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Abstract

We show that n arbitrary circles in the plane can be cut into O(n3/2+ε) arcs, for any
ε > 0, such that any pair of arcs intersect at most once. This improves a recent result of
Tamaki and Tokuyama [20]. We use this result to obtain improved upper bounds on the
number of incidences between m points and n circles. An improved incidence bound is also
obtained for graphs of polynomials of any constant maximum degree.

1 Introduction

Let P be a finite set of points in the plane and C a finite set of circles. Let I = I(P,C) denote
the number of incidences between the points and the circles. Let I(m,n) denote the maximum
value of I(P,C), taken over all sets P of m points and sets C of n circles, and let I ′(m,n,X)
denote the maximum value of I(P,C), taken over all sets P of m points and sets C of n circles
with at most X intersecting pairs.

In this paper we derive improved upper bounds for I(m,n) and I ′(m,n,X). The previous
best upper bounds were I(m,n) = O(m3/5n4/5+m+n) [8, 15], and I ′(m,n,X) = O(m3/5X2/5+
m + n) [4]. The bounds that we obtain are:

I(m,n) =

{

O(m2/3n2/3 + m) for m ≥ n(5−3ε)/(4−9ε)

O(m(6+3ε)/11n(9−ε)/11 + n) for m ≤ n(5−3ε)/(4−9ε)

and

I ′(m,n,X) =

{

O(m2/3X1/3 + m) for m ≥ X(1+6ε)/(4−9ε)n3(1−5ε)/(4−9ε)

O(m(6+3ε)/11X(4+2ε)/11n(1−5ε)/11 + n) for m ≤ X(1+6ε)/(4−9ε)n3(1−5ε)/(4−9ε),
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for any ε > 0, where the constants of proportionality depend on ε. The bound on I(m,n)
is worst-case tight when m is larger than roughly n5/4. This follows from the construction of
Θ(m2/3n2/3) incidences between m points and n lines (see, e.g., [10]) which, after applying an
inversion to the plane, becomes a configuration with Θ(m2/3n2/3) incidences between m points
and n circles.

For sets C of circles with the additional property that every two circles in C intersect we
establish the slightly improved bound

I(m,n) =

{

O(m2/3n2/3 + m) for m ≥ n5/4

O(m6/11n9/11 + n) for m ≤ n5/4.

Our results are strongly related to a theorem of Tamaki and Tokuyama [20], which as-
serts that n circles (or, more generally, n “pseudo-parabolas”) can be cut into O(n5/3) pseudo-
segments, i.e., arcs with the property that each pair intersect at most once. In this paper we
improve this result for the case of circles, showing (in Section 3) that n circles can be cut into
O(n3/2+ε) arcs, for any ε > 0, so that each pair of arcs intersect at most once.

In the second part of the paper (Section 4) we combine this new bound on the number of
cuts with several other tools to derive the aforementioned improved bounds for I(m,n) (and
I ′(m,n,X)). These tools are reviewed in Section 2.

Recently, Chan [5] has extended Tamaki and Tokuyama’s result to the case of graphs of
polynomials of any constant maximum degree. Using Chan’s bound and extending, in a straight-
forward manner, the proof technique we used for the case of circles, we also obtain bounds for
the number of incidences between m points and n such graphs. These bounds improve (slightly)
those obtained earlier in [15].

2 Preliminaries

2.1 Lenses in a circle arrangement

Let C be a family of n circles of arbitrary radii in the plane. Let γ, γ′ be two circles in C, which
intersect at two points u, v. The union of an arc of γ and an arc of γ′, each connecting u and v,
is called a lens, and u, v are called its corners. Two lenses are said to overlap if an arc of one of
them overlaps an arc of the other (necessarily lying on the same circle). The interior of the lens
is the open bounded region enclosed by its two circle arcs. We say that another circle δ crosses
a lens if it intersects both the lens itself (possibly at one or two of its corners) and its interior.
The level of a lens is defined to be the number of circles of C that cross it; see Figure 1. The
0-level lenses are also called Empty lenses. They are in fact faces of the arrangement A(C) of
C that have degree 2. With the possible exception of the unbounded face, these faces are either
lens-faces (contained in the interiors of the two defining circles) or lune-faces (contained in the
interior of one defining circle and in the exterior of the other); see Figure 1. In recent papers,
Pinchasi [16] and Alon et al. [4] have obtained various upper bounds for the number of these
faces: It was shown that if every pair of circles in C intersect then the number of lens-faces and
lune-faces is O(n). In fact, the following stronger result, which is crucial for our analysis, was
proven in [4]:

Lemma 2.1. Let A and B be two families of circles in the plane, such that each circle in A
intersects every circle in B, and there is a point p that is interior to all the circles of A. Then
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Figure 1: A pencil of circles that pass through two common points. There are five empty lenses,
one of which is (a1, b1), which is a lens-face, whereas the other four are lune-faces. The lens
(a2, b2) is at level 2 (it is crossed by the circles containing a1 and b1).

the number of empty lenses within the family A ∪ B that are defined by a circle of A and by a
circle of B is O(|A| + |B|).

