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Abstract

Let H be a set of n non-vertical planes in three di-
mensions, and let r < n be a parameter. We give a
simple alternative proof of the existence of a O(1/r)-
cutting of the first n/r levels of A(H), which consists
of O(r) semi-unbounded vertical triangular prisms. The
same construction yields an approximation of the (n/r)-
level by a terrain consisting of O(r/ε3) triangular faces,
which lies entirely between the levels (1 ± ε)n/r. The
proof does not use sampling, and exploits techniques
based on planar separators and various structural prop-
erties of levels in three-dimensional arrangements and
of planar maps. The proof is constructive, and leads
to a simple randomized algorithm, that computes the
terrain in O(n+ r2ε−6 log3 r) expected time. An appli-
cation of this technique allows us to mimic Matoušek’s
construction of cuttings in the plane [36], to obtain a
similar construction of “layered” (1/r)-cutting of the
entire arrangement A(H), of optimal size O(r3). An-
other application is a simplified optimal approximate
range counting algorithm in three dimensions, compet-
ing with that of Afshani and Chan [1].

1. Introduction

Cuttings. Let H be a set of n (non-vertical) hyper-
planes in Rd, and let r < n be a parameter. A (1/r)-
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cutting of the arrangement A(H) is a collection of pair-
wise openly disjoint simplices (or other regions of con-
stant complexity) whose union covers Rd, such that each
simplex is crossed (meets in its interior) at most n/r
hyperplanes of H. Cuttings have proved to be a pow-
erful tool for a variety of problems in discrete and com-
putational geometry, because they provide an effective
divide-and-conquer mechanism for tackling such prob-
lems, see Agarwal [7] for a survey. Applications include
a variety of range searching techniques [11], partition
trees [37], incidence problems involving points and lines,
curves, and surfaces [24], and many more.

The first (albeit suboptimal) construction of cut-
tings is due to Clarkson [23]. This concept was formal-
ized later on by Chazelle and Friedman [22], who gave
a sampling-based construction of optimal-size cuttings
(see below). An optimal deterministic construction al-
gorithm was provided by Chazelle [20]. Matoušek [39]
studied the number of cells in a (1/r)-cutting in the
plane (see also [28]). See Agarwal and Erickson [11] for
a comprehensive review of this topic.

To be effective, it is imperative that the number
of simplices in the cutting be asymptotically as small
as possible. Chazelle and Friedman [22] were the first
to show the existence of a (1/r)-cutting of the entire
arrangement of n hyperplanes in Rd, consisting of O(rd)
simplices, which is asymptotically the best possible
bound. (We note in passing that cuttings of optimal size
are not known for arrangements of (say, constant-degree
algebraic) surfaces in Rd, except for d = 2, where the
known bound, O(r2), is tight, and for d = 3, 4, where
nearly tight bounds are known [21, 33, 34].)

For additional work related to cuttings and their
applications, see [2, 3, 4, 5, 6, 8, 9].

Shallow cuttings. The level of a point p in the
arrangement A(H) of H is the number of hyperplanes
lying vertically below it (that is, in the (−xd)-direction).
The k-level, denoted as Lk, is the closure of all the points
that lie on some hyperplane ofH and are at level exactly
k, and the (≤ k)-level, denoted as L≤k, is the union of
all the j-levels, for j = 0, . . . , k. A collection of pairwise
openly disjoint simplices whose union covers L≤k, such
that each simplex is crossed at most n/r hyperplanes



of H, is called a k-shallow (1/r)-cutting. Naturally, the
parameters k and r can vary independently, but the
interesting case, which is the one that often arises in
many applications, is the case where k = Θ(n/r). In
fact, shallow cuttings for any value of k can be reduced
to this case—see Chan and Tsakilidis [19, Section 5].

In his seminal paper on reporting points in halfs-
paces [38], Matoušek has proved the existence of small-
size shallow cuttings in arrangements of hyperplanes in
any dimension, showing that the bound on the size of
the cutting can be significantly improved for shallow
cuttings. Specifically, he has shown the existence of a
k-shallow (1/r)-cutting, for n hyperplanes in Rd, whose
size is O

(
qdd/2erbd/2c

)
, where q = k(r/n) + 1. For the

interesting special case where k = Θ(n/r), we have
q = O(1) and the size of the cutting is O

(
rbd/2c

)
, a

significant improvement over the general bound O(rd).
(For example, in three dimensions, we get O(r) sim-
plices, instead of O(r3) simplices for the whole arrange-
ment.) This has lead to improved solutions of many
range searching and related problems.

In his paper, Matoušek presented a determinis-
tic algorithm that can construct such a shallow cut-
ting in polynomial time; the running time improves to
O(n log r) but only when r is small, i.e., r < nδ for a
sufficiently small constant δ (that depends on the di-
mension d). Later, Ramos [45] presented a (rather com-
plicated) randomized algorithm for d = 2, 3, that con-
structs a hierarchy of shallow cuttings for a geometric
sequence of O(log n) values of r, in O(n log n) expected
time. Recently, Chan and Tsakalidis [19] provided a
deterministic O(n log r)-time algorithm for computing
O(n/r)-shallow (1/r)-cutting. Their algorithm can also
construct a hierarchy of shallow cuttings for a geometric
sequence of O(log n) values of r in O(n log n) determin-
istic time. Interestingly, they use, as a black box in
the analysis of their algorithm, Matoušek’s theorem on
the existence of an O(n/r)-shallow (1/r)-cutting of size
O(r).

Each simplex ∆ in the cutting has a conflict list
associated with it, which is the set of hyperplanes inter-
secting ∆. The algorithms mentioned above for comput-
ing cuttings also compute the conflict lists associated
with the simplices of the cutting. Alternatively give the
cutting one can produce the conflict lists in O(n log r)
time using a result of Chan [16], as we outline in Sec-
tion 3.2.

Matoušek’s proof of the existence of small-size shal-
low cuttings, as well as subsequent studies of this tech-
nique, are fairly complicated. They rely on random sam-
pling, combined with a clever variant of the so-called
exponential decay lemma of [22], and with several addi-
tional (and rather intricate) techniques.

Approximating a level. An early study of Matoušek
[36] gives a construction of a (1/r)-cutting of small
(optimal) size in arrangements of lines in the plane. The
construction chooses a sequence of r levels, n/r apart
from one another, and approximates each of them by
a coarser polygonal line, by choosing every n/(2r)th
vertex of the level, and by connecting them by an x-
monotone polygonal path. Each approximate level does
not deviate much from its original level, so they remain
disjoint from one another. Then, partitioning the region
between every pair of consecutive approximate levels
into vertical trapezoids produces a total of O(r2) such
trapezoids, each crossed by at most O(n/r) lines.

It is thus natural to ask whether one can approxi-
mate, in a similar fashion, a k-level of an arrangement
of planes in 3-space. This is significantly more challeng-
ing, as the k-level is now a polyhedral terrain, and while
it is reasonably easy to find a good set of vertices that
“represent” this level (in an appropriate sense, detailed
below), it is less clear how to triangulate them effectively
to form an xy-monotone terrain, such that (i) none of
its triangles is crossed by too many planes of H, and
(ii) it remains close to the original level. To be more
precise, given k and ε > 0, we want to find a polyhedral
terrain with a small number of faces, which lies entirely
between the levels k and (1 + ε)k of A(H). A simple
tweaking of Matoušek’s technique produces such an ap-
proximation in the planar case, but it is considerably
more involved to do it in 3-space.

Algorithms for terrain approximation, such as in
[10], do not apply in this case, as they have a quadratic
blowup in the output size, compared to the optimal
approximation. Also, they are not geared at all to
handle our measure of approximation (in terms of lying
close to a specified level, in the sense that no point on
the approximation is separated by too many planes from
the level).

Such an approximation to the k-level, whose size is
optimal up to polylogarithmic factors, can be obtained
by using a relative-approximation sample of the planes,
and by extracting the appropriate level in the sample
[29]. A more natural approach, of using the triangular
faces of an optimal-size shallow cutting to form an
approximate k-level, seems to fail in this case, as
the shallow cutting is in general just a collection of
simplices, stacked on top of one another, with no
clearly defined xy-monotonicity. Such a monotonicity
is obtained in Chan [17], but the resulting cuttings do
not lead to sharp approximations of the level, of the sort
we seek.

In short, a simple, effective, and optimal technique
for approximating a level in three dimensions (let alone
in higher dimensions) does not follow easily from exist-



ing techniques.
An additional advantage of such an approximation

is that it immediately yields a simply-shaped shallow
cutting of the first k levels of A(H), by replacing
each triangle ∆ of the approximate level by the semi-
unbounded triangular prism ∆∗ having ∆ as its top face.
Such a cutting (by prisms) has already been constructed
by Chan [17], but it does not yield (that is, come from)
an approximation to the level. Such a shallow cutting,
by triangular semi-unbounded prisms, was a central tool
in Chan’s algorithm for dynamic convex hulls in three
dimensions [18].

Thus, resolving the question of approximating the
k-level by an xy-monotone terrain of small, optimal size
is not a mere technical issue, but rather a tool that
will shed more light on the geometry of arrangements
of planes, and that has applications to a variety of
problems. For example, it yields an efficient algorithm
for approximating the level of a point in an arrangement
of planes in R3—see Section 4.2 for details. (Afshani
and Chan [1] present a similar approach which is slightly
more involved, as they do not have the desired terrain
property.)

1.1. Our results In this paper we give an alter-
native, simpler and constructive proof of the exis-
tence of optimal-size shallow cuttings by vertical semi-
unbounded triangular prisms in three dimensions. With
a bit more care, the construction yields an optimal-
size approximate level, as discussed above. Specifically,
given r and ε, one can approximate the (n/r)-level in an
arrangement of n non-vertical planes in R3, by a poly-
hedral terrain of complexity O(r/ε3), that lies entirely
between the levels n/r and (1 + ε)n/r. The same con-
struction works for any values of the level k and the
parameter r, with a somewhat more involved bound on
the complexity of the approximation (which we do not
spell out in this version).

