphere Æ2 corresponding to�2 a cap whose measure is at least �d times that of Æ2.Lemma 4.3 implies that X1 +X2 � m� cdn. This is proven by induction on m� cdn, similarto the arguments in the preceding proofs. Speci�cally, the claim holds trivially for m � cdn � 0.Suppose it holds for m� cdn � k � 1 and consider the case m� cdn = k > 0. Lemma 4.3 impliesthat X1+X2 > 0. If X1 > 0, we take a type 1 con�guration (p; �), and remove � from C, reducingm by 1 and X1 +X2 by at least 1, so the claim follows by induction, as above. If X2 > 0, we takea type 2 con�guration (�1; �2), remove �2 from C, and conclude by induction, as above.Assume now that m � 2cdn; otherwise, the lower bound of the theorem follows trivially. Therandom sampling argument used above leads to the inequality X1p3 +X2p4 � mp2 � cdnp, orX1p2 +X2p3 � mp� cdn;for any 0 < p � 1. Choose p = 2cdn=m (by assumption, p � 1), to obtain4c2dn2m2 X1 + 8c3dn3m3 X2 � cdn:Hence, one of the terms in the left-hand side is at least cdn=2, implying thateither X1 � m28cdn or X2 � m316c2dn2 :13



In the former case, the pigeonhole principle implies that there exists p 2 P that lies in the interiorsof at least m28cdn2 = 
�m2n2 � spheres of C. In the latter case, the pigeonhole principle implies thatthere exists �pq 2 C whose corresponding diametrical sphere Æpq forms con�gurations of type (2)with at least M = m216c2dn2 = 
�m2n2 � other spheres of C. Consider the caps that these spherescut o� Æpq. Since the measure of each of them is at least �d times the measure of Æpq, it followsthat there exists a point on Æpq that lies in at least �dM = 
(m2=n2) of these caps, and thus inside
(m2=n2) spheres of C. In both cases, the bound asserted in the theorem is established. As above,the proof that the bound is tight in the worst case is delegated to Section 5. 24.1 Lines Stabbing Discs in IR3Theorem 4.4 Let P be a set of n points in IR3 and let D be a set of m � cn distinct (two-dimensional) discs such that every disc in D contains a distinct pair of points of P on its boundary,where c is some appropriate positive constant. Then there exists a line that stabs 
(m2n2 ) discs ofD.Proof: Let fd1; : : : ; dmg be the discs in D. Consider the set S = fs1; : : : ; smg of m spheres, wheresi is the sphere whose center is the center of di and whose radius is the radius of di, for i = 1; : : : ;m(namely, si the smallest sphere that encloses di). By Theorem 4.1, there is a point w 2 IR3 thatlies inside 
(m2n2 ) spheres of S. Denote by S0 the subset of spheres of S containing w, and denoteby D0 the corresponding subset of discs of D. Next, we choose a random line l passing through wby picking the orientation of the line randomly and uniformly from the unit sphere of directions.It is easy to see that the probability that the line l stabs a disc di 2 D0 is at least some absoluteconstant � > 0. Indeed, consider the (not necessarily circular) cone with apex at w formed by theunion of all lines passing through w and through a point on the boundary of di. Let ci denote thecenter of di. Since w lies inside si, this cone has the property that any plane through the line ciwcuts the cone in a wedge with angle � �=2. Hence the set of directions on S2 that cause di to bestabbed is a convex cap � with an interior point o with the property that every great circle througho cuts � in an arc whose length is at least �=2. This is easily seen to imply the claim. This impliesthat the expected number of discs in D0 stabbed by l is at least � times the size of D0. Hence theremust exist a line (through w) that stabs these many discs of D0. This completes the proof of thetheorem. As above, the proof that the bound is tight in the worst case is delegated to Section 5. 25 Upper BoundsAs already asserted, the bounds in Theorem 2.1, Theorem 3.9, Theorem 3.10 and Theorem 4.1 areasymptotically tight in the following strong sense:Theorem 5.1 (i) For any two positive integers m and n, with m > n, and for any dimensiond � 2, there is a set P of n points in IRd and a set D of m distinct spheres such that every spherein D is a diametrical sphere of some pair of points in P , and such that any point (not necessarilyfrom P ) is covered by at most O(m2=n2) spheres in D. (ii) For any m > n, there is a set Pof n points in IR2 and a set D of m distinct discs, such that every disc in D passes through adistinct triple of points in P , and such that any point (not necessarily from P ) is covered by atmost O(m3=2=n3=2) discs in D. 14