Alon et al. [4] have also shown that if all the circles of C have the same radius (but not
all pairs necessarily intersect) then the number of lens-faces is O(n4/3 log n) and the number of
lune-faces is at most n. If the circles have arbitrary radii, then the number of lens-faces and
lune-faces is O(n3/2+ε), for any ε > 0. Clearly, this latter result is now subsumed by our new
bound.

2.2 Crossing lemma

A simple graph is said to be drawn in the plane if its vertices are mapped to distinct points in
the plane, and each of its edges is mapped to a curve connecting the points corresponding to
the end vertices of the edge. We further require that no curve passes through any other vertex
and that each pair of curves meet a finite number of times. A crossing between two curves is a
point at which their relative interiors intersect transversally. An edge-crossing in (the drawing
of) the graph is a pair of crossing edges.

Lemma 2.2 (Leighton [12]; Ajtai et al. [3]; see also [14]). Any plane drawing of a simple
graph G with e edges and n vertices must have Ω(e3/n2) edge-crossings, provided that e ≥ 4n.
Equivalently, if G can be drawn in the plane with X edge-crossings then e = O(n2/3X1/3 + n).

Slightly abusing the notation, we will sometimes not distinguish between the vertices of a
graph and the corresponding points in its plane drawing or between a graph edge and the curve
that represents it in the drawing.

2.3 Simplicial partitioning of point sets in higher dimensions

We also need the following well-known result of Matoušek:
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Theorem 2.3 (Matoušek [13]). Let A be a set of n points in R
d and 1 ≤ r ≤ n a given

parameter. Then A can be partitioned into q ≤ 2r subsets, A1, . . . , Aq, so that, for each i, |Ai| ≤
n/r, and Ai is contained in a (possibly lower-dimensional) simplex ∆i, so that no hyperplane
crosses (i.e., intersects but does not contain) more than O(r1−1/d) of these simplices.

In addition, the following refinement of Theorem 2.3, due to Agarwal and Matoušek, will be
useful in our analysis:

Theorem 2.4 (Agarwal–Matoušek [1]). Let A be a set of n points in R
d that lie on an

algebraic (d−1)-dimensional surface of constant degree, and let 1 ≤ r ≤ n be a given parameter.
Then A can be partitioned into q ≤ 2r subsets, A1, . . . , Aq, so that, for each i, |Ai| ≤ n/r, and
Ai is contained in a (possibly lower-dimensional) simplex ∆i, so that no hyperplane crosses (i.e.,
intersects but does not contain) more than O(r1−1/(d−1) log r) of these simplices.

3 Cutting Circles into Pseudo-segments

In this section we are going to improve the following result.

Theorem 3.1 (Tamaki and Tokuyama [20, Theorem 6.1]). Let C be a collection of n
circles in the plane. Then the circles of C can be cut into a total of O(n5/3) arcs, so that
any two of these arcs intersect at most once.

We note that this result is in fact given in [20] in more generality, and applies also to any
collection of pseudo-parabolas, which are graphs of continuous totally-defined functions, any two
of which intersect at most twice, and also to any collection of convex pseudo-circles, i.e., closed
convex curves, any two of which intersect at most twice. At the moment we do not have any
improved upper bound on the number of cuts in these more general settings, but we do have an
improvement for the case of circles:

Theorem 3.2. Let C be a collection of n circles of arbitrary radii in the plane. The circles of
C can be cut into O(n3/2+ε) arcs, for any ε > 0, so that any two of the arcs intersect at most
once; the constant of proportionality depends on ε.

A close inspection of the analysis of [20] reveals that it suffices to obtain the bound O(n3/2+ε)
for the maximum size ν1(C) of a family L of pairwise nonoverlapping lenses in A(C). Once this
bound is obtained, we can then plug it into the remainder of the analysis of [20] without any
further modifications, and obtain the same asymptotic bound on the desired number of cuts.
The assertion of the theorem is thus an immediate consequence of the following result:

Theorem 3.3. The maximum size ν1(C) of a family of pairwise nonoverlapping lenses in an
arrangement of n circles of arbitrary radii is O(n3/2+ε), for any ε > 0.

