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The problem beomes more interesting for bipartite graphs. By the K}ov�ari{S�os{Tur�antheorem [5℄, the maximum number of edges of a graph with n verties ontaining no ompletebipartite graph Kk;k with a onstant number k of verties in eah of its lasses, satis�esex(n;Kk;k) � bkn2� 1k ;where bk is a suitable onstant. Restriting our attention to intersetion graphs of ompatonneted sets, this bound an be substantially strengthened.Theorem 1. If the intersetion graph of n ompat onneted sets in the plane has nosubgraph isomorphi to Kk;k, then its number of edges annot exeed (k)n loge(k) n, forappropriate onstants (k), e(k) that depend on k.In the lak of examples of olletions C whose intersetion graphs are Kk;k-free and havea superlinear number of edges (in jCj), we suspet that Theorem 1 an be substantiallyimproved. In fat, in the speial ase when C onsists of onvex sets, we an replae thepolylogarithmi fator by log n.Theorem 2. If the intersetion graph of n onvex sets in the plane has no subgraph iso-morphi to Kk;k, then its number of edges is at most O(n log n), where the onstant ofproportionality depends on k.For k = 2, that is, when G(C) ontains no C4 (yle of length four) as a subgraph, wean ompletely get rid of the logarithmi fator in Theorem 2.Theorem 3. If the intersetion graph of n onvex sets in the plane has no subgraph iso-morphi to C4, then its number of edges is at most O(n).Sine every graph an be obtained as the intersetion graph of three-dimensional onvexbodies [3℄, we annot expet that a similar phenomenon holds in higher dimensions.A graph drawn in the plane with possibly rossing straight-line edges is alled a geometrigraph. We assume for simpliity that no three verties of a geometri graph are on a line.Two sets of edges fe1; : : : ; ekg and ff1; : : : ; fkg in a geometri graph are said to form a k�kgrid if every ei rosses all fj.Theorem 3 has the following orollary, established �rst in [7℄ with a di�erent proof.Corollary 4. [7℄ Any geometri graph with n verties that ontains no 2 � 2 grid has atmost O(n) edges.2 Intersetion graphs of onneted sets: Proof of Theorem 1Let C = fC1; : : : ; Cng be a olletion of ompat onneted sets in the plane, and assumewithout loss of generality that eah Ci is equal to the losure of its interior intCi. Otherwise,we an replae Ci by a slightly larger set satisfying this ondition, without hanging theintersetion pattern of C.Fix distint points pi 2 intCi, for i = 1; : : : ; n. For any i < j with Ci \Cj 6= ;, onnetpi to pj by a simple (non-sel�nterseting) ontinuous ar ij that does not pass through anyother point ph (h 6= i; j). We an easily ahieve that2
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Figure 1: The drawing of G�.1. ij is the union of two simple ars 0ij and 1ij that share only one (end)point suhthat 0ij � Ci and 1ij � Cj ;2. any two urves ij and i0j0 have only �nitely many points in ommon.The urves ij form a so-alled topologial graph G� on the vertex set fp1; : : : ; png, that is,a graph drawn in the plane with urvilinear edges that may ross one another. Clearly, G�is a \drawing," a partiular embedding of the \abstrat" graph G = G(C). See Figure 1 foran illustration.We need the following result of Pah, Radoi�i�, and T�oth [8℄.Lemma 2.1 (Pah et al. [8℄) Let G� be a topologial graph with n verties, ontaining nom pairwise rossing edges with distint endpoints. Then the number of edges of G� satis�esjE(G�)j � mn log2(m�3) n;where m is a suitable onstant. 2Suppose that jE(G�)j = jE(G)j > mn log2(m�3) n; where m = m(k) > 1 is an integerto be spei�ed later. By Lemma 2.1, we obtain that there are distint indies i(1) < j(1);: : : ; i(m) < j(m) suh that the ars i(1)j(1); : : : ; i(m)j(m) 2 E(G�) are pairwise rossing.For any pair of distint ars i(s)j(s); i(t)j(t); at least one of the following four relationsholds: 0i(s)j(s) \ 0i(t)j(t) 6= ;;0i(s)j(s) \ 1i(t)j(t) 6= ;;1i(s)j(s) \ 0i(t)j(t) 6= ;;1i(s)j(s) \ 1i(t)j(t) 6= ;:By hanging the labeling of the sets Ci and, onsequently, of the points pi 2 V (G�), ifneessary, we an assume without loss of generality that for at least one quarter of the pairss < t, we have 0i(s)j(s) \ 0i(t)j(t) 6= ;:3



