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2 J�ANOS PACH AND MICHA SHARIR
Figure 1. Eight lines and nine points with 24 inidenes between them.A(C) denote the arrangement of the urves of C, i.e., the deomposition of the planeinto onneted open ells of dimensions 0; 1; and 2 indued by drawing the elementsof C; eah ell is a maximal onneted set ontained in the intersetion of a �xedsubset of the urves and avoiding all other urves. These ells are alled verties,edges, and faes of the arrangement, respetively. The total number of these ellsis said to be the ombinatorial omplexity of the arrangement. The ombinatorialomplexity of a single fae is de�ned as the number of lower dimensional ells (i.e.,verties and edges) belonging to its boundary. The points of P then mark ertainfaes in the arrangement A(C) of the urves, and the goal is to establish an upperbound on K(P;C), the ombined ombinatorial omplexity of the marked faes.This problem is often referred to in the literature as the Many-Faes Problem.One an extend the above questions to d-dimensional spaes, for d > 2. Here wean either ontinue to onsider inidenes between points and urves, or inidenesbetween points and (d�1)-dimensional surfaes or manifolds of odimension greaterthan 1. In the ase of surfaes, we may wish to study the natural generalization ofthe `many-faes problem' desribed in the previous paragraph: to estimate the totalombinatorial omplexity of n marked (d-dimensional) ells in the arrangement ofsurfaes.All of the above problems have algorithmi variants. Perhaps the simplestquestion of this type is Hoproft's problem: Givenm points and n lines in the plane,how fast an one determine whether there exists any point that lies on any line?One an onsider more general problems, like ounting or reporting the inidenes,doing the same for a olletion of urves rather than lines, omputing m markedfaes in an arrangement of n urves, and so on.It turned out that two exiting metri problems (involving interpoint distanes)proposed by Erd}os in 1946 are strongly related to problems involving inidenes.(1) Repeated Distanes Problem: Given a set P of n points in the plane, whatis the maximum number of pairs that are at distane exatly 1 from eahother? To see the onnetion, let C be the set of unit irles entered atthe points of P . Then two points p; q 2 P are at distane 1 apart if andonly if the irle entered at p passes through q and vie versa. Hene,I(P;C) is twie the number of unit distanes determined by P .(2) Distint Distanes Problem: Given a set P of n points in the plane, atleast how many distint distanes must there always exist between itspoint pairs? Later we will show the onnetion between this problem and



GEOMETRIC INCIDENCES 3the problem of inidenes between P and an appropriate set of irles ofdi�erent radii.Some other appliations of the inidene problem and the many-faes prob-lem will be reviewed at the end of this paper. They inlude the analysis of themaximum number of isoseles triangles, or triangles with a �xed area or perime-ter, whose verties belong to a planar point set; estimating the maximum numberof mutually ongruent simplies determined by a point set in higher dimensions;and several more surprising appliations to number theory, Fourier analysis, andmeasure theory.1.2. Historial perspetive and overview. The �rst derivation of the tightupper bound I(P;L) = O(m2=3n2=3 +m+ n)(for sets P of m points and L of n lines) was given by Szemer�edi and Trotterin their 1983 seminal paper [95℄. They proved Erd}os' onjeture, who found themathing lower bound (whih was redisovered many years later by Edelsbrunnerand Welzl [45℄). A di�erent lower bound onstrution was exhibited by Elekes [46℄(see Setion 2).The original proof of Szemer�edi and Trotter is rather involved, and yields arather astronomial onstant of proportionality hidden in the O-notation. Aord-ing to Cs. T�oth [98℄, their tehnique an be extended to the omplex plane to givepreisely the same bound, apart from the onstant. A onsiderably simpler proofwas found by Clarkson, Edelsbrunner, Guibas, Sharir and Welzl [38℄ in 1990, us-ing extremal graph theory ombined with a geometri partitioning tehnique basedon random sampling (see Setion 3). Their paper ontains many extensions andgeneralizations of the Szemer�edi-Trotter theorem. In partiular, the same upperbound holds for sets of pseudo-lines and of unit irles. Many further extensionsan be found in subsequent papers by Edelsbrunner, Guibas and Sharir [42, 43℄,by Agarwal and Aronov [2℄, by Aronov, Edelsbrunner, Guibas and Sharir [13℄, andby Pah and Sharir [77℄.The next breakthrough ourred in 1997. In a surprising paper, Sz�ekely [94℄gave an embarrassingly short proof of the upper bound on I(P;L) using a simplelower bound of Ajtai, Chv�atal, Newborn and Szemer�edi [10℄ and of Leighton [70℄on the rossing number of a graph G, i.e., the minimum number of edge rossingsin the best drawing of G in the plane, where the verties are represented by pointsand the edges by Jordan ars. In the literature this result is often referred to asthe `Crossing Lemma.' Sz�ekely's method ould easily be extended to several othervariants of the problem, but appears to be less general than the previous tehniqueof Clarkson et al. [38℄.Sz�ekely's paper has triggered an intensive re-examination of the problem. Inpartiular, several attempts were made to improve the existing upper bound onthe number of inidenes between m points and n irles of arbitrary radii in theplane [78℄. This was the simplest instane where Sz�ekely's proof tehnique failed.By ombining Sz�ekely's method with a seemingly unrelated tehnique of Tamakiand Tokuyama [96℄ for utting irles into `pseudo-segments', Aronov and Sharir[17℄ managed to obtain an improved bound for this variant of the problem. Theirwork has then been followed by Agarwal, Aronov and Sharir [3℄, who studied theomplexity of many faes in arrangements of irles and pseudo-segments, and



4 J�ANOS PACH AND MICHA SHARIRby Agarwal, Nevo, Pah, Pinhasi, Sharir and Smorodinsky [7℄, who extendedthis result to arrangements of pseudo-irles (see Setion 5). Aronov, Koltun andSharir [14℄ generalized the problem to higher dimensions, while Sharir and Welzl[85℄ studied inidenes between points and lines in three dimensions (see Setion 8).The related problems involving distanes in a point set have also witnessedonsiderable progress reently. As for the Repeated Distanes Problem in the plane,the best known upper bound on the number of times the same distane an ouramong n points is O(n4=3), whih was obtained nearly 20 years ago by Spener etal. [92℄. This is far from the best known lower bound of Erd}os, whih is only slightlysuper-linear [76℄. The best known upper bound for the 3-dimensional ase, due toClarkson et al. [38℄, is roughly O(n3=2), while the orresponding lower bound ofErd}os is 
(n4=3 log logn) [75℄. Other variants of the problem have been studiedin [24, 51, 52, 61, 87, 93℄.More progress has been made on the ompanion problem of Distint Distanes.In the planar ase, L. Moser [74℄ and Chung, Szemer�edi and Trotter [37℄ provedthat the number of distint distanes determined by n points in the plane is atleast 
(n2=3) and n4=5 divided by a polylogarithmi fator, respetively. Sz�ekely[94℄ managed to get rid of the polylogarithmi fator, while Solymosi and Cs. T�oth[89℄ improved this bound to 
(n6=7). This was a real breakthrough. Their analysiswas subsequently re�ned by Tardos [97℄ and then by Katz and Tardos [68℄, whoobtained the urrent reord of 
(n(48�14e)=(55�16e)�"), for any " > 0, whih is
(n0:8641). This is getting lose to the best known upper bound of O(n=plogn),due to Erd}os [50℄, but there is still a onsiderable gap. See Setion 9 for more details.In three dimensions, a reent result of Aronov, Pah, Sharir and Tardos [16℄ yieldsa lower bound of 
(n77=141�"), for any " > 0, whih is 
(n0:546). This has beenimproved by Solymosi and Vu [91℄ to 
(n0:564), but this new bound is still far fromthe best known upper bound of O(n2=3).The argument of Solymosi and T�oth as well as the higher dimensional versionof the Distint Distanes Problem are disussed in Setion 9. For other surveys onrelated subjets, onsult [72℄, [75℄, [76℄, and [29℄.2. Lower BoundsWe desribe a simple onstrution due to Elekes [46℄ of a set P of m pointsand a set L of n lines, suh that I(P;L) = 
(m2=3n2=3+m+n). We �x two integerparameters �; �. We take P to be the set of all lattie points in f1; 2; : : : ; �g �f1; 2; : : : ; 2��g. The set L onsists of all lines of the form y = ax + b, where a isan integer in the range 1; : : : ; �, and b is an integer in the range 1; : : : ; ��. Clearly,eah line in L passes through exatly � points of P . See Figure 2.We have m = jP j = 2�2�, n = jLj = ��2, andI(P;L) = �jLj = �2�2 = 
(m2=3n2=3):Given any sizes m;n so that n1=2 � m � n2, we an �nd �; � that give rise to setsP;L whose sizes are within a onstant fator of m and n, respetively. If m liesoutside this range then m2=3n2=3 is dominated by m + n, and then it is trivial toonstrut sets P;L of respetive sizes m;n so that I(P;L) = 
(m + n). We havethus shown that I(P;L) = 
(m2=3n2=3 +m+ n):
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2�� olumns

� rowsFigure 2. Elekes' onstrution.We note that this onstrution is easy to generalize to inidenes involving otherurves. For example, we an take P to be the grid f1; 2; : : : ; �g � f1; 2; : : : ; 3�2�g,and de�ne C to be the set of all parabolas of the form y = ax2 + bx + , wherea 2 f1; : : : ; �g, b 2 f1; : : : ; ��g,  2 f1; : : : ; �2�g. Now we have m = jP j = 3�3�,n = jCj = �3�3, and I(P;C) = �jCj = �4�3 = 
(m1=2n5=6):Note that in the onstrution we have m = O(n). When m is larger, we use thepreeding onstrution for points and lines, whih an be easily transformed into aonstrution for points and parabolas, to obtain the overall lower bound for pointsand parabolas: I(P;C) = � 
(m2=3n2=3 +m); if m � n
(m1=2n5=6 + n); if m � n.From inidenes to many faes. Let P be a set of m points and L a set of nlines in the plane, and put I = I(P;L). Fix a suÆiently small parameter " > 0,and replae eah line ` 2 L by two lines `+; `�, obtained by translating ` parallelto itself by distane " in the two possible diretions. We obtain a new olletion L0of 2n lines. If " is suÆiently small then eah point p 2 P that is inident to k � 2lines of L beomes a point that lies in a small fae of A(L0) that has 2k edges; notealso that the irle of radius " entered at p is tangent to all these edges. Moreover,these faes are distint for di�erent points p, when " is suÆiently small.We have thus shown that K(P;L0) � 2I(P;L) � 2m (where the last termaounts for points that lie on just one line of L). In partiular, in view of thepreeding onstrution, we have, for jP j = m, jLj = n,K(P;L) = 
(m2=3n2=3 +m+ n):An interesting onsequene of this onstrution is as follows. Take m = n andsets P;L that satisfy I(P;L) = �(n4=3). Let C be the olletion of the 2n lines of L0and of the n irles of radius " entered at the points of P . By applying a irular