Proof: (i) Let s be some integer between 1 and n which will be determined later. Construct acollection of n=s clusters, each containing s points (we assume for simplicity, that s divides n).Place the clusters far apart in such a way that no diametrical sphere, de�ned by a pair of pointsfrom the same cluster, intersects any diametrical sphere de�ned by a pair of points from any othercluster. For each cluster we take all �s2� possible diametrical spheres generated by pairs of pointsin the cluster. We want the number of spheres, which is �s2� � n=s = (s � 1)n=2, to be equal to m.So we chose s = 2m=n + 1. Since a point can belong to at most �s2� spheres, we have that everypoint in the plane is covered by at most O(m2=n2) spheres.For (ii), we have a similar construction, except that in each cluster we take all possible discsthrough triples of points from the same cluster, and that we place the clusters far apart to ensurethat no two discs, constructed within two di�erent clusters, intersect each other. We have a totalof �s3� � n=s discs. Choosing s = 3+p1+24m=n2 = �(m1=2=n1=2), the number of discs is m. Since nopoint is covered by more than �s3� = O(s3) discs, we obtain the desired upper bound. (As stated,the constructions do not apply to all values of m and n. However, by slightly modifying the choiceof S and the construction itself, we can extend the bound for all values of m and n.) 2Remark 5.2 Tightness of Theorem 4.4 can be shown by a similar construction involving n pointsin R3 and m diametrical discs, each of which pass through a pair of the given points. The n=sclusters should be arranged such that no line stabs more than two clusters (namely, the set of discsstabbed by any given line belong to at most two clusters). This is easily done by taking n=s pointsin convex position(say, on a unit sphere) and replacing each such point p with a cluster of s pointsall of which are "very close" to p. Hence, no line stabs more than two clusters and therfore at most2 � �s2� discs. Choosing, as above s = 2m=n+ 1 we have that any line can stab O(m2=n2) discs.6 Axis-Parallel RectanglesLet P be a set of n points in the plane. For simplicity we assume that no pair of points have thesame x-coordinate or the same y-coordinate. Let R be a set of m axis-parallel rectangles, eachhaving two points of P as opposite vertices.Lemma 6.1 If m > 4n log n then either (a) there exists a rectangle in R that contains a point ofP in its interior, or (b) there exist two rectangles R1; R2 2 R, spanned by four distinct points ofP , such that a vertex of one of them lies in the interior of the other.Proof: We assume that case (a) does not arise, and argue that case (b) must then occur. Eitherat least half of the rectangles in R are such that their bottom-left and top-right vertices are in P ,or at least half of them are such that their bottom-right and top-left vertices are in P . Withoutloss of generality, assume that the former case arises, and remove from R all other rectangles. Wenow have jRj > 2n logn. For each point a 2 P , let R+a (resp., R�a ) denote the set of all rectanglesin R having a as their bottom-left (resp., top-right) vertex. Since we have assumed that case (a)does not occur, no rectangle in R+a fully contains another such rectangle, so these rectangles canbe ordered in increasing order of the x-coordinate, which is the same as the decreasing order of they-coordinate, of their top-right corners (all of which are points of P ). In a fully symmetric manner,the rectangles in R�a can be ordered in the same two coinciding orders.Call a rectangle R 2 R+a left-separated if either R is the �rst in the ordered sequence R+a , orthe preceding rectangle in that sequence is such that its width (x-span) is at least twice as small asthe width of R. Similarly, we call a rectangle R 2 R�a right-separated if either R is the last in the15



