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Abstract

Recently, Har-Peled [HP99b] presented a new randomized technique for online con-
struction of the zone of a curve in a planar arrangement of arcs. In this paper, we
present several applications of this technique, which yield improved solutions to a vari-
ety of problems. These applications include: (i) an efficient mechanism for performing
online point location queries in an arrangement of arcs; (ii) an efficient algorithm for
computing an approximation to the minimum-weight Steiner-tree of a set of points,
where the weight is the number of intersections between the tree edges and a given
collection of arcs; (iii) a subquadratic algorithm for cutting a set of pseudo-parabolas
into pseudo-segments; (iv) an algorithm for cutting a set of line segments (‘rods’) in
3-space so as to eliminate all cycles in the vertical depth order; and (v) a near-optimal
algorithm for reporting all bichromatic intersections between a set R of red arcs and a
set B of blue arcs, where the unions of the arcs in each set are both connected.

1 Introduction

Let S be a set of n x-monotone arcs in the plane, each pair of which intersect in at most
t points. Computing the whole (or parts of the) arrangement A(S), induced by the arcs
of S, is one of the fundamental problems in computational geometry, and has received a
lot of attention in recent years [SA95]. One of the basic techniques used for such construc-
tions is based on randomized incremental construction of the vertical decomposition of the
arrangement (see [Mul94, BY98]).
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Some applications of planar arrangements require the construction of only parts of the
arrangement (e.g., a single face or a zone of some curve), and, usually, those parts have
smaller combinatorial complexity than that of the whole arrangement. For example, consider
the zone of a curve γ, which is the collection of all the faces of A(S) that γ crosses. The
complexity of such a zone is O(λt+2(n+m)), where m is the number of intersections between
γ and the arcs of S and λq(r) is the maximum length of a Davenport-Schinzel sequence of
order q having r symbols (λq(r) is nearly linear in r for any fixed q; see [SA95]). Hence, if
γ has simple shape (e.g., it intersects each arc of S in a constant number of points), then
m is small and the complexity of the zone is significantly smaller than that of the whole
arrangement. Furthermore, under reasonable assumptions, the zone can be computed in
O(λt+2(n + m) log n) randomized expected time [CEG+93, dBDS95].

A somewhat harder variant of this theme is the following online scenario: We start from
a point p = p(0) ∈ R2, and we find the face f of A(S) that contains p(0). Now the point
p starts moving and traces a connected curve {p(t)}t≥0. As this walk continues, we wish to
keep track of the face of A(S) that contains the current point p(t). The collection of these
faces constitutes the zone of the curve p(t). However, the function p(t) is not assumed to
be known in advance, and it may change when we cross into a new face or abruptly change
direction in the middle of a face (see [BDH99] for an application where such a scenario
arises).

Recently, Har-Peled [HP99b] gave a near optimal randomized algorithm for this online
variant (a somewhat slower but deterministic solution for this problem, for the case involving
lines, was recently given by Chan [Cha99]). The main idea behind this algorithm, which we
call CompZoneOnline, as in [HP99b], relies on simulating an offline randomized incremental
algorithm (which is allowed to consult an oracle for determining whether a given trapezoid
lies in the zone). In fact, the technique used in CompZoneOnline can construct, in an online
manner, any portion of the arrangement. More specifically, the algorithm can receive as
input (in an online manner) any sequence of points, and it constructs the collection of
vertical trapezoids (or faces) that contain the given points. Moreover, this construction is
efficient, in the sense that its cost is comparable with the smallest complexity of a connected
portion of the arrangement that contains all the points. See below for more details.

In this paper we present several applications of the new approach that are based on the
properties just noted. All the new algorithms are faster than those previously known, and
in some cases they provide new insights into the problem at hand. The applications that we
present are:

• For a set S of n x-monotone arcs, each pair of which intersect in at most t points,
the algorithm of [HP99b] can be made into an online point-location mechanism: Given
any set P of m query points, in an online manner, the algorithm computes for each
point the trapezoid of the vertical decomposition of A(S) that contains it. The overall
expected cost is O(λt+2(n + w) log n), where w = w(P, S) is the smallest number of
intersections between the arcs of S and a (Steiner) tree that connects the query points.
For the worst distribution of points, one has w = O(n

√
m) [Aga91], so the algorithm

takes O(λt+2(n
√

m) log n) expected time.

• We present an algorithm that computes a Steiner tree of a set P of m points so that
the expected number of intersections between the tree edges and a prescribed set S
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of n arcs, as above, is O(λt+2(n + w(P, S)) log n). Namely, the algorithm is “output-
sensitive” in the weight w(P, S) of the optimal Steiner tree, and its running time is
always subquadratic in m and n, because, as already mentioned, w = O(n

√
m) in

the worst case. To our knowledge, no similar “output-sensitive” algorithm for this
problem was previously known. (However, a tree of weight Θ(n

√
m) can be computed,

in subquadratic time, using cuttings [Aga91].)

• Let S be a given set of n pseudo-parabolas (namely, x-monotone curves, each pair of
which intersect at most twice). We present a randomized subquadratic algorithm that
cuts these curves into pseudo-segments (namely, each pair of the new pieces intersect
at most once). The motivation for this problem comes from the analysis of Tamaki
and Tokuyama [TT98], who showed that this can always be done with no more than
O(n5/3) cuts. The expected number of cuts performed by the algorithm is at most
O(λ4(n

√
µ) log n), where µ is the minimum number of cuts that are needed. (Actually,

the expected number of cuts is O(λ4(n + w(P, S)) log n), where P is any set of cutting
points of the minimum size µ.) The expected running time of the algorithm is O(λ4(n+
w(P, S)) log4 n) = O(λ4(n

√
µ) log4 n). As shown by Tamaki and Tokuyama [TT98],

one always has µ = O(n5/3), so our algorithm is indeed subquadratic. In Appendix
A, we also present an alternative ‘greedy’ algorithm that applies to more general arcs
and performs only O(µ log n) cuts, but requires superquadratic time; this alternative
solution is not related to our basic point-location technique.

• Let S be a set of n disjoint nonvertical line segments (‘rods’) in 3-space. A rod s ∈ S
lies below another rod s′ ∈ S if there is a vertical line that passes through both of them
and meets s at a point below its intersection with s′. The transitive closure of this
relation is known as the depth order of S. In general, this terminology is misleading,
because this relation can have cycles. In several applications in computer graphics
and related areas, it is desirable to cut the given rods into smaller pieces, so that the
depth order of the new set has no cycles. We present an algorithm that receives S as
input and cuts its rods into smaller pieces, so that no cycles remain in the depth order
of the new rods. The previous algorithm, due to Solan [Sol98], performs O(n1+ε√µ)
cuts, for any ε > 0, where µ is the minimum number of cuts needed to eliminate
all cycles. Our algorithm performs O(n

√
µα(n) log n) expected number of cuts. Its

expected running time is O(n4/3+εµ1/3), for any ε > 0 (same as the bound for Solan’s
algorithm). The new algorithm is conceptually simpler than the previous result, which
relied on recursive application of cuttings.