The construction does not use sampling, nor does
it use the exponential decay lemma of [22, 38]. It is
based on the planar separator theorem of Lipton and
Tarjan [35], or, more precisely, on recent separator-
based decomposition techniques of planar maps, as in
Klein et al. [32] (see also Frederickson [27]), and on
several insights into the structure and properties of
levels in three dimensions and of planar maps, which
we believe to be of independent interest.

As what we believe to be an interesting applica-
tion of our technique, we extend Matoušek’s construc-
tion [36] of cuttings in planar arrangements to three
dimensions. That is, we construct a “layered” (1/r)-
cutting of the entire arrangement A(H) of a set H of
n non-vertical planes in R3, of optimal size O(r3), by

approximating each level in a suitable sequence of lev-
els, and then by triangulating each layer between con-
secutive levels in the sequence. The analysis becomes
considerably more involved in three dimensions, and re-
quires several known but interesting and fairly advanced
properties of plane arrangements.

Another application of our technique is to approxi-
mate range counting. Specifically, we show how to pre-
process a set H of n non-vertical planes in R3, and a
prescribed error parameter ε > 0, in near-linear time
(in n), into a data structure of size O(n/ε8/3), so that,
given a query point q ∈ R3, we can compute the number
of planes of H lying below q, up to a factor 1 ± ε, in
O(log(n/(εk))) expected time. As noted, this competes
with Afshani and Chan’s technique [1]. The general ap-
proach is similar in both solutions, but our solution is
somewhat simpler, due to the availability of approxi-
mating terrains, and the dependence on ε in our solu-
tion is explicit and reasonable (this dependence is not
explicit in [1]).

The thrust of this paper is to show, via alternative,
simpler, and more geometric methods, the existence
of cuttings and approximate levels of optimal size.
The proofs are constructive, but naive implementations
thereof would be rather inefficient. Nevertheless, using
standard random sampling techniques, we can obtain
simple randomized algorithms that perform (suitable
variants of) these constructions efficiently. Specifically,
they run in near-linear expected time (which becomes
linear when r is not too large).

Sketch of our technique. The k-level in a plane
arrangement in three dimensions is an xy-monotone
polyhedral terrain. After triangulating each of its faces,
its xy-projection forms a (straight-edge) triangulated
biconnected planar graph. Since the average complexity
of the first k levels is O(nk2) (see, e.g., [25]), we may
assume, by moving from a specified level to a nearby
one, that the complexity of our level is O(nk). The
decomposition techniques of planar graphs mentioned
above (as in [32]) allow us to partition the level into
O(n/k) clusters, where each cluster has O(k2) vertices
and at most ck boundary vertices (that also belong to
other clusters), for some sufficiently small prescribed
fraction c. (In the terminology of [32], this is a k2-
division of the graph.) Each such cluster, projected to
the xy-plane, is a polygon with O(k) boundary edges
(and with O(k2) interior diagonals). We show that,
replacing each such projected polygon by its convex
hull results in a collection of O(n/k) convex pseudo-
disks, namely, each region is simply connected, and
the boundaries of any pair of regions intersect at most
twice. Moreover, the decomposition has the property
that, for each triangle ∆ that is a fully contained in



such a pseudo-disk, lifting its vertices back to the k-
level yields a triple of points that span a triangle ∆′

with a small number of planes crossing it, so it lies close
to the k-level.

An old result of Bambah and Rogers [15], proving
a statement due to L. Fejes-Tóth, and reviewed in [44,
Lemma 3.9], shows that a union of m convex pseudo-
disks that covers the plane induces a triangulation of
the plane by O(m) triangles, such that each triangle is
fully contained inside one of the pseudo-disks. (As a
matter of fact, it shows that the pseudo-disks can be re-
placed by smaller pairwise openly disjoint convex poly-
gons, with the same union, so that the total number of
edges of the polygons is at most 6m; the desired tri-
angulation is obtained by simply triangulating each of
these polygons.) Lifting (the vertices of) this triangu-
lation to the k-level, with a corresponding lifting of its
triangular faces, results in the desired terrain approx-
imating the level. A significant technical contribution
of this paper is to provide an alternative proof of this
result. The original proof in [15] appears to be fairly
involved, although its presentation in [44] is simplified.
Still, it does not seem to lead to a sufficiently efficient
construction. Our proof in contrast does lead to such a
construction, as described in Section 2.

A shallow cutting of the first k levels is obtained
by simply replacing each triangle ∆ in the approximate
level by the semi-unbounded vertical prism of points
lying below ∆.

Confined triangulations. The idea of decompos-
ing the union of objects (pseudo-disks here) into pair-
wise openly disjoint simply-shaped fragments, each fully
contained in some original object, is implicit in algo-
rithms for efficiently computing the union of objects;
see the work of Ezra et al. [26], which was in turn in-
spired by Mulmuley’s work on hidden surface removal
[42]. Mustafa et al. [43] use a more elaborate version of
such a decomposition, for situations where the objects
are weighted. While these decompositions are useful
for a variety of applications, they still suffer from the
problem that the complexity of a single region in the
decomposition might be arbitrarily large. In contrast,
the triangulation scheme that we use (following [15]) is
simpler, optimal, and independent of the complexity of
the relevant pseudo-disks. We are pleased that this nice
property of pseudo-disks is (effectively) applicable to
the problems studied here, and expect it to have many
additional potential applications.

In particular, we extend our analysis, and show that
such a decomposition exists for arbitrary convex shapes,
with the number of pieces being proportional to the
union complexity, and with each region being a triangle
or a cap (i.e., the intersection of an input shape with

a halfplane). This provides a representation of “most”
of the union by triangles, where the more complicated
caps are only used to fill in the “fringe” of the union.
We believe that this triangulation should be useful in
practice, in situations where deciding if a point belongs
to an input shape is significantly more expensive than
deciding if a point is inside a triangle.

Paper organization. We start by presenting the
construction of the confined triangulation in Section 2.
We then describe the construction of approximate levels,
and the construction of shallow cuttings that it leads to,
in Section 3. We then present applications of our results
in Section 4. Specifically, in Section 4.1 we show how
to build a layered cuttings of the whole arrangement,
and in Section 4.2 we show how to answer approximate
range counting queries for halfspaces.

2. Triangulating the union of convex shapes

In this section we show that, given a finite collection
of m convex pseudo-disks covering the plane, one can
construct a triangulation of the plane, consisting of
O(m) triangles, such that each triangle is contained in
a single original pseudo-disk—see Theorem 2.1 below
for details. As a matter of fact, our result can be
extended to situations where the union of the pseudo-
disks is not the entire plane; see below. This claim is
a key ingredient in our construction of approximate k-
levels, detailed in Section 3, but it is not new, as it is
an immediate consequence of an old result of Bambah
and Rogers [15] (proving a statement by L. Fejes-Tóth),
which can also be found in Pach and Agarwal [44,
Lemma 3.9]. We present here a constructive proof
that is different from those in [15, 44], which leads
to an O(m logm)-time algorithm for constructing the
triangulation for a set of m pseudo-disks, in a suitable
model of computation. (As an aside, we also think that
such a nice property deserves more than one proof.) We
also establish an extension of this result for more general
convex shapes.

2.1. Preliminaries

cap

The notion of a triangulation that
we use here is slightly non-standard,
as it is a triangulation of the entire
plane, and not just of the convex hull
of some input set of points. As such, it
contains unbounded triangles, where the boundary of
each such triangle consists of one bounded segment and
two unbounded rays.

Given a convex shape D, a cap of D is the region
formed by the intersection of D with a halfplane. A
crescent is a portion of a cap obtained by removing
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Figure 2.1: A crescent.

from it a convex polygon that has the base chord of the
cap as an edge, see Figure 2.1.

Definition 2.1. Given a collection D of convex shapes
in the plane, a decomposition T of their union into pair-
wise openly disjoint regions is a confined triangula-
tion, if (i) every region in T is either a triangle or a
cap, and (ii) every such region is fully contained in one
of the original input shapes.

See Figure 2.2 for an example of a confined triangu-
lation, and Theorem 2.2 for a formal statement of the
result.

2.2. Construction We are given a collection D of m
convex pseudo-disks, and our purpose is to construct
a confined triangulation for D, as described above. In
what follows we consider both the case where the union
of D covers the plane, and the case where it does not.

2.2.1. Painting the union from front to back.
The combinatorial complexity of the boundary of the
union U := U(D) of D is at most 6m − 12, where we
ignore the complexity of individual members of D, and
just count the number of intersection points of pairs of
boundaries of members of D that lie on ∂U ; see [31]. For
convenience, we also include the leftmost and rightmost
points of each D ∈ D in the set of intersection points
(if they lie on the union boundary), thus increasing the
complexity of the union by at most 2m, and assume
general position of the pseudo-disks. In general, an
intersection point v of a pair of boundaries is at level
k (of the arrangement A(D) of D) if it is contained in
the interiors of exactly k members of D. The boundary
intersections are thus at level 0, and a simple application
of the Clarkson–Shor technique [25] implies that the
number of boundary intersection points that lie at level
1 is also O(m). Hence there exists at least one pseudo-
disk D ∈ D that contains at most c intersection points
at levels 0 or 1 (including leftmost and rightmost points
of disks), for some suitable absolute constant c. Clearly,
these considerations also apply to any subset of D.

This allows us to order the members of D as
D1, . . . , Dm, so that the following property holds. Set
Di := {D1, . . . , Di}, for i = 1, . . . ,m. Then Di

contains at most c intersection points at levels 0 and
1 of A(Di). Equivalently, for each i, the boundary of
D0

i := Di \ U(Di−1) contains at most c intersection

points.
To prepare for the algorithmic implementation of

the construction in this proof, which will be presented
later, we note that this ordering is not easy to obtain
efficiently in a deterministic manner. Nevertheless,
a random insertion order (almost) satisfies the above
property: The expected sum of the complexities of the
regions D0

i , for a random insertion order, is O(m). See
later for more details.

We thus have U(Dj) =
⋃

i≤j D
0
i (as an openly

disjoint union), for each j; for the convenience of
presentation (and for the algorithm to follow), we
interpret this ordering as an incremental process, where
the pseudo-disks of D are inserted, one after the other,
in the order D1, . . . , Dm, and we maintain the partial
unions U(Dj), after each insertion, by the formula
U(Dj) = U(Dj−1) ∪D0

j .