Construt a bipartite graph B on the vertex set V (B) = f1; 2; : : : ;mg [ f10; 20; : : : ;m0gby onneting s and t0 with an edge if and only if s < t and0i(s)j(s) \ 0i(t)j(t) 6= ;:We have jE(B)j � 14�m2�:Applying the K}ov�ari{S�os{Tur�an theorem quoted in the Introdution, we obtain that B hasa omplete bipartite subgraph Kk;k, provided that14�m2� > bk(2m)2� 1k :Choose m = m(k) = O(bk)k to be the smallest positive integer that satis�es the lastinequality. We an onlude that there exist verties s1; : : : ; sk; t01; : : : ; t0k 2 V (B) with theproperty that every element of f0i(s1)j(s1); : : : ; 0i(sk)j(sk)gintersets all elements of f0i(t1)j(t1); : : : ; 0i(tk)j(tk)g:It follows from our onstrution that 0i(r)j(r) � Ci(r); for every 1 � r � m. Therefore,the orresponding olletions of sets fCi(s1); : : : ; Ci(sk)g and fCi(t1); : : : ; Ci(tk)g indue aomplete bipartite graph Kk;k in the intersetion graph G(C), whih leads to a ontraditionthat ompletes the proof of Theorem 1. 23 Intersetion graphs of onvex sets: Proof of Theorem 2The polylogarithmi fator in the bound of Theorem 1 is a onsequene of the fat that ourproof was based on Lemma 2.1, a general statement on topologial graphs. If the elementsof C an be arbitrary onneted sets, the partiular drawing of G(C) we onstruted maybe quite ompliated. However, if C onsists of onvex sets, one an explore some simplestrutural properties of this drawing. Spei�ally, it will be suÆient to onsider x-monotonetopologial graphs, that is, topologial graphs with the property that any vertial line(parallel to the y-axis) intersets every edge at most one. In this speial ase, Valtr [9℄managed to redue the exponent of the polylogarithmi fator in Lemma 2.1 to one.Lemma 3.1 (Valtr [9℄) Let G� be an x-monotone topologial graph with n verties, on-taining no m pairwise rossing edges with distint endpoints. Then the number of edges ofG� satis�es jE(G�)j � 0mn logn;where 0m is a suitable onstant. 2Suppose that C is a olletion of ompat onvex sets in the plane. We adapt the proofof Theorem 1 to this ase. First we show that a slightly modi�ed version of the graph G�we used in the proof of Theorem 1 an be drawn as an x-monotone topologial graph.4
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Figure 2: The drawing of G� in the onvex ase.For any C 2 C, let `C , rC denote the leftmost and rightmost points of C. Withoutloss of generality, we may assume that these points are unique, and that the set P =f`C ; rC j C 2 Cg onsists of 2n distint points, no three of whih are ollinear. We nowde�ne the topologial graph G� on the vertex set P as follows. For eah pair of intersetingsets Ci; Cj 2 C with i < j, onnet `Ci and rCj by a polygonal path ij onsisting of twosegments that meet at an arbitrary point of Ci \ Cj. Clearly, ij is an x-monotone urve,and we have jE(G�)j = jE(G)j. See Figure 2.Suppose that jE(G�)j = jE(G)j > 0m � 2n log(2n), where m = m(2k) > 1 denotesthe same integer as in the proof of Theorem 1, but de�ned for 2k rather than for k. ByLemma 3.1, we obtain that there are distint indies i(1) < j(1); : : : ; i(m) < j(m) suh thatthe ars i(1)j(1); : : : ; i(m)j(m) 2 E(G�) are pairwise rossing. The proof now proeeds inessentially the same way as the proof of Theorem 1. The only di�erene is that at the veryend of the proof, when we �nd a omplete bipartite graph K2k;2k in the intersetion graphG(C), some of the verties in one olor lass ofK2k;2k may represent the same member C 2 Cas a vertex in the other olor lass (beause eah C is represented in G� by two verties).However, we an always hoose a omplete bipartite subgraphKk;k � K2k;2k, whose vertiesrepresent distint sets. This leads to a ontradition that establishes Theorem 2. 