• Let R be a set of ‘red’ arcs and B be a set of ‘blue’ arcs in the plane, where the total
number of arcs is n and they satisfy the same properties as above. Suppose, in addition,
that the union of the red arcs and the union of the blue arcs are both connected. We
present an algorithm for reporting all k bichromatic intersections between the arcs of
R and of B, with expected running time O(λt+2(n + k) log n). This improves the best
known algorithms [BGR96, Cha99] by one or two logarithmic factors.

Informally, the point-location mechanism of [HP99b] can be applied either to an unknown
set of points (as in the applications of cutting pseudo-parabolas and cutting rods in space)
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or to a set of points that are revealed only during the execution of the algorithm (as in the
case of computing bichromatic intersections). Some of these situations can also be handled
by recursively constructing cuttings of the given arrangement of arcs. However, (i) this does
not always work (e.g., in the case of bichromatic intersections), and (ii) when this alternative
technique can be applied, the resulting algorithms are considerably more cumbersome and
less efficient.

The paper is organized as follows. In Section 2 we review the technique of [HP99b]. In
Sections 3–7 we present the above applications. Concluding remarks are given in Section 8.

2 Review of the Technique

Let S be a set of n x-monotone arcs in the plane, as above, so that any pair of arcs of S
intersect at most t times (for some fixed constant t). Let A(S) denote the arrangement of
S; namely, the partition of the plane into faces, edges, and vertices as induced by the arcs
of S (see [SA95] for details). For the sake of simplicity of exposition, we assume that S is
in general position, meaning that no three arcs of S have a common point, and that the
x-coordinates of the intersections and endpoints of the arcs of S are pairwise distinct. The
vertical decomposition of A(S), denoted by AVD(S), is the partition of the plane into vertical
pseudo-trapezoids, obtained by erecting two vertical segments up and down from each vertex
of A(S) (i.e., each point of intersection between a pair of arcs and each endpoint of an arc),
and by extending each of them until it either reaches an arc of S, or otherwise all the way
to infinity. See, e.g., [BY98, SA95] for more details concerning vertical decompositions. To
simplify (though slightly abuse) the notation, we refer to the cells of AVD(S) as trapezoids.

Computing the decomposed arrangement AVD(S) can be done as follows. Pick a random
permutation 〈S〉 = 〈s1, . . . , sn〉 of S. Put Si = 〈s1, . . . , si〉, for i = 1, . . . , n. We compute
incrementally the decomposed arrangements AVD(Si), by inserting the i-th arc si of 〈S〉 into
AVD(Si−1), for each i = 1, . . . , n, starting with an empty arrangement. To do so, we compute
the zone Zi of si in AVD(Si−1), which is the set of all trapezoids in AVD(Si−1) that constitute
the faces of A(Si−1) that are crossed by si. We split each trapezoid of Zi into at most
O(t) trapezoids, such that no trapezoid intersects si in its interior, as in [SA95]. Finally,
we perform a pass over all the newly created trapezoids, and merge vertical trapezoids that
are adjacent and have identical top and bottom arcs. The merging step guarantees that the
resulting decomposition is AVD(Si), independently of the insertion order of elements in Si;
see [dBvKOS97, BY98].

We can further augment this algorithm to produce on the fly a history directed acyclic
graph (DAG) (as in [SA95]), whose nodes are the trapezoids created by the algorithm and
where each trapezoid destroyed during the execution of the algorithm points to the trapezoids
that were created from it. Let HDAG(Si) denote this structure after the i-th iteration of the
algorithm. Note that the out-degree of each node of HDAG is bounded by a constant that
depends on t. Each node v of HDAG is associated with a trapezoid ∆v, and ∆v uniquely
defines v once the permutation 〈S〉 used by the algorithm is fixed.

However, in many applications, HDAG(S) is by far too large, since it contains redundant
information about parts of the arrangement that are of no interest for the application. In
[HP99b], an online technique was described for computing only relevant parts of HDAG. The
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Figure 1: For 〈S〉 = 〈l1, l2, l3, l4, l5〉, the trapezoid τ is transient and thus Expand(τ) will be
called, resulting in the final (gray) trapezoid ν = τ ∪ τ ′.

algorithm starts by computing a random permutation 〈S〉 of S, and by initializing a partial
history DAG T to a DAG containing a single node that corresponds to the root of HDAG

(which represents the entire plane). Two basic operations on the partial history DAG T are
provided.

1. Split(v) takes a leaf node of the partial history DAG that corresponds to a node of
HDAG and computes its children, into which ∆v is split by inserting the next arc in
the permutation that crosses it. Because of the merging step in the offline algorithm,
some of those children may be transient (that is, they are to be merged into larger
trapezoids by the offline algorithm, right at the end of the current insertion step).

2. Expand(v) takes a leaf v of T , and computes the node that corresponds to it in HDAG.
This operation is null, unless the trapezoid currently associated with v is transient, in
which case Expand is non-trivial—it has to compute (or retrieve) several other nodes in
the partial history DAG and merge them to form the new “final” (i.e., non-transient)
trapezoid, which is the desired node of HDAG. This in turn may require computing
other substantial portions of HDAG that do not yet exist in T . See Figure 1. The
Expand operation is carried out by performing a sequence of (recursive) point-location
queries in T ; see [HP99b] for details.

Each node v of T stores a conflict list cl(v), which is the subsequence of all the arcs of 〈S〉
that cross the interior of ∆v. The weight of v is | cl(v)|. The weight of T is the sum of the
weights of its nodes.

Let us illustrate how the technique works for the case, studied in [HP99b], of computing
the zone of a curve γ. The online algorithm, denoted CompZoneOnline, works as follows.
At each step it obtains the next ‘critical’ point p along the curve γ (it is typically the point
where γ exits from the current trapezoid of AVD(S)), and performs a point-location query
with p in T . In general, the query mechanism follows a path in T and reaches a node v of
T that is not a final trapezoid in AVD(S). The algorithm then expands below v the path
in HDAG that leads to the final leaf trapezoid that contains p, by executing a sequence of
(recursive) calls to Split and Expand, until it obtains the final trapezoid of AVD(S) that
contains p. (As noted, the algorithm may generate during this expansion many additional
nodes of T , in order to complete all the paths in T that lead to the desired final trapezoid.)

As shown in [HP99b], the overall cost of this construction is proportional to the total
weight of T . More precisely:
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Theorem 2.1 ([HP99b]) Let T be a history DAG computed by a sequence of operations
of Split and Expand. Let m be the number of nodes in T , and let w be the total weight of
these nodes. The overall expected time spent on computing T is O(w + m log n) (where the
expectation is with respect to the choice of the permutation 〈S〉.

Lemma 2.2 ([Mul94]) With high probability, for any query point p, the number of trape-
zoids of HDAG that contain p is O(log n). Hence, the number of nodes of T that are visited
when performing a point-location query with p (ignoring nodes visited in recursive calls to
Split and Expand) is also O(log n) with high probability.

Thus, if we use the above technique only as an engine for answering point-location queries,
we can bound the expected running time, by estimating the weight of the resulting history
DAG, and each point-location that we perform incurs an additional overhead of O(log n)
expected time.

