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ha SharirzApril 6, 2006Abstra
tLet C be a family of n 
ompa
t 
onne
ted sets in the plane, whose interse
tion graphG(C) has no 
omplete bipartite subgraph with k verti
es in ea
h of its 
lasses. ThenG(C) has at most n times a polylogarithmi
 number of edges, where the exponent of thelogarithmi
 fa
tor depends on k. In the 
ase where C 
onsists of 
onvex sets, we improvethis bound to O(n logn). If in addition k = 2, the bound 
an be further improved toO(n).1 Introdu
tionGiven a 
olle
tion C = fC1; : : : ; Cng of 
ompa
t 
onne
ted sets in the plane, let G = G(C)denote its interse
tion graph. That is, let V (G) = fC1; : : : ; Cng, and 
onne
t two verti
esCi and Cj (i 6= j) by an edge of G if and only if Ci \ Cj 6= ;. In this note we investigatehow many edges G(C) 
an have if it has no subgraph isomorphi
 to a �xed graph H.If H is not bipartite, then the assumption that G is an interse
tion graph does notdrasti
ally 
hange the answer to this question. A

ording to the Erd}os{Stone theorem [4℄,the maximum number of edges that any H-free graph of n verti
es 
an have isex(n;H) = �1� 1�(H)� 1 + o(1)� n22 :Here �(H) stands for the 
hromati
 number of H. If H is not bipartite (�(H) > 2), thenthis bound is asymptoti
ally tight, as is shown by a 
omplete (�(H) � 1)-partite graphwhose vertex 
lasses are of roughly the same size. Clearly, this graph 
an be obtained asthe interse
tion graph of plane 
onvex bodies, by representing the elements of ea
h vertex
lass by very long pairwise disjoint re
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The problem be
omes more interesting for bipartite graphs. By the K}ov�ari{S�os{Tur�antheorem [5℄, the maximum number of edges of a graph with n verti
es 
ontaining no 
ompletebipartite graph Kk;k with a 
onstant number k of verti
es in ea
h of its 
lasses, satis�esex(n;Kk;k) � bkn2� 1k ;where bk is a suitable 
onstant. Restri
ting our attention to interse
tion graphs of 
ompa
t
onne
ted sets, this bound 
an be substantially strengthened.Theorem 1. If the interse
tion graph of n 
ompa
t 
onne
ted sets in the plane has nosubgraph isomorphi
 to Kk;k, then its number of edges 
annot ex
eed 
(k)n loge(k) n, forappropriate 
onstants 
(k), e(k) that depend on k.In the la
k of examples of 
olle
tions C whose interse
tion graphs are Kk;k-free and havea superlinear number of edges (in jCj), we suspe
t that Theorem 1 
an be substantiallyimproved. In fa
t, in the spe
ial 
ase when C 
onsists of 
onvex sets, we 
an repla
e thepolylogarithmi
 fa
tor by log n.Theorem 2. If the interse
tion graph of n 
onvex sets in the plane has no subgraph iso-morphi
 to Kk;k, then its number of edges is at most O(n log n), where the 
onstant ofproportionality depends on k.For k = 2, that is, when G(C) 
ontains no C4 (
y
le of length four) as a subgraph, we
an 
ompletely get rid of the logarithmi
 fa
tor in Theorem 2.Theorem 3. If the interse
tion graph of n 
onvex sets in the plane has no subgraph iso-morphi
 to C4, then its number of edges is at most O(n).Sin
e every graph 
an be obtained as the interse
tion graph of three-dimensional 
onvexbodies [3℄, we 
annot expe
t that a similar phenomenon holds in higher dimensions.A graph drawn in the plane with possibly 
rossing straight-line edges is 
alled a geometri
graph. We assume for simpli
ity that no three verti
es of a geometri
 graph are on a line.Two sets of edges fe1; : : : ; ekg and ff1; : : : ; fkg in a geometri
 graph are said to form a k�kgrid if every ei 
rosses all fj.Theorem 3 has the following 
orollary, established �rst in [7℄ with a di�erent proof.Corollary 4. [7℄ Any geometri
 graph with n verti
es that 
ontains no 2 � 2 grid has atmost O(n) edges.2 Interse
tion graphs of 
onne
ted sets: Proof of Theorem 1Let C = fC1; : : : ; Cng be a 
olle
tion of 
ompa
t 
onne
ted sets in the plane, and assumewithout loss of generality that ea
h Ci is equal to the 
losure of its interior intCi. Otherwise,we 
an repla
e Ci by a slightly larger set satisfying this 
ondition, without 
hanging theinterse
tion pattern of C.Fix distin
t points pi 2 intCi, for i = 1; : : : ; n. For any i < j with Ci \Cj 6= ;, 
onne
tpi to pj by a simple (non-sel�nterse
ting) 
ontinuous ar
 
ij that does not pass through anyother point ph (h 6= i; j). We 
an easily a
hieve that2
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Figure 1: The drawing of G�.1. 