24 Forbidden C4: Proofs of Theorem 3 and Corollary 4First we establish Theorem 3. Let C be a olletion of n onvex sets in the plane suh thattheir intersetion graph G(C) ontains no C4.For any C 2 C, let sC denote the straight-line segment onneting the leftmost pointand the rightmost point of C. We refer to sC as the spine of C. Let S be the set of thespines of all the sets in C. By slightly perturbing the sets if neessary, without hanging theintersetion graph G(C), we an ahieve that the leftmost and rightmost points of the setsC are unique and that the spines are in general position, that is, no three of their endpointsare ollinear and no three of them pass through the same point.Let � denote the vertial deomposition of A(S), obtained by ereting a vertial segmentup and down from eah endpoint of a spine and from eah intersetion point of two spines,and extending these segments until they hit another spine, or else all the way to in�nity5
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KFigure 3: The drawing of G� in the onvex ase.[2℄. Eah ell � of � is a vertial trapezoid, bounded by portions of spines on the topand bottom, and by vertial segments to the left and to the right; any of these boundarysegments may be missing. Let X denote the number of intersetion points of the spines. Byassumption, all intersetion points are simple, therefore, it is easy to verify that the numberof trapezoids (ells) in � is equal to 3n+ 3X + 1 = O(n+X).Fix a ell �, and let A;B 2 C be the sets suh that the top (resp., bottom) boundaryof � is ontained in sA (resp., sB). Let K 2 C be an objet that intersets �, and let p bea point in K \�. The vertial line � through p must interset the spine sK of K. Supposethat K 6= A;B and that sK passes below sA within the vertial slab spanned by �.Suppose that � intersets the spine sC of another set C 2 C between sA and sK . Amongall suh sets, we �x C to be the set whose spine is nearest to sA along �. Then A and Cuniquely determine K. That is, there annot exist another K 0 2 C, K 0 6= A;C;K, suh thatsK0 lies below sA and the vertial line through a point in K 0 \� meets sC between sA andsK0. This follows by noting that suh a K 0 would have formed, together with A;C, andK, a forbidden C4 in G(C). Sine sC is the spine diretly preeding sA along �, sA and sCform a ell �0 of � that lies below �, is rossed by �, and is a neighbor of � in the planarmap �. See Figure 3 for an illustration.A symmetri argument shows that if L 2 C is an objet that intersets � at some pointq, with sL lying above sB within the vertial slab spanned by �, then either sL lies diretlyabove sB, or else B and the set D 2 C, whose spine lies diretly above sB along the vertialline through q, uniquely determine L.Sweep � by a vertial line � from left to right. At any step during the sweep, �passes through a bottom neighbor ell �0 and through a top neighbor ell �00. The triple(�;�0;�00) hanges only when either the top neighbor or the bottom neighbor hanges,implying that the number of suh triples, with � �xed, is at most the number of top andbottom neighbors of � in �. Sine � is a planar map whose dual map has no digonal faes,we onlude that the overall number of suh triples is O(j�j) = O(n+X).As argued above, a �xed triple (�;�0;�00) determines at most six sets of C that aninterset � at points p that lie \in between" �0 and �00, in the sense that the vertial linethrough p intersets both �0 and �00. Hene, the number of pairs of sets in C that an6
