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Abstract

Let S be a set ofn points inR?. Given an integed < k < n, we wish to find amaximally
separated subset A C S of sizek; this is a subset for which the minimum among t(rﬁe pairwise
distances between its points is as large as possible. Th&ateproblem associated with this problem
is to determine whether there exigtsC S, |I| = k, so that all(f;) pairwise distances ih are at least
2, say. This problem can also be formulated in terms of dis&rsection graphs: LdD be the set of
unit disks centered at the points 8f Thedisk-intersection graphG of D connects pairs of points by an
edge if the disks centered at those points interdestw forms an independent set in the gr&phThis
problem is known to be NP-Completefifis part of the input.

In this paper we first present a linear-time approximatigogthm for constant. Next we give

O(n*/3polylog(n)) exact algorithms for the casés= 3 andk = 4. We also present a simplef(V)-
time algorithm (as compared with the recent algorithm in {6 arbitrary values of.

1 Introduction

Let S be a set of: points in the plane. We are interested in finding a small subsd S such that the
pairwise distances between points/imre large. To be more precise, lebe a subset of of cardinality

k, for 1 < k < n. We define theseparation distance dse, (/) to be the minimum among th@) pairwise
distances between itspoints. We calll §-separated if dge, (1) > 6. We calll amaximally separated subset

of S if dsep(I) > dsep(I') for all subsetsl’” C S of sizek. Note that a set can ha¥&(n* 1) maximally
separated-sets. Letl¥,  (S) = max;cg 1 dsep (1)

In this paper we study algorithms for computing such maxiyredparated subsets. We mostly consider

small (constant) values df, but we also address the general case. For the icase2 the problem is
equivalent to finding a diametral pair §fand thus can be solved ®(n logn) time [6]. For largerk, the

problem becomes much more complicated and is known to be difpete ifk is part of the input [8].
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Finding small well-separated subsets is important in gegattern-matching problems, where the points
in the subset form a representation of the total set of poiRty example, Vleugels and Veltkamp [18]
described a method for fast indexing of multimedia databaséng vantage objects. These vantage objects
are points in the feature space for the matching problem.adtiieen observed that the chosen vantage
objects best be well-separated.

The decision problem associated with the problem of compgutimaximally separated subset of size
asks us to determine whethef-geparated subséwnf sizek exists for a giverd > 0. This problem can also
be formulated in terms of disk-intersection graphs: Debe the set of disks of radiug/2 centered at the
points of S. Thedisk-intersection graphG of D has the disks as nodes and two disks are connected by an
edge if they intersect. Clearly,Jaseparated subsétis the set of centers of an independent s&¥irSo the
decision problem is equivalent to the problem of finding atejpendent set of siZein the disk-intersection
graphG. Recently, the problem of computing the maximum independetin intersection graphs have
received much attention because of its application in ggaige information systems (GIS); see [2, 9, 10]
and references therein.

Related work. The problem of computing an independent set in a graph is bileecearliest problems
known to be NP-Complete [11]. In fact, for a general grapthwitvertices, there cannot be a polynomial-
time algorithm with approximation ratio better thah ¢, for anye > 0, unlessNP = ZPP [13]. The
best known algorithm finds an independent set of Sigelog?(n) /n), wherex is the size of the maximum
independent set in the graph [7]. However, better algostane known for intersection graphs of geometric
objects. The maximum independent set in the intersectiaptgof intervals on a line can be computed in
polynomial time, but the problem remains NP-Ccomplete fiderisection graphs of orthogonal segments,
unit disks, and unit squares [8]. For example,+ ¢)-approximation algorithms have been proposed for
intersection graphs of unit disks, unit squares, and amyitdisks [9, 15], andD(logn)-approximation
algorithm is known for intersection graphs of rectanglds [2

Little is known about computing maximally spearable setearntann and Wagner [10] developed a
2-approximation algorithm under thie,.-metric. Alber and Fiala [5] present an algorithm that coiepu
an independent set of cardinalikyin arbitrary disk-intersection graphs in tim& VE) | Their algorithm,
however, is rather complicated, and they do not considersciasolving small values df. Moreover, since
they consider the entire graph, their algorithm taRé¢s?) time even for small values df.

Our results. In this paper we mostly focus on small valueskond develop exact and approximation
algorithms. The paper contains four main results:

(i) For constant values of, we present a simple, linear-time algorithm that returnsil@sst/ of size
k such thatdg, (1) > (1 — €)d%,  (S). Such an approximation algorithm is suitable for the patter

sep

matching application mentioned above (Section 2).