2.2.2. Decomposing the union into vertical tr-
apezoids. Since the boundary of D0

i = Di \ U(Di−1)
contains at most c intersection points, we can de-
compose D0

i into O(1) vertical pseudo-trapezoids, us-
ing the standard vertical decomposition technique; see,
e.g., [47]. Let Tj be the collection of pseudo-trapezoids
in the decomposition of U(Dj), collected from the de-
compositions of the regions D0

i , for i = 1, . . . , j, and let
Vj be the set of vertices of these pseudo-trapezoids, each
of which is either an intersection point (boundary inter-
section or x-extreme point) of A(Dj), or an intersection
between some ∂Di and a vertical segment erected from
an intersection point of A(Dj).

Each of the pseudo-trapezoids in Tj is bounded
by (at most) two vertical segments, a portion of the
boundary of a single pseudo-disk as its top edge, and
a portion of the boundary of (another) single pseudo-
disk as its bottom edge; see Figure 2.3. We have
D0

1 = D1, which we regard as a single pseudo-trapezoid,
in which the vertical sides degenerate to the leftmost
and rightmost points of ∂D1; see Figure 2.3(1). Note
that, in the vertical decomposition of D0

i we split it
by vertical segments through the intersection points on
its boundary, but not through vertices of Vi−1 on ∂D0

i

which are not intersection points of A(D). (Informally,
these vertices are “internal” to U(Di−1), and are not
“visible” from the outside.) See, e.g., Figure 2.3(4).
The set Vi is obtained by adding to Vi−1 the vertices of
the pseudo-trapezoids in the decomposition of D0

i .
If D0

i is bounded then each pseudo-trapezoid τ in
its decomposition has a top boundary and a bottom
boundary, but one or both of the vertical sides may be
missing (see, e.g., Figure 2.3(1) for the single pseudo-
trapezoid D0

1 = D1 and Figure 2.3(3) for the left
pseudo-trapezoid of 3). From the point of view of τ ,
each of the top and bottom boundaries of τ may be



Figure 2.2: A union of three disks, and its decomposition into triangles and caps. Note, that the decomposition
computed by our algorithm is somewhat different for this case.

either convex (if it is a subarc of ∂Di on ∂D0
i ), or

concave (if it is part of the boundary of some previously
inserted pseudo-disk); If D0

i is not bounded then some
of the vertical pseudo-trapezoids covering D0

i will also
be unbounded and missing some of their boundaries.
Note that D0

i is not necessarily connected; in case it
is not connected we separately decompose each of its
connected components into vertical pseudo-trapezoids
in the above manner, see Figure 2.3(4).

At the end of the incremental process, after insert-
ing all the pseudo-disks in D, the pseudo-trapezoids in
T := Tm cover U(D), which may or may not be the
entire plane, and they are pairwise openly disjoint. By
construction, each pseudo-trapezoid in T is contained
in a single pseudo-disk of D. Moreover, since the com-
plexity of each D0

i is O(1), the total number of pseudo-
trapezoids in T is O(m). So T possesses some of the
properties that we want, but it is not a triangulation.

τ
Di

τb

τt

Rτb vu

2.2.3. Polygonalizing the pseudo-trapezoids. To
get a triangulation, we associate a polygonal vertical
pseudo-trapezoid τ∗ with each pseudo-trapezoid τ ∈ T .
We obtain τ∗ from τ by replacing the bottom boundary
τb and the top boundary τt of τ by respective polygonal
chains τ∗b and τ∗t , that are defined as follows.1 Let Di be
the pseudo-disk during whose insertion τ was created; in
particular, τ ⊆ D0

i . Let u and v denote the endpoints of
τb. Consider the region Rτb between τb and the straight

1The term “polygonal” is somewhat misleading, as some of the
boundaries of the pseudo-disks of D may also be polygonal. To
avoid confusion think of the boundaries of the pseudo-disks of D
as smooth convex arcs (as drawn in the figures) even though they
might be polygonal.

segment uv; clearly, by the convexity of Di, Rτb is fully
contained in Di. See figure on the right.

τ∗t

τ∗b

τ ∗

vu

If Rτb contains no vertices of
Vi, other than u and v (this will
always be the case when Rτb ⊆
τ), we replace τb by τ∗b = uv.
Otherwise, we replace τb by the
chain τ∗b of edges of the convex hull
of Vi ∩ Rτb , other than the edge uv. We define τ∗t
analogously, and take τ∗ to be the polygonal vertical
pseudo-trapezoid that has the same vertical edges as τ ,
and its top (resp., bottom) part is τ∗t (resp., τ∗b ). See
figure on the right.

τ

Rτb

τ∗t

Rτtτb

τ∗b

Note that, by construction, τ∗b
is a convex polygonal chain. From
the point of view of τ , it is convex
(resp., concave) if and only if τb is
convex (resp., concave). An analo-
gous property holds for τ∗t and τt.
We denote the crescent-like region
bounded by τb and τ∗b by Rτb ; Rτt is defined anal-
ogously. (Formally, Rτb = Rτb \ CH(Vi ∩ Rτb) and
Rτt = Rτt \CH(Vi∩Rτt).) Let T ∗

i be the set of polygo-
nal vertical pseudo-trapezoids associated in this manner
with the pseudo-trapezoids in Ti.

Note that Rτb and Rτt need not be disjoint. Nev-
ertheless, τ∗b and τ∗t cannot cross one another, as fol-
lows from Invariant (I2) that we establish below (see
Lemma 2.1). This implies that τ∗ is well defined. If τ∗b
and τ∗t are not disjoint then they may only be pinched
together at common vertices (in the extreme case they
may be identical). This pinching, if it occurs, causes
the interior of τ∗ to be disconnected (into at most two
pieces; it may also be empty, as is the case for D0

1, il-
lustrated in Figure 2.3(1)).

2.2.4. Filling the cavities. The insertion of Di may
in general split some arcs of ∂U(Di−1) into subarcs,
whose new endpoints are either points of contact be-
tween ∂Di and ∂U(Di−1), or endpoints of vertical seg-
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ments erected from other vertices of D0
i . This can be

seen all over Figure 2.3. For example, see the subdivi-
sion of the top arc of D7 caused by the insertion of D8

in Figure 2.3(8’). Some of these subarcs are boundaries
of the new pseudo-trapezoids of D0

i and thus do not be-
long to ∂U(Di), and some remain subarcs of ∂U(Di).
We refer to subarcs of the former kind as hidden, and
to those of the latter kind as exposed.

We take each new exposed arc γ, with endpoints
u, v, and apply to it the same polygonalization that we
applied above to τb and τt. That is, we take the region
Rγ enclosed between γ and the segment uv, and define
γ∗ to be either uv, if Rγ does not contain any vertex of
Vi, or else the boundary of CH(Rγ ∩ Vi), except for uv.
We note that γ∗ is a convex polygonal chain that shares
its endpoints with γ, and denote the region enclosed
between γ and γ∗ as Rγ .

Let Ei denote the collection of all straight edges
in the polygonal boundaries of the pseudo-trapezoids
in T ∗

i and in the polygonal chains γ∗ corresponding
to new exposed subarcs γ of ∂U(Dj−1), 1 ≤ j ≤ i,
which were created and polygonalized when adding the
corresponding pseudo-disk Dj .

2.2.5. Putting it all together
When the pseudo-disks cover the plane. When the
polygonalization process terminates, there are no more
regions Rγ , for boundary arcs γ of the union (because
there is no boundary), so we are left with a straight-edge
planar mapM with Em as its set of edges. (Invariant (1)
in Lemma 2.1 below asserts that the edges in Em do not
cross each other.) By Euler’s formula, the complexity of
M is O(m). We then triangulate each face of M , and,
as the analysis in the next subsection will show, obtain
the desired triangulation.

The general case. In general, the construction decom-
poses the union into (pairwise openly disjoint) triangles
and crescent regions. To complete the construction, we
decompose each crescent region into triangles and caps.
A crescent region with t ≥ 2 vertices on its concave
boundary can be decomposed into t − 2 triangles and
at most t − 1 caps. The case t = 2 is vacuous, as the
crescent is then a cap, so assume that t ≥ 3. To get such
a decomposition, take an extreme edge of the concave
polygonal chain, and extend it till it intersects the con-
vex boundary of the crescent, at some point w, thereby
chopping off a cap from the crescent. We then create the
triangles that w spans with all the concave edges that
it sees, and then recurse on the remaining crescent; see

figure on the right. It is easily seen that this results in
t− 2 triangles and at most t− 1 caps, as claimed. After
this fix-up, we get a decomposition of the union into
triangles and caps.

2.3. Analysis The correctness of the construction is
established in the following lemma.

Lemma 2.1. The pseudo-trapezoids in T ∗
i and the edges

of Ei satisfy the following invariants:

(I1) The segments in Ei do not cross one another.

(I2) Each subarc γ of ∂U(Di) with endpoints u and v
has an associated convex polygonal arc γ∗ ⊆ Ei

between u and v. The chains γ∗ are pairwise
openly disjoint, and their union is the boundary
of a polygonal region U∗

i ⊆ U(Di).

(I3) The pseudo-trapezoids in T ∗
i are pairwise openly

disjoint, and each of them is fully contained in
some pseudo-disk of Di.

(I4) U(Di) \
⋃

τ∗∈T ∗
i

τ∗ consists of a collection of pair-

wise openly disjoint holes. Each hole is a re-
gion between two x-monotone convex chains or
between two x-monotone concave chains, with
common endpoints, where either both chains are
polygonal, or one is polygonal and the other is
a portion of the boundary of a single pseudo-
disk that lies on ∂U(Di) (i.e., a crescent). The
union of the crescents is U(Di) \ U∗

i . Each
hole, of either kind, is fully contained in some
pseudo-disk Dj, j ≤ i.

We refer to holes of the former (resp., latter) kind
in (I4) of the lemma as internal polygonal holes (resp.,
external half-polygonal holes).