6 J�ANOS PACH AND MICHA SHARIRinversion, we an turn all the urves in C into irles. We thus obtain a set C 0 of3n irles with �(n4=3) tangent pairs. If we replae eah of the irles entered atthe points of P by irles with a slightly larger radius, we obtain a olletion of 3nirles with �(n4=3) empty lenses, namely faes of degree 2 in their arrangement.Empty lenses play an important role in the analysis of inidenes between pointsand irles; see below.Lower bounds for inidenes with unit irles. As noted, this problem isequivalent to the problem of Repeated Distanes. Erd}os [50℄ has shown that, forthe verties of an n1=2�n1=2 grid, there exists a distane that ours 
(n1+= log logn)times, for an appropriate absolute onstant  > 0. More preisely, aording to awell-known result of Euler and Fermat, every prime of the form 4k+1 an be writtenas the sum of two squares. Combining this theorem with the fat that primes ofthis form are \uniformly distributed" among all prime numbers, it an be deduedthat there exists an integer m smaller than n that an be written as the sum of thetwo squares in at least n= log logn di�erent ways. Consequently, from eah point ofthe n1=2�n1=2 grid there are at least n= log logn other points of the grid at distanem1=2. Reduing the on�guration to m�1=2 of its original size, we obtain a set ofn points determining 
(n1+= log logn) unit distanes. The number-theoreti detailsof this analysis an be found in the monographs [76℄ and [72℄.Lower bounds for inidenes with arbitrary irles. As we will see later,we are still far from a sharp bound on the number of inidenes between pointsand irles, espeially when the number of points is small relative to the number ofirles.By taking sets P of m points and L of n lines with I(P;L) = �(m2=3n2=3+m+n), and by applying inversion to the plane, we obtain a set C of n irles and a setP 0 of m points with I(P 0; C) = �(m2=3n2=3+m+n). Hene the maximum numberof inidenes between m points and n irles is 
(m2=3n2=3+m+n). However, wean slightly inrease this lower bound, as follows.Let P be the set of verties of the m1=2 �m1=2 integer lattie. As shown byErd}os [50℄, there are t = �(m=plogm) distint distanes between pairs of pointsof P . Draw a set C of mt irles, entered at the points of P and having as radiithe t possible inter-point distanes. Clearly, the number of inidenes I(P;C) isexatly m(m � 1). If the bound on I(P;C) were O(m2=3n2=3 + m + n), then wewould havem(m� 1) = I(P;C) = O(m2=3(mt)2=3 +mt) = O(m2=(logm)1=3);a ontradition. This shows that, under the most optimisti onjeture, the maxi-mum value of I(P;C) should be larger than the orresponding bound for lines byat least some polylogarithmi fator.3. Upper Bounds for Inidenes via the Partition TehniqueThe approah presented in this setion is due to Clarkson et al. [38℄. Itpredated Sz�ekely's method, but it seems to be more exible, suitable for general-izations. It an also be used for the re�nement of some proofs based on Sz�ekely'smethod.We exemplify this tehnique by establishing an upper bound for the numberof point-line inidenes. Let P be a set of m points and L a set of n lines in theplane. First, we give a weaker bound on I(P;L), as follows. Consider the bipartite



GEOMETRIC INCIDENCES 7graph H � P � L whose edges represent all inident pairs (p; `), for p 2 P , ` 2 L.Clearly, H does not ontainK2;2 as a subgraph. By the K}ovari-S�os-Tur�an Theoremin extremal graph theory (see [76℄), we have(3.1) I(P;L) = O(mn1=2 + n):To improve this bound, we partition the plane into subregions, apply this boundwithin eah subregion separately, and sum up the bounds. We �x a parameterr; 1 � r � n, whose value will be determined shortly, and onstrut a so-alled(1=r)-utting of the arrangement A(L) of the lines of L. This is a deomposition ofthe plane into O(r2) vertial trapezoids with pairwise disjoint interiors, suh thateah trapezoid is rossed by at most n=r lines of L. The existene of suh a uttinghas been established by Chazelle and Friedman [35℄ and later re�ned by Chazelle[33℄, following earlier and somewhat weaker results of Clarkson and Shor [39℄. Theidea is roughly the following. Take a random sample R of r lines of L, form theirarrangement A(R), and triangulate eah of its faes. We obtain O(r2) triangles(ells). Using standard probabilisti arguments [39℄, one an show that, with highprobability, no ell is rossed by more than O(nr log r) lines of L. Moreover, theexpeted number of lines rossing a ell is only O(nr ). Chazelle and Friedman showthat the expeted number of ells that are rossed by more than tnr lines deaysexponentially with t. These \heavy" ells are then ut further into subells, usingadditional random samples of the lines that ross them, so as to guarantee that noell is rossed by more than n=r lines. The exponential deay is then used to showthat the overall number of ells remains O(r2). See [72℄ and [84℄ for more details.For eah ell � of the utting, let P� denote the set of points of P that lie inthe interior of � , and let L� denote the set of lines that ross � . Put m� = jP� j andn� = jL� j � n=r. Using (3.1), we haveI(P� ; L� ) = O(m�n1=2� + n� ) = O�m� �nr �1=2 + nr� :Summing this over all O(r2) ells � , we obtain a total ofX� I(P� ; L�) = O�m�nr �1=2 + nr�inidenes. This does not quite omplete the ount, beause we also need to onsiderpoints that lie on the boundary of the ells of the utting. A point p that lies inthe relative interior of an edge e of the utting lies on the boundary of at most twoells, and any line that passes through p, with the possible exeption of the singleline that ontains e, rosses both ells. Hene, we may simply assign p to one ofthese ells, and its inidenes (exept for at most one) will be ounted within thesubproblem assoiated with that ell. Consider then a point p whih is a vertexof the utting, and let ` be a line inident to p. Then ` either rosses or boundssome adjaent ell � . Sine a line an ross the boundary of a ell in at most twopoints, we an harge the inidene (p; `) to the pair (`; �), use the fat that noell is rossed by more than n=r lines, and onlude that the number of inidenesinvolving verties of the utting is at most O(nr). See Figure 3 for an illustration.We have thus shown thatI(P;L) = O�m�nr �1=2 + nr� :
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`p �

Figure 3. The inidene between p and ` is harged to the ross-ing of � by `.Choose r = m2=3=n1=3. This hoie makes sense provided that 1 � r � n. If r < 1,then m < n1=2 and (3.1) implies that I(P;L) = O(n). Similarly, if r > n thenm > n2 and (3.1) implies that I(P;L) = O(m). If r lies in the desired range, we getI(P;L) = O(m2=3n2=3). Putting all these bounds together, we obtain the boundI(P;L) = O(m2=3n2=3 +m+ n);as required.We remark that the atual analysis of Clarkson et al. [38℄ uses a partitionformed only by the �rst deomposition stage (whih onstruts A(R) and triangu-lates its ells). This in general is not a (1=r)-utting. Nevertheless, using improvedbounds on the expeted number of lines that ross a ell, Clarkson et al. managedto pull through the analysis along the lines desribed above. However, using there�ned onstrution of Chazelle and Friedman [35℄ simpli�es the analysis.Remark. An equivalent statement of the Szemer�edi-Trotter theorem is that, for aset P of n points in the plane, and for any integer k � n, the number of lines thatontain at least k points of P is at mostO�n2k3 + nk� :Moreover, the number of inidenes between these lines and the points of P is atmost O�n2k2 + n� :Disussion. The utting-based method is quite powerful, and an be extended invarious ways. The rux of the tehnique is to derive somehow a weaker (but easier)bound on the number of inidenes, onstrut a (1=r)-utting of the set of urves,obtain the orresponding deomposition of the problem into O(r2) subproblems,apply the weaker bound within eah subproblem, and sum up the bounds to obtainthe overall bound. The work by Clarkson et al. [38℄ ontains many suh extensions.Let us demonstrate this method to obtain an upper bound for the number ofinidenes between a set P of m points and a set C of n arbitrary irles in theplane. Consider the inidene graph H � P � C onsisting of all pairs (edges)



GEOMETRIC INCIDENCES 9(p; ); p 2 P;  2 C suh that p is inident to , and notie that it does not ontainK3;2 as a subgraph. Thus (see, e.g., [76℄), we haveI(P;C) = O(mn2=3 + n):We onstrut a (1=r)-utting for C, apply this weak bound within eah ell � of theutting, and handle inidenes that our on the ell boundaries exatly as above,to obtain I(P;C) =X� I(P� ; C� ) = O�m�nr �2=3 + nr� :With an appropriate hoie of r, this beomesI(P;C) = O(m3=5n4=5 +m+ n):However, as we shall see later, this bound an be onsiderably improved.The ase of a set C of n unit irles is handled similarly, observing that in thisase the intersetion graph H does not ontain K2;3. This yields the same upperbound I(P;C) = O(mn1=2+n), as in (3.1). The analysis then ontinues exatly asin the ase of lines, and yields the boundI(P;C) = O(m2=3n2=3 +m+ n):We an apply this bound to the Repeated Distanes Problem, realling that thenumber of pairs of points in an n-element set of points in the plane that lie atdistane exatly 1 from eah other, is half the number of inidenes between thepoints and the unit irles entered at them. Substituting m = n in the abovebound, we thus obtain that the number of times that the same distane an berepeated among n points in the plane is at most O(n4=3). This bound is far fromthe best known lower bound, mentioned in Setion 2.As a matter of fat, this approah an be extended to any olletion C ofurves that have \d degrees of freedom", in the sense that any d points in the planedetermine at most t = O(1) urves from the family that pass through all of them,and any pair of urves interset in only O(1) points [77℄. The inidene graph doesnot ontain Kd;t+1 as a subgraph, whih implies thatI(P;C) = O(mn1�1=d + n):Combining this bound with a utting-based deomposition yields the boundI(P;C) = O(md=(2d�1)n(2d�2)=(2d�1) +m+ n):Note that this bound extrapolates the previous bounds for the ases of lines (d = 2),unit irles (d = 2), and arbitrary irles (d = 3). See [78℄ for a slight generalizationof this result, using Sz�ekely's method, outlined in the following setion. See also[28℄ for an appliation of similar ideas in higher dimensions.4. Inidenes via Crossing Numbers|Sz�ekely's MethodA graph G is said to be drawn in the plane if its verties are mapped to distintpoints in the plane, and eah of its edges is represented by a Jordan ar onnetingthe orresponding pair of points. It is assumed that no edge passes through anyvertex other than its endpoints, and that when two edges meet at a ommon interiorpoint, they properly ross eah other there, i.e., eah urve passes from one side ofthe other urve to the other side. Suh a point is alled a rossing. In the literature,a graph drawn in the plane with the above properties is often alled a topologial