ij is the union of two simple ar
s 
0ij and 
1ij that share only one (end)point su
hthat 
0ij � Ci and 
1ij � Cj ;2. any two 
urves 
ij and 
i0j0 have only �nitely many points in 
ommon.The 
urves 
ij form a so-
alled topologi
al graph G� on the vertex set fp1; : : : ; png, that is,a graph drawn in the plane with 
urvilinear edges that may 
ross one another. Clearly, G�is a \drawing," a parti
ular embedding of the \abstra
t" graph G = G(C). See Figure 1 foran illustration.We need the following result of Pa
h, Radoi�
i�
, and T�oth [8℄.Lemma 2.1 (Pa
h et al. [8℄) Let G� be a topologi
al graph with n verti
es, 
ontaining nom pairwise 
rossing edges with distin
t endpoints. Then the number of edges of G� satis�esjE(G�)j � 
mn log2(m�3) n;where 
m is a suitable 
onstant. 2Suppose that jE(G�)j = jE(G)j > 
mn log2(m�3) n; where m = m(k) > 1 is an integerto be spe
i�ed later. By Lemma 2.1, we obtain that there are distin
t indi
es i(1) < j(1);: : : ; i(m) < j(m) su
h that the ar
s 
i(1)j(1); : : : ; 
i(m)j(m) 2 E(G�) are pairwise 
rossing.For any pair of distin
t ar
s 
i(s)j(s); 
i(t)j(t); at least one of the following four relationsholds: 
0i(s)j(s) \ 
0i(t)j(t) 6= ;;
0i(s)j(s) \ 
1i(t)j(t) 6= ;;
1i(s)j(s) \ 
0i(t)j(t) 6= ;;
1i(s)j(s) \ 
1i(t)j(t) 6= ;:By 
hanging the labeling of the sets Ci and, 
onsequently, of the points pi 2 V (G�), ifne
essary, we 
an assume without loss of generality that for at least one quarter of the pairss < t, we have 
0i(s)j(s) \ 
0i(t)j(t) 6= ;:3



Constru
t a bipartite graph B on the vertex set V (B) = f1; 2; : : : ;mg [ f10; 20; : : : ;m0gby 
onne
ting s and t0 with an edge if and only if s < t and
0i(s)j(s) \ 
0i(t)j(t) 6= ;:We have jE(B)j � 14�m2�:Applying the K}ov�ari{S�os{Tur�an theorem quoted in the Introdu
tion, we obtain that B hasa 
omplete bipartite subgraph Kk;k, provided that14�m2� > bk(2m)2� 1k :Choose m = m(k) = O(bk)k to be the smallest positive integer that satis�es the lastinequality. We 
an 
on
lude that there exist verti
es s1; : : : ; sk; t01; : : : ; t0k 2 V (B) with theproperty that every element of f
0i(s1)j(s1); : : : ; 
0i(sk)j(sk)ginterse
ts all elements of f
0i(t1)j(t1); : : : ; 
0i(tk)j(tk)g:It follows from our 
onstru
tion that 
0i(r)j(r) � Ci(r); for every 1 � r � m. Therefore,the 
orresponding 
olle
tions of sets fCi(s1); : : : ; Ci(sk)g and fCi(t1); : : : ; Ci(tk)g indu
e a
omplete bipartite graph Kk;k in the interse
tion graph G(C), whi
h leads to a 
ontradi
tionthat 
ompletes the proof of Theorem 1. 23 Interse
tion graphs of 
onvex sets: Proof of Theorem 2The polylogarithmi
 fa
tor in the bound of Theorem 1 is a 
onsequen
e of the fa
t that ourproof was based on Lemma 2.1, a general statement on topologi
al graphs. If the elementsof C 
an be arbitrary 
onne
ted sets, the parti
ular drawing of G(C) we 
onstru
ted maybe quite 
ompli
ated. However, if C 
onsists of 
onvex sets, one 
an explore some simplestru
tural properties of this drawing. Spe
i�
ally, it will be suÆ
ient to 
onsider x-monotonetopologi
al graphs, that is, topologi
al graphs with the property that any verti
al line(parallel to the y-axis) interse
ts every edge at most on
e. In this spe
ial 
ase, Valtr [9℄managed to redu
e the exponent of the polylogarithmi
 fa
tor in Lemma 2.1 to one.Lemma 3.1 (Valtr [9℄) Let G� be an x-monotone topologi
al graph with n verti
es, 
on-taining no m pairwise 
rossing edges with distin
t endpoints. Then the number of edges ofG� satis�es jE(G�)j � 
0mn logn;where 
0m is a suitable 
onstant. 2Suppose that C is a 
olle
tion of 
ompa
t 
onvex sets in the plane. We adapt the proofof Theorem 1 to this 
ase. First we show that a slightly modi�ed version of the graph G�we used in the proof of Theorem 1 
an be drawn as an x-monotone topologi
al graph.4