Proof : We prove that these invariants hold by induction
on i. The invariants clearly hold for T ∗

1 after starting
the process with D0

1 = D1. Concretely, T ∗
1 consists

of the single degenerate pseudo-trapezoid uv, where u
and v are the leftmost and rightmost points of D1,
respectively, and E1 = {uv}. The (external half-
polygonal) holes are the portions of D1 lying above and
below uv. It is obvious that (I1)–(I4) hold in this case.

Suppose the invariants hold for T ∗
i−1 and Ei−1. We

first prove (I1) for Ei. By construction, the new edges
in Ei \ Ei−1 form a collection of convex or concave
polygonal chains, where each chain γ∗ starts and ends
at vertices u, v of either ∂D0

i or ∂U(Di−1). Moreover,
by construction, u and v are connected to one another
by a single arc γ of the respective boundary ∂D0

i or
∂U(Di−1) (γ is either an exposed or a hidden subarc
of ∂U(Di−1), or a subarc of ∂Di along ∂D0

i ), and the



region Rγ between γ and γ∗ does not contain any vertex
of Vi in its interior.

Clearly, the edges in a single chain γ∗ do not cross
one another. Suppose to the contrary that an edge e of
some (new) chain γ∗ is crossed by an edge e′ of some
other (new or old) chain. Then either e′ has an endpoint
inside Rγ , contradicting the construction, or e′ crosses
γ too, to exit from Rγ , which again is impossible by
construction, since no edge crosses ∂D0

i or ∂U(Di−1).
This establishes (I1).

(I2) follows easily from the construction and from
the preceding discussion. Note that, for each polygonal
chain γ∗, each of its endpoints is also an endpoint of
exactly one neighboring arc γ̂∗, so the union of these
arcs consists of closed polygonal cycles, which bounds
some polygonal region, which we call U∗

i , as claimed.
By construction, the vertical boundaries of the new

polygonal pseudo-trapezoids of D0
i are contained in D0

i

and do not cross any boundaries of other polygonal
pseudo-trapezoids. This, together with (I1), imply that
the new pseudo-trapezoids are pairwise openly disjoint,
and are also openly disjoint from the polygonal pseudo-
trapezoids in T ∗

i−1. It is also clear from the construction
that each new pseudo-trapezoid σ∗ ∈ T ∗

i \ T ∗
i−1 is

contained in Di. So (I3) follows.
Finally consider (I4). Each new hole that is created

when adding D0
i is of one of the following kinds:

(a) The hole is a region of the form Rτb or Rτt , for some
τ ∈ Ti \ Ti−1, such that Rτb or Rτt is contained in τ (if
it lies outside τ , it becomes part of τ∗). Such a hole is
contained in Di, and is bounded by two concave or two
convex chains, one of which is polygonal, and the other
is part of ∂D0

i .

(b) The hole is a region of the form Rγ , for an exposed
subarc γ of an arc of ∂U(Di−1), that got delimited by
a new vertex (an endpoint of some arc of ∂Di). These
holes are similar to those of type (a).

(c) The hole was part of a hole of type (a) or (b) in
U(Di−1), bounded by an arc γ of ∂U(Di−1) and its
associated polygonal chain γ∗, so that γ has been split
into several subarcs (some hidden and some exposed)
when adding Di. For each of these subarcs ζ, we
construct an associated polygonal chain ζ∗, either as a
top or bottom side of some polygonal pseudo-trapezoid
τ∗ (constructed from a pseudo-trapezoid τ that has ζ
as its top or bottom side), or as the polygonalization of
an exposed subarc. The concatenation of the chains ζ∗

results in a convex polygonal chain that is contained in
Rγ and connects the endpoints of γ. The region enclosed
between γ∗ and ζ∗ is an internal polygonal hole. Again,
holes of type (c) can be seen all over Figure 2.3; for
example, see the top part of D1 in Figure 2.3(2’).

Holes of type (a) and (b) are boundary half-

polygonal holes, whereas holes of type (c) are internal
polygonal holes. Using the induction hypothesis that
(I4) holds for U(Di−1), we get that the union of the
new holes of type (a) and (b), together with the old
holes of type (a) and (b) corresponding to subarcs of
∂U(Di) ∩ ∂U(Di−1), is U(Di) \ U∗

i . This completes the
proofs of (I1)–(I4).

Lemma 2.2. (a) Let D be a collection of m ≥ 3
planar convex pseudo-disks, whose union covers the
plane. Then there exists a set V of O(m) points and
a triangulation T of V , such that each triangle ∆ ∈ T
is fully contained in some member of D.
(b) If U(D) is not the entire plane, it can be partitioned
into O(m) pairwise openly disjoint triangles and caps,
such that each triangle an cap is fully contained in some
member of D.

Proof :Since the number of vertices of M is O(m),
Euler’s formula implies that |Em| = O(m) too. It
is easily seen from the construction and from the
invariants of Lemma 2.1, that each face of M is fully
contained in some original pseudo-disk, so the same
holds for each triangle. This establishes (a). Part (b)
follows in a similar manner from the construction.

2.4. Efficient construction of the triangulation
With some care, the proof of Lemma 2.2 can be turned
into an efficient algorithm for constructing the required
triangulation. This is a major advantage of the new
proof over the older one. The algorithm is composed of
building blocks that are variants of well-known tools, so
we only give a somewhat sketchy description thereof

2.4.1. Construction of the original pseudo-
trapezoids. (A similar approach is mentioned in Ma-
toušek et al. [40].) The construction proceeds by insert-
ing the pseudo-disks of D in a random order, which, for
simplicity, we denote as D1, . . . , Dm. (Unlike the deter-
ministic construction given above, here we do not guar-
antee that each D0

i has constant complexity. Neverthe-
less, as argued below, the random nature of the insertion
order guarantees that this property holds on average.)
As before, we put Di = {D1, . . . , Di} for each i, and we
maintain U(Di) after each insertion of a pseudo-disk. To
do so efficiently, we maintain a vertical decomposition
Ki of the complement Uc

i of the union U(Di) into ver-
tical pseudo-trapezoids, and maintain, for each τ ∈ Ki,
a conflict list, consisting of all the pseudo-disks Dj that
have not yet been inserted (i.e., with j > i), and that
intersect τ .

Since the number of pseudo-trapezoids in the de-
composition of the complement of the union of any k
pseudo-disks is O(k) (an easy consequence of the linear



bound on the union complexity [31]), a simple applica-
tion of the Clarkson-Shor technique (similar to those
used to analyze many other randomized incremental
algorithms) shows that the expected overall number
of these “complementary” pseudo-trapezoids that arise
during the construction is O(m), and that the expected
overall size of their conflict lists is O(m logm).

When we insert a pseudo-diskDi, we retrieve all the
pseudo-trapezoids of Ki−1 that intersect Di. The union⋃

τ∈Ki−1
(Di ∩ τ) is precisely D0

i . For each τ ∈ Ki−1,

the intersection Di ∩ τ decomposes τ into O(1) sub-
trapezoids (this follows from the property that each of
the four sides of τ crosses ∂Di at most twice), some
of which lie inside Di (and, as just noted, form D0

i ),
and some lie outside Di, and form part of the new
complement of the union Uc

i .
Typically, the new pseudo-trapezoidal pieces are not

necessarily real pseudo-trapezoids, as they may contain
one or two “fake” vertical sides, because the feature that
created such a side got “chopped off” by the insertion of
Di, and is no longer on the pseudo-trapezoid boundary.
In this case, we “glue” these pieces together, across
common fake vertical sides, to form the new real pseudo-
trapezoids. We do it both for pseudo-trapezoids that
are interior to Di, and for those that are exterior.
(This gluing step is a standard theme in randomized
incremental constructions; see, e.g., [46].) This will
produce (a) the desired vertical decomposition of D0

i ,
and (b) the vertical decomposition Ki of the new union
complement Uc

i . The conflict lists of the new exterior
pseudo-trapezoids (interior ones do not require conflict
lists) are assembled from the conflict lists of the pseudo-
trapezoids that have been destroyed during the insertion
of Di, again, in a fully standard manner.

To recap, this procedure constructs the vertical
decompositions of all the regions D0

i , so that the overall
expected number of these pseudo-trapezoids is O(m),
and the total expected cost of the construction is
O(m logm).

2.4.2. Construction of the polygonal chains and
the triangulation. By (I2) of Lemma 2.1, before Di

was inserted, each arc γ of ∂U(Di−1) has an associated
convex polygonal arc γ∗ with the same endpoints. The
union of the arcs γ∗ forms a (possibly disconnected)
polygonal curve within U(Di−1), which partitions it
into two subsets, the interior, U∗

i , which is disjoint
from ∂U(Di−1) (except at the endpoints of the arcs γ

∗),
and the exterior, which is simply the (pairwise openly
disjoint) union of the regions Rγ .

To construct the triangulation, we maintain, for
each polygonal chain γ∗ of the boundary between the
interior and the exterior, a list of its segments, sorted
in left-to-right order of their x projections, in a binary

search tree (since the leftmost and rightmost points
of each pseudo-disk are vertices in the construction,
each chain γ∗ is x-monotone). We also maintain a
triangulation of the interior. When we add Di we
update the lists representing the arcs γ and extend
the triangulation of the interior to cover the “newly
annexed” interior, as follows.

WhenDi is inserted, some of the arcs γ of ∂U(Di−1)
are split into several subarcs, some of which still appear
on ∂U(Di) (call them, as above, exposed arcs), while
others are now contained inDi (call them hidden). Each
endpoint of any new subarc is either an intersection
point of ∂Di with ∂U(Di−1), or an endpoint of a vertical
segment erected from some other vertex of D0

i . (This
also includes the case where an arc of ∂U(Di−1) is
fully “swallowed” by Di and becomes hidden in its
entirety.) In addition, ∂U(Di) contains fresh arcs, which
are subarcs of ∂Di along ∂D0

i . The fresh subarcs and
the hidden subarcs form the top and bottom sides of
the new pseudo-trapezoids in the decomposition of D0

i

(where each top or bottom side may be either fresh or
hidden). To obtain the top or bottom sides of some new
pseudo-trapezoids we may have to concatenate several
previously exposed subarcs of ∂U(Di−1). These subarcs
are connected at vertices of ∂U(Di−1) which are not
intersection points of the arrangement but intersections
of vertical sides of pseudo-trapezoids which we already
generated within U(Di−1).)