Proof. Let C be such a set of n circles and let L be a family of pairwise nonoverlapping lenses
in A(C). We need to show that |L| = O(n3/2+ε).

Represent a circle c whose center lies at (a, b) and whose radius is ρ by the point

pc(a, b, ρ, a2 + b2 − ρ2) ∈ R
4,
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and by the pair of hyperplanes

h+
c : x4 = 2ax1 + 2bx2 + 2ρx3 + (ρ2 − a2 − b2)

h−
c : x4 = 2ax1 + 2bx2 − 2ρx3 + (ρ2 − a2 − b2).

A circle c of radius ρ centered at (a, b) and a circle c′ of radius R centered at (ξ, η) intersect if
and only if

(R − ρ)2 ≤ (a − ξ)2 + (b − η)2 ≤ (R + ρ)2,

or
2aξ + 2bη + 2ρR + (ρ2 − a2 − b2) ≥ ξ2 + η2 − R2

and
2aξ + 2bη − 2ρR + (ρ2 − a2 − b2) ≤ ξ2 + η2 − R2.

In other words, they intersect if and only if the point pc′ lies in the wedge above h−
c and below

h+
c .

Partition C at random into two subfamilies A,B of equal size. The expected number of
lenses in L that are ‘bichromatic’ (formed by a circle in A and a circle in B) is |L|/2. It thus
suffices to obtain an upper bound on the number of bichromatic lenses in L, and in what follows
we will assume that all lenses in L are bichromatic (the lenses in such a subset clearly continue
to have the property that no two of them overlap).

Map the circles in A to their dual points in R
4, and let A∗ denote the resulting point set.

Map each circle in B to the dual wedge in R
4, and let B∗ denote the resulting set of wedges.

Apply Theorem 2.4 to A∗, with a sufficiently large constant parameter r that will be specified
below. We obtain a partitioning of A∗ into q ≤ 2r subsets A∗

1, . . . , A∗
q , each of size at most n/(2r),

so that any hyperplane crosses the convex hulls of at most O(r2/3 log r) subsets.

Fix a subset A∗
i and let B∗

i denote the set of wedges in B∗ that fully contain A∗
i . Let Ai

and Bi denote the corresponding sets of circles. By the properties of this transformation, each
circle in Ai intersects every circle in Bi, but there may be disjoint pairs of circles in Ai × Ai

and in Bi ×Bi. We next proceed as in [4]. That is, suppose, without loss of generality, that the
smallest circle in Ai ∪Bi is c ∈ Ai, and let r be the radius of c. Let D0 be the disk of radius 3r
concentric with c. Each circle c′ ∈ Bi intersects c and has radius r′ ≥ r, which is easily seen to
imply that the intersection of D0 with the disk D′ that c′ bounds has area at least πr2. Hence,
we can place O(1) points in D0 so that any such D′ contains at least one of them. This implies

that we can decompose Bi into O(1) families B
(1)
i , . . . , B

(p)
i so that all the circles in the same

family have a common point in their interiors.

Now fix a pair of families A′ = Ai, B′ = B
(j)
i , and consider the subtask of estimating the

number of (bichromatic) lenses in L formed by a circle of A′ and a circle of B′. First, we note
that Lemma 2.1 implies that the number of bichromatic empty lenses (both those corresponding
to lens-faces and to lune-faces) in A′ ∪ B′ is O(|A′| + |B′|).

Next, we estimate the number of bichromatic lenses in A′∪B′ whose level is at most k, for an
appropriate threshold parameter k whose value will be fixed momentarily. See Figure 2 for an
illustration. By a straightforward application of the Clarkson-Shor probabilistic technique [7],
the number Lk of bichromatic lenses at level at most k is O(k2) times the number of empty
bichromatic lenses in a random sample of n/k circles of A′ ∪ B′. Using Lemma 2.1, Lk =
O(k2 · (N/k)) = O(Nk), where N = |A′| + |B′|.
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Figure 2: A pencil of circles of A′ ∪ B′ that pass through two common points. Circles a1, a2, a3

belong to A′ and circles b1, b2, b3 belong to B′. The only empty bichromatic lens is (a1, b1). The
family L of nonoverlapping lenses may contain the lenses (a1, b1), (a2, b2), (a3, b3), at levels 0,
2, and 4, respectively. Or L may contain the lenses (a1, b3), (a2, b2), (a3, b1), all at level 2.