Lemma 2.3 ([HP99b]) Let γ be any curve in the plane that intersects the arcs of S in a to-
tal of m points. Let T be the partial history DAG produced by the algorithm CompZoneOnline

as it constructs the zone of γ in AVD(S). Then the expected number of nodes in T is
O(λt+2(n + m)), and the total expected weight of the nodes of T is O(λt+2(n + m) log n).

Remark 2.4 In the above results, the (expected) space needed by the algorithms is propor-
tional to the weight of the computed DAG. Thus, the expected storage is asymptotically
the same as the expected running time of the algorithms. The same holds for all the results
in this paper, and we thus omit any explicit statement of the space bounds.

3 Online Point-Location Queries

As described in Section 2, one can use the partial history DAG mechanism to perform (online)
point-location queries in an arrangement of arcs. In this section we analyze the performance
of this technique. The material in this section is an extension of the analysis presented in
[HP99b].

Definition 3.1 For a point set P , and a set of arcs S, let M(P, S) denote a connected
polygonal set, such that: (i) P ⊆ M(P, S), and (ii) the number of intersections between
M(P, S) and the arcs of S is the smallest possible. Let w(P, S) denote this minimum
number of intersections.

The set M(P, S) can be interpreted as the minimum-weight Steiner-tree of P , under the
metric that measures the distance between two points a, b by the minimum number of arcs
of S that have to be crossed by a path from a to b.

Theorem 3.2 Given a set S of n arcs in the plane, as above, one can answer point-location
queries for a set P of m points, where the points are given in an online manner, such that
the overall expected time to answer those queries is O((λt+2(n+w(P, S))+m) log n), and the
expected weight of the resulting history DAG is O(λt+2(n + w(P, S)) log n). Here the output
of a query is the trapezoid of AVD(S) that contains the query point. No preprocessing is
needed, except for choosing a random permutation of S.
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Proof: We precompute a random permutation 〈S〉 of S, and perform the point-location
queries by computing the relevant parts of the history DAG of AVD(S), as described in
Section 2. (Note that here there is no “continuity”, as in the case of constructing the zone
of a curve: consecutive point location queries may explore far away portions of the plane.
Nevertheless, since the point-location algorithm does not make any explicit assumption con-
cerning continuity, its execution will not be affected by this lack of continuity; this will only
affect the analysis of the expected running time of the algorithm.)

We claim that, by the time the algorithm terminates, each internal node of the partial
history DAG T , and each leaf that does not represent a transient trapezoid, is contained
in HT γ(S), which is the partial history DAG computed by CompZoneOnline(γ, S), for γ =
M(P, S).

Indeed, consider two ‘off-line’ randomized incremental algorithms AP , Aγ that compute,
respectively, the zone of P and the zone of γ in A(S). Both algorithms use the same
permutation 〈S〉, and are allowed to consult with an oracle O to decide whether or not
a specific trapezoid lies inside the relevant zone. Let HDP ,HDγ denote the two resulting
history DAGs produced by these two respective algorithms. Since P ⊆ γ, it easily follows
that HDP is a substructure of HDγ. In [HP99b, Lemma 3.7], it was shown that all the final
nodes of T appear in HDP . On the other hand, all the nodes of HDγ appear in HT γ(S)
[HP99b, Lemma 3.8]. Hence all the final nodes of T appear in HT γ(S).

Furthermore, the total weight of the transient leaves in T is proportional to the to-
tal weight of their parents (which are final, and are thus included in the above analysis).
This implies that the expected total weight of the trapezoids of HT γ(S) is O(λt+2(n +
w(P, S)) log(n)), by Lemma 2.3.

As for the expected running time, it is bounded by the total weight of T , plus the time
spent directly on the point-location queries, and is thus O((λt+2(n + w(P, S)) + m) log n),
by Lemma 2.2.

Remark 3.3 The algorithm of Theorem 3.2, can be modified to output the whole face that
contains the query point. Since the face description is not necessarily of constant size the
output of the algorithm is a pointer to a data-structure that describes the face (i.e., a list of
trapezoids forming the face, with adjacency information stored with each trapezoid). This
modification has no effect on the overall asymptotic running times, and the bounds stated
in Theorem 3.2 holds also for this case.

Lemma 3.4 There exists a Steiner-tree M′ of P , so that the total number of crossings
between the arcs of S and the edges of M′ is w(P, S) = O(n

√
m), and this is tight, for

m ≤ n2, in the worst case (even when the arcs are lines).

Proof: This is a folklore result, and we only sketch the rather easy proof. Compute a
(1/

√
m)-cutting of S of size O(m) [HP00]. Let R′ be the union of the boundaries of the

pseudo-trapezoids of the cutting. Connect each point of P to R′ by a vertical segment. Let
R be the resulting connected set in the plane. It is easy to verify that, after deforming R
slightly, it has at most O(m · (n/sqrtm)) = O(n

√
m) crossings with the arcs of S, and it

spans the points of S. The tightness of the bound follows from a simple grid construction
that uses n/2 horizontal lines and n/2 vertical lines, and places the m points at evenly spaced
grid cells that form a

√
m-by-

√
m subgrid.
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Corollary 3.5 The overall expected time to answer m online point-location queries in an
arrangement of n arcs, as above, is O((λt+2(n

√
m) + m) log n).

Remark 3.6 The result of Theorem 3.2 is somewhat disappointing since, in the worst case,
w(P, S) = Θ(nm1/2) (Lemma 3.4), while for the case of lines or segments, m faces can be
computed in, roughly, O(n2/3m2/3) time [AMS98] (a task that clearly subsumes our point lo-
cation queries). Currently, for the case of general arcs, no bound better than O

(
m1/2λt+2(n)

)
is known for the complexity of m faces in an arrangement of n arcs (see [EGP+92, HP99a]).
We leave the problem of improving the performance of the algorithm of Theorem 3.2, either
for the general case or just for the case of lines, as an open problem for further research.

The algorithm of Theorem 3.2 is simple and online, and it has the additional favorable
property of being adaptive. Namely, if w(P, S) is small (i.e., the query points are “close
together”) the overall query time improves. Furthermore, if there are many queries close
together, the first query may be slow, but the subsequent ones will be faster (since those
queries will use parts of paths that already exist in the partial history DAG).

To our knowledge, no other algorithm have this adaptiveness property. In particular, if
w(P, S) is near linear, the overall time required to answer the online point-location is linear.
This property is one of the key ingredients in the recent algorithm of Har-Peled and Indyk
[HPI00] (see below).

4 Computing a Steiner-Tree with a Small Crossing Num-

ber

Since w(P, S) can be considerably smaller than the bound provided by Lemma 3.4, it is
useful, in several applications, to compute M(P, S) or even an approximation of it. A
typical application is in range searching: Given S and P , we wish to count the number of
arcs that lie above each point of P . Having a tree T that connects the points of P and has a
small crossing number, allows us to compute the desired information by simply tracing the
edges of T and updating the number of arcs above the traced point in time proportional to
the total weight of the tree. (Technically speaking, we should replace each arc by the curve
bounding the region lying below the arc—this is the curve formed by the original arc with
two downward-directed vertical rays attached to the arc endpoints, and compute the tree for
this set of curves.)