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Figure 2: The drawing of G� in the 
onvex 
ase.For any C 2 C, let `C , rC denote the leftmost and rightmost points of C. Withoutloss of generality, we may assume that these points are unique, and that the set P =f`C ; rC j C 2 Cg 
onsists of 2n distin
t points, no three of whi
h are 
ollinear. We nowde�ne the topologi
al graph G� on the vertex set P as follows. For ea
h pair of interse
tingsets Ci; Cj 2 C with i < j, 
onne
t `Ci and rCj by a polygonal path 
ij 
onsisting of twosegments that meet at an arbitrary point of Ci \ Cj. Clearly, 
ij is an x-monotone 
urve,and we have jE(G�)j = jE(G)j. See Figure 2.Suppose that jE(G�)j = jE(G)j > 
0m � 2n log(2n), where m = m(2k) > 1 denotesthe same integer as in the proof of Theorem 1, but de�ned for 2k rather than for k. ByLemma 3.1, we obtain that there are distin
t indi
es i(1) < j(1); : : : ; i(m) < j(m) su
h thatthe ar
s 
i(1)j(1); : : : ; 
i(m)j(m) 2 E(G�) are pairwise 
rossing. The proof now pro
eeds inessentially the same way as the proof of Theorem 1. The only di�eren
e is that at the veryend of the proof, when we �nd a 
omplete bipartite graph K2k;2k in the interse
tion graphG(C), some of the verti
es in one 
olor 
lass ofK2k;2k may represent the same member C 2 Cas a vertex in the other 
olor 
lass (be
ause ea
h C is represented in G� by two verti
es).However, we 
an always 
hoose a 
omplete bipartite subgraphKk;k � K2k;2k, whose verti
esrepresent distin
t sets. This leads to a 
ontradi
tion that establishes Theorem 2. 24 Forbidden C4: Proofs of Theorem 3 and Corollary 4First we establish Theorem 3. Let C be a 
olle
tion of n 
onvex sets in the plane su
h thattheir interse
tion graph G(C) 
ontains no C4.For any C 2 C, let sC denote the straight-line segment 
onne
ting the leftmost pointand the rightmost point of C. We refer to sC as the spine of C. Let S be the set of thespines of all the sets in C. By slightly perturbing the sets if ne
essary, without 
hanging theinterse
tion graph G(C), we 
an a
hieve that the leftmost and rightmost points of the setsC are unique and that the spines are in general position, that is, no three of their endpointsare 
ollinear and no three of them pass through the same point.Let � denote the verti
al de
omposition of A(S), obtained by ere
ting a verti
al segmentup and down from ea
h endpoint of a spine and from ea
h interse
tion point of two spines,and extending these segments until they hit another spine, or else all the way to in�nity5
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KFigure 3: The drawing of G� in the 
onvex 
ase.[2℄. Ea
h 
ell � of � is a verti
al trapezoid, bounded by portions of spines on the topand bottom, and by verti
al segments to the left and to the right; any of these boundarysegments may be missing. Let X denote the number of interse
tion points of the spines. Byassumption, all interse
tion points are simple, therefore, it is easy to verify that the numberof trapezoids (
ells) in � is equal to 3n+ 3X + 1 = O(n+X).Fix a 
ell �, and let A;B 2 C be the sets su
h that the top (resp., bottom) boundaryof � is 
ontained in sA (resp., sB). Let K 2 C be an obje
t that interse
ts �, and let p bea point in K \�. The verti
al line � through p must interse
t the spine sK of K. Supposethat K 6= A;B and that sK passes below sA within the verti
al slab spanned by �.Suppose that � interse
ts the spine sC of another set C 2 C between sA and sK . Amongall su
h sets, we �x C to be the set whose spine is nearest to sA along �. Then A and Cuniquely determine K. That is, there 
annot exist another K 0 2 C, K 0 6= A;C;K, su
h thatsK0 lies below sA and the verti
al line through a point in K 0 \� meets sC between sA andsK0. This follows by noting that su
h a K 0 would have formed, together with A;C, andK, a forbidden C4 in G(C). Sin