10 J�ANOS PACH AND MICHA SHARIRgraph. If, in addition, the edges are represented by straight-line segments, then thedrawing is said to be a geometri graph.As we have indiated before, Sz�ekely disovered that the analysis outlined inthe previous setion an be substantially simpli�ed, applying the following so-alledCrossing Lemma for graphs drawn in the plane.Crossing Lemma. [Leighton [70℄, Ajtai et al. [10℄℄ Let G be a simple graph drawnin the plane with V verties and E edges. If E > 4V then there are 
(E3=V 2)rossing pairs of edges.To establish the lemma, denote by r(G) the minimum number of rossing pairsof edges in any `legal' drawing of G. Sine G ontains too many edges, it is notplanar, and therefore r(G) � 1. In fat, using Euler's formula, a simple ountingargument shows that r(G) � E� 3V +6 > E� 3V . We next apply this inequalityto a random sample G0 of G, whih is an indued subgraph obtained by hoosingeah vertex of G independently with some probability p. By applying expetations,we obtain E[r(G0)℄ � E[E0℄ � 3E[V 0℄, where E0; V 0 are the numbers of edges andverties in G0, respetively. This an be rewritten as r(G)p4 � Ep2 � 3V p, andhoosing p = 4V=E ompletes the proof of the Crossing Lemma.We remark that the atual lower bound yielded by this analysis is E3=(64V 2).The onstant of proportionality has been improved by Pah and T�oth [80℄ andit is now within a fator of three from its best possible value. They proved thatr(G) � E3=(33:75V 2) whenever E � 7:5V . In fat, the slightly weaker inequalityr(G) � E3=(33:75V 2) � 0:9V holds without any extra assumption. We also notethat it is ruial that the graph G be simple (i.e., any two verties be onneted byat most one edge), for otherwise no rossing an be guaranteed, regardless of howlarge E is.Let P be a set of m points and L a set of n lines in the plane. We assoiate withP and L the following plane drawing of a graph G. The verties of (this drawing of)G are the points of P . For eah line ` 2 L, we onnet eah pair of points of P \ `that are onseutive along ` by an edge of G, drawn as the straight segment betweenthese points (whih is ontained in `). See Figure 4 for an illustration. Clearly, G isa simple graph, and, assuming that eah line of L ontains at least one point of P ,we have V = m and E = I(P;L) � n (the number of edges along a line is smallerby 1 than the number of inidenes with that line). Hene, either E < 4V , andthen I(P;L) < 4m+n, or r(G) � E3=(V 2) = (I(P;L)�n)3=(m2). However, wehave, trivially, r(G) � �n2�, beause any rossing between edges of G is a rossingbetween the lines that support them, and any suh line rossing an appear at mosone as a rossing in G. This implies that I(P;L) � (=2)1=3m2=3n2=3 + n. Using = 33:75, the oeÆient of the leading term beomes at most 2:57.Extensions: Many faes and unit irles. The simple idea behind Sz�ekely'sproof is quite powerful, and an be applied to many variants of the problem, aslong as the orresponding graph G is simple, or, alternatively, has a bounded edgemultipliity. For example, onsider the ase of inidenes between a set P of mpoints and a set C of n unit irles. Draw the graph G exatly as in the ase oflines, but only along irles that ontain more than two points of P , to avoid loopsand multiple edges along the same irle. We have V = m and E � I(P;C)�2n. Inthis ase, G need not be simple, but the maximum edge multipliity is at most two;see Figure 5. Hene, by deleting at most half of the edges of G we make it into asimple graph. Moreover, r(G) � n(n�1), so we get I(P;C) = O(m2=3n2=3+m+n).
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Figure 4. Sz�ekely's graph for points and lines in the plane.p
qFigure 5. Sz�ekely's graph for points and unit irles in the plane:The maximum edge multipliity is two|see the edges onnetingp and q.It is interesting to note that Sz�ekely's tehnique yields bounds that depend onthe atual number X of rossings between the urves in C. In the ase of lines,X is generally �(n2). However, for other lasses of urves, X an be onsiderablysmaller. In the ase of unit irles, we obtain I(P;C) = O(m2=3X1=3 + m + n).Suh a dependene on X an also be obtained using the analysis of Setion 3.We an also apply this tehnique to obtain an upper bound on the total om-plexity of a set of faes in an arrangement of lines. Let P be a set of m points andL a set of n lines in the plane, so that no point lies on any line and eah point liesin a distint fae of A(L). The graph G is now onstruted in the following slightlydi�erent manner. Its verties are the points of P . For eah ` 2 L, we onsider allfaes of A(L) that are marked by points of P , are bounded by ` and lie on a �xedside of `. For eah pair f1; f2 of suh faes that are onseutive along ` (the portionof ` between �f1 and �f2 does not meet any other marked fae on the same side),we onnet the orresponding marking points p1; p2 by an edge, and draw it as apolygonal path p1q1q2p2, where q1 2 ` \ �f1 and q2 2 ` \ �f2. We atually shiftthe edge slightly away from ` so as to avoid its overlapping with edges drawn forfaes on the other side of `. The points q1; q2 an be hosen in suh a way that apair of edges meet eah other only at intersetion points of pairs of lines of L. See
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p q

Figure 6. Sz�ekely's graph for fae-marking points and lines in theplane. The maximum edge multipliity is two|see, e.g., the edgesonneting p and q.Figure 6. The resulting graph G has V = m verties, E � K(P;L)� 2n edges, andr(G) � 2n(n� 1) (eah pair of lines an give rise to at most four pairs of rossingedges, near the same intersetion point). Again, G is not simple, but the maximumedge multipliity is at most two, beause, if two faes f1; f2 are onneted alonga line `, then ` is a ommon external tangent to both faes. Sine f1 and f2 aredisjoint onvex sets, they an have at most two external ommon tangents. Hene,arguing as above, we obtain K(P;L) = O(m2=3n2=3+m+n), where the oeÆientof the leading term is at most 4:08. We remark that the same upper bound an alsobe obtained via the partition tehnique, as shown by Clarkson et al. [38℄. Moreover,in view of the disussion in Setion 2, this bound is tight.However, Sz�ekely's tehnique does not always apply as suh. The simplestexample where it fails is when we want to establish an upper bound on the numberof inidenes between points and irles of arbitrary radii. If we follow the sameapproah as for equal irles, and onstrut a graph analogously, we may now reateedges with arbitrarily large multipliities, as is illustrated in Figure 7.Another ase where the tehnique fails is when we wish to bound the totalomplexity of many faes in an arrangement of line segments. If we try to onstrutthe graph in the same way as we did for full lines, the faes may not be onvex anymore, and we an reate edges of high multipliity; see Figure 8.Neither of these failures are fatal, though, and an be overome by ombiningSz�ekely's tehnique with other tools, as we desribe next.5. Improvements by Cutting into Pseudo-segments5.1. Making the Sz�ekely's graph simple: Cutting into pseudo-segments.Consider the ase of inidenes between points and irles of arbitrary radii. Oneway to overome the tehnial problem in applying Sz�ekely's tehnique in this ase isto ut the given irles into subars so that any two of them interset at most one.We refer to suh a olletion of subars as a olletion of pseudo-segments. Then, ifone draws the Sz�ekely graph only along these pseudo-segments, the resulting graphis guaranteed to be simple; see below for more details.
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Figure 7. Sz�ekely's graph need not be simple for points and ar-bitrary irles in the plane.
p r q

Figure 8. Sz�ekely's graph need not be simple for marked faesand segments in the plane: An arbitrarily large number of segmentsbounds all three faes marked by the points p; q; r, so the edges(p; r) and (r; q) in Sz�ekely's graph have arbitrarily large multipli-ity.The �rst step in this diretion has been taken by Tamaki and Tokuyama [96℄,who have shown that any olletion C of n pseudo-irles, namely, losed Jordanurves, eah pair of whih interset at most twie, an be ut into O(n5=3) subarsthat form a family of pseudo-segments.1 To disuss this result and its subsequentimprovements, let �(C) denote the minimum number of points that an be removedfrom the urves of C, so that any two members of the resulting family of subarshave at most one point in ommon. �(C) an be given the following equivalentinterpretation.1The atual motivation of Tamaki and Tokuyama has not been to ount inidenes, but tobound the omplexity of a single level in an arrangement of suh urves.
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Figure 9. Cutting every lens yields an arrangement of pseudo-segments.

Figure 10. The boundaries of the shaded regions are nonoverlap-ping lenses in an arrangement of pseudo-irles.The union of two ars that belong to distint pseudo-irles and onnet thesame pair of points is alled a lens. Consider a hypergraph H whose vertex setonsists of the edges of the arrangementA(C), i.e., the ars between two onseutiverossings. Assign to eah lens a hyperedge onsisting of all ars that belong to thelens. We are interested in �nding the transversal number (or the size of the smallest\hitting set") of H , i.e., the smallest number of verties of H that an be pikedwith the property that every hyperedge ontains at least one of them. We now utthe urves of C at the ars that belong to the hitting set. Sine every lens hasbeen hit, any pair of the resulting suburves interset at most one. See Figure 9.Hene, �(C) is the transversal number of H .Using Lov�asz' analysis [71℄ (see also [76℄) of the greedy algorithm for boundingthe transversal number from above (i.e., for onstruting a hitting set), Tamaki andTokuyama have shown that this quantity is not muh bigger than the size of thelargest mathing in H , i.e., the maximum number of pairwise disjoint hyperedges.This is the same as the largest number of pairwise non-overlapping lenses, thatis, the largest number of lenses, no two of whih share a ommon edge of thearrangement A(C) (see Figure 10). Viewing suh a family of nonoverlapping lensesas a graph G, whose edges onnet pairs of urves that form a lens in the family,Tamaki and Tokuyama proved that G does not ontain K3;3 as a subgraph, andthis leads to the asserted bound on the number of uts.
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Figure 11. The modi�ed Sz�ekely graph onstrution.In order to establish an upper bound on the number of inidenes between aset P of m points and a set L of n irles (or pseudo-irles), let us onstrut amodi�ed version G0 of Sz�ekely's graph: its verties are the points of P , and its edgesonnet adjaent pairs of points along the new pseudo-segment ars. That is, wedo not onnet a pair of points that are adjaent along an original urve, if the arthat onnets them has been ut by some point of the hitting set. See Figure 11.Moreover, as in the original analysis of Sz�ekely, we do not onnet points alongpseudo-irles that are inident to only one or two points of P , to avoid loops andtrivial multipliities.Clearly, the graph G0 is simple, and the number E0 of its edges is at leastI(P;C)� �(C)� 2n. The rossing number of G0 is, as before, at most the numberof rossings between the original urves in C, whih is at most n(n� 1). Using theCrossing Lemma, we thus obtainI(P;C) = O(m2=3n2=3 + �(C) +m+ n):Hene, applying the Tamaki-Tokuyama bound on �(C), we an onlude thatI(P;C) = O(m2=3n2=3 + n5=3 +m):An interesting property of this bound is that it is tight when m � n3=2. In this ase,the bound beomes I(P;C) = O(m2=3n2=3+m), mathing the lower bound for ini-denes between points and lines, whih also serves as a lower bound for the numberof inidenes between points and irles or parabolas. However, for smaller valuesof m, the term O(n5=3) dominates, and the dependene on m disappears. This anbe reti�ed by ombining this bound with a utting-based problem deomposition,similar to the one used in Setion 3, and we shall do so shortly.Before proeeding, though, we note that Tamaki and Tokuyama's bound is nottight. The best known lower bound is 
(n4=3), whih follows from the lower boundonstrution for inidenes between points and lines. (That is, we have alreadyseen that this onstrution an be modi�ed so as to yield a olletion C of n irleswith �(n4=3) empty lenses. Clearly, eah suh lens requires a separate ut, so�(C) = 
(n4=3).) Reent work by Alon, Last, Pinhasi and Sharir [12℄, Aronovand Sharir [17℄, and Agarwal et al. [7℄ has led to improved bounds. Spei�ally, itwas shown in [7℄ that �(C) = O(n8=5), for families C of pseudo-parabolas (graphs ofontinuous everywhere de�ned funtions, eah pair of whih interset at most twie),and, more generally, for families of x-monotone pseudo-irles (losed Jordan urveswith the same property, so that the two portions of their boundaries onnetingtheir leftmost and rightmost points are graphs of two ontinuous funtions, de�nedon a ommon interval).



16 J�ANOS PACH AND MICHA SHARIRIn ertain speial ases, inluding the ases of irles and of vertial parabolas(i.e., parabolas of the form y = ax2 + bx+ ), one an do better, and show that�(C) = O(n3=2�(n));where �(n) = (logn)O(�2(n));and where �(n) is the extremely slowly growing inverse Akermann's funtion.This bound was established by Agarwal et al. [7℄, and it improves a slightly weakerbound obtained by Aronov and Sharir [17℄. The tehnique used for deriving thisimproved bound on �(C) is interesting in its own right, and raises several deepopen problems.5.2. Cutting irles into pseudo-segments. We will review this analysisfor the ase of irles, although several steps of the analysis apply to more generalfamilies of pseudo-irles and pseudo-parabolas.Let C be a family of n irles. Reall that the main tehnial step in theanalysis is to estimate the maximum size of a family of pairwise nonoverlappinglenses in A(C). The �rst step towards this goal is to onsider the family L of allempty lenses (faes of degree 2 in the arrangement), in the speial ase where everypair of irles in C interset. It was shown in [12℄ that the number of suh lenses isO(n). In fat, if one further assumes that all irles in C ontain a ommon point intheir interior, then the graph G whose verties are the irles in C and whose edgesonnet pairs of irles that indue empty lenses is planar, from whih the linearbound on its size (in this speial ase) is immediate. As a matter of fat, as shownin [12℄, the following natural plane embedding of G is rossing-free: Assoiate eahirle of C with its enter. For eah empty lens, formed by a pair of irles ; 0, wedraw the orresponding edge of G as the straight segment onneting the entersof  and 0. The linear bound in the general ase of pairwise interseting irles(whose interiors need not have a ommon point) then follows by a simple indutiveargument.It is interesting to note that this linear bound on the number of empty lensesin the pairwise interseting ase also holds for arbitrary pseudo-irles or pseudo-parabolas. Here, too, the proof uses a planarity argument. Spei�ally, the empty-lens graph in an arrangement of n pairwise interseting pseudo-parabolas is shownin [7℄ to be planar.The drawing rule in this ase is onsiderably more intriate than in the aseof irles. Let ` be some �xed vertial line that lies to the left of all intersetionsbetween the pseudo-parabolas. Represent eah pseudo-parabola  by its rossingwith `, denoted by v. Connet two points, v1 and v2 by a y-monotone urve(edge) if and only if the orresponding pseudo-parabolas enlose an empty lens.This edge has to navigate to the left or to the right of eah of the intermediatepoints v between v1 and v2 along `. This navigation is governed by the followingdrawing rule (see Figure 12): Assume that v1 lies below v2 along `. Let W (1; 2)denote the left wedge formed by 1 and 2, onsisting of all points that lie above1 and below 2 and to the left of the �rst intersetion between them. Let  be apseudo-parabola for whih v lies between v1 and v2 . Clearly,  has to exit theleft wedge W (1; 2) at least one. If its �rst exit point lies on 1 (resp., 2), thenwe draw the y-monotone urve (edge) onneting v1 and v2 to pass to the right(resp., to the left) of v. Exept for these requirements, this edge an be drawn
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W (1; 2)` `

