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Abstract

We extend (and somewhat simplify) the algebraic proof technique of Guth and
Katz [7], to obtain several sharp bounds on the number of incidences between lines and
points in three dimensions. Specifically, we show: (i) The maximum possible number of
incidences between n lines in R

3 and m of their joints (points incident to at least three
non-coplanar lines) is Θ(m1/3n) for m ≥ n, and Θ(m2/3n2/3 +m+n) for m ≤ n. (ii) In
particular, the number of such incidences cannot exceed O(n3/2). (iii) The bound in (i)
also holds for incidences between n lines and m arbitrary points (not necessarily joints),
provided that no plane contains more than O(n) points and each point is incident to
at least three lines. As a preliminary step, we give a simpler proof of (an extension
of) the bound O(n3/2), established by Guth and Katz, on the number of joints in a set
of n lines in R

3. We also present some further extensions of these bounds, and give a
proof of Bourgain’s conjecture on incidences between points and lines in 3-space, which
constitutes a simpler alternative to the proof of [7].

1 Background

In this paper we consider several extended variants of the problem of bounding the number
of incidences between n lines in R

3 and their joints, where a joint is a point which is incident
to (at least) three non-coplanar lines.

This problem extends a more basic one, of just bounding the number of joints. The lat-
ter problem has been around for almost 20 years [2, 6, 10], and, until very recently, the best
known upper bound, established by Sharir and Feldman [6], was O(n1.6232). The proof tech-
niques were rather complicated, involving a battery of tools from combinatorial geometry,
including forbidden subgraphs in extremal graph theory, space decomposition techniques,
and some basic results in the geometry of lines in space (e.g., Plücker coordinates).
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On the other hand, a simple construction, using the axis-parallel lines in a k×k×k grid,
for k = Θ(n1/2), has 3k2 = Θ(n) lines and k3 = Θ(n3/2) joints. Notice that the number of
incidences between the lines and joints in this construction is also Θ(n3/2), as every joint is
incident to exactly three lines.

It has long been conjectured that the correct upper bound on the number of joints is
O(n3/2), matching the lower bound just noted. In a rather dramatic recent development,
Guth and Katz [7] have settled the conjecture in the affirmative, showing that the number
of joints is indeed O(n3/2). Their proof technique is completely different, and uses fairly
simple tools from algebraic geometry. As a preliminary step in our analysis, we will present
a somewhat simplified version of their proof, in a more general context (see Section 3 for
details).

The problem of bounding the number of line-joint incidences has also been studied; the
most significant result to date is due to Sharir and Welzl [11], who established an upper
bound of O(n5/3) for this number. In an unpublished work, Elekes has shown that the
number of incidences between n equally inclined lines (lines forming a fixed angle with the
z-axis) and their joints is O(n3/2

√
log n).

In this paper we extend the algebraic machinery of Guth and Katz, to show that the
number of incidences between n arbitrary lines in 3-space and their joints is O(n3/2); as just
noted, this bound is tight in the worst case. As a matter of fact, we obtain the following
stronger results.

(i) The maximum possible number of incidences between n lines in R
3 and m of their

joints is Θ(m1/3n) for m ≥ n, and Θ(m2/3n2/3 + m + n) for m ≤ n. Since m is at most
O(n3/2), this implies the m-independent bound mentioned above, namely O(n3/2), on line-
joint incidences.

(ii) The bound in (i) also holds for incidences between n lines and m arbitrary points (not
necessarily joints), provided that no plane contains more than O(n) points and each point
is incident to at least three lines. It is easily checked that both conditions hold in the case
of joints. As a preliminary step in the proof, we will show that the maximum number of
points in this more general context is also O(n3/2).

We also present some further extensions and consequences of these bounds.

Finally, we give an alternative (and, in our opinion, simpler) proof, to the one given
by Guth and Katz [7], of a conjecture of Bourgain on incidences between points and lines
in 3-space. This conjecture (now a theorem), inspired by Bourgain’s work on Kakeya’s
problem (see, e.g., the survey paper of Tao [14] for details concerning Kakeya’s problem
and its connection to geometric incidence problems), is as follows: Given a set L of n lines
in 3-space, and a set P of points, such that1 (i) no plane contains more than n1/2 lines of L,
and (ii) each line of L contains at least n1/2 points of P , then |P | = Ω(n3/2). A recent paper
by Solymosi and Tóth [12] gave the weaker bound |P | = Ω(n11/8), before the conjecture
was settled in the affirmative in [7].

We regard the present paper as a further opening of the door of combinatorial geometry
to the new algebraic techniques, and it is our hope (and belief) that there will be many
forthcoming applications of the new machinery to a variety of additional hard problems in
the area. As a matter of fact, in work in progress, we have already managed to extend the

1The parameter n1/2 appearing (twice) in the assumptions can be replaced by any constant multiples of
n1/2.
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new ideas to another incidence problem, involving points and a special class of parabolas
in R

3, which is strongly related to the problem of distinct distances in the plane.

2 Tools from algebraic geometry

We begin by reviewing, extending, and somewhat simplifying the basic tools from algebraic
geometry which have been used in [7].

First, note that a trivariate polynomial p of degree d which vanishes at d + 1 collinear
points must vanish identically on their supporting line.

Critical points and lines. A point a is critical (or singular) for a trivariate polynomial
p if p(a) = 0 and ∇p(a) = 0; any other point a in the zero set of p is called regular. A line
ℓ is critical if all its points are critical.

Proposition 1 Let p and p′ be two trivariate polynomials of respective degrees k and m,
such that p and p′ have no common factors. Then there are at most km lines on which both
p and p′ vanish identically.

Proof. Assume that p and p′ vanish identically on km + 1 lines and that, without loss of
generality, none of these lines is parallel to the plane z = 0. Then, for every c, all these
lines intersect the plane z = c transversally. This implies, by Bézout’s theorem [3, 4], that p
and p′, as bivariate polynomials restricted to z = c, have a common factor. Since this holds
for every c, it follows that p and p′ themselves, as trivariate polynomials, have a common
factor, which is a contradiction. (To see the latter claim, assume, without loss of generality,
that both p and p′ have positive degrees in x—a random rotation of the coordinate frame
about the z-axis will ensure this property. Then the resultant of p and p′ (see, e.g., [4]),
as polynomials in x (this resultant is a polynomial in y and z) vanishes identically on the
plane z = c for every c. This means that the resultant of p and p′ vanishes identically in
R

3 as a polynomial in y and z, and so p and p′ have a common factor.) 2

Since the components of ∇p are three polynomials of degree d−1 we obtain the following
immediate corollary of Proposition 1, by applying it to p and to any of its partial derivatives.