Let L∗ be the subcollection of L consisting of all lenses in A(A′ ∪ B′) with levels greater
than k. Let ℓ ∈ L∗, and let c ∈ A′, c′ ∈ B′ be the two circles whose arcs form ℓ. Then ℓ can be
naturally associated with at least k ordered pairs of crossing circles of the form (c, γ) or (c′, γ),
where γ is a circle in A′∪B′ that crosses ℓ. We claim that any such pair (c, γ) can be associated
with at most four lenses of L∗. Indeed, let u, v denote the points of intersection of c and γ.
Because of the pairwise nonoverlap condition, there can be at most two lenses in L∗ that have
an arc along c and contain u, and at most two lenses in L∗ that have an arc along c and contain
v. No other lens in L∗ can be associated with (c, γ).

Hence the maximum number of pairwise nonoverlapping bichromatic lenses of level greater
than k is O(N2/k). This, plus the bound O(Nk) on all lenses of level at most k, yields the
bound O(Nk + N2/k) on the number of lenses of L in A(A′ ∪ B′). Substituting k = N1/2, we

obtain the bound O(N3/2) = O((|Ai| + |B
(j)
i |)3/2).

Summing this bound over the O(1) indices j, we conclude that the number of bichromatic
lenses in Ai ∪ Bi that belong to L is O((|Ai| + |Bi|)

3/2). Summing this bound over all subsets
Ai and corresponding subsets Bi, we conclude that the overall number of lenses in L of the type
considered so far is O(n3/2).

Any other bichromatic lens in L is formed by a circle c in some Ai and by a circle c′ ∈ B
for which at least one of the half-hyperplanes bounding its dual wedge crosses the convex hull
of A∗

i . Let us denote by B̄i the subset of these circles, and put mi = |B̄i|. By the properties of
our decomposition, we have

∑q
i=1 mi = O(nr2/3 log r). As a matter of fact, we can split each B̄i

into subsets of size at most (n log r)/r1/3 and duplicate the corresponding sets Ai. The number
of new pairs (Ai, B̄i) is still O(r).

We next apply a symmetric decomposition step, using the same parameter r, to each pair
(Ai, B̄i), where now the circles of B̄i are mapped into points in R

4 and the circles of Ai are
mapped into wedges. Repeating the entire process for each (Ai, B̄i), and recalling that r is a
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constant, we obtain the following recurrence:

F (m) = O(m3/2) + βr2F

(

m log r

r4/3

)

, (1)

for some absolute constant β > 0, where F (m) is the maximum number of bichromatic lenses
in L that can be formed between two subfamilies of circles of A and of B, respectively, whose
cardinalities are both at most m; the constant of proportionality of the overhead term O(m3/2)
of (1) depends on r. It is now easy to verify that the solution to (1) is F (m) = O(m3/2+ε), for
any ε > 0, where the constant of proportionality depends on ε. This completes the proof of
Theorems 3.3 and 3.2.

Theorem 3.2 can be strengthened as follows:

Theorem 3.4. Let C be a set of n circles with at most X intersecting pairs. Then the circles
of C can be cut into O(n1/2−εX1/2+ε + n) arcs, for any ε > 0, so that any two arcs intersect at
most once.

Proof. We assume that X ≥ n. Otherwise, cutting each circle between each consecutive pair of
points of its intersection with the other circles yields a collection of O(n) arcs with the desired
property. Put r = ⌈n2/X⌉, and let R be a random sample of r circles from C. Let A∗(R) denote
the vertical decomposition of the arrangement A(R). It is obtained from A(R) by drawing a
vertical segment through every vertex of A(R) and through every leftmost and rightmost point
of a circle of R and extending it upward and downward until the first intersection with an edge
of A(R) or to infinity, otherwise. This is a decomposition of the plane into “pseudo-trapezoidal”
cells, whose expected number is O(r+(r/n)2X) = O(r). For each cell τ , let Cτ denote the subset
of circles of C that cross the interior of τ and put nτ = |Cτ |. We first cut each circle of C \ R
at points in the interior of τ , slightly after it enters and slightly before it leaves cells of A∗(R),
and then, for each cell τ , we cut further the portions of the circles of Cτ that lie inside τ into

O(n
3/2+ε
τ ) subarcs, for any ε > 0, as in Theorem 3.2. We also cut the circles of R slightly before

and after vertices of A∗(R). It is easily verified that this process does indeed cut the circles into

arcs, no pair of which intersect twice. The total number of arcs is thus O(r) +
∑

τ O(n
3/2+ε
τ ).

Using the results of [7], the expected value of this sum is

O(r) + O(r) · O((n/r)3/2+ε) = O(n3/2+ε/r1/2+ε) = O(n1/2−εX1/2+ε),

for any ε > 0, as asserted.