e sC is the spine dire
tly pre
eding sA along �, sA and sCform a 
ell �0 of � that lies below �, is 
rossed by �, and is a neighbor of � in the planarmap �. See Figure 3 for an illustration.A symmetri
 argument shows that if L 2 C is an obje
t that interse
ts � at some pointq, with sL lying above sB within the verti
al slab spanned by �, then either sL lies dire
tlyabove sB, or else B and the set D 2 C, whose spine lies dire
tly above sB along the verti
alline through q, uniquely determine L.Sweep � by a verti
al line � from left to right. At any step during the sweep, �passes through a bottom neighbor 
ell �0 and through a top neighbor 
ell �00. The triple(�;�0;�00) 
hanges only when either the top neighbor or the bottom neighbor 
hanges,implying that the number of su
h triples, with � �xed, is at most the number of top andbottom neighbors of � in �. Sin
e � is a planar map whose dual map has no digonal fa
es,we 
on
lude that the overall number of su
h triples is O(j�j) = O(n+X).As argued above, a �xed triple (�;�0;�00) determines at most six sets of C that 
aninterse
t � at points p that lie \in between" �0 and �00, in the sense that the verti
al linethrough p interse
ts both �0 and �00. Hen
e, the number of pairs of sets in C that 
an6
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Figure 4: Two triangular fa
es 
annot share a vertex.interse
t within this portion of � is O(1). This implies that the number of edges of G(C) isO(n+X).To 
omplete the proof of Theorem 3, it remains to show that X = O(n).Lemma 4.1 Let S be a set of n straight-line segments in general position in the plane,whose interse
tion graph has no C4 as a subgraph. Then the number of 
rossings betweenthe elements of S satis�es X � 21n.Proof: Consider the arrangement A(S) of S as a planar map M , that is, introdu
e a newvertex at ea
h 
rossing. Clearly,M has no digons (fa
es with two sides) and no quadrilateralfa
es, for this would 
orrespond to a C4 inG(C). The number of verti
es ofM is V = 2n+X,and the number of its edges is E = n+ 2X. Let F and F3 denote the number of fa
es andthe number of triangular fa
es ofM , respe
tively. Obviously, we have 3F3+5(F�F3) � 2E,or, equivalently, F � 25E + 25F3 � 25(n+ 2X) + 25F3:Applying Euler's formula, we obtain2 � V �E + F � (2n+X)� (n+ 2X) + 25(n+ 2X) + 25F3;whi
h implies that X � 7n+ 2F3 � 10: (1)It remains to bound F3. Sin
e we assumed that the segments were in general position, notwo triangular fa
es f; f 0 
an share a vertex w, unless they lie in opposite wedges formedby the two spines meeting at w. However, this 
ase 
annot arise, be
ause then the fourspines that bound f and f 0 would indu
e a forbidden C4 in G(C); see Figure 4. Hen
e, theF3 triangular fa
es de�ne 3F3 distin
t 
rossing points, so 3F3 � X. Substituting this in (1)yields X � 7n+ 2F3 � 10 � 7n+ 23X � 10; or X � 21n� 30:This 
ompletes the proof of Lemma 4.1 and hen
e of Theorem 3. 2To establish Corollary 4, we have to re
all the so-
alled Crossing Lemma of Ajtai etal. [1℄ and Leighton [6℄. 7



Lemma 4.2 Any topologi
al graph with n verti
es and e > 4n edges determines at leaste364n2 
rossings. 2Consider now a geometri
 graph G with n verti
es and e edges, determining no 2 � 2grid. Noti
e that the interse
tion graph of the set of segments obtained from the edges of Gby 
lipping them near their endpoints has no C4. Thus, we 
an apply Lemma 4.1 to obtainthat the number of 
rossings between the edges satis�es X � 21e. On the other hand,Lemma 4.2 implies that X � e364n2 , provided that e > 4n. Comparing these two bounds, we
on
lude that e < 40n, 
ompleting the proof of Corollary 4. 2Referen
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ture of linear graphs, Bull. Amer. Math. So
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