If one is not allowed to add Steiner points, then one needs to compute the minimum
spanning tree of the points under the intersection distance induced by S (i.e., one wants to
minimize the number of intersections between the MST and the arcs of S). Asano et al.
[AdBC+99] have established worst-case tight bounds on the weight of such an MST, for the
case where S is a set of segments. However, if one allows Steiner points in the MST, their
bounds are easily obtained via cuttings (in a manner similar to the proof of Lemma 3.4).

In this section, we present an algorithm that computes a Steiner-tree for P so that its
weight approximates well the minimum-weight Steiner-tree weight w(P, S).

Theorem 4.1 Let S be a set of n x-monotone arcs, as above, and P a set of m points in the
plane. Then one can compute, in expected O((λt+2(n + w) + m) log n) time, a Steiner-tree
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M̂ of P , so that the expected weight of M̂ is O(λt+2(n+w) log n), where w = w(P, S). Each
edge of the tree is either a vertical segment or a portion of some arc of S.

Proof: Let T be the history DAG computed by performing online point-location queries
for the points of P . Let G′ =

⋃
v∈T ∂∆v. This is a connected graph formed by the boundaries

of the trapezoids stored at the nodes of T . Note that each point of P is contained in a leaf
trapezoid of T (which has an empty conflict list), and thus can be connected to G′ by a
vertical segment that does not intersect any of the arcs of S. The desired Steiner-tree is
obtained by taking any spanning tree of P in the graph G′′, which is the union of G′ with
all the vertical segments connecting each point of P to the boundary of the leaf trapezoid
containing it. Clearly, the weight of this tree is proportional to the total weight of T (the
sum of the sizes of the conflict lists of its nodes).

Let M = M(P, S) be the minimum weight Steiner-tree of P , and let TM be the history
DAG that would have been obtained if we applied CompZoneOnline to construct the zone
of (the unknown) M in A(S), using the same permutation as the one used to construct T .
By Lemma 2.3, the expected weight of TM is O(λt+2(n + w) log n).

Arguing as in the proof of Theorem 3.2, it follows that the zone of M in A(S) contains
the zone of P in A(S), and all the internal nodes (as well as all the nontransient leaves) of
T are contained in TM. Thus, the total weight of T is at most proportional to the weight of
TM, since the total weight of the leaves of a history DAG is proportional to the total weight
of its internal nodes.

The expected additional overhead time for the point-location queries is O(m log n) by
Lemma 2.2. Overall, the expected running time is O((λt+2(n + w) + m) log n).

Remark 4.2 Note that some edges of the resulting Steiner-tree are portions of arcs of S,
and the assertion concerning crossings between the tree edges and the arcs of S has to
be modified, to take also into account overlaps between the tree edges and the given arcs.
Alternatively, one can slightly perturb the tree edges so that they do not overlap any arc.

Remark 4.3 The algorithm of Theorem 4.1 was recently used by Har-Peled and Indyk
[HPI00] to derive an algorithm with near-linear running time for computed an approximate
MST under the crossing metric of lines in the plane.

5 Cutting Pseudo-Parabolas and More General Arcs

into Pseudo-Segments

For a collection S of n arcs in the plane, it is sometimes desirable to cut them into smaller
pieces that constitute a collection S ′ of pseudo-segments; that is, each pair of arcs of S ′ have
at most one intersection point. Such an application, for a collection of parabolas or pseudo-
parabolas (i.e., where each arc is the graph of a totally-defined continuous function, and each
pair of arcs intersect at most twice), is given by Tamaki and Tokuyama [TT98]. They show
that for such an arrangement, O(n5/3) cuts are sufficient (in the worst case, Ω(n4/3) cuts
may be required). In this section we present a randomized algorithm that computes a set of
cuts, whose expected size is O(λ4(n

√
µ) log n), where µ is the minimum number of cuts that
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are required. The expected running time is O(λ4(n
√

µ) log4 n). Hence, the number of cuts
that the algorithm makes is at most O(λ4(n

11/6) log n), and its expected running time is at
most O(λ4(n

11/6) log4 n). To our knowledge, this is the first subquadratic algorithm for this
problem.

Our algorithm is based on a fast procedure (see Lemma 5.3 below) that detects, in
O(n log3 n) time, whether a collection of n pseudo-parabolas forms a pseudo-segment ar-
rangement inside a trapezoid τ . Intuitively, the approach of the algorithm is to apply the
online point location mechanism described above to the (unknown) points of the optimal
cutting set. When the algorithm splits a trapezoid, we collect the children trapezoids for
which the portion of the arrangement inside them is not a pseudo-segment arrangement,
and recurse the point location procedure within each of them. Upon termination of this
procedure, we obtain a covering of the plane so that inside each trapezoid the arrangement
is a pseudo-segment arrangement. Hence, by cutting each pseudo-parabola at its intersection
points with the boundaries of the trapezoids that it crosses, the resulting collection of arcs
is a family of pseudo-segments.

Note that, as in the preceding section, parts of the boundaries of the trapezoids overlap
the arcs of S, which means that some of the cutting points are intersection points of the
arcs. In case this is undesirable, one may shift the cutting points slightly away (in both
directions) from the trapezoid boundaries.

Theorem 5.1 Let S be a set of n pseudo-parabolas. One can cut the arcs of S into smaller
pieces that constitute an arrangement of pseudo-segments, so that the expected number of cuts
is O(λ4(n

√
µ) log n), where µ is the minimal number of cuts needed to cut S into a collection

of pseudo-segments. The expected running time of the algorithm is O(λ4(n
√

µ) log4 n).

Proof: Let T be a partial history DAG computed over a random permutation of S. We
initialize T to a single-node DAG that represents the whole plane. The algorithm maintains
a queue Q of some of the leaves of T , initialized to contain the root of T . Whenever a new
leaf is being created, it is added to Q.

The algorithm stops when the queue Q becomes empty. Otherwise, it removes the first
element v of Q. If since its insertion, v has become an internal node of T , the algorithm
ignores it and continues to the next element of Q. Otherwise, the algorithm checks whether
the arrangement of the arcs of cl(v) is a pseudo-segment arrangement inside ∆v. As we shall
show below, this can be done in time O(| cl(v)| log3 | cl(v)|), by the algorithm of Lemma 5.3.
If not, the algorithm performs Expand(v) (any new leaves created by this operation are added
to Q), and then Split(v). The new children of v are added to Q.

By the time the algorithm terminates, all the subarrangements inside the trapezoids of
the leaves of T are pseudo-segment arrangements. Since the leaves of T form a covering of
the plane, as can be easily verified (see also [HP99b]), it follows that by cutting each curve
of S at each of its intersections with the boundaries of the trapezoids stored at the leaves of
T , we get a collection of pseudo-segments.