δ
δ∗

γ

v

u

γ∗
u′ v′

Figure 2.4

The algorithm needs to construct, for each new ex-
posed, hidden, and fresh arc γ, its associated polygonal
curve γ∗. It does so in two stages, first handling ex-
posed and hidden arcs, and then the fresh ones. Let
γ be an exposed or hidden subarc, let δ denote the
arc of ∂U(Di−1), or the concatenation of several such
arcs, containing γ, and let δ∗ be its associated polygonal
chain, or, in case of concatenation, the concatenation of
the corresponding polygonal chains. As already noted,
since the x-extreme points of each pseudo-disk bound-
ary are vertices in the construction, δ and δ∗ are both
x-monotone.

If γ = δ, we do nothing, as γ∗ = δ∗. Otherwise,
let u and v be the respective left and right endpoints



of γ. If uv does not intersect δ∗ then γ∗ is just the
segment uv. Otherwise, γ∗ is obtained from a portion
of δ∗, delimited on the left by the point u′ of contact of
the right tangent from u to δ∗, and on the right by the
point v′ of contact of the left tangent from v to δ∗, to
which we append the segments uu′ on the left and v′v
on the right. See Figure 2.4 for an illustration.

After applying this procedure to every subarc of the
old δ, the endpoints of δ (and of δ∗) are now connected

by a new convex polygonal chain δ̂∗, which visits each
of the new vertices along δ and lies in between δ and δ∗.
The region between δ̂∗ and δ∗ is a new interior polygonal
hole, and we triangulate it, e.g., into vertical trapezoids,
by a straightforward left-to-right scan.

Recall that some arcs τb and τt of new trapezoids
τ may be concatenations of several hidden subarcs γi
(connected at vertices which are not vertices of new
trapezoids as explained above). For each such arc, say
τb, we obtain τ∗b by concatenating the polygonal chains
γ∗
i in x-monotone order.

We next handle the fresh arcs. Each such arc is
the top or bottom side of some new pseudo-trapezoid
τ , say it is the bottom side τb. If τt is also fresh,
then τ is a convex pseudo-trapezoid, and we replace
each of τb, τt by the straight segment connecting its
endpoints. If τt is hidden, we take its associated chain
τ∗t , which we have constructed in the preceding stage,
and form τ∗b from it using the same procedure as above:
Letting u and v denote the endpoints of τb, we check
whether uv intersects τ∗t . If not, τ∗b is the segment uv.
Otherwise, we compute the tangents from u and v to τ∗t ,
and form τ∗b from the tangent segments and the portion
of τ∗t between their contact points. We triangulate each
polygonal pseudo-trapezoid τ once we have computed
τ∗b and τ∗t .

2.4.3. Further implementation details. The actual
implementation of the construction of the polygonal
chains γ∗ proceeds as follows. Given a new arc γ,
which is a subarc of an old arc δ, we construct γ∗

from δ∗ as follows. Let u and v be the endpoints of
γ. We (binary) search the list of edges of δ∗ for the
edge eu whose x-projection contains the x-projection
of u and for the edge ev whose x-projection contains
the x-projection of v. We then walk along the list
representing δ∗ from eu towards ev until we find the
point u′ of contact of the right tangent from u to δ∗.
We perform a similar search from ev towards eu to find
v′. (If we have traversed the entire portion of δ∗ between
eu and ev without encountering a tangent, we conclude
that uv does not intersect δ∗, and set γ∗ := uv.)
We extract the sublist between u′ and v′ from δ∗ by
splitting δ∗ at u′ and v′ and we insert the segments
uu′ and vv′ at the endpoints of this sublist to obtain

γ∗. We create the polygonalization of fresh arcs from
their hidden counterparts in an analogous manner. Note
that we destroy the representation of δ∗ to produce the
representation of γ∗. So in case the arc δ is split into
several new subarcs, γi, some care has to be taken to
maintain a representation of the remaining part of δ∗

after producing each γ∗
j from which we can produce the

representation of the remaining subarcs γi.
For the analysis, we note that to produce γ∗ we

perform two binary searches to find eu and ev, each
of which takes O(logm) time, and then perform linear
scans to locate u′ and v′. Each edge e traversed by
these linear scans (except for O(1) edges) drops off the
boundary of the interior so we can charge this step to
e and the total number of such charges is linear in the
size of the triangulation.

2.5. The result
The computation model. In the preceding de-

scription, we implicitly assume a convenient model of
computation, in which each primitive geometric opera-
tion that is needed by the algorithm, and that involves
only a constant number of pseudo-disks (e.g., deciding
whether two pseudo-disks or certain subarcs thereof in-
tersect, computing these intersection points, and sort-
ing them along a pseudo-disk boundary) takes constant
time. In our application, described in the next section,
the pseudo-disks are convex polygons, each having O(k)
edges. In this case, each primitive operation can be im-
plemented in O(log k) time, so the running time should
be multiplied by this factor.

The preceding analysis implies the following theo-
rem.

Theorem 2.1. We can construct a triangulation of the
union of m pseudo-disks covering the plane, with O(m)
triangles, such that each triangle is contained in a single
pseudo-disk, in O(m logm) randomized expected time,
in a suitable model of computation where every primitive
operation takes O(1) time. If the union does not cover
the plane, it can be decomposed into O(m) triangles and
caps, with similar properties and at the same asymptotic
cost.

Corollary 2.1. Given m convex polygons that are
pseudo-disks, that cover that plane, each with at most
k edges, one can compute a confined triangulation of
the plane, in O(m logm log k) expected time.

2.6. Extension to general convex shapes Theo-
rem 2.1 uses only peripherally the property that the in-
put shapes are pseudo-disks, and a simple modification
(of the analysis, not of the construction itself) allows



us to extend it to general convex shapes. Specifically,
let D be a collection of m simply-shaped convex regions
in the plane, such that the union complexity of any i
of them is at most u(i), where the complexity is mea-
sured, as before, by the number of boundary intersec-
tion points on the union boundary, and where u(·) is
a monotone increasing function satisfying u(i) = Ω(i).
We assume that the regions in D are simple enough so
that the boundaries of any pair of them intersect only
a constant number of times, and so that each primitive
operation on them can be performed in reasonable time
(which we take to be O(1) in the statement below). The
interesting cases are those in which u(i) is small (that
is, near-linear). They include, e.g., the case of fat tri-
angles, or a low-density collection of convex regions; see
[13] and references therein.

Deploying the algorithm of Theorem 2.1 results in
the desired confined triangulation of U(D). Extending
the analysis to this general setup, we obtain the follow-
ing theorem.

Theorem 2.2. Let D be a collection of n convex shapes
in the plane, such that the union complexity of any
i of them is at most u(i), where u(i) is a monotone
increasing function with u(i) = Ω(i). Then one can
compute, in O(u(m) logm) expected time, a confined
triangulation of U(D) with O(u(m)) triangles and caps
(or just triangles if the union covers the entire plane),
under the assumption that every primitive geometric
operation takes O(1) time.

3. Construction of shallow cuttings and
approximate levels

We begin by presenting a high-level description of the
technique, filling in the technical details in subsequent
subsections. The high-level part does not pay too much
attention to the efficiency of the construction; this is
taken care of later in this section.

3.1. Sketch of the construction Assume that, for
a given parameter r, we want to approximate level
k = n/r of A(H). Note that when r is too close to n,
that is, when k is a constant, we can simply compute the
k-level explicitly and use it as its own approximation.
The complexity of such a level is O(n), and it can be
computed in near-linear time [18, 12]. We therefore
assume in the remainder of this section that r � n.

Put k1 := (1 + c)n/r and k2 := (1 + 2c)n/r, for
a suitable sufficiently small (but otherwise arbitrary)
constant fraction c. The analysis of Clarkson and
Shor [25] implies that the overall complexity of L≤k2

(the first k2 levels of A(H)) is O(nk2). This in turn
implies that there exists an index k1 ≤ ξ ≤ k2 for

which the complexity |Lξ| of Lξ is O(nk2/(cn/r)) =
O(nk/c) = O(n2/(cr)). We fix such a level ξ, and
continue the construction with respect to Lξ (slightly
deviating from the originally prescribed value of k).
However, to simplify the notation for the current part
of the analysis, we use k to denote the nearby level ξ,
and will only later return to the original value of k.

The next step is to decompose the xy-projection
of the k-level Lk into a small number of connected
polygons, from which the approximate level will be
constructed. We first review the existing machinery,
already mentioned in the introduction, for this step.

Decomposing a level into a small number of
polygons. Let H, k, and Lk be as above. It is conve-
nient to assume that the faces of Lk are triangles; this
can be achieved by triangulating each face, without af-
fecting the asymptotic complexity of Lk. In particular,
the k-level (or, rather, its xy-projection) can then be
interpreted as a planar, triangulated and biconnected
graph (a graph is biconnected, if any pair of vertices are
connected by at least two vertex-disjoint paths).

As has been discovered over the years, planar graphs
can be efficiently decomposed into smaller pieces that
are well behaved. This goes back to the planar sepa-
rator theorem of Lipton and Tarjan [35], Miller’s cycle
separator theorem [41], and Frederickson divisions [27],
and has eventually culminated in the fast κ-division al-
gorithm of Klein et al. [32]. Specifically, for a (spe-
cific drawing of a) planar triangulated and biconnected
graph G with N vertices, and for a parameter κ < n,
a κ-division of G is a decomposition of G into sev-
eral connected subgraphs G1, . . . , Gm, such that (i)
m = O(N/κ); (ii) each Gi has at most κ vertices; (iii)
each Gi has at most O(

√
κ) boundary vertices, namely,

vertices that belong to at least one additional subgraph;
and (iv) each Gi has at most O(1) holes, namely, faces
of the induced drawing of Gi that are not faces of G (as
they contain additional edges and vertices of G). Such

a division can be computed in O(N) time [32].2

The construction, continued. We set

t := (cn/r − 6)/12;

since r � n we have t > 1. We apply the planar
subdivision algorithm of [32, 27], as just reviewed, and
construct a t2-division of the xy-projection L′

k of Lk,
that is, of the planar graph consisting of the vertices
and edges of L′

k. This subdivision produces

m := O(|Lk|/t2) = O

(
n2/(cr)

c2n2/r2

)
= O(r/c3)

2The algorithm of [32] in fact constructs k-divisions for a

geometrically increasing sequence of values of the parameter k,
in overall O(N) time.



connected polygons, P1, . . . , Pm, with pairwise disjoint
interiors, whose union covers the entire xy-plane, and
whose edges are projections of (some) edges of Lk.