Corollary 2 An irreducible trivariate polynomial p of degree d can have at most d(d − 1)
critical lines.

We next show that irreducibility of p is not really needed.

Proposition 3 Any trivariate square-free polynomial p of degree d can have at most d(d−1)
critical lines.

Proof. We prove the claim by induction on the degree d of p. The claim holds trivially for
d = 1, so assume that d > 1.

If p is irreducible, the claim is established in Corollary 2. Suppose then that p is
reducible, and write p = fg, so that f and g are nonconstant square-free polynomials with
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no common factor (since p is square-free, this can always be done). Denote the degrees of
f and g by df and dg, respectively; we have df , dg ≥ 1 and d = df + dg.

Let ℓ be a critical line for p. Then either f ≡ 0 on ℓ or g ≡ 0 on ℓ (or both). Moreover,
since ∇p = f∇g + g∇f ≡ 0 on ℓ, it is easily checked that ℓ must satisfy (at least) one of
the following properties:

(i) f ≡ g ≡ 0 on ℓ.

(ii) ℓ is a critical line of f .

(iii) ℓ is a critical line of g.

Indeed, if (i) does not hold, we have, without loss of generality, f ≡ 0 on ℓ, but g
vanishes only at finitely many points of ℓ. On any other point a of ℓ we then must have
∇f(a) = 0, which implies that ∇f is identically zero on ℓ, so ℓ is critical for f . This implies
(ii); (iii) holds in the symmetric case where g ≡ 0 on ℓ but f does not vanish identically on
ℓ.

By the induction hypothesis, the number of critical lines for f is at most df (df − 1),
and the number of critical lines for g is at most dg(dg − 1). By Proposition 1, at most dfdg

lines satisfy (i). Altogether, the number of critical lines for p is at most

df (df − 1) + dg(dg − 1) + dfdg < d(d − 1).

2

Proposition 4 Let a be a regular point of p, so that p vanishes at three lines passing through
a. Then these lines must be coplanar.

Proof. Any such line must be contained in the tangent plane to p = 0 at a. 2

Hence, a point a incident to three non-coplanar lines on which p vanishes must be a
critical point of p.

Proposition 5 Given a set S of m points in 3-space, there exists a trivariate polynomial
p(x, y, z) which vanishes at all the points of S, whose degree is at most the smallest integer
d satisfying

(d+3

3

)

> m.

Proof. A trivariate polynomial of degree d has
(

d+3

3

)

monomials, and requiring it to vanish

at m <
(d+3

3

)

points yields m linear homogeneous equations in the coefficients of these
monomials. Such an underdetermined system always has a nontrivial solution. 2

Flat points and lines. Call a regular point a of a trivariate polynomial p linearly flat if
it is incident to three distinct (necessarily coplanar) lines on which p vanishes identically.

Let a be a linearly flat point of p, and let ℓ1, ℓ2, ℓ3 be three incident lines on which p
vanishes. The second-order Taylor expansion of p at a has the form

q(u) = p(a) + ∇p(a) · (u − a) +
1

2
(u − a)T Hp(a)(u − a)

= ∇p(a) · (u − a) +
1

2
(u − a)T Hp(a)(u − a),
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where

Hp =





pxx pxy pxz

pxy pyy pyz

pxz pyz pzz





is the Hessian of p. q is a quadratic polynomial (in u) which approximates p up to third-
order terms for u sufficiently close to a. Hence, substituting u = a + εvi, where vi is the
direction of ℓi, for i = 1, 2, 3, and ε is sufficiently small, we get

0 = ε∇p(a) · vi +
1

2
ε2vT

i Hp(a)vi + O(ε3),

so we must have, for each i,

∇p(a) · vi = vT
i Hp(a)vi = 0.

This in turn implies that q vanishes identically on each of the lines ℓi. Then any line ℓ in
the tangent plane πa of p = 0 at a, not incident to a and not parallel to any ℓi, intersects
each of the lines ℓi at a distinct point, so q vanishes on three distinct points of ℓ, and thus,
being a quadratic polynomial, it vanishes identically on ℓ, and thus on πa.

For example, assume that a is the origin and that πa is the xy-plane. Then the condition
that q vanishes on πa is equivalent to

p(a) = pxx(a) = pxy(a) = pyy(a) = 0 (1)

(because q becomes the identically zero polynomial when substituting z = 0). To make this
condition independent of the orientation of πa, we note that q has to vanish at any u such
that u − a is orthogonal to ∇p(a). We claim that q ≡ 0 on πa if and only if q vanishes at
the three points

uj = a + ∇p(a) × ej ,

where e1, e2, e3 are the standard coordinate unit vectors. (We assume here general position
of the coordinate frame, so that ∇p(a) is not parallel to any coordinate plane at any of
the finitely many points a that we will consider later. Under this assumption, the three
vectors uj are distinct, at each such point a.) Indeed, necessity of this condition is clear,
and sufficiency is proved as in the earlier part of the argument. That is, if q vanishes at
uj , it vanishes identically on the line through a and uj . This follows from the fact that the
first-order part of q vanishes at uj , so the second-order part also vanishes. This implies that
q vanishes at each point of the form a + t∇p(a) × ej , for any t ∈ R, that is, q vanishes on
the line through a and uj . Since this holds for j = 1, 2, 3, the preceding argument implies
that q ≡ 0 on πa. Since the first-order component of q vanishes “automatically” on such
vectors u, the condition is equivalent to

(∇p(a) × ej)
T Hp(a)(∇p(a) × ej) = 0, for j = 1, 2, 3.

This suggests that we define the three polynomials2

Πj(p)(u) = (∇p(u) × ej)
T Hp(u)(∇p(u) × ej), for j = 1, 2, 3, (2)

which, as we have just shown, satisfy the following properties.

2Guth and Katz [7] consider instead the nine polynomials (∇p(u)×ei)
T Hp(u)(∇p(u)×ej), for i, j = 1, 2, 3,

but the three that we use seem to suffice.
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Proposition 6 Let p be a trivariate polynomial, and let a be a regular point of p. (i) If
a is linearly flat then Πj(p)(a) = 0, for j = 1, 2, 3. (ii) Conversely, if Πj(p)(a) = 0, for
j = 1, 2, 3, then a is “quadratically flat,” in the sense that the quadratic second-order Taylor
approximation q vanishes identically on the tangent plane πa of p at a.