The number of cuts performed by the algorithm is bounded by the total weight of T (upon
termination). Let T ′ be the (hypothetical) history DAG that would have been produced by
performing online point-location queries with the set C∗ of the µ cutting points of the optimal
solution (using the same random permutation). Let v be a node of T that was created by
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Figure 2: Mapping a set of arcs inside a trapezoid τ into a set of intervals. These arcs do
not form a pseudo-segment arrangement because the pair γ1, γ2 (which correspond to two
nested intervals) and the pair γ3, γ4 (which correspond to two disjoint intervals) intersect at
two points each inside τ .

a call to Expand of the algorithm at the top level of recursion. The algorithm called this
procedure because the arrangement inside the trapezoid ∆v of v was not a pseudo-segment
arrangement. This implies that C∗ must have at least one point inside ∆v. That is, the
node v also exists in T ′ and was created during the (hypothetical) sequence of point-location
queries that created that DAG. We conclude that all the expanded nodes of T exist in T ′;
In particular, all the internal nodes of T exist in T ′, implying that the weight of T is at
most proportional to the weight of T ′. However, by Corollary 3.5, the expected weight of T ′

is O(λ4(n
√

µ) log n).
As for the expected running time, we note that it is dominated by the time it takes to

check whether the arrangement inside each node of the history DAG is a pseudo-segment ar-
rangement. As we will show next, this test, at a node v, takes expected O(| cl(v)| log3 | cl(v)|)
time. Summing over all nodes, and denoting by w(T ′) the overall weight of T ′, we conclude
that the expected running time is O(w(T ′) log3 n) = O(λ4(n

√
µ) log4 n).

Remark 5.2 Of course, when the points of C∗ are close together, w(T ′) may be much
smaller than the upper bound O(λ4(n

√
µ) log n). In such a case, the algorithm will make

fewer cuts and will run faster.

5.1 Testing for the Pseudo-Segment Property

To complete the description and analysis of our algorithm, we next show how to determine
efficiently whether the given arrangement forms a pseudo-segment arrangement within a
given trapezoid.

Let S be a collection of n pseudo-parabolas. Let τ be a trapezoid, and let Sτ denote the
set of all arcs of S that cross τ . We clip each γ ∈ Sτ within τ , and consider separately each
connected component of γ ∩ τ . Let S∗τ denote the resulting collection of subarcs. Our goal is
to determine whether S∗τ is a collection of pseudo-segments, and we accomplish it as follows.

Let C denote the boundary of τ . Fix a point u ∈ C, not lying on any arc of Sτ , and
consider C as an open arc, rather than a closed loop, that starts and ends at u and is oriented
counterclockwise; see Figure 2. The endpoints of each arc γ ∈ S∗τ lie on C. We refer to the
first of these endpoints along the oriented C as the initial point of γ and to the second
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endpoint as the terminal point. We denote these points as i(γ) and t(γ), respectively. Let I
and T denote the sets of initial points and terminal points, respectively. We sort the points
in I ∪ T in their order along C, and use the notation a < b, for a, b ∈ I ∪ T , to mean that a
precedes b along C. With each γ ∈ S∗τ we associate an interval e(γ), which is the subarc of
C delimited by i(γ) and t(γ).

Observation: Let γ, γ′ ∈ S∗τ . Then γ and γ′ intersect exactly once (within τ) if and only if
their intervals e(γ), e(γ′) interleave. In other words, γ and γ′ intersect at either zero or two
points (within τ) if and only if their intervals are either disjoint or nested.

Hence, to check whether S∗γ is a collection of pseudo-segments, it suffices to test every
pair of arcs whose intervals are either disjoint or nested for intersection. S∗τ is a collection
of pseudo-segments if and only if there is no intersection between any of these pairs. Our
approach is to take the collection of all these pairs, and decompose it into a disjoint union
of complete bipartite subgraphs. We then test whether there exists an intersection within
each of these subgraphs.

Consider the collection N of all ordered pairs (γ, γ′) of arcs whose intervals are nested,
that is, e(γ) ⊂ e(γ′). This condition can be expressed by the two inequalities i(γ) > i(γ′)
and t(γ) < t(γ′). We construct a minimum-height binary tree Q on the set I, whose elements
are stored at the leaves of Q in sorted order. Each node v of Q is associated with the subset
S(v) of all arcs whose initial points are stored at the leaves of the subtree rooted at v. For
each such node v, we construct a secondary tree Q

(2)
v on the set of all terminal points of the

arcs in S(v). For each internal node v of Q and for each internal node w of Q
(2)
v , we construct

the complete bipartite graph Avw × Bvw, where Avw (resp. Bvw) is the set of all arcs whose
initial points are stored at the right (resp. left) subtree of Q rooted at v and whose terminal

points are stored at the left (resp. right) subtree of Q
(2)
v rooted at w. It is easily verified that

each nested pair of intervals appears in exactly one of these graphs.
Put nτ = |S∗τ |. The above decomposition consists of O(nτ log nτ ) graphs, so that the

overall number of vertices of these graphs is O(nτ log2 nτ ).
The decomposition of the collection D of all ordered pairs (γ, γ′) of arcs whose intervals

are disjoint, that is, e(γ) precedes e(γ′) along C, is obtained in a similar, and in fact simpler,
manner. Indeed, since this condition can be expressed by the single inequality t(γ) < i(γ′),
a single-level tree construction suffices. The tree is constructed over the full set I ∪ T , and
with each internal node v of the tree we associate a complete bipartite graph Av×Bv, where
Av (resp. Bv) is the set of arcs whose terminal (resp. initial) points are stored at the left
(resp. right) subtree rooted at v. We have only O(nτ ) such graphs, whose overall number of
vertices is O(nτ log nτ ).

Let Avw×Bvw be a complete bipartite graph of the first kind. It is easily seen that there
exist two points p < q ∈ C, such that for each pair (γ, γ′) ∈ Avw ×Bvw, both endpoints of γ
lie in the portion C1 of C between p and q and both endpoints of γ′ lie in the complement
C2, which is the union of the portions of C between u and p and between q and u. Similarly,
for a graph Av × Bv of the second kind, there exists a point p ∈ C, such that for each pair
(γ, γ′) ∈ Av ×Bv, both endpoints of γ lie in the portion C1 of C between u and p and both
endpoints of γ′ lie in the complementary portion C2 between p and u.
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We thus face the following situation. Viewing C again as a closed loop, we have a
partition of C into two complementary arcs C1, C2, and two subsets of arcs A, B ⊂ S∗τ , such
that both endpoints of each γ ∈ A lie in C1 and both endpoints of each γ′ ∈ B lie in C2.
Our goal is to determine whether there exists any intersecting pair of arcs in A×B. This is
done as follows.

Let p, q denote the common endpoints of C1 and C2. For each γ ∈ A, let Kγ denote
the region enclosed between γ and C1. Similarly, for each γ′ ∈ B, let Kγ′ denote the region
enclosed between γ′ and C2. Define U1 =

⋃
γ∈A Kγ and U2 =

⋃
γ′∈B Kγ′ . By appropriate

slight perturbations of the boundary portions of these regions along C, we can turn each of the
collections {Kγ}γ∈A and {Kγ′}γ′∈B into a collection of pseudodisks (namely, the boundaries
of each pair cross at most twice). Hence (see [KLPS86, MMP+91], the complexity of U1 is
O(|A|) and it can be constructed in randomized expected time O(|A| log |A|) (by a standard
randomized incremental construction, see [Mul94], as the set original pseudo parabolas are x-
monotone, and thus this amounts to the computation of upper/lower envelope), and similarly
for U2. We now test, in time O((|A| + |B|) log(|A| + |B|)), whether ∂U1 and ∂U2 intersect.
It is clear that A × B contains an intersecting pair of arcs if and only if these boundaries
intersect.