v2v1 21 v2v1 21v v  vavbvvdve(i) (ii)Figure 12. Drawing the empty-lenses graph of pairwise-interseting pseudo-parabolas: (i) The drawing rule. (ii) A drawingof the graph. Empty lenses are represented by tangenies.arbitrarily. It turns out that in the resulting graph G any two edges ross an evennumber of times. Therefore, by a theorem of Hanani [63℄ and Tutte [99℄, G is aplanar graph. One an also show that G is bipartite, and so its number of edges,i.e., the number of empty lenses, is at most 2n�4. The ase of pairwise-intersetingpseudo-irles (rather than pseudo-parabolas) require additional steps that redueit to the ase of pseudo-parabolas; see [7℄ for more details.The next step is to bound the maximum size of a family L of pairwise nonover-lapping lenses in an arrangement of pairwise interseting irles (or pseudo-parabolas,or pseudo-irles). A simple analysis of suh a bound proeeds as follows. De�nethe depth of a lens to be the number of irles of C that interset it. Sine thelenses in L are pairwise nonoverlapping, the number of lenses in L with depthlarger than n1=2 is O(n3=2) (eah suh lens ontains 
(n1=2) verties out of the�(n2) verties of A(C)). The number of so-alled \shallow" lenses, i.e., those ofdepth at most n1=2, an be estimated using the Clarkson-Shor probabilisti analysis[39℄, whih bounds the number of lenses of depth at most k by O(k2) times thenumber of lenses of depth 0 (i.e., empty lenses) in an arrangement of a sample ofn=k urves of C. Consequently, for k = n1=2, the number of shallow lenses in Lis O(k2 � (n=k)) = O(nk) = O(n3=2). A more re�ned analysis, whose details areomitted in this survey, shows that the maximum size of L is at most O(n4=3); see[7℄. We now apply the analysis of Tamaki and Tokuyama [96℄ to dedue that �(C)is also O(n4=3). Atually, to failitate the next step of the analysis, this result isextended to the bihromati ase, where we have two families C;C 0 of urves (ir-les, pseudo-irles, et.) so that eah urve in C intersets every urve in C 0. It isshown in [7℄ that in this ase the irles in C [C 0 an be ut into O(n4=3) ars, sothat every bihromati lens, formed by a irle of C and a irle of C 0, is ut.So far we have assumed that the urves in C are pairwise interseting. To handlethe general ase, we onsider the intersetion graphH = f(; 0) 2 C�C j \0 6= ;g,and deompose it into a union of omplete bipartite graphs H = Si Ai � Bi. Foreah subgraph Ai �Bi, eah irle in Ai intersets every irle in Bi, so the resultjust stated implies that all lenses formed between irles of Ai and irles of Bi anbe ut using O((jAij + jBij)4=3) uts. Repeating this proedure for all subgraphs,we eliminate all lenses in A(C), using a total ofO Xi (jAij+ jBij)4=3!



18 J�ANOS PACH AND MICHA SHARIRuts.It remains to obtain a omplete bipartite deomposition of the intersetiongraph for whih the above sum is small. This an be done for irles, for vertialparabolas, and, more generally, for any family C of x-monotone pseudo-irles orpseudo-parabolas that admit a 3-parameter algebrai representation, in the sensethat eah urve is de�ned in terms of three real parameters, so that the loi of allurves in C that are tangent to a �xed urve, or pass through a �xed point, orsatisfy similar properties, an be represented as algebrai surfaes or semi-algebraisurfae pathes of onstant degree in the 3-dimensional parametri spae; see [7℄ fora more preise de�nition. The deomposition is obtained using standard tehniquesin geometri partitioning, shortly desribed below, whih are based on the notionof uttings, as reviewed in Setion 3.5.3. Finding all interseting pairs of irles. The task of deomposingthe intersetion graph of C an be aomplished as a speial ase of bathed rangesearhing, whih we review next. We regard eah member  2 C as a point � ina 3-dimensional parametri spae, e.g., by representing a irle  with enter (a; b)and radius � as the point � = (a; b; �) 2 R3 . Let C� denote the set of points �.We also map eah irle  2 C to a surfae �(), onsisting of all points (a; b; r)that represent irles that are tangent to . The removal of �() partitions R3 intotwo (not neessarily onneted) sets, one of whih, denoted by �+(), onsists ofpoints that represent irles that interset , while the other set, denoted ��(),onsists of points that represent irles that are disjoint from . Let � denote theset of these surfaes. The problem is thus redued to the bathed range searhingproblem that asks for reporting all pairs (p; �) 2 C� � � suh that p 2 �+.To solve this problem, we apply the following (standard) spae deomposi-tion tehnique. We �x a suÆiently large onstant parameter r, and onstrut a(1=r)-utting of the arrangement A(�). In analogy with the 2-dimensional ase (asdisussed in Setion 3), this is a deomposition of spae into relatively open ells(of dimension 0,1,2 or 3) suh that eah ell is rossed by (i.e., interseted by butnot ontained in) at most j�j=r surfaes of �. A standard probabilisti argument,based on random sampling of �, shows that there exists a (1=r)-utting onsistingof O(r3�(r) log3 r) ells, where �(r) = 2O(�2(r)) is an extremely slowly growingfuntion of r; see [4, 76, 84℄ for details. As in the planar ase, a more re�nedargument (see [5, 84℄) redues the size of the utting to O(r3�(r)). By re�ningthe partitioning further, if needed, we may also assume that eah ell ontains atmost jC�j=r3 points of C�, without hanging the asymptoti bound on the numberof ells. Finally, if we assume that no pair of irles in C are tangent, we mayonstrut the utting so that all points of C� lie in the interiors of 3-dimensionalells of the utting.Let � be a 3-dimensional ell of the utting. Put C�� = C� \ � , let �� denotethe set of surfaes that ross � , and let �+� denote the set of surfaes � for whih� � �+. We note that eah of the omplete bipartite graphs C�� � �+� , for � aell of the utting, is fully ontained in the intersetion graph H of C. Any otherinterseting pair of irles in C must appear as an element of some C�� � �� , andwe obtain them reursively, by applying the above proedure, for eah ell � , withthe set C�� of points and the set �� of surfaes.In fat, sine the problem is symmetri, we an somewhat simplify the analysis,as follows. In the seond step, we take eah pair C�� , �� , and swith the roles of



GEOMETRIC INCIDENCES 19points and surfaes. That is, we map eah point � 2 C�� to the orrespondingsurfae �(), and map eah surfae �() 2 �� to the orresponding point �. Weapply a similar deomposition step, using the same parameter r, to the resultingsets of points and surfaes. Repeating this over all ells � of the �rst utting, weobtain a total of O(r6�2(r)) subproblems, eah involving two families of irles, eahof size at most jCj=r4. In addition, we have produed, in the nonreursive portionsof the proedure, a olletion of omplete bipartite intersetion graphs, where thesum of the sizes of their vertex sets is O(jCj) (with a onstant of proportionalitythat depends on r). The number of uts needed to eliminate all bihromati lenseswithin eah of these graphs, summed over all of them, is, by the preeding analysis,O(jCj4=3).Hene, if we denote by F (n) the maximum number of uts needed to eliminateall bihromati lenses in an arrangement of two families of n irles eah, we obtainthe reurrene relationF (n) = O(r6�2(r)) � F (n=r4) +O(n4=3);where the onstant of proportionality in the overhead term O(n4=3) depends on r.It is easily seen that the solution of this reurrene is F (n) = O(n3=2+"), for any" > 0. (Atually, this bound an be slightly improved, by hoosing r to be a powerof n, so that the depth of the reursion is only O(log logn). The solution of thereurrene then beomesF (n) = O �n3=2(log n)O(log �(n))� = O �n3=2(logn)O(�2(n))� = O(n3=2�(n)):This learly also bounds the number of uts for a single family of n irles.5.4. Bounding the number of point-irle inidenes. Having developedthe preeding mahinery, the modi�ation of Sz�ekely's method reviewed aboveyields, for a set C of n irles and a set P of m points,I(P;C) = O(m2=3n2=3 + n3=2�(n) +m):As already noted, this bound is tight when it is dominated by the �rst or lastterms, whih happens when m is larger than roughly n5=4. For smaller values of m,we deompose the problem into subproblems, using the following so-alled \dual"partitioning tehnique. We map eah irle (x � a)2 + (y � b)2 = �2 in C to the\dual" point (a; b; �2 � a2 � b2) in 3-spae,2 and map eah point (�; �) of P tothe \dual" plane z = �2�x� 2�y + (�2 + �2). As is easily veri�ed, eah inidenebetween a point of P and a irle of C is mapped to an inidene between the dualplane and point. We now �x a parameter r, and onstrut a (1=r)-utting of thearrangement of the dual planes, whih partitions R3 into O(r3) ells (whih is atight bound in the ase of planes), eah rossed by at most m=r dual planes andontaining at most n=r3 dual points (the latter property, whih is not an intrinsiproperty of the utting, an be enfored by further partitioning ells that ontainmore than n=r3 points). We apply, for eah ell � of the utting, the preedingbound for the set P� of points of P whose dual planes ross � , and for the set C�of irles whose dual points lie in � . (Some speial handling of irles whose dualpoints lie on boundaries of ells of the utting is needed, as in Setion 3, but we2This is di�erent from the mapping used in �nding all pairs of interseting irles.



20 J�ANOS PACH AND MICHA SHARIRomit the routine treatment of this speial ase.) This yields the boundI(P;C) = O(r3) � O��mr �2=3 � nr3 �2=3 + � nr3�3=2 �� nr3 �+ mr � =O�m2=3n2=3r1=3 + n3=2r3=2 �� nr3 �+mr2� :Assume that m lies between n1=3 and n5=4; it is not hard to handle the omple-mentary ases. Choosing r = n5=11=m4=11 in the last bound, we obtainI(P;C) = O(m2=3n2=3 +m6=11n9=11�(m3=n) +m+ n):Remark: The preeding analysis an be adapted to yield the above upper boundfor the number of inidenes betweenm points and n vertial parabolas (of the formy = ax2+bx+). It an also be adapted to yield weaker, but still nontrivial boundsfor inidenes between points and graphs of polynomials of any �xed degree, and afew other lasses of urves. The analysis relies, as above, on subquadrati boundsfor the number of uts needed to turn suh a olletion of urves into pseudo-segments. Bounds of this kind have reently been obtained by Chan [31, 32℄. See[7, 17℄ for details.6. Complexity of Many Faes in Planar ArrangementsIn this setion we briey review the state of the art in the ompanion problemof estimating the ombined omplexity K(P;C) of faes, marked by a set P of mpoints, in an arrangement of a family C of n urves in the plane.Lines and pseudo-lines. We have already disussed the ase where C = L is a setof lines. Using Sz�ekely's tehnique, we have shown that K(P;L) = O(m2=3n2=3 +m + n), and the observation in Setion 2 implies that this bound is tight in theworst ase. As follows from Sz�ekely's analysis, this bound also holds for families ofpseudo-lines (see also [38℄).Segments and pseudo-segments. The problem beomes onsiderably more in-volved for other types of urves. It is not easy to apply the above methods even inthe ase when C is a olletion of n line segments rather than full lines. Indeed, asillustrated in Figure 8, Sz�ekely's tehnique does not extend to this ase, beause ofthe potential presene of edges with arbitrarily large multipliity, and the utting-based analysis of Setion 3 faes tehnial diÆulties of its own. (In ontrast, inthe inidene problem there is no real di�erene between the ases of lines and ofline segments.)The ase of segments has been studied by Aronov, Edelsbrunner, Guibas andSharir [13℄, who have obtained the upper bound K(P;C) = O(m2=3n2=3+n�(n)+n logm), and the lower bound 
(m2=3n2=3 + n�(n)). Hene, the upper bound isoptimal in the worst ase, exept for a small range of m near the value n1=2.Reently, Agarwal, Aronov and Sharir [3℄ have shown that the omplexityof m distint faes in an arrangement of n extendible pseudo-segments3 with Xinterseting pairs is O(m2=3X1=3 + n logn). Sine the lower bound of Aronov,Edelsbrunner, Guibas and Sharir an be re�ned to 
(m2=3X1=3+n�(n)), this upperbound is asymptotially sharp when the �rst term dominates, and is otherwisewithin a logarithmi fator of the lower bound. In general, sine X = O(n2), the3A family of x-monotone pseudo-segments is alled extendible if eah of them is ontained inan x-monotone unbounded urve, so that these urves form a family of pseudo-lines.