Remark 3.5. While Theorems 3.2 and 3.4 constitute significant improvements over the result
of Tamaki and Tokuyama [20], they still leave a gap between the bounds that they establish and
the best known lower bound Ω(n4/3), noted in [20]. We conjecture that the true bound is close
to this lower bound.

We close this section by observing that if C is a collection of n circles, every pair of which
intersect, then we can slightly improve the preceding results. Specifically, we have:

Theorem 3.6. If C is a collection of n circles, every two of which intersect, then one can cut
the circles of C into O(n3/2) subarcs, every two of which intersect at most once.

Proof. The proof of Theorem 3.3 shows that ν1(C) = O(n3/2). Indeed, there is no need to
apply the recursive partitioning based on Theorem 2.4, because every pair of circles already
intersect.
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3.1 The case of polynomial curves

Let Γ be a collection of n curves that are graphs of polynomial functions of constant maximum
degree s. In a recent paper, Chan [5] studied the problem of cutting the curves of Γ into arcs, each
pair of which intersect at most once. The following bound, which is lower by a polylogarithmic
factor than the bound given there, can be derived in a straightforward manner by the technique
of [5]; it is smaller because we do not require the additional property that the resulting arcs be
extendible to a collection of pseudolines, a property needed in Chan’s application.

Theorem 3.7 (Chan [5]). Any collection of n curves that are graphs of polynomial functions
of constant maximum degree s can be cut into O(n2−1/3s−1

) arcs, every two of which intersect
at most once.

Remark 3.8. Chan’s proof reduces the case at hand to that of cutting parabolas (given by
equations of the form y = ax2+bx+c) into pseudo-segments. Improving Tamaki and Tokuyama’s
bound for real parabolas will yield a parallel improvement of the bound of Theorem 3.7.

4 Improved Bounds for Incidences Between Points and Circles

4.1 Improved bounds for many points

Let P be a set of m points in the plane and C a set of n circles with X intersecting pairs. Put
I = I(P,C).

By Theorem 3.4, we can cut the circles of C into O(n1/2−εX1/2+ε) arcs, for any ε > 0, so
that each pair of arcs intersect at most once. Let C ′ denote the resulting collection of arcs.

We draw a graph G in the plane whose vertices are the points of P , and whose edges connect
pairs of points u, v that are consecutive along an arc of C ′. We assume that each arc of C ′

contains at least two points of P ; the contribution of the remaining arcs to I is at most |C ′|. We
also assume that any circle that has not been cut at all contains at least three points of P ; the
contribution of the other circles to I is at most 2n. It is easily seen that the number e of edges
of G is at least I − cn1/2−εX1/2+ε − 2n, for some constant c. By construction, the graph G is
simple, so the Crossing Lemma 2.2 implies that I − cn1/2−εX1/2+ε − 2n = O(m2/3X1/3 + m).
In other words, we have shown:

Theorem 4.1. The maximum number of incidences between m points and n circles in the plane,
with X crossing pairs of circles, is

I ′(m,n,X) = O(m2/3X1/3 + n1/2−εX1/2+ε + m + n), (2)

for any ε > 0. In particular, the maximum number of incidences between m points and n circles
in the plane is

I(m,n) = O(m2/3n2/3 + n3/2+ε + m), (3)

for any ε > 0.

Remark 4.2. As already argued in the introduction, the bound in (3) is tight when m ≥
n5/4+3ε/2.
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4.2 Improved bounds for any number of points

The bounds obtained above are O(m2/3n2/3 + m) when m is larger than roughly n5/4 and
O(m2/3X1/3 +m) when m is larger that roughly X1/4n3/4, but the bounds are larger for smaller
values of m. Our next step is to use a partitioning of dual space to improve the bound for
smaller values of m.

We use the following transformation, different from the one used in Section 3: A circle γ in
the plane, of radius ρ and centered at (a, b), is mapped to the point γ∗(a, b, a2 + b2 − ρ2) ∈ R

3,
and a point p(ξ, η) in the plane is mapped to the plane p∗ : z = 2ξx + 2ηy − (ξ2 + η2) in R

3.
As is easily verified, a point p lies on a circle γ if and only if the dual plane p∗ contains the dual
point γ∗. Let P ∗ denote the set of planes dual to the points of P and let C∗ denote the set of
points dual to the circles of C. No three planes of P ∗ pass through a common line, as all planes
of P ∗ are tangent to the paraboloid z = x2 + y2.