Applying this procedure to every pair of graphs in our decomposition, we thus obtain:

Lemma 5.3 One can determine, in randomized expected time O(nτ log3 nτ ), whether S∗τ is
a collection of pseudo-segments.

Remark 5.4 The preceding analysis relied heavily on the fact that the given arcs are
pseudo-parabolas. If the maximum number of intersections between any pair of arcs is
t > 2 then two issues need to be addressed:

(1) The pseudodisk property of the regions K(γ) no longer holds. However, this is not a
real problem: Because the arcs are x-monotone, one can construct the unions U1, U2

efficiently and test for their intersection using lower and upper envelopes. We omit the
easy details.

(2) A more serious problem is that now we also have to test for intersections between pairs
of arcs whose intervals interleave. More precisely, each pair of such arcs intersect an
odd number of times, and we need to determine whether there is a pair with more than
one intersection. At the moment, we do not have any efficient procedure for doing this.

6 Eliminating Cycles of Rods in Space

Let S be a set of n pairwise-disjoint nonvertical line segments (‘rods’) in 3-space. A rod
s ∈ S lies below a rod s′ ∈ S if there exists a vertical line ` passing through s and s′, so that
the point `∩s lies below the point `∩s′. (The transitive closure of) this relation is called the
depth order of S. In general, it may contain cycles, and the problem we face, which arises in
several applications, is to cut some of the rods of S into smaller pieces so as to obtain a new
set S ′ of rods whose depth order contains no cycles. The goal is to make the smallest number
of cuts needed to eliminate all cycles. This is a hard problem, so we seek any solution so
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that the number of cuts that it makes approximates, or depends, on the minimum number
of cuts. Recently, Solan [Sol98] presented an algorithm that makes O(n1+ε√µ) cuts, where
µ is the smallest number of cuts, for any ε > 0. Using our point-location mechanism, we
obtain an improved solution that makes only O(n

√
µα(n) log n) expected number of cuts.

It is easy to verify that O(n2) cuts are sufficient in general, and there are examples where
Ω(n3/2) cuts are needed [Sha94]. However, the number of cuts needed might be considerably
smaller. See also the earlier paper [CEG+92] for related results.

The algorithm works as follows. Let S∗ denote the set of xy-projections of the rods in S.
We construct a DAG T for S∗ incrementally; initially, T consists of a single node, the root,
that represents the whole plane. For each leaf v of T , we take each rod s ∈ S whose xy-
projection crosses the trapezoid ∆v of v, and clip s by intersecting it with the vertical prism
erected over ∆v. Let S(v) denote the resulting set of rods. We run the algorithm of [dBOS94]
for detecting depth-order cycles, on S(v). The algorithm runs in time O(|S(v)|4/3+ε), for any
ε > 0.

If no cycle is detected, we do not expand T below v. Otherwise, we expand it, using the
mechanism described above. We keep expanding T in this manner, until all leaves v of T
are such that their corresponding sets S(v) are cycle-free. Since the leaves of T always form
a cover of the plane, it follows that the union of the sets S(v), over the leaves v of T , is a
cutting of the rods of S in which all cycles are eliminated.

Theorem 6.1 Let S be a set of n rods in 3-space, for which all depth-order cycles can be
eliminated by making µ cuts. Then one can compute a cutting set for S of expected size
O(n

√
µα(n) log n), in expected time O(n4/3+εµ1/3), for any ε > 0.

Proof: We first bound the expected number of cuts that the above algorithm makes.
By the preceding discussion, it suffices to bound the overall expected weight of T upon
termination. Let C be a set of µ cutting points on the rods of S that eliminate all cycles,
and let C∗ denote its xy-projection. Note that the trapezoid of each internal node v of T was
either: (i) split because it contains at least one point of C∗ (i.e., the arrangement induced
inside it contained a cycle), or (ii) was generated by the execution of a call to Expand(u) by
the top-level of CompZoneOnline, with an adjacent node u so that the arrangement induced
inside ∆u contained a cycle. In this latter case, v must lie on a path in T that connects the
root of T with u (see [HP99b] for the proof of this claim). It follows that T is contained
in the DAG T0 that would have been produced if we performed point-location queries with
the (unknown) points of C∗ in A(S∗). As argued above, the total expected weight of T0 is
O(λt+2(n + w(C∗, S∗) + |C∗|) log n). Hence this is also an upper bound on the number of
cuts that our algorithm makes. As noted earlier, we always have w(C∗, S∗) = O(n

√
|C|) =

O(n
√

µ), which implies the first assertion of the theorem.
As is easily verified, the expected running time of the algorithm is dominated by the

bound on the time required to test whether a clipped set S(v) contains a cycle, summed over
all nodes v of T . To bound this quantity, we interpret the history DAG T as the history
DAG that would have been generated by an off-line randomized incremental algorithm that
uses an oracle for determining which of the new trapezoids that it generates contain cycles.
The set of trapezoids maintained by this algorithm fits the settings of the analysis by de
Berg et al. [dBDS95] and by Agarwal et al. [AMS98] (these papers consider an extension of
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the standard setting of randomized incremental geometric constructions due to Clarkson and
Shor [CS89]). In particular, after the i-th iteration of the algorithm, the expected number
of ‘active’ trapezoids (leaves of the DAG) maintained by the algorithm is O(min(i2, λt+2(i +
(i/n)w))), where w is the minimum weight of a Steiner-tree connecting the points of the
optimal solution. Indeed, the first term is a bound on the complexity of the whole projected
arrangement, whereas the second term bounds the expected complexity of the zone of the
minimum Steiner-tree, which is an upper bound on the number of active trapezoids; the
bound on the zone complexity follows from the fact that the expected number of crossings
between the spanning tree and the first i arcs is (i/n)w, which implies that the expected
number of trapezoids in the zone of the spanning tree in A(Si) is O(λt+2(i + (i/n)w)).

By [dBDS95, AMS98], the overall expected work involved in checking for each of those
trapezoids whether it contains a cycle is

O

(
min

(
i2, λt+2(i + (i/n)w)

)
·
(n

i

)4/3+ε
)

.

Thus, using backward analysis [Sei93], the expected number of trapezoids created in the i-th
iteration is O(min (i, λt+2(i + (i/n)w)/i)), and the expected work required by this iteration
is

O

(
min

(
i,

λt+2(i + iw/n)

i

)
·
(n

i

)4/3+ε
)

.

Thus, the expected overall running time of the algorithm is

O

w/n∑
i=1

i ·
(n

i

)4/3+ε

+
n∑

i=w/n+1

λt+2(i + iw/n)

i
·
(n

i

)4/3+ε

 = O
(
n4/3+ε + n2/3+εw2/3+ε

)
,

as can be easily verified. Since w is at most O(n
√

µ), we obtain that the expected running
time of the algorithm is O(n4/3+εµ1/3+ε) = O(n4/3+εµ1/3), since µ = O(n2). This completes
the proof.