Note that if the degree of p is d then each Πj(p) is a polynomial of degree at most (d− 1)+
(d − 2) + (d − 1) = 3d − 4.

In differential geometry parlance (see, e.g., [9]) the property in part (ii) of the theorem
can be restated as follows. The second fundamental form of the zero set Z of p at a regular
point a is defined as Adu2 + 2Bdudv + Cdv2, where x = x(u, v) is a parametrization of Z
(locally near a), and

A = xuu · n, B = xuv · n, C = xvv · n,

where n = ∇p(a)/‖∇p(a)‖ is the unit normal to Z at a.

Then, as is easily verified, property (ii) holds at a regular point a ∈ Z if and only if the
second fundamental form vanishes at a (i.e., A = B = C = 0 at a).

In what follows, we call a point a flat for p if Πj(p)(a) = 0, for j = 1, 2, 3, or, equivalently,
if the second fundamental form of p vanishes at a.

Call a line ℓ flat for p if all the points of ℓ are flat points of p (with the possible exception
of finitely many critical points). Clearly, if ℓ contains at least 3d − 3 flat points then ℓ is a
flat line.

Next, we show that, in general, trivariate polynomials do not have too many flat lines.
As before, we first establish this property for irreducible polynomials, and then extend the
analysis to more general polynomials.

Proposition 7 Let p be an irreducible trivariate polynomial of degree d > 1. Then p can
have at most 3d2 − 4d flat lines.

Proof. Suppose to the contrary that there are more than 3d2−4d flat lines. By Proposition
1, p and Π1(p) must have a common factor. Since p is irreducible, p must be a factor of
Π1(p). Similarly, p must be a factor of Π2(p) and of Π3(p). This implies that all the (regular)
points at which p vanishes are flat.

By Proposition 6(ii) and the remarks following that proposition, it follows that the
second fundamental form of the zero set Z vanishes at all the regular points of p. This in
turn implies that Z, locally near any regular point, is a portion of a plane. This is a well
known result—see, e.g., Exercise 6.2 in [9]. For the sake of completeness, we include a short
proof in an appendix. This property, and the irreducibility of p, imply that Z is a plane, or
that p is a linear polynomial, contradicting our assumption that its degree is greater than
1. 2

Proposition 8 Let p be any trivariate square-free polynomial of degree d with no linear
factors. Then p can have at most 3d2 − 4d flat lines.
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Proof. We proceed by induction on the degree of p, where the basis of the induction, for
d = 2, holds because in this case p, which has no linear factors, must be irrducible, and the
claim follows from Proposition 7.

Assume then that p has degree d ≥ 3. If p is irreducible, the claim holds by Proposition 7.
Otherwise, write p = fg where f and g are nonconstant square-free polynomials with no
common factors and no linear factors. Let df and dg denote their respective degrees, so
d = df + dg.

We claim that any flat point of p, at which only one of f, g vanishes, must be a flat point
of the respective vanishing factor (f or g). Indeed, consider a point a where f vanishes but
g does not. We have

∇p(a) = f(a)∇g(a) + g(a)∇f(a) = g(a)∇f(a),

and, for any vector u, one can easily verify that

uT Hp(a)u = g(a)(uT Hf (a)u) + (∇f(a) · u)(∇g(a) · u).

Hence, substituting
u = ∇p(a) × ej = g(a)(∇f(a) × ej),

we get Πj(p)(a) = g3(a)Πj(f)(a), from which the claim follows.

By Proposition 1, there are at most dfdg lines on which both f and g vanish identically
and simultaneously. Hence, any other flat line for p must be a flat line for either f or g.
By induction, f has at most 3d2

f − 4df flat lines and g has at most 3d2
g − 4dg flat lines.

Summing up the number of critical lines of all types, we get the bound

3d2
f − 4df + 3d2

g − 4dg + dfdg < 3d2 − 4d ,

and the lemma follows. 2

3 The Guth–Katz bound: Review and extension

In preparation for the proof of our main results, we review and extend the proof of Guth
and Katz [7], to obtain the following result.

Theorem 9 Let L be a set of (at most) n lines in R
3 and let P be a set of m arbitrary

points in R
3, such that (i) no plane contains more than bn points of P , for some absolute

constant b ≥ 1, and (ii) each point of P is incident to at least three lines of L. Then
m = O(n3/2) (where the constant of proportionality depends linearly on b).

Remark. Let J = JL denote the set of the joints of L, namely, points incident to (at least)
three non-coplanar lines of L. Guth and Katz [7] show that |J | = O(n3/2). This is a special
case of Theorem 9, because the set JL of joints of L satisfies the conditions of this theorem.
Indeed, condition (ii) is obvious. For condition (i), consider some plane π. Every point
a ∈ JL ∩ π must be incident to at least one line of L which is not contained in π, and each
such line intersects π at a unique point, so π cannot contain more than n points of JL.
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We give a proof of the more general Theorem 9, which, in our opinion, is simpler than
the proof of Guth and Katz, although it draws heavily on their ideas.3 It proceeds as
follows.

Proof. We prove, using induction on the number of lines, that |P | ≤ An3/2, for some
sufficiently large absolute constant A, whose choice will be dictated by several constraints

that will arise during the proof. Clearly, |P | < n2, so, by choosing A > n
1/2

0
, for some

sufficiently large constant n0, the theorem trivially holds for any n ≤ n0, thus establishing
the base of the induction.

For the induction step, assume that the theorem holds for all sets L′ and P ′, as specified,
where |L| < n. Consider a set L of n lines and a corresponding set P of points satisfying
the assumptions of the theorem, and suppose to the contrary that |P | > An3/2.

Pruning. We first apply the following iterative pruning process to L. As long as there
exists a line ℓ ∈ L incident to fewer than cn1/2 points, for some constant c ≪ A that we
will fix later, we remove ℓ from L, remove its incident points from P , and repeat this step
with respect to the reduced sets of lines and points (keeping the threshold cn1/2 fixed). In
this process we delete at most cn3/2 points. We are thus left with a subset of the original
lines, each incident to at least cn1/2 surviving points, and each surviving point is incident
to at least three surviving lines. For simplicity, continue to denote these sets as L and P .
Let n1 denote the number of lines left in L after the pruning.