By construction, each Pi is connected and has at
most O(t) edges (and also contains O(t2) edges and
vertices of the k-level in its interior). Let Ci denote
the convex hull of Pi, for i = 1, . . . ,m. As we show in
Corollary 3.1 in Section 3.3 below, C := {C1, . . . , Cm} is
a collection of m (possibly unbounded) convex pseudo-
disks whose union is the entire plane.

We then apply Lemma 2.2 to C and obtain a set S
of O(m) points in the xy-plane, and a triangulation T
of S, such that each triangle ∆ ∈ T is fully contained
in some hull Ci in C. For a point p in the xy-plane,
we denote by ↑k(p) the lifting of p to the k-level, i.e.,
the point on the level that is co-vertical with p. Let T ′

denote the corresponding collection of triangles in R3,
given by T ′ = {↑k(∆) | ∆ ∈ T}. For a bounded triangle
∆, ↑k(∆) is the triangle spanned by the lifted images of
the three vertices of ∆. We lift an unbounded triangle
∆ with vertices p and q by lifting pq to ↑k(p)↑k(q) as
before, and lifting each of its rays, say [p,∞), to a ray
↑([p,∞)) emanating from ↑k(p) in a direction parallel
to the plane which is vertically above [p,∞) at infinity.
If the liftings ↑([p,∞)), and ↑([q,∞)), and the edge
↑k(p)↑k(q) are not on the same plane, we add another
ray, say r, emanating from p parallel to [q,∞). We
add to T ′ the unbounded triangle spanned by ↑([q,∞)),
↑k(p)↑k(q), and r, and the unbounded wedge spanner
by r and ↑([p,∞)).

Note that the triangles of T ′ are in general not
contained in Lk. However, for each triangle ∆′ ∈ T ′,
its vertices lie on Lk, and, as we show in Lemma 3.4
below, at most 12t + 6 planes of H can cross ∆′. This
implies, returning now to the original value of k, that
∆′ fully lies between the levels

ξ ± (12t+ 6) = ξ ± cn/r

of A(H). In particular, ∆′ lies fully above the level

ξ − cn/r ≥ k1 − cn/r = n/r = k,

and fully below the level

ξ + cn/r ≤ k2 + cn/r = (1 + 3c)n/r = (1 + 3c)k.

The lifted triangulation T ′ forms a polyhedral terrain
that consists of O(r/c3) triangles and is contained
between the levels k = n/r and (1 + 3c)k. That is,
for a given ε > 0, choosing c = ε/3 makes T ′ an ε-
approximation of Lk, and we obtain the following result.

Theorem 3.1. Let H be a set of n non-vertical planes
in R3 in general position, and let r ≤ n, ε > 0 be

given parameters. Then there exists a polyhedral terrain
consisting of O(r/ε3) triangles, that is fully contained
between the levels n/r and (1 + ε)n/r of A(H).

To turn this approximate level into a shallow cut-
ting, replace each ∆′ ∈ T ′ (including each of the
unbounded triangles just constructed) by the semi-
unbounded vertical prism ∆∗ consisting of all the points
that lie vertically below ∆′. This yields a collection Ξ
of prisms, with pairwise disjoint interiors, whose union
covers L≤n/r, so that, for each prism τ of Ξ, we have
(a) each vertex of τ lies at level (at least k and) at most
(1 + 2

3ε)k, and (b) the top triangle of τ is crossed by
at most 1

3εk planes of H. Hence, as is easily seen, each
prism of Ξ is crossed by at most (1 + ε)n/r planes, so
Ξ is the desired shallow cutting. That is, we have the
following result.

Theorem 3.2. Let H be a set of n non-vertical planes
in R3 in general position, let k < n and ε > 0 be
given parameters, and put r = n/k. Then there exists
a k-shallow ((1 + ε)/r)-cutting of A(H), consisting of
O(r/ε3) vertical prisms (unbounded from below). The
top of each prism is a triangle that is fully contained
between the levels k and (1 + ε)k of A(H), and these
triangles form a polyhedral terrain (which thus approx-
imates the k-level Lk up to a relative error of ε).

3.2. Efficient implementation We next turn our
constructive proof into an efficient algorithm, and show:

Theorem 3.3. One can construct the k-shallow ((1 +
ε)/r)-cutting given in Theorem 3.2, or, equivalently, the
ε-approximating terrain of the k-level in Theorem 3.1,
in O(n+ r2ε−6 log3 r) randomized expected time. Com-
puting the conflict lists of the vertical prisms takes an
additional O(n log r) time.

Proof : Recall that k = n/r. Let (H,R) denote the
range space where each range in R corresponds to some
vertical segment or ray e, and is equal to the subset
of the planes of H that are crossed by e. Clearly,
(H,R) has finite VC dimension (see, e.g., [47]). We
draw a random sample S of n′ = br

ε2 log r planes from
H, where b is a suitable constant. For b sufficiently
large, such a sample is a relative

(
1
r , ε
)
-approximation

for (H,R), with probability ≥ 1 − 1/rO(1); see [29] for
the definition and properties of relative approximations.
This means that each vertical segment that intersects
x ≥ n/r planes of H intersects between (1 + ε)n

′

n x

and (1− ε)n
′

n x planes of S, and each vertical segment
that intersects x < n/r planes of H intersects at most
n′

n x + εn′

n r planes of S. (This holds, with probability

≥ 1− 1/rO(1), for all vertical segments.)



The strategy is to use (the smaller) S instead of H
in the construction, as summarized in Theorem 3.2, and
then argue that a suitable approximate level in A(S) is
also an approximation to level k in A(H). Set

k′ =
b(1 + ε)

ε2
log r, and t′ =

b(1 + ε)

ε
log r = εk′.

We apply Theorem 3.2 so that it approximates level k′

in A(S). For this, we choose a random index ξ in the
range [k′, k′+t′], construct the ξ-level of A(S), and then
apply the construction to that level.

Before doing that, we first show that the ξ-level is
a good approximation to level k in A(H). Consider a
point p on level k of A(H). By the property specified
above of a relative relative

(
1
r , ε
)
-approximation, it

follows that the level of p in A(S) is at most (1 +
ε)(n′/n)(n/r) = k′. Similarly, let p be a point at level
larger than say (1+4ε)k of A(H). Then the level of p in
A(S) is at least (1− ε)(n′/n)(1 + 4ε)(n/r) ≥ k′ + t′ for
ε < 1/5. Since this hold with high probability, for every
point p, we conclude that the entire ξ-level is between
level k and (1 + 4ε)k of A(H).

We can now apply the machinery in Theorem 3.2.
The first step in this analysis is to construct the ξ-level
in A(S). Rather than just constructing that level, we
compute all the first k′+ t′ levels, using an algorithm of
Chan [16], which takes

O(n′ log n′ + n′(k′)2) = O

(
r log r

ε2

(
log

r

ε
+

log2 r

ε4

))
= O

(
ε−6r log3 r

)
expected time. We can then easily extract the desired
(random) level ξ. In expectation (over the random
choice of ξ), the complexity of the ξ-level is

n1 = O
(
n′(k′)2/(εk′)

)
= O(n′k′/ε) = O

( r

ε5
log2 r

)
,

and we assume in what follows that this is indeed the
case.

We now implement the construction in a straight-
forward way. We already have the random ξ-level. We
project it onto the xy-plane, and construct a (t′)2-
division of the projection, in O(n1) time. It consists
of

m := O(n1/(t
′)2) = O

(
n′

ε3k′

)
= O(r/ε3)

pieces, each with O(t′) = O
(
1
ε log r

)
edges. We com-

pute their convex hulls and construct the corresponding
confined triangulation, in overall time

O(m logm log t′) = O

(
r

ε3
log

r

ε
logO

(
1

ε
log r

))
.

Finally, we need to lift the vertices of the resulting
triangles to the ξ-level of A(S). This can be done, in

brute force, inO(r|S|) = O
(

r2

ε2 log r
)
time. We obtain a

terrain T ′, with the claimed number of triangles, which
is an ε-approximation of the k′-level of A(S), and which
lies above that level. That is the level in A(S) of
each point on T ′ is between k′ and (1 + ε)(k′ + t′) =
(1+ε)2k′ < (1+3ε)k′ (for ε < 1/2). We now repeat the
preceding analysis, with 3ε replacing ε, and conclude
that T ′ lies fully between level k and level (1 + 12ε)k
of A(H). A suitable scaling of ε gives us the desired
approximation in A(H).

Combining this with the preceding analysis, we
conclude that (with high probability) T ′ is also a (2ε)-
approximation for the k-level in A(H). This at last
completes the construction. Its overall expected cost is
O(n+ ε−6r2 log3 r).

The final stage is to compute for every vertical
prism of T ′ the planes of H that intersect it (i.e., the
prism’s conflict list). To this end, we put the vertices of
T ′ into the range reporting data-structure of Chan [16]
– specifically, after preprocessing, in O(r log r) expected
time, given a query half-space h+, one can report the
points h+ ∩ T ′ in O(log r + |h ∩ T ′|) expected time.3

We query this data structure with every plane h ∈ H,
and for each vertex x of T ′ which is reported we add
h to the conflict lists of the prisms incident to x. This
take O(n log r) since the total size of the conflict lists is
linear.

We now proceed to fill in the details of the various
steps of the construction, and of the corresponding
algorithm.