sequence R�a , or the next rectangle in that sequence is such that its width is at least twice as smallas the width of R. Clearly, the number of rectangles that can be right-separated or left-separatedin the respective sets R+a ;R�a is at most 2 log n, so the number of such rectangles, over all pointsa 2 P , is at most 2n log n.Since jRj is larger than this bound, R contains at least one rectangle that is neither left-separated nor right-separated. Let a; b 2 P denote, respectively, the bottom-left and top-rightvertices of R. Let R0 (resp., R00) denote the rectangle preceding (resp., succeeding) R in thesequence R+a (resp., R�b ). Clearly, R0 and R00 are spanned by four distinct points of P , and thetop-left vertex of R00 lies in the interior of R0 (and the bottom-right vertex of R0 lies in the interiorof R00); see Figure 8 2 bRR0
R00aFigure 8: A non-separated rectangle R and the two adjacent rectangles R0; R00 that realize case (b)of the lemma.Let X1 denote the number of con�gurations of the form (R; a), where R 2 R and a 2 P are suchthat a lies in the interior of R. Let X2 denote the number of con�gurations of the form (R;R0),where R;R0 2 R are two rectangles that are spanned by four distinct points of P and are such thata vertex of R0 lies in the interior of R. We refer to con�gurations of the former (resp., latter) typeas type I (resp., type II) con�gurations.Lemma 6.1 implies the following inequalityX1 +X2 � m� 4n logn: (5)We apply (5) to a random subset of the given points and rectangles, where each point in P is chosenindependently with probability p, and a rectangle is chosen when its two spanning P -points arechosen. Let n0;m0;X 01;X 02 denote, respectively, the expected number of points, rectangles, type Icon�gurations, and type II con�gurations in the sample. We haveX 01 +X 02 � m0 � 4n0 log n:As is easily checked, we haven0 = np; m0 = mp2; X 01 = X1p3; X 02 = X2p4:Hence, X1p3 +X2p4 � mp2 � 4np log n:We assume that m � 8n log n, and choose p = 8n log nm . Suppose �rst that X1 � X2p. Then wehave 2X1p3 � mp2 � 4np log n = 4np log n;16



or X1 � 2n lognp2 = m232n log n:By the pigeonhole principle, there exists a point a 2 P that participates in at least m232n2 log n typeI con�gurations, that is, a lies in at least that many rectangles of R.Suppose next that X1 < X2p. Then we have2X2p4 � mp2 � 4np log n = 4np log n;or X2 � 2n lognp3 = m3256n2 log2 n:Again, by the pigeonhole principle, there exists a rectangle R 2 R that participates as the secondcomponent of at least m2256n2 log2 n type II con�gurations. This implies that one speci�c vertex ofR lies in the interior of at least m2512n2 log2 n rectangles of R.We have thus shown:Theorem 6.2 Let P be a set of n points in the plane, so that no pair of points have the samex-coordinate or the same y-coordinate. Let R be a set of m � 8n logn axis-parallel rectangles, eachhaving two points of P as two opposite vertices. Then there exists a point v 2 R2 that is containedin the interior of at least m2512n2 log2 n rectangles of R.Theorem 6.2 also holds when the points in P may have common x-or y-coordinates, except thatin this case the stabbing point may lie on the boundary of some of the stabbed rectangles.We note that a di�erent proof of Theorem 6.2, based on certain one-dimensional selectionlemmas, is given in [7]. Our proof can also be easily extended to axis-parallel boxes in any dimension,yielding an alternative proof of a similar extension obtained in [7]. We omit here the easy detailsof this extension.6.1 An upper boundWe next show that the polylogarithmic factors appearing in the lower bounds of Theorem 6.2cannot be totally eliminated to yield the bound 
(m2=n2). Speci�cally, we show:Theorem 6.3 For arbitrarily large n and m, satisfying cn log n � m � �n2�, for an appropriateconstant c, there exist sets P of n points and R of m rectangles spanned by the points of P , so thatno point in R2 lies in more than O m2n2 log n2m ! rectangles of R.Proof: We construct sets P and R whose respective sizes n and m are de�ned in terms of twointeger parameters k and j. Let k be a �xed integer. We construct P and R recursively, startingwith an arbitrary set P0 of n0 = k points in general position, and with the set R0 of all axis-parallelrectangles spanned by pairs of points of P0. We have m0 = jR0j = �k2�.Suppose that we have already constructed Pj and Rj , for some j � 0. We construct Pj+1 andRj+1 as follows. 17