Sampling. Choose a random sample Ls of lines of L, by picking each line of L indepen-
dently with probability t, where t < 1 is a small positive constant that we will fix later.

The expected number of lines which we choose is tn1 ≤ tn. Consider a line ℓ ∈ L \ Ls.
Since each point a ∈ P ∩ ℓ is incident to a line of Ls with probability at least t, the
expected number of points in P ∩ ℓ which lie on lines of Ls is at least ctn1/2. Hence, using
Chernoff’s bound (see, e.g., [1]) and the probability union bound, we obtain that, with
positive probability, (a) 1

2
tn1 ≤ |Ls| ≤ 2tn1. (b) Each line ℓ ∈ L contains at least c

2
tn1/2

points that lie on lines of Ls.

Indeed, each surviving line is incident to at least cn1/2 surviving points, each incident
to at least two distinct other surviving lines, so we must have n1 ≥ 2cn1/2. This means that
the failure probability of the event specified by (a) is polynomially small in n, and this is
obviously also the case for each of the O(n) events specified in (b). The union bound then
implies that the probability that either (a) or (b) fails is bounded by a constant.

We assume that Ls does indeed satisfy (a) and (b), and choose n1/2 arbitrary points
on each line in Ls, to obtain a set S of at most 2tn3/2 points. We guarantee that S is not
empty by choosing t and c such that 1

2
tn1 > tc > 1.

The polynomial p. Applying Proposition 5, we obtain a polynomial p(x, y, z) which
vanishes at all the points of S, whose degree is at most the smallest integer d satisfying

3To be fair, the proof of Guth and Katz, catering only to the case of joints, does not have to use the
machinery involving flat points and lines, which we have to use, since we handle a more general situation.
(They develop this machinery only for the proof of Bourgain’s conjecture.) Nevertheless (as we feel), with
the availability of this machinery, our proof is still simpler.
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(d+3

3

)

≥ |S| + 1, so the degree is at most

d ≤ ⌈(6|S|)1/3⌉ ≤ 2(12t)1/3n1/2,

for n0 (and thus n) sufficiently large. Without loss of generality, we may assume that p is
square-free: by removing repeated factors, we get a square-free polynomial which vanishes
on the same set as the original p, with the same upper bound on its degree.

The polynomial p vanishes on n1/2 points on each line in Ls. This number is larger
than d, if we choose t sufficiently small so as to satisfy 2(12t)1/3 < 1. Hence p vanishes
identically on the lines in Ls. Any other line of L meets at least c

2
tn1/2 lines of Ls, and we

can make this number also larger than d, with an appropriate choice of t and c (we need
to ensure that c

2
t > 2(12t)1/3). Hence, p vanishes on each line of L. We will also later need

the property that each line of L contains at least 5d points of P ; that is, we require that
cn1/2 > 5d, which will hold if c > 10(12t)1/3 .

To recap, the preceding paragraphs impose several inequalities on c (and thereby on A)
and t, and a couple of additional inequalities will be imposed later on. All these inequalities
are easy to satisfy by choosing t < 1 to be a sufficiently small positive constant, and A a
sufficiently large constant.

We note that p can have at most d linear factors; i.e., p can vanish identically on at most
d planes π1, . . . , πk, for k ≤ d. We factor out all the linear factors from p, and let p̃ denote
the resulting polynomial, which is a square-free polynomial without any linear factors, of
degree at most d.

By assumption, each plane πi contains at most bn points of P . So on all planes together
we have at most bnd ≤ 2b(12t)1/3n3/2 points. We remove these planes together with the
points and the lines contained in them, and let L1 ⊆ L and P1 ⊆ P denote, respectively,
the set of those lines of L (points of P ) which are not contained in any of the vanishing
planes πi.

Note that there are still at least three lines of L1 incident to any remaining point in P1,
since none of the points of P1 lies in any plane πi, so all lines incident to such a point are
in L1.

Clearly, p̃ vanishes identically on every ℓ ∈ L1. Furthermore, every ℓ ∈ L1 contains at
most d points in the planes πi. Hence, ℓ contains at least 4d points of P1. Since each of
these points is incident to at least three lines in L1, each of these points is either critical or
linearly flat for p̃.

Consider a line ℓ ∈ L1. If ℓ contains more than d critical points then ℓ is a critical line
for p̃. By Proposition 3, the number of such lines is at most d(d− 1). Any other line ℓ ∈ L1

contains more than 3d − 4 linearly flat points and hence ℓ must be a flat line for p̃. By
Proposition 8, the number of such lines is at most d(3d − 4). Summing up we obtain

|L1| = d(d − 1) + d(3d − 4) < 4d2 < 16(12t)2/3n < n,

where the last inequality can be enforced with an appropriate choice of t. (We have worked
hard just to get the inequality |L1| < n, which means that at least one line has been removed
from L either in the pruning stage or because it lies in some vanishing plane of p; of course,
by choosing a smaller value for t, we can make the size of L1 much smaller.)

We next want to apply the induction hypothesis to L1 and P1, using 4d2 as the bound
on the size of L1. For this, we first need to argue that no plane contains more than 4bd2
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points of P1. Indeed, let π be an arbitrary plane. Note first that π contains at most d
lines of L1, for otherwise p̃ would have vanished identically on π, contrary to the fact that
p̃ has no linear factors. Each point of P1 ∩ π is incident to at least three lines of L1. Since
π contains no more than d lines, at most

(d
2

)

of the points in π are incident to at least
two lines contained in π. Any other point in P1 ∩ π is incident to at least two lines of L1

not contained in π, and each such line intersects π at a single point. Hence the number of
points in P1 ∩ π incident to at least two lines of L1 that are not contained in π is at most
4d2/2 = 2d2. Together, π contains at most 2d2 +

(

d
2

)

< 4d2 ≤ 4bd2 points of P1.

Hence, the lines in L1 satisfy the assumption of the theorem for 4d2 < n. So, by
induction, the number of points in P1 is at most A(4d2)3/2 = 768tAn3/2. Adding up the
bounds on the number of points on lines removed during the pruning process and in the
planes πi (which correspond to the linear factors of p), we obtain

m ≤ 768tAn3/2 + 2b(12t)1/3n3/2 + cn3/2 ≤ An3/2 ,

with an appropriate, final choice of t, c, and A. This contradicts the assumption on P and
L, and thus establishes the induction step and completes the proof of the theorem. 2

4 Incidences between lines and points in R
3

As in the previous section, let L be a set of n lines in R
3, and let JL denote the set of their

joints, namely, points incident to at least three non-coplanar lines of L.