Remark 6.2 (a) Theorem 6.1 improves the bound on the number of cuts over the pre-
vious algorithm of Solan [Sol98], and both algorithms have the same asymptotic expected
running time. Moreover, the number of cuts performed by the algorithm is a nearly-linear
function of w = w(C∗, S∗), which may be considerably smaller than the estimate used in
Theorem 6.1. The expected running time of the algorithm is also a function of w (that is, it
is O

(
n4/3+ε + n2/3+εw2/3+ε

)
), so the algorithm will be faster when w is small.

(b) As in the preceding sections, the structure produced by the algorithm is somewhat
degenerate, because portions of the trapezoid boundaries that it generates are projections of
portions of the given rods. In particular, some of the cutting points may lie directly above
or below another rod. In case this is undesirable, an appropriate slight perturbation of these
points can be applied.

7 Computing Bichromatic Intersections

Let R and B be two sets of ‘red’ and ‘blue’ x-monotone arcs, as above, so that the union
UR of the arcs of R and the union UB of the arcs of B are both connected. Let t be the
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maximum number of intersections between any pair of arcs of R ∪ B, and let n denote
the overall number of arcs. Let RVD = AVD(R) and BVD = AVD(B) denote, respectively,
the vertical decompositions of the arrangements A(R) and A(B). A trapezoid ∆ ∈ RVD
(resp. ∆ ∈ BVD) is called hot if the interior of ∆ intersects one of the blue (resp. red) arcs
of B (resp. R). Let k denote the number of bichromatic intersections between the red and
the blue arcs.

To compute all the k bichromatic intersections, we perform a simultaneous sweep of the
blue and red arrangements, and maintain hot trapezoids along the y-structure of the sweep.
To detect hot trapezoids, we will use the data-structure of Section 3 for online point-locations
in these two arrangements. Our algorithm can be viewed as a straightforward adaption of
the algorithm of Basch et al. [BGR96], so that it uses our online data-structure and thereby
achieves better performance (see the introduction and Remark 7.6 below for comparison with
existing works).

Lemma 7.1 The number of hot trapezoids in BVD and RVD is O(λt+2(n + k)).

Proof: Let B′ be the set of arcs generated from the arcs of B, by breaking each blue arc
into several subarcs, at its intersection points with the red arcs. Clearly, |B′| = O(n+k). All
the red arcs now lie in a single face f of A(B′), and the number of hot trapezoids in BVD is
at most proportional to the complexity of this face. Indeed, the collection of hot trapezoids
covers f (viewed as a collection of faces of A(B)), so their number is proportional to the
complexity of these faces (in A(B)), which is smaller than or equal to the complexity of f
(as a single face of A(B′)). The lemma thus follows from the fact that the complexity of this
face is O(λt+2(n + k)); see [SA95].

Clearly, the same bound also holds for the number of hot trapezoids in RVD.

Definition 7.2 Two arcs β ∈ B, ρ ∈ R are visible at x0, if the two arcs intersect the vertical
line ` : x = x0, and no other arc of R ∪ B intersects ` between those two arcs. A pair of
arcs (β, ρ) are visible, if there is a value of x so that β and ρ are visible at x.

A triple (β, ρ, x0), for β ∈ B, ρ ∈ R, x ∈ R is a visibility triple if β and ρ are visible at
x0, and are not visible immediately to the left of x0.

Lemma 7.3 The number of visibility triples is O(λt+2(n + k)).

Proof: We charge each visibility triple to a hot trapezoid of either BVD or RVD, or to a
bichromatic intersection point. By Lemma 7.1, the number of charged entities is O(λt+2(n+
k)).

For a visibility triple (β, ρ, x0), if the vertical segment connecting β and ρ along the line
x = x0 is contained in either the right or the left side of a trapezoid of BVD or RVD, we
can charge this triple to the relevant trapezoid, since there are at most 2 visibility triples
involving the same trapezoid at the same x-coordinate.

Otherwise, β and ρ became visible (as we sweep from left to right) because one of the arcs
became “suddenly” visible to the other arc; namely, to the left of x0, either β was occluded
by a red arc from seeing ρ, or ρ was occluded by a blue arc from seeing β. In either case,
the only way a visibility triple can be created is by a bichromatic intersection involving the
occluded arc. (The other possibilities, where the occluding arc starts or ends at x0, or where

16



one of the arcs, say β, is occluded from the other arc by an arc β′ of the same color and the
occlusion stops when β and β′ intersect, have already been treated, because the endpoint of
the occluding arc or the monochromatic intersection of the occluding and occluded arc both
induce a vertical side of a hot trapezoid at x0.) Thus, we charge this visibility triple to this
bichromatic intersection point. It is easy to verify that, under a general position assumption,
each bichromatic intersection is charged only O(1) times.

Observation 7.4 Let p = β ∩ ρ = (xp, yp) be a bichromatic intersection of β ∈ B, ρ ∈ R.
Then there exists a visibility triple (β, ρ, x0), so that x0 < xp.

We will compute all the bichromatic intersections by sweeping A(B),A(R) simultane-
ously with a vertical line from left to right, and by maintaining the visibility information
along the vertical sweeping line. It is easy to verify that the visibility information changes
either at the x-coordinate of a visibility triple, or at a bichromatic intersection.

To maintain all the visible pairs of arcs β, ρ at the current location of the sweeping line, we
maintain online data-structures DB,DR for point location in A(B) and A(R), respectively,
using the technique described in Sections 2 and 3.

Given a point p ∈ UB, we can check whether it is vertically visible from an arc of R as
follows: Perform an upward and downward vertical ray-shooting queries from p in DR, and
let qtop, qbot ∈ UR be the points returned. (To answer these queries, we simply perform point
location with p in A(R); the top and bottom arcs of the output trapezoid that contains p
are the answers to the queries.) Now perform a downward vertical ray-shooting query from
qtop in DB (using the same mechanism), and let q′top ∈ UB be the returned point. Then p is
visible from a red arc from above if and only if q′top = p. Similarly, if we perform an upward
vertical ray-shooting query from qbot, and q′bot is the returned point, then p is visible from a
red arc from below if and only if q′bot = p.

To perform the sweep, we insert all the endpoints of the arcs of B ∪ R into the x-
structure event queue. For a visible pair of arcs, we maintain the corresponding pair of
vertical trapezoids of BVD, RVD that contain the vertical connecting segment between the
arcs. For each such trapezoid, we insert its bottom right vertex into the event queue. For
any visible pair of arcs, we check whether they have any bichromatic intersections to the
right of the current sweepline, and if so we insert these intersections into the event queue.

Maintaining the visibility during the sweep is now straightforward. Each event in the
x-structure queue is either an endpoint of an arc, a bichromatic intersection, or the right
side of a hot trapezoid. In each of these cases we need to construct new hot trapezoids that
materialize to the right of the event, which we can do efficiently by performing appropriate
point-location queries in DR,DB. We omit the somewhat tedious though straightforward
details.

The key to the above algorithm are the structuresDR,DB, which provide “cheap” tracking
of the changes in the visibility information. Without these data-structures one may have to
work much harder, as in [BGR96].

We note that, by a careful implementation of the algorithm, all the point-location queries
in DB (resp. DR) were performed by points lying in UR (resp. in UB), namely, in the zone
of UR (resp. UB) in A(B) (resp. A(R)). Let PR denote the set of query point-locations
performed in DB. Furthermore, each point-location can be charged to a visibility triple, and
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such a triple is charged only a constant number of times. Thus, by Lemma 7.3, we conclude
that |PR| = O(λt+2(n + k)).