Apply Theorem 2.3 to C∗ (with d = 3), with a value of r that will be fixed shortly, to obtain
a partitioning of C∗ into subsets C∗

1 , . . . , C∗
q , where q ≤ 2r, with the properties stated in that

theorem. Let Ci be the subset of circles in C that are dual to the points of C∗
i , let Pi denote

the set of points of P whose dual planes cross the corresponding simplex ∆i, and put mi = |Pi|,
for i = 1, . . . , q. We have

∑q
i=1 mi = O(mr2/3).

Let p ∈ P be a point that is incident to at least one circle in Ci, for some i. Then either the
dual plane p∗ crosses ∆i, that is, p ∈ Pi, or p∗ contains ∆i. The latter case can arise only when
∆i (and C∗

i ) is not full-dimensional. If ∆i has dimension 2 then there can be at most one point
p ∈ P whose dual plane contains ∆i. If ∆i is one-dimensional then, as noted above, there can
be at most 2 points in P whose dual planes contain ∆i. We may rule out the case that ∆i is
zero-dimensional, because then Ci is a singleton, and the construction of [13] does not produce
singleton subsets. Hence, the total number of incidences between P and C that fall into these
degenerate categories is at most 2n. In other words, we have shown that

I(P,C) ≤ 2n +

q
∑

i=1

I(Pi, Ci).

Applying Theorem 4.1 to each I(Pi, Ci), we thus obtain

I(P,C) = O

(

n +

q
∑

i=1

(

m
2/3
i (n/r)2/3 + (n/r)3/2+ε + mi

)

)

,

for any ε > 0, which, using Hölder’s inequality, becomes

I(P,C) = O



n +

(

q
∑

i=1

mi

)2/3

· r1/3 · (n/r)2/3 + n3/2+ε/r1/2+ε +

q
∑

i=1

mi



 =

O

(

n +
(

mr2/3
)2/3

· r1/3 · (n/r)2/3 + n3/2+ε/r1/2+ε + mr2/3

)

=

O
(

m2/3n2/3r1/9 + n3/2+ε/r1/2+ε + mr2/3 + n
)

.

Choose

r =
n(15+18ε)/(11+18ε)

m12/(11+18ε)
.
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We note that r ≥ 1 when m ≤ n5/4+3ε/2, which is the range under consideration (it is the range
where m2/3n2/3 ≤ n3/2+ε), and that r ≤ n provided that m ≥ n1/3, which we may also assume,
since for smaller values of m we have I(P,C) = O(n), as follows, e.g., from [8]. Substituting the
value of r yields I(P,C) = O(m(6+12ε)/(11+18ε)n(9+14ε)/(11+18ε) + n). This can be rewritten as
O(m(6+3δ)/11n(9−δ)/11 + n), for δ = 8ε/(11 + 18ε). Replacing δ by ε, we thus obtain, as is easily
checked, the following main result:

Theorem 4.3. The maximum number of incidences between m points and n circles in the plane
is

I(m,n) =

{

O(m2/3n2/3 + m) for m ≥ n(5−3ε)/(4−9ε)

O(m(6+3ε)/11n(9−ε)/11 + n) for m ≤ n(5−3ε)/(4−9ε),
(4)

for any ε > 0, where the constants of proportionality depend on ε.

Remark 4.4. Our analysis only requires that the bound
∑

i mi = O(mr2/3) holds, rather than
the stronger property, provided in Theorem 2.3, that each mi is O(r2/3). This weaker property
can also be obtained by a partitioning that is somewhat simpler to derive than the one constructed
in [13].

We next extend the above analysis to derive an improved bound on I ′(m,n,X). We argue
as in the proof of Lemma 3.4. That is, we fix r = ⌈n2/X⌉. We may assume, as above, that
X = Ω(n), for otherwise, trivially, I(m,n) = O(m+X) = O(m+n). Let R be a random sample
of r circles from C. Let A∗(R) denote the vertical decomposition of the arrangement A(R),
whose expected size is, as above, O(r). For each (open) cell τ , let Cτ denote the subset of circles
of C that either cross τ or contribute an arc to ∂τ , and let Pτ denote the set of points of P in
the closure of τ . Put mτ = |Pτ | and nτ = |Cτ |. By construction, I(P,C) ≤

∑

τ I(Pτ , Cτ ). Since
a point can belong to at most two cells of which it is not a vertex, it follows that the expected
value of

∑

τ mτ is at most 2m + O(r) = O(m), provided that r ≤ m. Hence I(P,C) is at most
proportional to the expected value of the following expression (where, to simplify the notation,

10



we have written the value of the threshold exponent (5 − 3ε)/(4 − 9ε) as 5/4 + δ):
∑

mτ≥n
5/4+δ
τ

(

m2/3
τ n2/3

τ + mτ

)

+
∑

mτ <n
5/4+δ
τ

(

m(6+3ε)/11
τ n(9−ε)/11

τ + nτ

)