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Figure 4: Two triangular faes annot share a vertex.interset within this portion of � is O(1). This implies that the number of edges of G(C) isO(n+X).To omplete the proof of Theorem 3, it remains to show that X = O(n).Lemma 4.1 Let S be a set of n straight-line segments in general position in the plane,whose intersetion graph has no C4 as a subgraph. Then the number of rossings betweenthe elements of S satis�es X � 21n.Proof: Consider the arrangement A(S) of S as a planar map M , that is, introdue a newvertex at eah rossing. Clearly,M has no digons (faes with two sides) and no quadrilateralfaes, for this would orrespond to a C4 inG(C). The number of verties ofM is V = 2n+X,and the number of its edges is E = n+ 2X. Let F and F3 denote the number of faes andthe number of triangular faes ofM , respetively. Obviously, we have 3F3+5(F�F3) � 2E,or, equivalently, F � 25E + 25F3 � 25(n+ 2X) + 25F3:Applying Euler's formula, we obtain2 � V �E + F � (2n+X)� (n+ 2X) + 25(n+ 2X) + 25F3;whih implies that X � 7n+ 2F3 � 10: (1)It remains to bound F3. Sine we assumed that the segments were in general position, notwo triangular faes f; f 0 an share a vertex w, unless they lie in opposite wedges formedby the two spines meeting at w. However, this ase annot arise, beause then the fourspines that bound f and f 0 would indue a forbidden C4 in G(C); see Figure 4. Hene, theF3 triangular faes de�ne 3F3 distint rossing points, so 3F3 � X. Substituting this in (1)yields X � 7n+ 2F3 � 10 � 7n+ 23X � 10; or X � 21n� 30:This ompletes the proof of Lemma 4.1 and hene of Theorem 3. 2To establish Corollary 4, we have to reall the so-alled Crossing Lemma of Ajtai etal. [1℄ and Leighton [6℄. 7



Lemma 4.2 Any topologial graph with n verties and e > 4n edges determines at leaste364n2 rossings. 2Consider now a geometri graph G with n verties and e edges, determining no 2 � 2grid. Notie that the intersetion graph of the set of segments obtained from the edges of Gby lipping them near their endpoints has no C4. Thus, we an apply Lemma 4.1 to obtainthat the number of rossings between the edges satis�es X � 21e. On the other hand,Lemma 4.2 implies that X � e364n2 , provided that e > 4n. Comparing these two bounds, weonlude that e < 40n, ompleting the proof of Corollary 4. 2Referenes[1℄ M. Ajtai, V. Chv�atal, M. Newborn and E. Szemer�edi, Crossing-free subgraphs, Ann.Disrete Math. 12 (1982), 9{12.[2℄ M. de Berg, M. van Kreveld, M. Overmars, and O. Shwarzkopf, Computational Geom-etry: Algorithms and Appliations (2nd ed.), Springer-Verlag, Berlin, 2000.[3℄ A. S. Besiovith, On Crum's problem, J. London Math. So. 22 (1947), 285{287.[4℄ P. Erd}os and A. H. Stone, On the struture of linear graphs, Bull. Amer. Math. So. 52(1946), 1087{1091.[5℄ T. K}ov�ari, V. T. S�os, and P. Tur�an, On a problem of K. Zarankiewiz, Colloquium Math.3 (1954), 50{57.[6℄ F. T. Leighton, Complexity Issues in VLSI, MIT Press, Cambridge, MA, 1983.[7℄ J. Pah, R. Pinhasi, M. Sharir, and G. T�oth, Topologial graphs with no large grids,Graphs and Combinatoris 21 (2005), 355{364.[8℄ J. Pah, R. Radoi�i�, and G. T�oth, Relaxing planarity for topologial graphs, Disreteand Computational Geometry, Leture Notes in Comput. Si., 2866, Springer-Verlag,Berlin, 2003, 221{232.[9℄ P. Valtr, Graph drawing with no k pairwise rossing edges, in: G. DiBattista (ed.)Graph Drawing `97, Leture Notes in Comput. Si. 1353, Springer-Verlag, Berlin, 1997,205{218.
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