3.3. The convex hulls of pairwise openly disjoint
polygons are pseudo-disks

Lemma 3.1. Let P and P ′ be two connected polygons
in the plane with disjoint interiors, and let C and C ′

denote their respective convex hulls. Then ∂C and ∂C ′

cross each other at most twice.

Proof : For simplicity of exposition, we assume that
P and P ′ are in general position, in a sense that will
become more concrete from the proof. It is easily argued
that this can be made without loss of generality.

Assume, for the sake of contradiction, that ∂C and
∂C ′ cross more than twice (in general position, the
boundaries do not overlap). This implies that each
of ∂C \ C ′, ∂C ′ \ C is disconnected, and thus there
exist four vertices u,w, v, and z of the boundary of
C∗ = CH(C ∪ C ′), that appear along ∂C∗ in this

3The paper of Chan [16] does not use shallow cuttings.
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Figure 3.1: Illustration of the proof of Lemma 3.1.

circular order, so that u, v ∈ ∂C \C ′ and w, z ∈ ∂C ′ \C.
See Figure 3.1. Clearly, u and v are also vertices of P ,
and w and z are vertices of P ′.

We show that this scenario leads to an impossible
planar drawing of K5. For this, let o be an arbitrary
point outside C∗. Connect o to each of u, v, w, z by
noncrossing arcs that lie outside C∗, and connect u,w, v,
and z by the four respective portions of ∂C∗ between
them. Finally, connect u to v by a path contained
in P , and connect w to z by a path contained in
P ′. The resulting ten edges are pairwise noncrossing,
where, for the last pair of edges, the property follows
from the disjointness of (the interiors of) P and P ′.
The contradiction resulting from this impossible planar
drawing of K5 establishes the claim.

(Note that the above proof does not require the poly-
gons to be simply connected.)

Corollary 3.1. Let P = {P1, . . . , Pm} be a set of m
pairwise openly disjoint connected polygons in the plane,
and let Ci denote the convex hull of Pi, for i = 1, . . . ,m.
Then C := {C1, . . . , Cm} is a collection of m convex
pseudo-disks.

3.4. Crossing properties of the planar subdivi-
sion e set t := (cn/r − 6)/12; since r � n we have
t > 1. We apply the planar subdivision algorithm of
[32, 27], as just reviewed, and construct a t2-division of
the xy-projection L′

k of Lk, that is, of the planar graph
consisting of the vertices and edges of

Recall that our construction computes a t2-division
of the xy-projection L′

k of Lk where t := (cn/r − 6)/12
(recall that k = n/r, r � n). Our goal in the rest of this
section is to show that the lifting ↑(∆) of any triangle ∆
contained in the convex hull C of a subgraph (“piece”)
P of this decomposition intersects at most ck planes of
H. We prove this for bounded triangles, the proof for
unbounded triangles is similar.

Recall that for a point p in the xy-plane, we denote
by ↑k(p) the (unique) point that lies on Lk and is co-
vertical with p. The crossing distance cr(p, q) between
any pair of points p, q ∈ R3, with respect to H, is the
number of planes of H that intersect the closed segment
pq. The crossing distance is a quasi-metric, in that it
is symmetric and satisfies the triangle inequality. For a
connected set X ⊆ R3, the crossing number cr(X) of
X is the number of planes of H intersecting X (thus
cr(p, q) is the crossing number of the segment pq).

Lemma 3.2. Let p, q, r be three collinear points in the
xy-plane, such that q ∈ pr, and let p′ = ↑k(p),
q′ = ↑k(q), and r′ = ↑k(r); these points, that lie on
the k-level, are in general not collinear. Let q′′ be
the intersection of the vertical line through q with the
segment p′r′. Then we have cr(q′′, q′) ≤ cr(p′, r′).

Proof : We have

cr(q′, q′′) = |level(q′)− level(q′′)| = |k − level(q′′)|
= |level(p′)− level(q′′)| ≤ cr(p′, q′′)

≤ cr(p′, r′).

Lk

p q r

p′

q′
r′

q′′

In what follows, we consider polygonal regions
contained in Lk, where each such regionR is a connected
union of some of the faces of Lk. The xy-projection
of R is a connected polygon in the xy-plane, and, for
simplicity, we refer to R itself also as a polygon.

Lemma 3.3. Let H be a set of n non-vertical planes in
R3 in general position. Let P ′ be a bounded connected
polygon with t edges that lies on the k-level Lk of A(H),
such that all the boundary edges of P ′ are edges of Lk.
Let p′ be a vertex of the external boundary of P ′, and let
q be any point in the convex hull C of the xy-projection
P of P ′. Then the crossing distance between p′ and
q′ = ↑k(q) is at most 4t+ 2.

q′′

q

q′
u′

v′

π2

π1

u
p′

p

v



Proof : Since q lies in C, we can find two points u, v
on the external boundary of P such that q ∈ uv. Put
q′ = ↑k(q), u′ = ↑k(u), and v′ = ↑k(v), and denote by q′′

the point that lies on the segment u′v′ and is co-vertical
with q. We have

cr(p′, q′) ≤ cr(p′, u′) + cr(u′, q′′) + cr(q′′, q′)

≤ cr(p′, u′) + cr(u′, v′) + cr(q′′, q′).

Let π1 and π2 be the two portions of the external
boundary that connect p′ and u′, and u′ and v′,
respectively. We may assume, without loss of generality,
that these portions do not overlap. Now, by Lemma 3.2,
we have cr(q′′, q′) ≤ cr(u′, v′), so we get

cr(p′, q′) ≤ cr(p′, u′) + 2cr(u′, v′)

≤ cr(π1) + 2cr(π2) ≤ 2cr(∂P ′),

where ∂P ′ denotes the external boundary of P ′.
To bound the number of planes of H that intersects

∂P ′, consider its vertices p1, p2, . . . , pt. Observe that
p1 is contained in three planes. For each i, pi lies on
at most two planes that do not contain pi−1 (there are
two such planes when pi−1pi is a diagonal of an original
face of the untriangulated level Lk). Furthermore, the
open segment pi−1pi does not intersect any plane that
does not intersect one of its endpoints. Therefore,
the number cr(∂P ′) of planes of H that intersect ∂P ′

satisfies cr(∂P ′) ≤ 3+2(t− 1) = 2t+1. (Note that this
analysis is somewhat conservative—for example, if the
polygon P ′ uses only original edges of the k-level, the
number drops to roughly t.)

Lemma 3.4. Let H be a set of n non-vertical planes in
R3 in general position, and let P ′ be a connected polygon
with t edges, such that P ′ lies on the k-level Lk of A(H),
and such that all the boundary edges of P ′ are edges
of Lk. Then, for any triangle ∆ = ∆pqr that is fully
contained in the convex hull of the xy-projection of P ′,
the number cr(∆′) of planes of H that cross the triangle
∆′ = ∆′p′q′r′, where p′ = ↑k(p), q′ = ↑k(q), r′ = ↑k(r),
is at most 12t+ 6.

Proof : Let p, q, r be the vertices of ∆, and put p′ =
↑k(p), q′ = ↑k(q), r′ = ↑k(r); that is, ∆′ = ∆p′q′r′. Let
w be any vertex of the external boundary of P ′. Any
plane that crosses ∆′ must also cross two of its sides.
Moreover, by Lemma 3.3 and the triangle inequality,

cr(p′, q′) ≤ cr(w, p′) + cr(w, q′) ≤ 2(4t+ 2),

and similarly for cr(p′, r′) and cr(q′, r′). Adding up
these bounds and dividing by 2, implies the claim.

4. Applications

4.1. Constructing layered cuttings of the whole
arrangement

4.1.1. Preliminaries. To construct such a cutting, we
need the following technical tools.

Lemma 4.1. Let H be a set of n non-vertical planes in
R3 in general position. The number of pairs of edges
(e, e′) of A(H) such that the xy-projections of e and
of e′ cross each other, and the unique vertical segment
connecting e and e′ crosses no other plane of H, is
O(n3).

Proof : The number of such pairs of edges is at most∑
c∈A(H) |c|2, where the sum ranges over all three-

dimensional cells c of A(H), and where |c| denotes the
overall complexity of c. This latter sum is known to be
O(n3)—it is an easy consequence of the Zone Theorem
in three dimensions; see Aronov et al. [14].

Lemma 4.2. Let H be a set of n non-vertical planes in
R3 in general position, and let q be a parameter. The
number of pairs of edges (e, e′) of A(H) such that the
xy-projections of e and of e′ cross each other, and the
unique vertical segment connecting e and e′ crosses at
most q planes of H, is O(n3q).

Proof : This follows by a standard application of the
Clarkson-Shor technique [25] to the bound stated in
Lemma 4.1.

4.1.2. Constructing a layered cutting of A(H) Let
H be a set of n non-vertical planes in R3 in general
position, and let r < n be a parameter. Our goal is to
construct a (1/r)-cutting of the entire A(H), of optimal
size O(r3). To do so, consider some fixed sequence of 2r
levels

k−1 < k−2 < k+1 < k−3 < k+2 < · · · < k−r < k+r−1 < k+r ,

where each pair of consecutive indices in this sequence
are at distance at least n/(4r). That is, we form a
sequence of overlapping intervals [k−1 , k

+
1 ], . . . , [k

−
r , k

+
r ],

so that each interval starts after the preceding one
starts and before it ends, and no three intervals have
a common index. We choose such a sequence in the
following random manner. Fix the intervals

I−1 = [1, n/(4r)]

I−i = [(i− 3/2)n/r + 1, (i− 5/4)n/r], for i = 2, . . . , r

I+i = [in/r + 1, (i+ 1/4)n/r], for i = 1, . . . , r − 1

I+r = [n− n/(2r) + 1, n− n/(4r)].

Then choose k−i (resp., k+i ) uniformly at random from
I−i (resp., I+i ), for i = 1, . . . , r.

The strategy goes as follows. For each index i =
1, . . . , r, consider the pair of levels Lk−

i
, Lk+

i
, which



we denote shortly and respectively as L−
i , L+

i , and
approximate both of them simultaneously, using the
following refinement of the algorithm summarized in
Theorem 3.1, with the same parameter t = cn/r for
all pairs, where c � 1/4 is a sufficiently small constant.
Project L−

i and L+
i onto the xy-plane, and overlap the

resulting planar maps M−
i , M+

i into a single map M∗
i .