= O(m) +
∑

τ

nτ +
∑

mτ≥n
5/4+δ
τ

m2/3
τ n2/3

τ +
∑

mτ <n
5/4+δ
τ

m(6+3ε)/11
τ n(9−ε)/11

τ

≤ O(m) +
∑

τ

nτ +
∑

τ

m2/3
τ n2/3

τ +
∑

τ

m(6+3ε)/11
τ n(9−ε)/11

τ

≤ O(m) +
∑

τ

nτ +

(

∑

τ

mτ

)2/3(
∑

τ

n2
τ

)1/3

+

(

∑

τ

mτ

)(6+3ε)/11(
∑

τ

n(9−ε)/(5−3ε)
τ

)(5−3ε)/11

≤ O(m) + O
(

r ·
n

r

)

+ O(m2/3) · O

(

r ·
(n

r

)2
)1/3

+ O(m(6+3ε)/11) · O

(

r ·
(n

r

)(9−ε)/(5−3ε)
)(5−3ε)/11

= O

(

m2/3n2/3

r1/3
+

m(6+3ε)/11n(9−ε)/11

r(4+2ε)/11
+ m + n

)

,

where we have used Hölder’s inequality and Clarkson and Shor’s estimate [7] on the expected
value of sums of the form

∑

τ nα
τ . Substituting the value of r, and assuming it to be at most m,

we conclude that

I ′(m,n,X) = O
(

m2/3X1/3 + m(6+3ε)/11X(4+2ε)/11n(1−5ε)/11 + m + n
)

.

If r > m then the expected value of
∑

τ mτ is O(r). If we substitute this bound in the above
chain of inequalities, we obtain that

I(P,C) = O(r + n + r1/3n2/3 + r(2+ε)/11n(9−ε)/11) = O(n),

since r ≤ n. Hence the above bound for I ′(m,n,X) applies in all cases.

We can summarize the preceding arguments as follows.

Theorem 4.5.

I ′(m,n,X) =

{

O(m2/3X1/3 + m) for m ≥ X(1+6ε)/(4−9ε)n3(1−5ε)/(4−9ε)

O(m(6+3ε)/11X(4+2ε)/11n(1−5ε)/11 + n) for m < X(1+6ε)/(4−9ε)n3(1−5ε)/(4−9ε),

for any ε > 0, assuming that X ≥ n; otherwise I ′(m,n,X) = O(m + X) = O(m + n).

4.3 Improved bound for the case of pairwise intersecting circles

Suppose that C is a collection of n circles, every pair of which intersect. In this case we can obtain
a stronger bound on I(P,C), by applying the analysis presented in the preceding subsections,
replacing the bound O(n3/2+ε) on the number of cuts by the slightly smaller bound O(n3/2)
provided in Theorem 3.6. Proceeding as above, we obtain the following slight improvement, as
is easily verified.
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Theorem 4.6. The maximum number of incidences between m points and n pairwise-intersecting
circles in the plane is

I(m,n) =

{

O(m2/3n2/3 + m) m ≥ n5/4

O(m6/11n9/11 + n) m ≤ n5/4.
(5)

4.4 Incidences between points and graphs of polynomials

Let P be a set of m points and Γ be a collection of n curves that are the graphs of polynomials
of degree at most s, for some fixed parameter s ≥ 1. We wish to bound the number of incidences
I(P,Γ) between the points of P and the curves in Γ. We set I(m,n) = max I(P,Γ), where the
maximum is taken over all sets P,Γ as above.

Our first step is similar to the analysis in Theorem 4.1. That is, we apply Chan’s result,
given in Theorem 3.7, to obtain a cutting of the curves in Γ into O(n2−1/3s−1

) arcs, each pair of
which intersect at most once. Continuing as in the proof of Theorem 4.1, we readily obtain the
first bound

I(m,n) = O(m2/3n2/3 + m + n2−1/3s−1

). (6)

Arguing as above, this bound can be shown to be tight for m ≥ n2−1/(2·3s−2).

To obtain an improved bound for smaller values of m, we apply the following duality trans-
form. Each curve γ of the form y = a0 + a1x + a2x

2 + · · · + asx
s is mapped to the point

γ∗(a0, a1, . . . , as) ∈ R
s+1. Each point p(ξ, η) is mapped to the hyperplane p∗ : x0 +ξx1 +ξ2x2 +

· · ·+ ξsxs = η. Clearly, incidences between points and curves are mapped to incidences between
the corresponding dual hyperplanes and points.