(i) We preseniO(n*/3polylog(n)) algorithms for computing maximally separated subsetszef3and
4 (Sections 3 and 4).

(ii) We also present a simpleto(‘/E) -time algorithm (as compared with the algorithm in [5]) fobirary
values ofk (Section 5).

Our approximation algorithm relies on a standard buckeehnique but with an additional twist. Our
exact algorithms fok = 3,4 analyze the underlying geometric structure using resuis fthe theory of
ararngements and show that one can represent this strirciplieitly, which is sufficient for our purpose.
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2 An e-Approximation Algorithm

In this section we show that for any constéarand any= > 0 we can find in linear time a subsétof S of
cardinalityk such thatle, (1) > (1 — ¢)dk, ().

If & = 2, then we can compute anapproximation of a diametral pair i0(n) time [1], so assume that
k > 3. Using induction, we assume that for alK k¥’ < k ane-approximation oﬂfép(S) can be computed
in linear time. We compute the smallest axis-parallel baumdbox B of S. Let w be the width ofB andh
the height ofB. Without loss of generality we may assume that h.

We first consider the case in Whidﬁep(S) < w/(k + 1). We subdivide the bo» into k& + 1 vertical
stripsso, . . . , s, €ach of widthw/(k + 1) and letS; = S N s;. Any solution will use points from at most
k of thesek + 1 strips. For each strip;, we compute ams-approximation of a maximally separated set in
S\ S;. The best among thoge+ 1 solutions is the answer we are looking for. So let us assumsdhution
does not use strip;.

Let us first consider the case= 0. Letp, be the point on the left border of the bdx Let I’ be an
e-approximate maximally separated set of gize 1in S\ Sy;. ThenI’ U {p,} is a solution becausg lies
at distance at least/(k + 1) from all points in/’. A similar procedure works for = k.

Now consider a value afbetween 1 ané — 1. Let5; = {J,_; S; andS, = J;; S;. Since bothS; and
S, are nonempty and the distance between points; @ind S, is at leastw/(k + 1), there exists a solution
that uses points from botf, and.S,. Let us assume we usgoints fromS; andk — ¢ points from.S,.. We
compute arz-approximate maximally separated ggbf sizet in S; and a sef,. of sizek —¢in S,.. I, U I,
form a solution to the problem. We need to repeat this foryevalue oft between 1 anéd — 1. So for each
strip we must solv@(k — 1) problems with a size smaller than In total we need to solve® (k?) problems.
Denoting byT},(n, €) the maximum time needed teapproximatei’, (S) over setsS of n points, we thus
obtain a total cost of) (k%T},_(n, €)).

So we are left with the case in which the maximal separatistadced”, . (S) is larger thanw/(k + 1).

sep

Let§ = % We split the bounding bo¥3 of the setS into O(k?/e?) grid cells of size at most

0 x d. we choose an arbitrary point 8ffrom each nonempty cell of the grid. Ldtbe the resulting set of
representative pointsA| = O(k?/<?). We compute a maximally separable seaif sizek for A.
We claim thatdge, (1) > (1 —€)dk, (S). Indeed, let{p,....p;} C S be a maximally separated set of

sizek. Assuminge is small enough, these points will lie in different cells.tlpé € A be the representative
point from the cell in whictp; lies, and letl’ = {p,...,p}}. Itis easily seen that

k k ew
dSED(I,) 2 dsep(S) - 2\/5(5 - dsep(S) - L T 1

Now, asdf,,(S) > w/(k + 1), it follows thatdse,(I') > (1 — ¢)dk, (S). Since we solve the problem

exactly for A, dsep (1) > dsep(I') > (1 — a)dfep(S). The running time bound’ (n, €) thus satisfies the
recurrencely,(n,e) = O(k*Ty_1(n, ) + Cx(k*/€?)), whereCj,(m) is the time needed to compute exactly
a maximally separated subset of sizin a set ofrn points. Clearly, the solution of this recurrencelign),

for any constank, where the constant of proportionality depends exponlgntia k. That is, we have:

Theorem 2.1 For a set S of n points in the plane and any constants £ and ¢ < 1 we can compute in O(n)
timeasubset I C S of size k such that dge, (1) > (1 — €)d¥, (S).

