
Solution sketches for Assignment 4

Problem 1. (a) As we saw in class, a line ℓ intersects a triangle ∆abc iff the dual point
ℓ∗ lies below the upper envelope U∆ and above the lower envelope L∆ of the lines a∗, b∗, c∗

dual to the vertices of ∆. Denote by K∆ the region between U∆ and L∆.

Hence, a line ℓ crosses all the given triangles iff ℓ∗ lies in the intersection of all the
regions K∆. For this, ℓ

∗ has to lie below all the upper envelopes U∆ and above all the lower
envelopes L∆. That is, ℓ∗ has to lie below the lower envelope of the upper envelopes U∆

and above the upper envelope of the lower envelopes L∆. Each envelope U∆, L∆ consists
of two rays or of two rays and a segment, so their envelope is also a sequence of pieces of
these rays and segments, similar to what’s drawn in the figure.

(b) Proceed as in the hint, and note that merging two sub-envelopes, i.e., computing their
upper or lower envelope, can be done in time linear in their complexities, by a trivial special
case of line sweeping. Using the obvious Divide-and-Conquer approach, of partitioning the
set of envelopes into two subsets of half the size, computing recursively the upper or lower
envelope of each subset, and merging the resulting envelopes, as above, leads to an overall
algorithm with O(n log2 n) time (using the bound on the complexity of an envelope, as
promised in the problem).

(c) In the primal plane, a line misses all the triangles (in this special configuration) iff it
misses their convex hull. So we simply compute their hull, in O(n logn) time, and get the
desired M using the first duality. (Details omitted.)

In the dual plane, using the first duality, a line ℓ misses all the triangles iff all their
vertices lie on the same side of ℓ as the origin, which happens iff ℓ∗ and the origin lie on
the same side of all the dual lines to the vertices. That is, ℓ∗ lies in the intersection of the
halfplanes of the dual lines that contain the origin.

Problem 2. It is easy to determine whether there exists a vertical separating line, so
ignore this case. Write the equation of the separating line ℓ as y = ax+b. Handle separately
the two cases where A should be above ℓ and B below, and where A should be below ℓ and
B above. For the first case, for each pi = (ξi, ηi) ∈ A, we require that ηi ≥ aξi + b, and for
each qj = (ξ′j , η

′

j) ∈ A, we require that η′j ≤ aξ′j + b. These are m + n linear inequalities
in a and b, so we check whether this linear programming problem is feasible. (We can
“invent” any objective function; for example, by maximizing a, we find the separating line
with maximum slope, etc.)

Problem 3. Let (x, y) be the center of the circle, and let r be its radius. The distance of

(x, y) from the line aix+ biy+ c = 0 is
|aix+ biy + c|

√

a2i + b2i

. We can assume that a2i + b2i = 1 for

each i. Also, we require that aix+ biy+ c ≥ 0, so we can drop the absolute value. In short,
we have the inequalities

aix+ biy + c ≥ r,

and r ≥ 0, and we want to maximize r. This is an LP problem in three variables, and we
solve it in O(n) time. (We can drop the constraint r ≥ 0: If the maximum r is negative,
the problem is infeasible, in the sense that the intersection of the halfplanes is empty.)
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Problem 4. Follow the hint: Fix the two points a, b, and vary the third vertex c. It is
easy to show that the area of ∆abc, with a, b fixed, is proportional to the vertical distance
from c to the line ℓ through a and b.

Write the equation of ℓ as y = px+q. Then this vertical distance is |cy−pcx−q|. Notice
that this expression is preserved when passing to the dual plane (using the second duality),
because ℓ becomes the point (p,−q), and c becomes the line y = cxx− cy, and the vertical
distance is then | − q − pcx + cy|, which is the same.

So we move to the dual plane, get a collection of n lines, and run a sweeping algorithm.
Every time we encounter an intersection point v of two lines a∗ and b∗ (the dual to the line
through a and b), we find the two dual lines directly above and below v — these are the
candidates for the third vertex c — and we compute the area of the corresponding primal
triangle ∆abc. We return the smallest-area triangle.

For the case where we want to test whether there exist three collinear points, this will
be detected when we encounter an intersection point with more than two lines through it.
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