In this section we further extend the proof technique of Guth and Katz [7] to obtain
a bound on I(J,L), the number of incidences between an arbitrary subset J of JL and L.
Specifically, we show:

Theorem 10 Let L be a set of n lines in R
3 and let J be a set of m joints of L. Then

I(J,L) = min
{

O(m1/3n), O(m2/3n2/3 + m + n)
}

.

The bound is tight in the worst case.

As a matter of fact, we will establish a more general result, stated below, which will
immediately imply the upper bound of Theorem 10. Specifically, we have:

Theorem 11 Let L be a set of (at most) n lines in R
3 and let P be a set of m arbitrary

points in R
3, such that (i) no plane contains more than bn points of P , for some absolute

constant b ≥ 1, and (ii) each point of P is incident to at least three lines of L. Then

I(P,L) = min
{

O(m1/3n), O(m2/3n2/3 + m + n)
}

.

Here too the bound is tight in the worst case.

Discussion. (a) Note that the second expression in the bounds of the above theorems is
simply the Szemerédi-Trotter bound on the number of incidences between m points and
n lines in the plane [13]. This always serves as an upper bound for point-line incidences
in 3-space (or in any higher dimension), since we can project the given points and lines
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onto some generic plane π, so that the projected points and lines are distinct, note that
incidences are preserved by such a projection, and apply the planar bound of [13] to the
projected points and lines. The novelty is in the first bound, which becomes smaller than
the second bound when m ≥ n.

(b) Note that Theorem 11 caters to the same situation considered in Theorem 9. It is
interesting to note that, to obtain the improved bound O(m1/3n), we need both conditions
assumed in the theorem: If the first condition is not imposed, we can construct m points
and n lines, all lying in a common plane, so that each point is incident to at least three lines
and so that the number of incidences between the points and lines is Θ(m2/3n2/3 + m + n)
(see, e.g., [5, 8]), which becomes larger than O(m1/3n) when m > n. If the second condition
is not imposed, we can place all our points and lines on the hyperbolic paraboloid z = xy,
so that half of the lines belong to one generating family and the other half belong to the
second family, and take for P the set of all their intersections. In this case m = Θ(n2)
and the number of incidences is also quadratic, and the bound O(m1/3n) = O(n5/3) does
not hold. Note that in this construction condition (i) holds, because at most two lines in
the construction (one from each family) can be coplanar, and the plane that they define
contains at most n points of P . The same constructions show, as is easily verified, that
Theorem 9 may also fail if we drop any of its assumptions.

(c) Note that Theorem 11 implies Theorem 9, because, trivially, I(P,L) ≥ 3m, from which
we get 3m = O(m1/3n), or m = O(n3/2). However, the proof of Theorem 11 uses Theorem 9,
so the latter theorem requires an independent proof, as provided in the preceding section.

Proof of Theorem 10. Most of the effort will be spent in the proof of Theorem 11. To
clear the way for that proof, we first assume it to hold, and apply it to extablish Theorem 10.

Upper bound. The upper bound follows because L and J satisfy conditions (i) and (ii)
of Theorem 11. This follows by the same argument as the one showing that Theorem 9
generalizes the result of Guth and Katz.

Lower bound. Consider first the case m ≤ n. Construct m points and n lines in the
xy-plane, say, with Θ(m2/3n2/3 + m + n) incidences between them (see, e.g., [8]), such that
each point is incident to at least two distinct lines, and pass an additional vertical line (in
the z-direction) through each point. This yields m + n ≤ 2n lines and m points, each of
which is now a joint, with Θ(m2/3n2/3 + m + n) incidences.

Consider next the case m ≥ n. Put t = m/n. Construct in the xy-plane n points and
n/t lines with Θ(n2/3(n/t)2/3 + n) incidences between them. By Theorem 9, t = O(n1/2),
so n/t = Ω(n1/2). In this case, the first term in the bound dominates, and the number of
incidences is thus Θ(n4/3/t2/3). Now shift upwards the construction t − 1 times, into the
parallel planes z = 1, . . . , z = t − 1, to obtain a total of tn = m points, t(n/t) = n lines,
and t ·Θ(n4/3/t2/3) = Θ(n4/3t1/3) incidences. Add n vertical lines, one through each of the
n original points in the xy-plane. This turns all the points into joints, and we now have 2n
lines. Substituting t = m/n, the number of incidences is

Θ(n4/3t1/3) = Θ(m1/3n),

as asserted. 2

Proof of Theorem 11. By the discussion following the theorem statement, we may assume
that m ≥ n and focus on establishing the first bound I(P,L) = O(m1/3n).
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We prove, using induction on the number of lines, that I(P,L) ≤ Am1/3n, for some
sufficiently large absolute constant A, whose choice will be dictated by various constraints

imposed during the proof. By choosing A ≥ n
4/3

0
, for some constant n0 (which we will also

fix later), we guarantee that the theorem is true for n ≤ n0, since, for n ≤ n0, the number
of incidences I satisfies

I ≤ mn = m2/3 · m1/3n < n4/3 · m1/3n ≤ n
4/3

0
· m1/3n ≤ Am1/3n.

To establish the induction step, we assume that the theorem holds for each pair of sets
L′, P ′ satisfying its assumptions, with |L′| < n. Let L be a set of n lines and P a set
of m points satisfying the assumptions of the theorem, and suppose to the contrary that
I(P,L) > Am1/3n. As noted above, we may assume that m ≥ n.

For a ∈ P , let µ(a) denote the multiplicity of a, which is the number of lines of L
incident to a. Similarly, for ℓ ∈ L, let ν(ℓ) denote the multiplicity of ℓ, which is the number
of points of P lying on ℓ.

Pruning. We begin by applying the following pruning process. Put ν = cm1/3, for some
(sufficiently large) constant c ≪ A which we will fix later. As long as there exists a line ℓ ∈ L
with ν(ℓ) < ν, we remove ℓ from L, but do not remove any point incident to ℓ. We keep
repeating this step (without changing ν), until each of the surviving lines has multiplicity
at least ν. However, if, during the pruning process, some point a loses ⌊µ(a)/2⌋ incident
lines, we remove a from P . This decreases the multiplicity of some lines, and we use the new
multiplicities in the test for pruning further lines, but we keep using the original threshold
ν.