GEOMETRIC INCIDENCES 21upper bound is O(m2=3n2=3 + n logn), whih is optimal for m = 
(n1=2 log3=2 n).There is a tiny range of m where the upper bound of [13℄ is better than that of [3℄,but the seond proof is simpler. Although not expliitly asserted, the analysis of[13℄ also applies to the ase of extendible pseudo-segments.By Chan's analysis [31℄, the bound of [3℄ implies an upper bound of O(m2=3X1=3+n log2 n) for the omplexity of m faes in an arrangement of n arbitrary x-monotonepseudo-segments; this bound also holds when the pseudo-segments are not x-monotone, but eah of them has only O(1) loally x-extremal points. Again, thisis asymptotially sharp, unless m is small. For example, substituting X = O(n2),the bound beomes O(m2=3n2=3 + n log2 n), whih annot be improved if m =
(n1=2 log3 n).Cirles. For the ase where C is a set of irles in the plane, Agarwal, Aronov andSharir [3℄ have shown thatK(P;C) = O �m2=3n2=3 +m6=11n9=11�(m3=n) + n logn� ;whih is almost idential to the upper bound for point-irle inidenes, presentedin Setion 5.In a nutshell, the analysis proeeds as follows: We �rst ut the irles intopseudo-segments, then ut the pseudo-segments further into extendible pseudo-segments, and then apply the bound stated above for marked faes in an arrange-ment of extendible pseudo-segments. This yields an initial weak bound, whih isthen re�ned by means of a utting, in the same spirit as the analysis of point-irle inidenes. However, the analysis of marked faes imposes several additionaltehnial problems that need to be addressed. Spei�ally, the inidene problemis fully \deomposable": If we partition C into a disjoint union C1 [ C2, then,trivially, I(P;C) = I(P;C1) + I(P;C2). However, obtaining a similar relationshipfor K(P;C) is rather nontrivial, and a onsiderable portion of the analysis in [3℄ isdevoted to this issue, whih arises when we deompose the problem into subprob-lems by means of a utting. See [3℄ for more details, and for additional bounds forK(P;C) in ertain speial ases.Unit irles. If all the irles in C are ongruent (the ase of \unit irles"), then,as shown in [3℄, K(P;C) = O(m2=3X1=3+ n), where X is, as above, the number ofinterseting pairs of irles. This bound is asymptotially tight in the worst ase,in ontrast with the same asymptoti upper bound for the ase of inidenes, whihis far away from the best-known, near-linear lower bound (see Setion 2).7. Inidenes between Points and Surfaes in Higher DimensionsIt is natural to extend the study of inidenes to higher dimensions, whereinstead of urves we may take surfaes of a �xed dimension. In this setion, wedisuss the ase when C onsists of hyperplanes or unit spheres.7.1. Inidenes between points and hyperplanes. Edelsbrunner, Guibasand Sharir [43℄ were the �rst to onsider inidenes between points and planes inthree dimensions. It is important to note that, without imposing some restritionseither on the set P of points or on the set H of planes, one an easily obtainjP j � jH j inidenes, simply by plaing all the points of P on a line, and making allthe planes of H pass through that line. Some natural restritions are to require thatno three points be ollinear, or that no three planes be ollinear, or that the points



22 J�ANOS PACH AND MICHA SHARIRbe verties of the arrangement A(H), and so on. Di�erent assumptions lead todi�erent bounds. For example, Agarwal and Aronov [2℄ obtained an asymptotiallytight bound �(m2=3nd=3 + nd�1) for the number of inidenes between m vertiesof the arrangement of n hyperplanes in d dimensions and these hyperplanes (seealso [43℄), as well as for the number of faets bounding m distint ells in suhan arrangement. Other upper bounds are obtained in [43℄ for other restritedinstanes of the problem. These bounds have been re�ned in a reent paper by Bra�and Knauer [28℄, showing that the number of inidenes between m points and nhyperplanes in d dimensions is O((m+ n) log(m+ n) +md=(d+1)nd=(d+1) log(mn)),provided that their inidene graph ontains no Kr;r, for any �xed r.Edelsbrunner and Sharir [44℄ onsidered the problem of inidenes betweenpoints and hyperplanes in four dimensions, under the assumption that all points lieon the upper envelope of the hyperplanes. They obtained the bound O(m2=3n2=3+m + n) for the number of suh inidenes, and applied the result to establish thesame upper bound on the number of bihromati minimal distane pairs betweena set of m blue points and a set of n red points in three dimensions.Complexity of many ells. For a set L of lines in the plane, there is a strong on-netion between the ompanion problems of (1) bounding the number of inidenesbetween the elements of L and a set of points and (2) bounding the ombinedomplexity of a olletion of marked faes in A(L). For a set H of hyperplanesin d � 3 dimensions, the onnetion is muh weaker. The transformation frominidenes to many faes, as reviewed in Setion 2, an be repeated in Rd , butthen inidenes orrespond to faets ((d� 1)-dimensional faes) of the marked ellsin A(H). However, sine these ells are onvex polyhedra in d-spae, their over-all omplexity (number of bounding faes of all dimensions) an be muh largerthan the number of their faets. This makes the analysis of the omplexity of mmarked ells in an arrangement of n hyperplanes in d-spae a onsiderably hardertask, and very little is known about this quantity. In addition to the above men-tioned paper of Agarwal and Aronov [2℄, deriving bounds on the total number offaets in m marked ells, the general problem has been addressed by Aronov, Ma-tou�sek and Sharir [15℄ and by Aronov and Sharir [18℄. They have shown that theoverall omplexity of m marked ells in an arrangement of n hyperplanes in Rd isat most O(m1=2nd=2 log(bd=2�2)=2 n), with the implied onstant of proportionalitydepending on d. This bound was used to show that the sum of squares of theomplexities of all ells in an arrangement of n hyperplanes in d dimensions, ford � 4, is O(nd logbd=2�1 n). Clearly, this latter bound is almost tight, up to thepolylogarithmi fator.7.2. Inidenes with unit spheres: The Repeated Distanes Problem.Let P be a set of n points in R3 . To estimate the number of pairs of points of P atdistane exatly 1 from eah other, we transform the problem, as in the planar ase,to an inidene problem, by drawing a unit sphere �p around eah point p 2 P , andby observing that the number of unit distanes in P is half the number of inidenesI(P; S) between P and the set S of these spheres.Consider the general inidene problem, involving a set P of m points and a setS of n unit spheres in R3 . We �rst note that the inidene graph f(p; �) 2 P � S jp 2 �g does not ontain K3;3 as a subgraph, so I(P; S) = O(mn2=3+n) [76℄. Next,we partition the problem into subproblems using a 3-dimensional utting of thearrangement of the given spheres. The onstrution of suh a utting, whih has



GEOMETRIC INCIDENCES 23already been mentioned in a di�erent ontext in Setion 5, is more involved than ofits planar ounterpart. Roughly speaking, it is based on the vertial deompositionof the arrangement of a random sample of the spheres (see [84℄). Clarkson et al. [38℄show that one an onstrut a (1=r)-utting in this manner, that hasO(r3�(r)) ells,eah rossed by at most n=r spheres of S, where �(r) = 2O(�2(r)), and where �(r)is the inverse Akermann funtion. (Atually, similar to what we have remarked inSetion 3, Clarkson et al. establish a weaker result, where they only guarantee thatthe expeted number of spheres rossing a ell is O(n=r). However, their result anbe strengthened as stated above.)Applying the weaker extremal graph-theoreti bound to eah ell � of the ut-ting, and handling inidenes that our along the boundary of the ells (we omithere details of this handling), we obtain (where m� denotes the number of pointsof P in a ell � of the utting)I(P; S) = O X� m� �nr �2=3 + nr! = O�m�nr �2=3 + nr2�(r)� :Now hoose r = m3=8=n1=8. When n1=3 � m � n3, this hoie is valid. Outsidethis range one an easily show that I(P; S) = O(m+ n). Altogether, we obtainI(P; S) = O(m3=4n3=4�(m+ n) +m+ n):In partiular, the number of unit distanes in P is O(n3=2�(n)). As mentionedin the introdution, this still leaves a gap with the best known lower bound of
(n4=3 log logn).8. Inidenes between Points and Curves in Higher DimensionsThe ase of inidenes between points and urves in higher dimensions has beenstudied only reently. There are only two papers that address this problem. Oneof them, by Sharir and Welzl [85℄, studies inidenes between points and lines in 3-spae. The other, by Aronov, Koltun and Sharir [14℄, is onerned with inidenesbetween points and irles in higher dimensions. We briey review these results inthe following two subsetions.8.1. Points and lines in three dimensions. Let P be a set of m pointsand L a set of n lines in 3-spae. Without making some assumptions on Pand L, the problem is trivial, for the following reason. Projet P and L ontosome generi plane. Inidenes between points of P and lines of L are bije-tively mapped to inidenes between the projeted points and lines, so we haveI(P;L) = O(m2=3n2=3 +m+ n). Moreover, this bound is tight, as is shown by theplanar lower bound onstrution. (As a matter of fat, this redution holds in anydimension d � 3.)There are several ways in whih the problem an be made interesting. First,suppose that the points of P are joints in the arrangement A(L), namely, eahpoint is inident to at least three non-oplanar lines of L. In this ase, one hasI(P;L) = O(n5=3) [85℄. Note that this bound is independent of m. It is known thatthe number of joints is at most O(n112=69 log6=23 n) = O(n1:6232) [58℄, improvingthe previous bound O(n1:643) of [83℄ (the best lower bound, based on lines forminga ube grid, is only 
(n3=2)).
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Figure 13. Transforming inidenes between points and equallyinlined lines to tangenies between irles in the plane.For general point sets P , one an use a new measure of inidenes, whih aimsto ignore inidenes between a point and many inident oplanar lines. Spei�ally,we de�ne the plane over �L(p) of a point p to be the minimum number of planesthat pass through p so that their union ontains all lines of L inident to p, andde�ne I(P;L) =Pp2P �L(p). It is shown in [85℄ thatI(P;L) = O(m4=7n5=7 +m+ n);whih is smaller than the planar bound of Szemer�edi and Trotter.Another way in whih we an make the problem \truly 3-dimensional" is torequire that all lines in L be equally inlined, meaning that eah of them forms a�xed angle (say, 45Æ) with the z-diretion. In this ase, every point of P that isinident to at least three lines of L is a joint, but this speial ase admits betterupper bounds. Spei�ally, we haveI(P;L) = O �minnm3=4n1=2�(m);m4=7n5=7o+m+ n� ;where �(m) = (logm)O(�2(m)) (see Setion 5).The best known lower bound isI(P;L) = 
(m2=3n1=2):Let us briey sketh the proof of the upper bound. For any p 2 P , let Cp denotethe (double) one whose apex is p, whose symmetry axis is the vertial line throughp, and whose opening angle is 45Æ. Fix some generi horizontal plane �0, and mapeah p 2 P to the irle Cp \ �0. Eah line ` 2 L is mapped to the point ` \ �0,oupled with the projetion `� of ` onto �0. Note that an inidene between a pointp 2 P and a line ` 2 L is mapped to the on�guration in whih the irle dualto p is inident to the point dual to ` and the projetion of ` passes through theenter of the irle; see Figure 13. Hene, if a line ` is inident to several pointsp1; : : : ; pk 2 P , then the dual irles p�1; : : : ; p�k are all tangent to eah other at theommon point `\�0. Viewing these tangenies as a olletion of degenerate lenses,we an bound the overall number of these tangenies, whih is equal to I(P;L), byO(n3=2�(n)). By a slightly more areful analysis, again based on utting, one anobtain the bound stated above.