Now apply Theorem 2.3 to the set Γ∗ of points dual to the curves in Γ, with a parameter r
that will be chosen shortly. We obtain a partition of Γ∗ into q ≤ 2r subsets, Γ∗

1, . . . ,Γ∗
q , each

containing at most n/r points, so that no hyperplane can be incident to points in more than
O(rs/(s+1)) subsets, except for subsets that the hyperplane fully contains. It is easily checked
that if a subset has at least two points (a condition that always holds in the construction provided
in Theorem 2.3) then the number of hyperplanes of the above form that fully contain the set is
at most s. (In the primal plane, this statement asserts that two distinct polynomials of degree
at most s cannot coincide at more than s points.) It follows that the number of incidences of
the latter kind is at most sn = O(n), so we may disregard them in what follows.

Applying the bound of (6) to each of the subsets Γi that correspond to the dual sets Γ∗
i , and

summing over all such subsets, we obtain the bound

I(m,n) = O

(

n +

q
∑

i=1

(

m
2/3
i (n/r)2/3 + mi + (n/r)βs

)

)

,

where βs = 2 − 1/3s−1 and where mi is the number of hyperplanes dual to the points of P
that cross the simplex containing Γi. Using Hölder’s inequality and the fact that

∑

i mi =
O(mrs/(s+1)), we have

I(m,n) = O

(

(mrs/(s+1))2/3r1/3(n/r)2/3 + mrs/(s+1) +
nβs

rβs−1

)

= O

(

m2/3n2/3r(s−1)/(3(s+1)) + mrs/(s+1) +
nβs

rβs−1

)

.
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We now put

r =
n

4− 1

3s−2

4− 1

3s−2
− 2

s+1

m

2

4− 1

3s−2
− 2

s+1

.

We may assume that n1/(s+1) ≤ m ≤ n2−1/(2·3s−2). Indeed, for m > n2−1/(2·3s−2) we already
have a tight bound, and if m < n1/(s+1) then the number of polynomials that pass through
at least s + 1 of the given points is at most O(ms+1) = O(n), which is also easily seen to
bound the number of incidences between these polynomials and the given points, whereas any
other polynomial has at most s incidences with the given points, for an overall bound of O(n)
incidences. It is easily verified that in the assumed range for m we have 1 ≤ r ≤ n. Substituting
this value of r, the above bound becomes

I(m,n) = O



m

2− 2

3s−1

4− 1

3s−2
− 2

s+1 n
1−

2
s+1(1− 1

3s−1 )
4− 1

3s−2
− 2

s+1 + n



 .

One can also verify that this bound is (slightly) better than the bound

I(m,n) = O(m(s+1)/(2s+1)n2s/(2s+1) + m + n)

obtained in [15] (for somewhat more general families of curves), provided that m > n1/(s+1),
which, as above, can be assumed.

We summarize this subsection in the following theorem.

Theorem 4.7. The maximum number of incidences between m points and n graphs of polyno-
mials of constant maximum degree s is

I(m,n) =



















O



m

2− 2

3s−1

4− 1

3s−2
− 2

s+1 n
1−

2
s+1(1− 1

3s−1 )
4− 1

3s−2
− 2

s+1 + n



 m ≤ n2−1/(2·3s−2)

O(m2/3n2/3 + m) m ≥ n2−1/(2·3s−2).

(7)

5 Conclusion

The main observation in this paper is that two recent techniques, of Székely [19] and of Tamaki
and Tokuyama [20], can be combined in a straightforward manner to yield improved incidence
bounds for points and circles and for other families of curves. The improvement of Tamaki and
Tokuyama’s bound, presented in this paper, allows us to further improve the incidence bounds.
We suspect (and hope) that similar ideas can be applied to other related problems, in two or in
higher dimensions.

This paper raises many open problems. We mention here some of the more obvious ones:

• Can the Tamaki-Tokuyama bound be further improved for circles? Can it be improved
at all for general pseudo-parabolas? for real parabolas? See the discussion following the
statement of Theorem 3.1 and Remark 3.5.

• Can the technique of this paper be adapted to tackle the problem of the number of distinct
distances in a set of n points in the plane? The setup in this problem involves a collection
of many circles that have relatively few centers (see [19] and [18] for details).
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• Find applications of the new incidence bounds obtained in this paper. Two problems
to which the new bounds might be applicable are the unit distance problem in three
dimensions [8] and the problem of bounding the maximum number of simplices spanned
by a set of n points in R

d and congruent to a given simplex (see [2] for work in progress
on this problem).

• Can the technique of this paper be adapted to yield similar improved bounds for the
complexity of many faces in an arrangement of circles (see [8] for the current known
bounds for this problem).
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