Each vertex of M∗
i is either the projection of a vertex

of one of the levels L−
i , L

+
i , or a crossing point of a pair

of projected edges, one from each level.
We now apply the preceding analysis toM∗

i , and get
a triangulation Ti of the xy-plane, whose combinatorial
complexity is mi = O(|M∗

i |/t2). We lift its vertices
up to both levels L−

i , L
+
i , resulting in a corresponding

pair of triangulated terrains T−
i , T+

i , with identical xy-
projections. We claim that T−

i approximates L−
i and

T+
i approximates L+

i . Indeed, each boundary edge of a
piece of the t2-division of M∗

i is a portion of a projected
edge of either L−

i or L+
i . Hence, traversing any portion

of the boundary of a piece, we encounter at most O(t)
edges of each of the levels L−

i , L
+
i , and the arguments

used above imply that, when lifted to either of the two
levels, the crossing number of the corresponding path
is at most O(t), from which the claim follows. Each
triangle ∆ of Ti is lifted to a pair of triangles ∆− ∈ T−

i ,
∆+ ∈ T+

i , and we connect them by a vertical triangular
prism ∆∗ that has them as its bases. These prisms are
pairwise openly disjoint, and their union is the layer
Λi between T−

i and T+
i . Let Ξi denote the collection

of these prisms. For i = 1 (resp., i = r), we extend
each prism ∆∗ in Ξ1 (resp., in Ξr) to a semi-unbounded
prism that contains all the points vertically below (resp.,
above) the original ∆∗.

Repeating this process for each i = 1, . . . , r results
in a collection Ξ =

⋃
i Ξi of vertical prisms whose union

is the entire 3-space. These prisms are not pairwise
openly disjoint, but each point in R3 is contained in
the interiors of at most two prisms. Informally, the
layers Λ1, . . . ,Λr overlap in pairs (but no three layers
overlap), so that each layer is fully triangulated by
pairwise openly disjoint vertical prisms.

Lemma 4.3. The expected size of Ξ is O(r3).

Proof : The overall number of prisms in Ξ is, by
Theorem 3.1,

(4.1) |Ξ| = O

(
1

t2

r∑
i=1

|M∗
i |

)
.

We have |M∗
i | = O(|Lk−

i
| + |Lk+

i
| + |Xi|), where Xi is

the set of pairs (e, e′) of edges, where e is an edge of
Lk−

i
, e′ is an edge of Lk+

i
, and the xy-projections of e

and e′ cross each other.

Estimating
∑

i(|Lk−
i
| + |Lk+

i
|) is easy. Each level

of A(H) appears in this sum with probability at most
4r/n (note that some levels will never be chosen), so the
expected value is at most proportional to 4r/n times the
complexity of A(H), namely, O((r/n) · n3) = O(n2r).4

To estimate the expected value of
∑

i |Xi|, we note
that each pair (e, e′) that is counted in this sum belongs
to the set X0 of pairs that are accounted for in the
bound in Lemma 4.2, with q = 7n/(4r), but our pairs
constitute only a small subset of X0. Specifically, by
our choice of random levels, the probability of a pair
(e, e′) ∈ X0 to appear in one of the sets Xi is at most
proportional to

(4r/n)2 · |X0| = O
(
(r/n)2 · n3 · (n/r)

)
= O(n2r).

Substituting the separate bounds obtained so far in
Eq. (4.1), we get that the expected size of Ξ satisfies

|Ξ| = O

(
1

t2

r∑
i=1

|M∗
i |

)
= O

(
r2

n2
· n2r

)
= O(r3).

We therefore obtain the following result.

Theorem 4.1. For a set H of n planes in R3, and a
parameter r < n, one can construct a layered (1/r)-
cutting of A(H) of size O(r3). Specifically, we cover
space by a set Ξ of O(r3) vertical triangular prisms,
such that each point is covered at most twice, and each
prism is crossed by ≤ n/r planes of H.

4.2. Approximate halfspace range counting In
its dual setting, the problem is: Let H be a set of n
nonvertical planes in R3 in general position, and let
ε > 0 be an error parameter. We wish to preprocess H
into a data structure that supports queries of the form:
For a query point q, count the number of planes lying
below q, up to a multiplicative factor of 1± ε. That is,
if q lies at level k, the answer should be between (1−ε)k
and (1 + ε)k.

Letm = O(1/ε4/3). We construct and store the first
m levels of A(H) explicitly, each level as its own terrain.
Formally, we set ki = i, for i = 0, . . . ,m. Next, for
deeper levels, we use the approximate level construction.
Take the sequence of levels km+i := m(1 + ε)i, for
i = 1, . . . ,m′, where m′ =

⌈
log1+ε

n
m

⌉
≈ 1

ε log n. For
each i = m+1, . . . ,m+m′, approximate the level Lki

up
to an additive error of εki, let Ti denote the underlying
triangulation in the xy-plane of the projection of the
approximation, and let T ′

i denote the approximating

4Each vertex of A(H) appears in three consecutive levels, and

each edge appears in two, so features of A(H) may be drawn more
than once, but at most three times.



terrain, namely, the appropriate lifting of Ti. By
construction, it is easily checked that the terrains T ′

i

do not intersect one another, and are therefore stacked
on top of one another. To answer an approximate (dual)
halfspace range counting query with a point q, we simply
need to find two consecutive terrains T ′

i , T
′
i+1 so that q

lies between them, and return m(1 + ε)i−m, say, as the
approximate count, when i > m, or i itself otherwise.

By Theorem 3.1, for i = 1, . . . ,m′, the complexity
of Tm+i (and of T ′

m+i) is

|Tm+i| = O

(
n

ε3km+i

)
= O

(
n

ε3m(1 + ε)i

)
.

Summing these bounds over i, we get

m′∑
i=1

|Tm+i| = O
( n

ε3m

) m′∑
i=1

1

(1 + ε)i
= O

( n

ε4m

)
.

Storing the firstm levels of A(G) requires O(nm2) space
(this bounds their overall complexity), so both bounds
are O(n/ε8/3), for m = O(1/ε4/3). This bounds the
storage used by our data structure. The preprocessing
time is

To answer a query with some point q, we run a
binary search over the terrains T ′

i , and locate the xy-
projection of q in the relevant planar maps Ti. The total
cost is therefore

O

(
log

(
1

ε
log n

)
· log n

ε

)
.

Afshani and Chan [1] showed how to avoid the
binary search for finding the right level, using a data
structure of Kaplan et al. [30]. Afshani and Chan use
this latter structure to find a rough approximation to
the level. Specifically, they find an estimate ˆ̀ to the
level which is off by a factor of b with probability 1/b.
Then, instead of doing a binary search, they linearly
search for the right level, starting from the level in the
hierarchy closest to ˆ̀. The expected number of searches
that they perform is then O(1) and these searches take
O(log(n/(εk)) time. We can apply the exact same
technique using our approximate levels instead of the
more complicated refined shallow cuttings used in [1],
and then get the following.

Theorem 4.2. There exists a data structure of size
O(n/ε8/3), that can be constructed in near-linear ex-
pected time, and that can answer approximate level
queries in an arrangement of n planes in R3, up to a rel-
ative error of ε, in O(log(n/(εk))) expected time, where
k is the exact level of the query.

Acknowledgments. We thank János Pach for point-
ing out that a variant of Lemma 2.2 is already known.

References

[1] P. Afshani and T. M. Chan. On approximate
range counting and depth. Discrete Comput. Geom.,
42(1):3–21, 2009.

[2] P. Afshani and T. M. Chan. Optimal halfspace range
reporting in three dimensions. In Proc. 20th ACM-
SIAM Sympos. Discrete Algs. (SODA), pages 180–186,
Philadelphia, PA, USA, 2009. SIAM.

[3] P. Afshani, T. M. Chan, and K. Tsakalidis. Deter-
ministic rectangle enclosure and offline dominance re-
porting on the RAM. In Proc. 41st Internat. Colloq.
Automata Lang. Prog. (ICALP), volume 8572 of Lect.
Notes in Comp. Sci., pages 77–88. Springer, 2014.

[4] P. Afshani and K. Tsakalidis. Optimal deterministic
shallow cuttings for 3d dominance ranges. In Proc.
25th ACM-SIAM Sympos. Discrete Algs. (SODA),
pages 1389–1398, 2014.

[5] P. K. Agarwal. Partitioning arrangements of lines I:
an efficient deterministic algorithm. Discrete Comput.
Geom., 5:449–483, 1990.

[6] P. K. Agarwal. Partitioning arrangements of lines:
II. Applications. Discrete Comput. Geom., 5:533–573,
1990.

[7] P. K. Agarwal. Geometric partitioning and its applica-
tions. In J. E. Goodman, R. Pollack, and W. Steiger,
editors, Computational Geometry: Papers from the DI-
MACS Special Year, pages 1–37. Amer. Math. Soc.,
1991.

[8] P. K. Agarwal. Intersection and Decomposition Algo-
rithms for Planar Arrangements. Cambridge Univer-
sity Press, 1991.

[9] P. K. Agarwal, B. Aronov, T. M. Chan, and M. Sharir.
On levels in arrangements of lines, segments, planes,
and triangles. Discrete Comput. Geom., 19:315–331,
1998.

[10] P. K. Agarwal and P. K. Desikan. An efficient algo-
rithm for terrain simplification. In Proc. 8th ACM-
SIAM Sympos. Discrete Algs. (SODA), pages 139–147,
1997.

[11] P. K. Agarwal and J. Erickson. Geometric range
searching and its relatives. In B. Chazelle, J. E. Good-
man, and R. Pollack, editors, Advances in Discrete and
Computational Geometry, pages 1–56. Amer. Math.
Soc., 1999.

[12] P. K. Agarwal and J. Matoušek. Dynamic half-space
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[38] J. Matoušek. Reporting points in halfspaces. Comput.
Geom. Theory Appl., 2(3):169–186, 1992.
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Figure 4.1: Animation of algorithm – you would need Acrobat reader to see the animation - click the figure to
make it start.
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