GEOMETRIC INCIDENCES 258.2. Points and irles in three and higher dimensions. Let C be a setof n irles and P a set of m points in 3-spae. Unlike in the ase of lines, thereis no obvious redution of the problem to a planar one, beause the projetionof C onto some generi plane yields a olletion of ellipses, rather than irles,whih an ross eah other at four points per pair. However, using a more re�nedanalysis, Aronov, Koltun and Sharir [14℄ have obtained the same asymptoti boundof I(P;C) = O(m2=3n2=3 + m6=11n9=11�(m3=n) + m + n) for I(P;C). The samebound applies in any dimension d � 3.Here is a rough sketh of the analysis in [14℄. First, by an appropriate inversion,one may assume that no pair of irles of C are oplanar. Next, let G be the Sz�ekelygraph onstruted along the given irles in omplete analogy with the planar ase.We note that the number of edges of G that have multipliity 1 (their endpointsare onseutive along just one irle) is easy to bound. One an simply projetthe irles of C onto some generi plane, and apply the Crossing Lemma to theresulting projeted subgraph of G, to onlude that the number of these edges isO(m2=3n2=3 +m+ n).Bounding the number of edges of G with multipliity greater than 1 (the\heavy" edges) is more involved. We repeatedly look for a irle  2 C that on-tains more than n1=2 heavy ars (that have at least one sibling ar that onnetsthe same pair of points), and onsider the system S of spheres that pass through and ontain points of P n . The key observation is that any ar on another irlethat shares its endpoints with a heavy ar on  must belong to a irle 0 that isontained in a sphere of S. We then proess eah sphere � 2 S separately, on-sider the set C� of all the irles of C that it ontains, and note that the spherialarrangement of C� is equivalent to a planar arrangement of irles, by means of astereographi projetion. We now ut the irles of C� into O(n3=2� �(n�)) pseudo-segments, where n� = jC� j, as in the planar ase. The sum of these bounds, over� 2 S, bounds the overall number of those heavy ars along the irles that lieon spheres of S, for whih at least one additional ar lies on the same sphere andshares the same pair of endpoints. The only heavy ars that are not ounted arethose whose pair of endpoints are only shared with irles that ross the spheresof S transversally. However, as shown by Aronov et al., the number of suh ars isonly O(n).We now remove all the irles that lie in any sphere of S, and repeat the wholestep with the remaining irles. If �i irles are removed at step i, then it followsthat the overall number of heavy ars is at most PiO(n + �3=2i �(�i)). Sine thenumber of steps is at most n1=2 (at least n1=2+1 irles are removed at eah step),the overall bound is O(n3=2�(n)). At the end of the pruning proess, we are leftwith irles, eah having at most n1=2 heavy ars, for a total of O(n3=2) additionalheavy ars.In other words, the size of G, and thus I(P;C), are O(m2=3n2=3+n3=2�(n)+m).This is the same bound as the initial weaker bound in the planar ase. We improvethe bound using a 3-dimensional utting, as follows. We map eah irle  2 C tothe point dual to the plane ontaining  (sine we made sure that no pair of irlesare oplanar, the resulting points are all distint), and map eah point p 2 P toits dual plane. Clearly, eah inidene p 2  is mapped to an inidene betweenthe dual plane and point (but not vie versa). We now partition the dual spaeinto O(r3) ells, eah rossed by at most m=r dual planes, and apply the weaker



26 J�ANOS PACH AND MICHA SHARIRinidene bound, mentioned at the beginning of this paragraph, within eah ell(to the irles and points that orrespond respetively to the dual points in the elland to the dual planes that ross the ell). The expression that arises is idential tothat in the planar ase, and the right hoie of r yields the same asymptoti boundas in the plane.The same bound an be extended to bound the number of inidenes betweenm points and n irles in any dimension. We omit the desription of this extension,whih an be found in [14℄.8.3. Points and plane urves in three and higher dimensions. Let Pbe a set of m points in Rd , and let C be a olletion of n onvex plane urves, eahlying in a distint plane. The number I(P;C) of inidenes between P and C hasbeen studied by Aronov, Koltun and Sharir [14℄, who have shown thatI(P;C) = O(m4=7n17=21 +m2=3n2=3 +m+ n):In fat, this bound also holds in the ase where C is a olletion of n algebrai planeurves of bounded degree that lie in distint planes.An interesting appliation of this result yields a bound for the number of ini-denes between lines and reguli in 3-spae. A regulus is the 1-parameter family oflines that pass through three given pairwise skew lines in 3-spae. We use the wellknown Pl�uker representation of lines in 3-spae as points and/or hyperplanes in realprojetive 5-spae (see, e.g., [34℄). In this representation, a regulus an be viewed asa quadrati plane urve in R5 : it is the intersetion of the three Pl�uker hyperplanesof the three generating lines of the regulus with the so-alled Pl�uker surfae, whihis a 4-dimensional quadri that is the lous of all points in 5-spae that are imagesof lines in 3-spae under the Pl�uker transform. Hene, the number of inidenesbetweenm lines and n reguli in 3-spae is at most O(m4=7n17=21+m2=3n2=3+m+n).This result has been used in [58℄ to obtain an improved upper bound on the numberof joints in an arrangement of lines in R3 , mentioned in Setion 8.1.9. AppliationsThe problem of bounding the number of inidenes between various geometriobjets is elegant and fasinating, and it has been mostly studied for its own sake.However, it is losely related to a variety of questions in ombinatorial and om-putational geometry and in many other parts of mathematis. In this setion, webriey review some of these onnetions and appliations.9.1. Algorithmi issues. There are two types of algorithmi problems re-lated to inidenes. The �rst group inludes problems where we wish to atuallydetermine the number of inidenes between ertain objets, e.g., between givensets of points and urves, or we wish to ompute (desribe) a olletion of markedfaes in an arrangement of urves or surfaes. The seond group ontains om-pletely di�erent questions whose solution requires tools and tehniques developedfor the analysis of inidene problems.In the simplest problem of the �rst kind, known as Hoproft's problem, we aregiven a set P of m points and a set L of n lines in the plane, and we ask whetherthere exists at least one inidene between P and L. The best running time knownfor this problem is O(m2=3n2=3 � 2O(log�(m+n))) [73℄ (see [56℄ for a mathing lowerbound). Similar running time bounds hold for the problems of ounting or reporting



GEOMETRIC INCIDENCES 27all the inidenes in I(P;L). The solutions are based on onstruting uttings ofan appropriate size and thereby obtaining a deomposition of the problem intosubproblems, eah of whih an be solved by a more brute-fore approah that usesduality; see next paragraph for details. In other words, the solution an be viewedas an implementation of the utting-based analysis of the ombinatorial bound forI(P;L), as presented in Setion 3. We note that in higher dimensions there is adi�erene between ounting and reporting inidenes, e.g., between m points andn hyperplanes. In this ase, the number of inidenes an be mn, so reportingthem ould take 
(mn) time in the worst ase, but ounting them an be doneonsiderably faster, as shown by Bra� and Knauer [28℄.The ase of inidenes between a set P of m points and a set C of n irles inthe plane is more interesting, beause the analysis that leads to the urrent bestupper bound on I(P;C) is not easy to implement. In partiular, suppose that wehave already ut the irles of C into roughly O(n3=2) pseudo-segments (an inter-esting and nontrivial algorithmi task in itself), and we now wish to ompute theinidenes between these pseudo-segments and the points of P . Sz�ekely's tehniqueis non-algorithmi, so instead we would like to apply the utting-based approahto these pseudo-segments and points. However, this approah, for the ase of lines,after deomposing the problem into subproblems, proeeds by duality. Spei�ally,it maps the points in a subproblem to dual lines, onstruts the arrangement ofthese dual lines, and loates in the arrangement the points dual to the lines inthe subproblem. When dealing with the ase of pseudo-segments, there is no ob-vious inidene-preserving duality that maps them to points and maps the pointsto pseudo-lines. Nevertheless, suh a duality has been reently de�ned by Agarwaland Sharir [9℄ (re�ning an earlier and algorithmially less eÆient duality given byGoodman [62℄), whih an be implemented eÆiently for several speial lasses ofurves, inluding the ase of irles. It thus yields an eÆient algorithm for om-puting I(P;C), whose running time is omparable with the bound on I(P;C) givenabove.Construting many faes in an arrangement. The problem of onstrut-ing marked faes in an arrangement of urves has been studied in several papers.Edelsbrunner, Guibas and Sharir [42℄ onsider the ase of lines or of segments, andpresent an algorithm that runs in time O(m2=3�"n2=3+2" logn + n logn logm) forthe ase of lines, and in time O(m2=3�"n2=3+2" logn + n�(n) log2 n logm) for thease of segments, for any " > 0. The algorithms use duality. Consider the algorithmfor the ase of lines. Let L a set of n lines and let P be a set of m fae-markingpoints. The lines of L are mapped to a dual set L� of points, and the points of Pare mapped to a dual set P � of lines. The algorithm then onstruts a (1=r)-uttingof A(P �), and solves reursively the problem within eah ell of the utting, wherethe proessing of a ell � involves the set P� of points whose dual lines ross � , andthe set L� of lines whose dual points lie in � . (Some additional \external" faes alsoneed to be omputed, to ater to the ontribution of lines in L� to faes markedby points in P n P� .) Then, bak in the primal plane, the algorithm merges (inter-sets) the resulting faes. That is, for eah p 2 P , we obtain several \super-faes"that ontain p, one from eah subproblem that orresponds to a ell rossed by theline dual to p, and we need to interset these super-faes to obtain the real faeontaining p. Using a so-alled Combination Lemma (see also [84℄), Edelsbrunner,Guibas and Sharir show that the merging step an be performed in time that is