When we delete a line ℓ, we lose at most ν incidences with surviving points. When a
point a is removed, the number of current incidences with a is smaller than or equal to
twice the number of incidences with a that have already been removed. Hence, the total
number of incidences that were lost during the pruning process is at most 3nν = 3cm1/3n.
Thus, we are left with a subset P1 of the points and with a subset L1 of the lines, so that
each ℓ ∈ L1 contains at least ν = cm1/3 points of P1, and each point a ∈ P1 is incident to
at least three lines of L1 (the latter is an immediate consequence of the rule for pruning a
point).

Sampling. Draw a random sample P s
1 of P1 by choosing each point independently with

probability t, for t < 1 a small constant, whose concrete value will be determined later.
The expected size of P s

1 is tm. Each line ℓ ∈ L1 contains at least cm1/3 points of P1,
so the expected number of points of P s

1 on ℓ is at least ctm1/3. Since m ≥ n, we can
apply Chernoff’s bound and the probability union bound to conclude that, with positive
probability, we have |P s

1 | ≤ 2tm and |ℓ ∩ P s
1 | ≥ 1

2
ctm1/3 for every line ℓ ∈ L. We assume

that our sample does indeed have these properties.

The polynomial p. Now construct, using Proposition 5, a square-free trivariate poly-
nomial p which vanishes on P s

1 , whose degree is at most the smallest integer d satisfying
(

d+3

3

)

≥ |P s
1 | + 1, so

d ≤ ⌈(6|P s
1 |)1/3⌉ ≤ (12tm)1/3 + 1 < 3(tm)1/3,
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for n0 sufficiently large and t sufficiently small (recall that m ≥ n > n0).

By choosing c > 6/t2/3 we guarantee that |ℓ∩P s
1 | ≥ 1

2
ctm1/3 > d for each ℓ ∈ L1. Hence

p vanishes identically on each line of L1. Hence, in particular, p vanishes at all the points
of P1. Moreover, for t sufficiently small, we will also have c > 15t1/3, which guarantees that
each line of L1 is incident to at least 5d points of P1.

Finally, we choose t sufficiently small so as to guarantee that 4d2 < n/2. That is, we

require that 4 · 9t2/3m2/3 < n/2, or that m <
1

723/2t
n3/2. This will indeed hold if t is

sufficiently small, in view of Theorem 9.

As in the proof of Theorem 9, the analysis will next argue that each line of L1 must
contain either at least d critical points or at least 3d flat points of p, so each line is either
a critical line or a flat line. However, in order to apply Proposition 8, we will first need to
get rid of any linear factors of p, which we do using the following technique.

Clearly p can have at most d linear factors; i.e., p can vanish identically on at most d
planes π1, . . . , πk, for k ≤ d. We factor out all the linear factors from p, and let p̃ denote
the resulting polynomial, which is a square-free polynomial without any linear factors, of
degree at most d. Let L2 ⊆ L1 (resp., P2 ⊆ P1) denote the set of those lines of L1 (resp.,
points of P1) which are not contained in any of the vanishing planes πi. Put L′

2 = L1 \ L2

and P ′
2 = P1 \ P2.

For each line ℓ ∈ L2, p̃ vanishes identically on ℓ, and at most d points of P1 ∩ ℓ lie in
the planes πi. Hence, ℓ contains at least 4d points of P2, and, arguing as in the preceding
proof, each of these points is either critical or flat for p̃. Hence, either at least d of these
points are critical, and then ℓ is a critical line for p̃, or at least 3d of these points are flat,
and then ℓ is a flat line for p̃. Applying Propositions 3 and 8, the overall number of lines in
L2 is therefore at most

d(d − 1) + d(3d − 4) < 4d2 <
n

2
.

We now apply the induction hypothesis to the sets L2 and P2, with 4d2 as the bound on
the size of |L2|. For this we need to argue that no plane contains more than 4bd2 points of
P2, which we do exactly as in the proof of Theorem 9. Hence, by induction, we have

I(P2, L2) = I(P2, L1) ≤ Am1/3 n

2
=

1

2
Am1/3n.

Next, we bound the number of incidences between P ′
2 and L1, namely, between the points

contained in the vanishing planes and all the lines of L1. To do so, we iterate over the
planes, say, in the order π1, . . . , πk. For each plane πi in turn, we process the points and
lines contained in πi and then remove them from further processing on subsequent planes.
Let mπi denote the number of surviving points of P ′

2 which lie on πi, and let nπi denote the
number of surviving lines of L′

2 contained in πi. The number of incidences between these
points and lines is [13]

O
(

m2/3
πi

n2/3
πi

+ mπi + nπi

)

.

We now remove all these mπi points and nπi lines, and repeat this analysis for the other
planes πj on which p vanishes. Summing over all the k ≤ d vanishing planes, we count

O

(

k
∑

i=1

(

m2/3
πi

n2/3
πi

+ mπi + nπi

)

)

,

13



incidences.

Note, though, that not all incidences are counted. An incidence between a point a ∈ P ′
2

and a line ℓ ∈ L1 can only be detected within the first plane πj containing a. For this, ℓ
must be contained in πj and in no previously processed plane. Clearly, ℓ cannot lie in any
previous plane, because then a would also have to lie in that plane, contrary to assumption.
However, it is possible that ℓ is not contained in πj but in some later plane, or that ℓ ∈ L2

and is therefore not contained in any plane. In these cases a is the unique intersection point
of ℓ with πj, so the number of incidences that we miss on each line of L1 is at most d (the
number of times it intersects the vanishing planes). Since we assumed that each line of L1

contains at least 5d points, the number of missed incidences of this kind is at most one fifth
of the incidences that have been counted.