(i) Take two distinct copies P (1)j ; P (2)j of Pj , keep P (1)j intact, and shift P (2)j horizontally so thatthe x-spans of the two copies are pairwise disjoint. Create two corresponding copies R(1)j ;R(2)jof Rj.(ii) Next, shift the copy P (2)j (and, accordingly, also the copy R(2)j ) slightly upwards in the verticaldirection, so that if point a lies below point b in Pj then both copies of a lie below both copiesof b.(iii) For each pair of points a; b 2 Pj , such that a lies below b, and there are at most k � 2 pointsof Pj in the (open) horizontal strip spanned by a and b, create a rectangle whose oppositevertices are the �rst copy of a and the second copy of b. (Thus, each point of P (1)j , except forthe k � 1 top ones, participates in k such rectangles.)(iv) Take Pj+1 to be the union of P (1)j and P (2)j , and take Rj+1 to be the union of R(1)j and R(2)j ,together with all the additional rectangles created at the preceding step.See Figure 9.
b

d d0
a

c c0a0 b0
Figure 9: The recursive step of the construction (shown with k = 2).Put nj = jPj j and mj = jRj j. We havenj+1 = 2nj; mj+1 = 2mj + knj ��k2�:(The term �k2� accounts for the fewer numbers of rectangles spanned by the very top points of P (1)j .)We thus have, as is easily veri�ed by induction on j,nj = k � 2j ; mj = (j + 1)knj2 ��k2�:Let �j denote the maximum number of rectangles in Rj that have nonempty intersection. We have�0 � �k2�;�j+1 � �j +�k + 12 �: (6)18



Indeed, let v be any point in the plane. The x-spans of P (1)j and of P (2)j are disjoint, and thex-coordinate of v can belong to at most one of them, say to that of P (1)j . Then v can be containedonly in rectangles belonging to the corresponding set R(1)j , and in rectangles created at step (iii).The number of rectangles of the latter kind is at most �k+12 �: v can only lie in rectangles spannedby the i-th point of P (1)j below v (in their y-order) and the `-th point of P (2)j above v, wherei + ` � k + 1, and the number of such pairs is at most �k+12 �. This establishes the recurrence (6),whose solution is easily seen to be�j � j�k + 12 � � (k + 1) � mj + �k2�nj :For any choice of k and j, we obtain an instance of the problem with n = nj points and m = mjrectangles. It is easily seen that, by varying k and j, we can have mj vary between �(nj log nj)(choose k = 1 for this extreme case) and �(n2j) (choose j = 1). An easy calculation shows thatk � 2mjn ; and 2j+1j � n2m ;which implies that k = � mn log n2m ! :Hence, the maximum number of rectangles with a nonempty intersection is at mostO�kmn � = O m2n2 log n2m ! ;as asserted. 27 Open Problems� Section 4 deals with point selection bounds for spheres spanned by pairs of points of a �niteset of points in IRd. It would be interesting to generalize the technique used there, to obtainnon-trivial bounds for spheres spanned by j-tuples of points (where j is a �xed integer between3 and d). In addition, it would be nice to �nd a simpler proof of Lemma 4.3� It would be interesting to tighten the polylogarithmic gap between the lower and upper boundsdescribed in Section 6.AcknowledgementsThe authors wish to thank Boris Aronov and Rom Pinchasi for helpful discussions concerning thecase of rectangles. In particular, the construction in Section 6.1 is an extension of a constructionsuggested by Rom. Thanks are also extended to Eli Glazner for helpful discussions concerning theJordan Theorem used in Section 3. 19
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