28 J�ANOS PACH AND MICHA SHARIRlose to the overall fae omplexities produed by the reursive steps, and this leadsto the overall running time stated above. A more reent, simpler, and slightly moreeÆient algorithm for arrangements of lines or of line sements, has been given byAgarwal, Matou�sek and Shwarzkopf [6℄.Extending this approah to the ase of pseudo-lines, pseudo-segments, or irles,is not straightforward, beause of the lak of a natural duality transform for suhurves. This has been reti�ed only reently, with the duality transform betweenpoints and pseudo-lines, proposed by Agarwal and Sharir [9℄. Using this duality,Agarwal and Sharir present an algorithm that omputes m marked faes in anarrangement of n irles in timeO(m2=3�"n2=3+2" +m6=11+3"n9=11�" +m1+" + n1+");for any " > 0. If all irles have the same radius, then the running time an beimproved to O(m2=3�"n2=3+2" + m1+" + n1+"), for any " > 0. Note that thesebounds are lose to the best known upper bounds for the omplexity of the morresponding faes.Related problems. The utting-based approah has by now beome a standardtool in the design of eÆient geometri algorithms in a variety of appliations inrange searhing, geometri optimization, ray shooting, and many others. It isbeyond the sope of this survey to disuss these appliations, and the reader isreferred, e.g., to the survey of Agarwal and Erikson [4℄ and to the referenestherein.9.2. Distint distanes. The tehniques desribed in the present survey anbe applied to obtain some nontrivial results onerning Erd}os' Distint DistanesProblem [50℄ formulated in the Introdution: What is the minimum number ofdistint distanes determined by n points in the plane? As we have indiated inSetion 4, after presenting the proof of the Crossing Lemma, a slight modi�ationof Sz�ekely's idea an be used in several other situations where the underlying graphis not simple, i.e., two verties an be onneted by more than one edge. However,for the method to work, it is important to have an upper bound for the multipliityof the edges. Sz�ekely [94℄ expliitly formulated the following Generalized CrossingLemma (ompare with the original lemma in Setion 4): Let G be a multigraphdrawn in the plane with V verties, E edges, and with maximal edge-multipliityM . Then there are 
� E3MV 2��O(M2V ) rossing pairs of edges.Sz�ekely applied this statement to the Distint Distanes Problem. He improvedby a polylogarithmi fator the best previously known lower bound of Chung, Sze-mer�edi and Trotter [37℄ on the minimum number of distint distanes determinedby n points in the plane. His new bound was 
(n4=5). However, Solymosi andCs. T�oth [89℄ have realized that an ingenious appliation of Sz�ekely's method ansubstantially improve this lower bound to 
(n6=7).In what follows, we sketh the idea of Solymosi and T�oth. Consider a set P ofn points in the plane, not all on a line, and denote the number of distint distanesdetermined by them by t. Take a very small onstant " > 0 that will be spei�edlater, and all a straight line rih if it passes through at least M = "n2=t2 elementsof P .Aording to an old theorem of Bek [20℄ (whih is also a onsequene of theSzemer�edi-Trotter theorem), if P is not ollinear then there is a subset P 0 � Pwith jP 0j = 
(n) suh that there exist at least 
(n) distint lines onneting eah



GEOMETRIC INCIDENCES 29element of P 0 to every other element of P . Fix an element p 2 P 0, and onnet it toevery other point of P by a straight line. Obviously, all other points of P lie on atmost t distint onentri irles around p. Divide the points on eah of these irlesinto groups of onseutive elements so that eah group ontains roughly g elements,where g � 3 is a onstant. For any two points q and q0 in the same group, onnetq and q0 by the ar of the irle they belong to if and only if their perpendiularbisetor is not rih. The olletion of these irular ars for all elements p 2 P 0an be regarded as a multigraph G with maximum multipliity M . Applying theGeneralized Crossing Lemma to G, observing that an upper bound on the numberof edge rossings is O((nt)2), one an onlude that if " is small enough, then thereexists a subset P 00 � P 0 with jP 00j = 
(n) suh that for eah point p 2 P 00, at least
(n) groups around p ontribute no ar to G. This means that in eah of thesegroups all the �g2� bisetors generated by the group elements are rih. Let us allsuh a group empty.Now Solymosi and T�oth argue that every element p 2 P 00 must be inident tomany rih bisetors. To see this, by drawing 
(n=t) rays from p, divide the planeinto setors, eah ontaining 3gt points that belong to empty groups. Clearly,eah suh setor fully ontains at least t empty groups around p. Eah of thesegroups generates �g2� rih bisetors that pass through p, but these lines are notneessarily distint. Nevertheless, if, for example, we have g = 3, then the t emptygroups belonging to the same setor generate 
(t1=3) distint bisetors. (Indeed,one group gives rise to three distint bisetors, and this triple uniquely determinesthe group, so fewer than t1=3 bisetors annot determine t di�erent groups.) Sinetwo bisetors generated by groups belonging to di�erent setors an never oinide,we an onlude that the total number of rih bisetors inident to p 2 P 00 is
(n=t)
(t1=3) = 
(n=t2=3). Summing over all elements of P 00, we obtain that thenumber of inidenes between the elements of P 00 and the rih lines is 
(n2=t2=3).On the other hand, it follows from the Szemer�edi-Trotter theorem (see the Re-mark in Setion 3) that the same quantity is O(jP 00j2=M2) = O(t4=n2). Comparingthe last two relations, we obtain the Solymosi-T�oth bound t = 
(n6=7).Tardos and Katz improved this bound by applying the same argument withlarger group sizes g. That is, they improved the \number theoreti" part of the proofby showing that for larger group sizes the number of distint bisetors generated byt groups is muh larger than t1=3 (see setion 9.4). In their latest paper [68℄, theyombined their methods to prove that the minimum number of distint distanesdetermined by n points in the plane is 
(n(48�14e)=(55�16e)�"), for any " > 0, whihis 
(n0:8641). (It is striking that the exponent in this bound is transendental,whih is a very unusual phenomenon.) This is the best known result so far. Aonstrution of Ruzsa [82℄ shows that the above approah without any additionalgeometri idea an never lead to a lower bound better than 
(n8=9).For the d-dimensional version of the distint distanes problem, Solymosi andVu [90℄ have reently established a surprisingly good lower bound when d is large.They proved that a set P of n points in d-spae determine at least 
�n 2d� 2d(d+2) �distint distanes. The best known upper bound, due to Erd}os, is O(n 2d ). Weoutline the idea of Solymosi and Vu [91℄ in the speial ase when the n points aresituated in a d-dimensional ube C of volume n, and any unit ube ontains onlyO(1) of them.



30 J�ANOS PACH AND MICHA SHARIRPartition C into rd pairwise ongruent little ubes by axis-parallel hyperplanes,where r is a parameter to be �xed later. Suppose that the number of distintdistanes determined by point pairs in P is equal to t. We estimate in two di�erentways the number N of pairs that belong to the same little ube. Sine the elementsof P are almost uniformly distributed, we learly haveN = O�rd�n=rd2 �� = O(n2=rd):To establish a lower bound on N , onsider the set Sp of all spheres around p 2 Pthat pass through at least one element of P , and set S = Sp2P Sp. Obviously, wehave jSj � nt. The number of little ubes interseting any sphere � 2 Sp is at mostk = O(rd�1). Let ni(�) denote the number of points in P \ � that belong to thei-th little ube. Thus, we obtainN = 
0� 1n(d�1)=d Xp2P X�2Sp kXi=1 �ni(�)2 �1A ;beause the number of spheres � for whih the same pair (p; p0) is ounted isO(n(d�1)=d). Indeed, this follows from the fat the enters of all these sphereslie on the perpendiular bisetor hyperplane of p and p0, and, again by the unifor-mity of the distribution, every hyperplane passes through O(n(d�1)=d)) elements ofP . It follows from the last inequality thatN = 
� 1n(d�1)=dnkt�(n� 1)=kt2 �� = 
�n(d+1)=d� ;provided that r is roughly (n=t)1=(d�1) (this hoie of r is needed to ensure thatthe average value of ni(�) is at least 2). Comparing the upper and lower boundson r, we obtain t = 
(n2=d�1=d2). If we drop the ondition that the points areniely distributed then, instead of partitioning into little ubes, we have to followthe utting-based method desribed in Setion 3, whih yields the slightly weakerbound t = 
(n2=d�2=[d(d+2)℄).In three dimensions, Aronov, Pah, Sharir and Tardos [16℄ have shown thatthe number of distint distanes is 
(n77=141�"), for any " > 0, whih is 
(n0:546).This was improved by Solymosi and Vu [91℄ to 
(n0:564).It is an exiting open problem to haraterize those point sets that determineonly few distint distanes. It is onjetured that they must have a gridlike stru-ture, and Freiman's theorem (see Setion 9.4) seems to support this belief. A stepin this diretion was taken by Elekes and R�onyai [49℄, who proved Purdy's on-jeture: If the number of distint distanes between two n-element ollinear setsis at most onstant times n, then their supporting lines must be either parallel ororthogonal to eah other, provided that n is large enough. The major tool in theproof is the following remarkable result: If a two-variable rational funtion assumesonly a linear number of distint values on a large grid P �Q, where jP j = jQj = n;then it must be of the form f(g(x)+h(y)); or f(g(x) �h(y)); or f � g(x)+h(y)1�g(x)�h(y)� ; forsome suitable rational funtions f; g; h.9.3. Equal-area, equal-perimeter, isoseles triangles, and ongruentsimplies. Erd}os and Purdy [53, 54℄ generalized the Repeated Distanes Problemto other repeated patterns (that is, �nite sets of points), inluding ongruent and



GEOMETRIC INCIDENCES 31similar triangles. In the plane, every n-element set an ontain at most O(n2)similar opies of a given pattern, sine a similarity is determined up to orientationby the image of any pair of points. This bound an, of ourse, be attained, e.g.,for equilateral triangles in a regular triangular lattie. In fat, a urious lattie-likeonjeture of Elekes and Erd}os [47℄ indiates that the number of similar opies ofany given �nite pattern P an be almost quadrati. Lazkovih and Ruzsa [69℄showed that the quadrati upper bound an be asymptotially attained if and onlyif the ross ratio of every 4 points of P , interpreted as omplex numbers, is algebrai.Results of this kind found many appliations in exat pattern mathing [26℄.Other variants of repeated patterns in point sets, whih we now onsider, involve�xed-area, �xed-perimeter, or isoseles triangles.Let P be a set of n points in the plane. We wish to bound the number oftriangles spanned by the points of P that have a given area, say 1. To do so, we notethat if we �x two points a; b 2 P , any third point p 2 P for whih Area(�abp) = 1lies on a �xed line `ab parallel to ab. Pairs (a; b) for whih the line `ab ontainsfewer than n1=3 points of P generate at most O(n7=3) unit area triangles. For theother pairs, we observe that the number of lines ontaining more than n1=3 pointsof P is, by the equivalent formulation of the Szemer�edi-Trotter theorem, at mostO(n2=(n1=3)3) = O(n). The number of inidenes between these lines and thepoints of P is at most O(n4=3). We next observe that any line ` an be equal to `abfor at most n pairs a; b, beause, given ` and a, there an be at most two points bfor whih ` = `ab. It follows that the lines ontaining more than n1=3 points of Pan be assoiated with at most O(n � n4=3) = O(n7=3) unit area triangles. Hene,overall, P determines at most O(n7=3) unit area triangles. We do not know whetherthis bound is tight. The best known lower bound is 
(n2 logn) [53℄. See also [77℄.Next, onsider the problem of estimating the number of unit perimeter trianglesdetermined by P . Here we note that if we �x a; b 2 P , with jabj < 1, any thirdpoint p 2 P for whih Perimeter(�abp) = 1 lies on an ellipse whose foi are a and band whose major axis is 1� jabj. Clearly, any two distint pairs of points of P giverise to distint ellipses, and the number of unit perimeter triangles determined byP is equal to one third of the number of inidenes between these O(n2) ellipses andthe points of P . The set of these ellipses has four degrees of freedom, in the senseof Pah and Sharir [78℄ (see also Setion 3), and hene the number of inidenesbetween them and the points of P , and onsequently the number of unit perimetertriangles determined by P , is at mostO(n4=7(n2)6=7) = O(n16=7):Again, we do not know whether this bound is tight. The best known lower boundis as for the number of repeated distanes, i.e., 
(n1+= log logn) [50℄, sine the sameonstrution yields the same lower bound on the number of ongruent triangles.See Bra�, Rote and Swanepoel [30℄ for related work on triangles with extremalarea or perimeter spanned by a planar point set.Finally, onsider the problem of estimating the number of isoseles trianglesdetermined by P .Reently, Pah and Tardos [79℄ proved that the number of isoseles trianglesindued by triples of an n-element point set in the plane is O(n(11�3�)=(5��)),provided that 0 < � < 10�3e24�7e , where the onstant of proportionality depends on �.