By assumption, no plane can contain more than bn points of P . Hence, the overall
number of incidences between the points that lie in the vanishing planes and all the lines
of L1 is at most (where m0 = |P ′

2|)

I(P ′
2, L1) = O

(

nd +

k
∑

i=1

(

m2/3
πi

n2/3
πi

+ mπi + nπi

)

)

= O

(

m0 + nd + n1/3 ·
(

k
∑

i=1

m1/3
πi

n2/3
πi

))

=

O



m0 + nd + n1/3

(

k
∑

i=1

mπi

)1/3( k
∑

i=1

nπi

)2/3


 = O
(

m0 + nd + m
1/3

0
n2/3n1/3

)

=

O
(

m + m1/3n
)

,

and we write this bound as B(m + m1/3n) for an appropriate absolute constant B. Adding
the bound I(P2, L1) ≤ 1

2
Am1/3n, we get that

I(P1, L1) ≤
1

2
Am1/3n + B(m + m1/3n).

Since m = O(m1/3n) for m = O(n3/2), it follows that

I(P1, L1) ≤
1

2
Am1/3n + B′m1/3n,

for another absolute constant B′. Adding the incidences discarded in the initial prunning
step we finally get that

I(P,L) ≤ 1

2
Am1/3n + B′m1/3n + 3cm1/3n

Choosing A > 2(B′ + 3c), we get I(P,L) ≤ Am1/3n, which contradicts our assumptions
on L and P , and thus establishes the induction step, and completes the proof of the theorem.
2

Remark. The hardest case of Theorem 11 is when m = Θ(n3/2). If m ≪ n3/2 (but is still
at least n) we can construct a polynomial p which vanishes at all the points of P1, avoiding
the need to construct the sample P s

1 ; in this case the degree of p satisfies d < 3m1/3. As is
easily verified, with the exception of one constraint, all the constraints on d, in relation to
the other parameters, can be satisfied with this larger value of d, with an appropriate choice
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of the other parameters. The problematic constraint is 4d2 < n/2, whose enforcement does
require sampling. However, when m ≪ n3/2, we have 4d2 < 36m2/3 ≪ n, so this constraint
is also satisfied. This allows us to apply the induction hypothesis to P2 and L2, and thus
carry out the proof without sampling, resulting in an even simpler proof.

It is interesting to note that the proof technique also yields the following result.

Proposition 12 Let p be a square-free trivariate polynomial of degree d with no linear
factors, and let Z denote the zero set of p. Let L be a set of n arbitrary lines, and let P be
the set of all points in Z which lie on at least three lines of L. Then |P | and I(P,L) are
both O(nd + d3).

Proof. Any line ℓ ∈ L which is not fully contained in Z (a “crossing” line) can have at
most d incidences with the points of P , so it suffices to consider lines fully contained in
Z. Each such line ℓ is either a critical line for p, or a flat line for p, or an “ordinary” line,
namely, neither critical nor flat. Let L1 denote the subset of critical and flat lines in L.

By Propositions 3 and 8, we have |L1| < 4d2. We can apply Theorems 9 and 11 to L1

and to the subset P1 of P consisting of those points incident to at least three lines of L1.
Condition (i) of the theorems holds because no plane can contain more than d lines of L1

(or else p would have vanished on such a plane, and thus have a linear factor, contrary to
assumption). This implies that the number of points of P1 on any fixed plane is at most
O(d2), arguing exactly as in the preceding proofs. Hence, |P1| = O(d3) and, consequently,
I(P1, L1) = O(d3) too.

A point a ∈ P \ P1 has at most two incidences with the lines of L1, and we charge
these incidences to the incidence(s) of a with the other (ordinary or crossing) lines of L (by
assumption, there has to exist at least one such incidence).

Since we have already handled the crossing lines, it remains to bound the number of
incidences with ordinary lines. Such a line ℓ contains fewer than d critical points and fewer
than 3d flat points, for a total of at most 4d incidences with such points. Any other point
a ∈ P incident to ℓ is incident to at most one additional line contained in Z (necessarily
an ordinary line). Thus a can have at most two incidences with ordinary lines, and thus at
least one incidence with a crossing line. Since the overall number of incidences of the latter
kind is at most nd, the number of incidences of the former kind is at most 2nd.

Since we have accounted for all possible incidences, the asserted bounds on |P | and on
I(P,L) follow. 2

Corollary 13 Let L be a set of n lines and P a set of points in 3-space which satisfy the
conditions of Theorem 11. Then, for any k ≥ 1, the number M≥k of points of P incident
to at least k lines of L satisfies

M≥k =



















O

(

n3/2

k3/2

)

for k ≤ n1/3,

O

(

n2

k3
+

n

k

)

for k > n1/3,
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and the number I≥k of incidences between these points and the lines of L satisfies

I≥k =



















O

(

n3/2

k1/2

)

for k ≤ n1/3,

O

(

n2

k2
+ n

)

for k > n1/3.

Proof. Write m = M≥k for short. We clearly have I(P,L) ≥ km. Theorem 11 then
implies km = O(m1/3n), or m = O((n/k)3/2). If k > n1/3 we use the other bound km =
O(m2/3n2/3 + m + n) to deduce that m = O(n2/k3 + n/k) (which is in fact an equivalent
statement of the classical Szemerédi-Trotter bound). The corresponding bounds for I≥k

follow immediately from Theorem 11. 2

4.1 A proof of Bourgain’s lemma

The work on Kakeya’s problem has inspired Bourgain to make the following conjecture,
which has been settled in the affirmative by Guth and Katz [7]. The proof technique of
Theorem 11 can be adapted to yield an alternative, and, in our opinion, simpler proof of
Bourgain’s conjecture.

Proposition 14 Let L be a set of n lines and P be a set of points in R
3, such that (i) each

line is incident to at least n1/2 points of P , and (ii) no plane contains more than n1/2 lines
of L. Then |P | = Ω(n3/2).

Proof. Set ν = 1

2
n1/2. Call a point a ∈ P light (resp., heavy) if a is incident to at most two

(resp., at least three) lines of L. Call a line ℓ ∈ L light (resp., heavy) if it contains fewer
than (resp., at least) ν heavy points.

If at least half of the lines are light, we get at least 1

4
n3/2 incidences with light points.

Since each light point can be incident to at most two lines, we must have

|P | ≥ 1

8
n3/2,

so the asserted bound holds in this case.

Assume then that at least half of the lines of L are heavy, and ignore all the light lines.
Let L1 denote the set of the remaining, heavy lines, and set n1 = |L1| ≥ n/2. Note that, in
removing the light lines, some heavy points may have become light with respect to L1, and
some points may have “vanished” altogether, in the sense that they are not incident to any
line of L1; we ignore this latter kind of points, denote by P1 the subset of surviving points
(both light and heavy), and set m = |P1|.

Construct a square-free polynomial p which vanishes at all the points of P1, using Propo-
sition 5; the degree d of p satisfies d ≤ cm1/3, where c ≈ 61/3. We may assume that ν > 10d;
if not, we have 1

2
n1/2 ≤ 10cm1/3, or |P | ≥ m ≥ c′n3/2, for c′ = (1/(20c))3 , implying the

asserted bound. Similarly, we will also assume that 32d2 < n; again, if this were not the
case, we would get the asserted bound m = Ω(n3/2).