Let MR = M(PR, B) be the minimum weight Steiner-tree of the points of PR in the
arrangement A(B). Clearly, w(MR) ≤ k, as UR is a connected set having k intersections
with UB. Define MB = M(PB, R) in complete analogy; its weight is also at most k.

We therefore conclude that the expected time required to execute those O(λt+2(n + k))
point-location queries in DB is O(λt+2(n + k) log n), by Theorem 3.2 and Lemma 2.2. As is
easy to verify, all the other operations carried out by the algorithm also require O(λt+2(n +
k) log n) expected time. We conclude:

Theorem 7.5 Let R and B be two sets of a total of n red and blue x-monotone arcs, as
above, so that the union of the arcs of R and the union of the arcs of B are both con-
nected. Then one can compute, in O(λt+2(n + k) log n) randomized expected time, all the k
bichromatic intersections between the red and blue arcs.

Remark 7.6 Previously, an O((n + k) log3 n)-time algorithm for the case of segments was
given by [BGR96]. Chan [Cha99] mentions that his data-structure for the maintenance of
intersection of half-planes can be used to get an algorithm with O((n + k) log2+ε n) (deter-
ministic) running time for the above red-blue intersection problem. For the case general
arcs, an O(λt+2(n + k) log3 n)-time algorithm is presented in [BGR96].

8 Conclusions

In this paper we have presented several new applications of the technique of [HP99b]. In
all the cases studied here the new solutions are faster than what was previously known. We
believe that the technique of [HP99b] can be used for other applications; in particular, we
believe it can be extended to three dimensions.

Underlining the analysis of all these applications is the ‘invisible’ parameter, which is
the minimum weight of a Steiner-tree of a set of points in a planar arrangement of arcs,
under the arc-intersection distance defined above. The performance of our algorithm and its
applications depends, in an almost-linear fashion, on this parameter. In fact, in some appli-
cations, such as that of eliminating cycles in a set of rods, or of cutting pseudo-parabolas into
pseudo-segments, even the points that define this tree are ‘invisible’, and yet the algorithm
performs as if it knew where these points are. We believe that a better understanding of the
structure and behavior of this minimum-weight Steiner-tree could lead to further progress
on the problems studied and on other related problems.

Recently, using the results in this paper, Har-Peled and Indyk [HPI00] showed how to
ε-approximate the minimum spanning tree of a set of points under the intersection metric
defined by a set of lines in the plane. A critical component in achieving a near-linear running
time was the linear dependency on the ‘invisible’ minimum tree weight mentioned above.

We conclude by mentioning the following open problems:

• Can one compute all k bichromatic intersections in the setup of Section 7 for the case
of segments, in O(n log n + k) time?
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• Can one use the hitting set technique of [BG95] (see also [PA95] and Appendix A) to
get a better approximation for the problem of eliminating cycles of rods in space?

• Can one speed up the algorithms presented in this paper by using Chazelle’s hierarchical
cuttings [Cha93] instead of using the technique of [HP99b]?
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[BDH99] K.-F. Böhringer, B. Donald, and D. Halperin. The area bisectors of a polygon
and force equilibria in programmable vector fields. Discrete Comput. Geom.,
22(2):269–285, 1999.
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A Cutting Pseudo-Parabolas and More General Arcs

into Pseudo-Segments—A Slower Algorithm that Pro-

duces a Near-Optimal Solution for General Arcs

Let S be a collection of n general x-monotone arcs, each pair of which intersect at most
t times. In this subsection we present an alternative algorithm, not based on the online
point-location mechanism, that constructs a cutting set for S that turns it into a pseudo-
segment arrangement, whose size is nearly optimal. The algorithm is a variant of the greedy
algorithm for the hitting set problem, and a naive implementation of it will require O(n3)
time. Our more careful implementation achieves O(n2 log n) running time.

Intersect each curve s ∈ S with all the other curves. For a pair of points p, q ∈ s, with p
to the left of q, denote by s[p, q] the subarc of s delimited by p and q. For any other s′ ∈ S,
let p1, . . . , pk, for k ≤ t, denote the points of intersection of s and s′, sorted from left to
right. If k ≥ 2, we associate with s′ the k − 1 subarcs s[pi, pi+1], for i = 1, . . . , k − 1, along
s. If k = 1 we ignore the interaction between s and s′. Repeating this process over all s, s′,
we obtain a system Is of subarcs along each curve s ∈ S. Define the depth of a point p lying
on a curve s ∈ S to be the number of subarcs of Is that contain p.

We construct a cutting set for S using the following greedy algorithm:

(a) Find the deepest point p over all curves of S.

(b) Cut the curve s containing p at p.

(c) For each subarc γ = s[a, b] ∈ Is that contains p, do the following: (i) Delete γ from Is.
(ii) Let s′ be the other curve that induces γ; delete s′[a, b] (the ‘sibling’ subarc induced
by s along s′) from Is′ .
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(d) Repeat steps (a)–(c) until all sets Is become empty.

It is clear that the algorithm produces a cutting set that creates a pseudo-segment arrange-
ment. Using well known results on the performance of the greedy algorithm for the hitting
set problem in hypergraphs (see, e.g., [PA95, Theorem 15.2], [Lov75]), it follows that the
size of the cutting set produced by this algorithm is O(µ log d), where µ is the size of the
minimum cutting set and where d is the maximum depth of a point.

To derive a reasonably efficient (near-quadratic) implementation of this algorithm, we
proceed as follows. The initial construction of the sets Is, for s ∈ S, can be done in
O(n2 log n) time. For each s ∈ S, store the subarcs of Is in a segment tree Ts, and augment
the tree so that each node v of Ts stores the deepest point on s (and its depth) which
is contained in the subinterval associated with the subtree of Ts rooted at v. The initial
construction of all these augmented segment trees can be done in O(n2 log n) time. Finally,
the roots of all the trees Ts are stored in a heap, ordered by the keys depth(s) = the depth
of the deepest point on s, for s ∈ S.

Steps (a) and (b) are easy to perform in O(log n) time. Let p and s be the point found
in (a) and the curve containing it, respectively. The set of all subarcs of Is that contain p
can be obtained as the disjoint union of O(log n) lists, stored at the nodes of Ts on the path
from the root to p. We pick up all these lists and iterate over each of their subarcs, deleting
it from Ts and deleting its sibling subarc from the appropriate tree Ts′ . The deletion of an
arc from a tree can be done in O(log n) time, including the update of the depth pointers at
the relevant nodes of the tree (there are only O(log n) nodes to update, and their parents
lie on two paths of the tree). Since the overall initial size of all the sets Is is O(n2) and we
only perform deletions, the total running time of the algorithm is O(n2 log n) time. We thus
obtain the following result.

Theorem A.1 Given a set S of n arcs, as above, one can construct, in O(n2 log n) time, a
cutting set for S that turns the arcs into an arrangement of pseudo-segments, whose size is
O(µ log d), where µ is the minimum size of such a cutting set and where d is the maximum
depth of a point.
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