32 J�ANOS PACH AND MICHA SHARIR(The onstant 10�3e24�7e omes from [68℄; f. setion 9.4.) The proof proeeds throughthree steps, outlined below.(i) Let P be a set of n distint points and let C be a set of ` distint irles in theplane, with m � ` distint enters. Then, for any 0 < � < 10�3e24�7e , the number I ofinidenes between the points in P and the irles of C isO �n+ `+ n 23 ` 23 + n 47m 1+�7 ` 5��7 + n 12+4�21+3�m 3+5�21+3� ` 15�3�21+3� + n 8+2�14+�m 2+2�14+� ` 10�2�14+� � ;where the onstant of proportionality depends on �. Note that when m = ` this isa weaker bound than the general point-irle inidene bound derived in Setion 5.However, when m is muh smaller, this bound beomes better.(ii) As a orollary, we obtain the following statement. Let P be a set of n distintpoints and let C be a set of ` distint irles in the plane suh that they have atmost n distint enters. Then, for any 0 < � < 10�3e24�7e , the number of inidenesbetween the points in P and the irles in C isO �n 5+3�7+� ` 5��7+� + n� :(iii) Consider an n-element point set P in the plane, and let T be the set of orderedtriples pqr that indue an isoseles triangle in P , with apex q. For any pqr 2 T , let(pqr) denote the irle entered at q, whih passes through p and r. We lassifythe elements of T aording to the order of magnitude of j(pqr) \ P j, and boundthe sizes of the lasses separately. Setting a threshold t := n(1��)=(5��), letT 0 = fpqr 2 T j j(pqr) \ P j � tg; andTi = fpqr 2 T j 2it � j(pqr) \ P j � 2i+1tg;for i = 0; 1; : : : ; blog(n=t): For any points p; q 2 P there are at most t� 1 hoiesfor r suh that pqr 2 T 0. Thus, we havejT 0j < n2t = n 11�3�5�� :Let Ci = f(pqr) j pqr 2 Tig, for 0 � i � blog(n=t). Letting `i := jCij, we have atleast 2it`i inidenes between the n points in P and the `i irles in Ci. Moreover,the enter of eah irle in Ci is among the n points of P , so we an apply thebound in (ii), whih yields2it`i = O� �n 5+3�7+� ` 5��7+�i + n� ;for any 0 < � < 10�3e24�7e . (The subsript � indiates that the onstant hidden in theO-notation depends on �.) Rearranging the terms, we get for every i that`i = O� n 5+3�2+2�(2it) 7+�2+2� + n2it! :Using the fat that jTij < (2i+1t)2`i, we obtainjTij = O� n 5+3�2+2�(2it) 3�3�2+2� + 2itn! = O� n 11�3�5��2i 3�3�2+2� + n2n=(2it)! :Adding up these bounds, it follows thatjT j = jT 0j+ blog(n=t)Xi=0 jTij = O� �n 11�3�5�� + n2� = O� �n 11�3�5�� � ;



GEOMETRIC INCIDENCES 33as asserted.A lower bound on the number of isoseles triangles is 
(n2plogn), as yieldedby the set of verties of a pn�pn lattie.The following algorithmi appliation of the bound on the number of isoselestriangles is due to Bra� [27℄: If I(n) is an upper bound on the number of isoselestriangles in an n-element point set, then the maximum symmetri subsets of ann-point set an be listed in time O((I(n) + n2) logn).Bounding the number of inidenes between points and irles in higher di-mensions an be applied to the following interesting problem posed by Erd}os andPurdy and studied by Agarwal and Sharir [8℄ (see also Bra� [25℄ and Abrego andFernandez-Merhant [1℄): Determine the largest number of simplies ongruent toa �xed simplex �, whih an be spanned by an n-element point set P � Rd .Here we onsider only the ase when P � R4 and � = abd is a 3-simplex. Fixthree points p; q; r 2 P suh that the triangle pqr is ongruent to the fae ab of�. Then any fourth point v 2 P for whih pqrv is ongruent to � must lie on airle whose plane is orthogonal to the triangle pqr, whose radius is equal to theheight of � from d, and whose enter is at the foot of that height. Hene, boundingthe number of ongruent simplies an be redued to the problem of bounding thenumber of inidenes between irles and points in 4-spae. (The atual redution isslightly more involved, beause the same irle an arise for more than one trianglepqr; see [8℄ for details.) Using the bound of [14℄, mentioned in Setion 8, one andedue that the number of ongruent 3-simplies determined by n points in 4-spaeis O(n20=9+"), for any " > 0. The known lower bound is 
(n2), as follows fromLenz' onstrution (see, e.g., [76℄).See also Akutsu, Tamaki and Tokuyama [11℄ for related work, and Bra� [26℄for a general referene to this kind of problems.9.4. Number theoreti appliations. As we have seen before, the opti-mum of most extremal problems involving distanes or inidenes are known oronjetured to be attained for a portion of the integer lattie. Therefore, it is nat-ural that additive number theory (e.g., Freiman's theory of set addition [60, 81℄)plays a ruial role in this area (see, e.g., [48, 51, 69℄). It is somewhat surpris-ing, however, that bounds on inidenes an be used to establish number theoretistatements. The prototype of suh a result is Elekes' theorem [46℄: For any set Aof n reals, either the set of sums A +A = fa+ b j a; b 2 Ag or the set of produtsA �A = fab j a; b 2 Ag has at least 
(n5=4) elements. In fat, Erd}os and Szemer�edi[55℄, who raised this problem and established the �rst nontrivial estimate of thistype, onjetured that the theorem remains true if the exponent 5=4 is replaed byany real number smaller than 2.Elekes' proof is the following. Apply the Szemer�edi-Trotter theorem [95℄ to theset of points P = (A+A)� (A �A) � R2 and to the set L of n2 lines of the form y =a(x� b), where a; b 2 A. Observe that the line y = a(x� b) passes through at leastn elements of P , namely, all points of the form (+ b; a) for  2 A. Therefore, thenumber of inidenes between the elements of P and L is at least n3. On the otherhand, this quantity is at most O(jP j2=3jLj2=3+ jP j+ jLj) = O(jP j2=3n4=3+ jP j+n2).Comparing these two bounds, we obtain jP j = jA + Aj � jA � Aj = 
(n5=2); asrequired.



34 J�ANOS PACH AND MICHA SHARIRSolymosi [88℄ has reently established the stronger resultmaxfjA+Aj; jA � Ajg = 
(n14=11= log3 n);applying the Szemer�edi-Trotter theorem to the point set P = (A + A) � (A + A)and a properly hosen set of lines. His argument also yields a similar statement forthe set of frations A=A instead of the set of produts A �A.Aording to the above results, any �nite subset A of the �eld of real numbersis very far from being losed either under addition or under multipliation. Thesame question an be asked for other �elds F . If F has a sub�eld A, then weannot expet suh a result. However, for �nite �elds F of prime order, Bourgain,Katz, and Tao [23℄ proved that for any Æ > 0 there exists " = "(Æ) > 0 suh that,whenever jF jÆ < jAj < jF j1�Æ ; we havemaxfjA+Aj; jA � Ajg = 
(jAj1+"):The proof is based on a far-reahing generalization of the Szemer�edi-Trotter theoremon inidenes. As a onsequene, Bourgain et al. dedued a nontrivial lower boundfor the distint distanes problem in the �nite �eld plane F 2 = F � F , where Fis of prime order. Given any two points (x; y); (x0; y0) 2 F 2; de�ne their distaned((x; y); (x0; y0)) as (x�x0)2+(y�y0)2. (For tehnial reasons, it is better to avoidusing square roots.) It was shown in [23℄ that for any 0 < Æ < 2 there exists" = "(Æ) > 0 suh that any set P � F 2 of jF jÆ elements determine at least jP j1=2+"distint distanes. As we have seen before, Erd}os onjetured that the Eulideananalogue of this result is true with any " < 1=2; but there is no obvious reason tobelieve that this would also hold in the ase of �nite �elds.We lose this subsetion by formulating the following number theoreti problem,expliitly stated by Tardos [97℄. Its (partial) solution is involved in many of theresults mentioned in the previous two setions, inluding the lower bounds on theDistint Distanes Problem. Given an n � k real matrix M = (mij) all of whoseentries are distint, let M(A) denote the set of all numbers that an be written asthe sum of two distint entries from the same row. Let fk(n) be the minimum sizeof jM(A)j over all suh matries. It is easy to see that both f3(n) and f4(n) are�(n1=3). The best known lower bounds so far have been established by Katz andTardos [68℄: f5(n) � n7=19; f7(n) � n33=89; f9(n) � n59=159; : : :, and, in general, forevery � < 10�3e24�7e there exists k = k(�) suh that fk(n) � n�. The only nontrivialupper bound is due to Ruzsa [82℄: fk(n) = O(n 12� 12k�2 ) for even values of k.9.5. Fourier analysis and measure theory. A number of interesting on-netions between inidene geometry, Fourier analysis, and measure theory aredisussed in Iosevih's survey [65℄. Here we only mention two interesting problemsthat have generated a lot of researh.Fuglede [59℄ onjetured that one an haraterize all domains whose translatesan tile the Eulidean spae, as follows. A domain D in Eulidean d-spae is alledspetral if there exists a disrete set A in the spae suh that the set of exponentialfuntions fe2�ix�a j a 2 Ag forms an orthogonal basis for the spae L2(D) of allsquare-integrable funtions on D. Fuglede onjetured that the spae an be tiledwith translates of D if and only if D is spetral.For instane, if D is the unit ube, then A an be hosen to be the integerlattie. On the other hand, Iosevih, Katz, and Pedersen [66℄ proved that the unitball is not spetral in any dimension. Their argument proeeds as follows. Assuming



GEOMETRIC INCIDENCES 35that a spetrum A exists, a areful analysis of the Fourier transform �̂(�) of theharateristi funtion of the d-dimensional ball shows that A is a disrete set,fairly uniformly distributed in d-spae. Moreover, the assumption on orthogonalityimplies that �̂(a � a0) = 0 for any a; a0 2 A. The Fourier transform �̂(�) dependsonly on the absolute value j�j. It is not hard to prove (see, e.g., [86℄) that thezeroes of �̂(j�j) are very lose to the zeroes of os(j�j � �d=4). It follows that thenumber of elements of A belonging to a ball of radius r is 
(rd); and these pointsdetermine O(r) distint distanes. This ontradits the above surveyed results ondistint distanes.Given a ompat set S in Rd ; let dim(S) denote its Hausdor� dimension, and let�(S) be the set of interpoint distanes determined by S. Aording to a elebratedonjeture of Faloner [57℄, if dim(S) � d=2, then the Lebesgue measure �(�(S)) ispositive. Faloner proved that this statement is true under the stronger assumptionthat dim(S) � (d+1)=2: In the plane, this assumption was weakened to dim(S) �13=9 by Bourgain [21℄ and then to dim(S) � 4=3 by Wol� [101℄, who argued thatno further improvement is likely using a purely Fourier-analyti approah.On the other hand, Arutyunyants and Iosevih [19℄ (and, in the plane, Hofmannand Iosevih [64℄) proved that if dim(S) � d=2, then �(�(TS)) > 0; for almostall transformations T with bounded positive eigenvalues. Roughly speaking, thismeans that Faloner's onjeture is almost surely true for randomly hosen aÆnetransformations of the Eulidean metri.Erd}os' onjeture on the minimum number of distint distanes determined byn points in Rd , disussed above, has an interesting asymptoti version (see, e.g.,[19, 66℄): Let A � Rd be a uniformly distributed set in the sense that (i) everyaxis-parallel unit ube in Rd ontains at least one element of A, and (ii) the distanebetween any two elements of A exeeds some positive onstant Æ. Then the numberof distint distanes determined by the points of A lying inside a ube of sidelength r is 
(r2). It is not hard to see [19℄ that Faloner's onjeture implies this(weaker) form of Erd}os' onjeture on distint distanes. Some further disretizedonjetures and their relations with one another and with the Szemer�edi-Trottertheorem on inidenes are disussed in [67℄.These problems are also related to Kakeya's problem [100℄: A Kakeya set (orBesiovith set) is a subset of Rd that ontains a unit segment in every diretion.Besiovith was the �rst to onstrut suh sets with zero measure. Kakeya's problemis to deide whether the Hausdor� dimension of a Kakeya set is always at least d.The planar version of this question was answered in the aÆrmative by Davies [41℄and, in a stronger form, by C�ordoba [40℄ and by Bourgain [22℄. For d � 3, this isa major unsolved problem.Aknowledgments. We are grateful to Jirka Matou�sek and Peter Bra� for theirareful reading and valuable omments on the paper.Referenes[1℄ B. Abrego and S. Fernandez-Merhant, Convex polyhedra in R3 spanning 
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