Arguing as in the preceding proofs, p vanishes identically on every line of L1.
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Before continuing, in preparation for the application of Proposition 8, we get rid of all
the linear factors of p, if any. For this, we note that p can have at most d linear factors, so it
can vanish identically on at most d planes. By assumption, each such plane can contain at
most n1/2 lines of L1, so the overall number of lines contained in the union of these planes
is at most dn1/2, which is smaller than n/4, by the preceding assumption. We therefore
conclude that at least n1 − n/4 ≥ n/4 lines of L1 are not contained in any vanishing plane.
Denote by L2 the subset of these surviving lines, and by P2 the subset of points of P1 which
do not lie in any vanishing plane.

Next, we factor out all the linear factors from p, and let p̃ denote the resulting poly-
nomial, which is a square-free polynomial without any linear factors, of degree at most d.
Clearly, p̃ vanishes identically on every line of L2. Moreover, any such line ℓ has at most d
points that lie on the union of the vanishing planes, so it still contains at least ν−d ≥ 1

2
ν+4d

points of P2.

Any point a ∈ P2 is either a light point, if it is incident to at most two lines of L2, or a
critical point of p̃, if it is incident to three non-coplanar lines of L2, or a flat point of p̃, if
it is incident to at least three lines of L2, all coplanar.

Fix a line ℓ ∈ L2. Since ℓ contains at least 1

2
ν + 4d points of P2, it must contain either

(i) at least d critical points, in which case ℓ is a critical line for p̃, or (ii) at least 3d flat
points, in which case ℓ is a flat line for p̃, or (iii) at least 1

2
ν light points, in which case we

call it a light line (with respect to P2 and L2).

By Propositions 3 and 8, the number of critical (resp., flat) lines for p̃ is at most d(d−1)
(resp., d(3d− 4)). Hence the number of these two kinds of lines is at most d2 +3d2 = 4d2 <
n/8. Since |L2| ≥ n/4, at least n/8 lines of L2 are light, so each of them is incident to at
least 1

2
ν light points of P2. We therefore get at least 1

32
n3/2 such incidences, and since each

light point participates in at most two incidences, the number of light points is at least
1

64
n3/2, and the asserted bound follows. This completes the proof. 2

5 Further implications

As mentioned in the introduction, incidences between points and lines in 3-space have been
previously studied by Sharir and Welzl [11], who have obtained several weaker bounds,
which can now be improved, using the new results of this paper. For example, the following
result improves Theorem 4.1 of [11].

Theorem 15 Let P be a set of m points and L a set of n lines in R
3. For each p ∈ P

define the plane cover cp(L) of p to be the smallest number of planes which cover all the
lines of L incident to p, and put Ic(P,L) =

∑

p∈P cp(L). Then we have

Ic(P,L) = O(m1/2n3/4 + m + n).

Proof. We apply the same partitioning scheme used in [11], which decomposes the input
into O(r2) subproblems, each involving at most m/r points of P and at most n/r2 lines of
L. We note that, within each subproblem, a point is either a joint, or its plane cover is 1.
Applying Theorem 10 to each subproblem, the sum of the plane covers of the joints, which
is upper bounded by the number of their incidences, is O((m/r)1/3n/r2). The sum of the
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plane covers of the other points is O(m/r). Summing over all subproblems, as in [11], we
obtain

Ic(P,L) = O(r2) · O
(

(m

r

)1/3 n

r2
+

m

r

)

= O

(

mr +
m1/3n

r1/3

)

.

We choose r = n3/4/m1/2, and note that 1 ≤ r ≤ m when n1/2 ≤ m ≤ n3/2. For m outside
this range, the bound is easily seen to be O(m + n), and within this range the bound is
O(m1/2n3/4). This completes the proof. 2

Remarks.

(1) The bound O(m1/2n3/4) is strictly smaller than either of the bounds O(m1/3n) or
O(m2/3n2/3) for every m strictly between n1/2 and n3/2. This means that, even for joints,
measuring incidences by plane covers may yield a smaller value than the actual number of
incidences. This is for example the case in the lower bound constructions in Theorems 10
and 11, where Ic(P,L) is only O(m + n).

(2) We do not know whether the bound on Ic(P,L) is tight in the worst case.

(3) Another problem studied in [11] involves incidences between points and equally-inclined
lines in R

3. In view of the improvement just obtained, the upper bound on I(P,L) improves
in this case to

O
(

min
{

m3/4n1/2 log1/2 m, m1/2n3/4
}

+ m + n
)

;

see [11] for details concerning the first term in the above expression. A construction in [11]
gives a lower bound of Ω(m2/3n1/3), for m = Ω(n3/4). It remains to close the gap between
the upper and lower bounds.
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A The vanishing of the second fundamental form

For the sake of completeness, we provide here a short proof of the property used in the
proof of Proposition 7. That is:

Claim: If the second fundamental form of the zero set Z of a trivariate polynomial p
vanishes at all the regular points of p then Z, locally near any regular point, is a portion of
a plane.

Proof. Recall that the second fundamental form of the zero set Z of p at a regular point a
is defined as Adu2 + 2Bdudv + Cdv2, where x = x(u, v) is a parametrization of Z (locally
near a), and

A = xuu · n, B = xuv · n, C = xvv · n,

where n = ∇p(a)/‖∇p(a)‖ is the unit normal to Z at a.

For any u, v, xu and xv are vectors in the tangent plane to Z at x(u, v), and thus satisfy

xu · n = xv · n ≡ 0.

We now differentiate these equations with respect to u and v. For example, differentiating
the first equation with respect to u yields

xuu · n + xu · nu ≡ 0.
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The first term vanishes because the second fundamental form vanishes, so we have xu ·nu ≡
0. Similar relations result from the other differentiations, and we get

xu · nu = xv · nu = xu · nv = xv · nv ≡ 0.

In other words, nu and nv are both orthogonal to the tangent plane of Z and thus must both
be parallel to n. However, since n is of unit length, we have n · n ≡ 1, and differentiating
this equation yields

nu · n = nv · n ≡ 0.

Thus, if nu is parallel to n it must be zero, and similarly for nv. That is, the vector function
n(u, v) is constant in a neighborhood of a, so Z must be a part of a plane near every regular
point. 2
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