'sep
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3 Computing a Maximally Separated Triple

Let S be a set of points inR%. We wish to compute a maximally separated tripl€irOur overall approach
consists of three steps. First, we perform a binary seartheopairwise distances 6f, and for each distance
0 we determine whethe$ contains aj-separated triple. Next, in order to computé-separated triple, we
draw a sufficiently small grid on the bounding box$§o that each point of &separated triple of lies in a
distinct grid cell. We thus reduce the problem of computirdgseparated triple to a multi-colored variant of
this problem. Finally, we compute a trichomafiseparated triple i) (n*/3 log'%/3 n) time. For simplicity,
we describe these steps in the reverse order. That is, weldisstibe the algorithm for the multi-colored
version, then we show how to reduce the original decisioblpro to the multi-colored problem, and finally
we sketch the binary-search procedure.

We need a few notations. For a pojnt R?, let D(p) denote the disk of unit radius centerecpafor
a setA of points inR?, let K (A) = MNpea D(p). K(A)is a convex region bounded by circular arcs that lie
on the boundaries of the disk¥p), and each disk contributes at most one such atti¢A). K(A) can
be constructed in tim@& (| A| log |A]).

3.1 Computing a trichromatic 1-separated triangle

Let Sy, S2, andS; be three sets of points iR? that satisfy the following property:
(A) There is a constant < 1/6 so that, fori = 1,2, 3, S; is contained in a disk); of radiusé centered at
apointci and|(:1(:2\ = |(32(}3| = ‘(:3(31| =1.

Without loss of generality, we assume that= (0,0),¢; = (1,0), andez = (1/2,v/3/2). See Figure 1.
Setn; = |S;|, fori = 1,2,3. We wish to compute &-separated triple it$; x S, x S3. (Clearly, no other
triple of points inS; U Sy U S3 can be 1-separated.)

(iii)
Figure 1: (i) An instance of three point sets (contained in the shad&aiiwith property \). (i) The annuliiW 4, Wy
and their top intersectioB ™. (i) K (4;), K(B;), and the edges df; (drawn as thick lines).

LetG C S; x S, denote the bipartite graph

G =1{(p,q) | p € S1,q € Sy; |pg| > 1}.

Using the algorithm of Katz and Sharir [16], we compute()((n?/gng/3 + n1 + n9) logn) time a family

F={A, x By,..., A, x By}, which is a partition of7 into complete bipartite graphs, satisfying

ST (1Al +1Bi)) = 00?03 + 1 + n2) log ).

7
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Foreachl <i < u,letR; = K(A;)UK(B;). SetR = (", R;. The following lemma is a straightforward
reformulation of the original problem.

Lemma 3.1 There exists a 1-separated triplein S; x Se x Sz ifand only if S3 Z R.
The following simple observation is crucial for our alghrit.

Lemma 3.2 Let P be a set of points lying in a disk of radius ¢ centered at a point ¢. Then 0K (P) lies
between two concentric circles of radius1 + § and 1 — § centered at c.

Lemma 3.3 For each 1 < i < u, the upper (resp., lower) boundaries of K (A4;) and K (B;) cross at exactly
one point.

Proof: Let W, (resp.,Wg) denote the annulus bounded by the concentric circles dif tad 6 and1 —

0 centered at; (resp.,co). By Lemma 3.2,0K (A;) (resp.,0K(B;)) is contained inW 4 (resp., Wpg).
Therefore0K (A;) N 0K (B;) C W4 N Wpg. Sinced < 1/6 and|cicz| = 1, the inner circles oi¥/ 4 and
W g intersect and thud’ 4 N W consists of two connected componehts, ¥, whereX T lies above the
z-axis andX~ below thez-axis; see Figure 1(ii). Moreover, by the choicespf> ™ lies fully to the right of
O, to the left ofO,, and above both these disks. This implies that witin the boundary of each(p),
for p € A, is the graph of a strictly monotone decreasing functioml, thuso K (A;) is also the graph of
a strictly decreasing function withia*. By a fully symmetric argument) K (B;) is the graph of a strictly
monotone increasing function within™. Moreover,0K (A;) N Xt is contained in the upper boundary
of K(A4;), and similarly forK (B;), because:™ lies aboveO; andO,. This is easily seen to imply the
assertion of the lemma. O

Lemma 3.3 implies thad R; consists of a connected portion @K (A;) and a connected portion of
0K (B;). The leftmost and the rightmost points Bf partition dR; into two parts, which we refer to as its
upper and lower boundaries. LBt be the set of circular arcs forming the upper boundargfwe have
;| < |A;] + |Byl|. Setl’ = J;_, T'i; IT| < >, (JAi| + |Bi]). LetLr denote the lower envelope bf

Lemma 3.4 Apoint p € S liesinside R if and only if p lies below the lower envelope L.

Proof: If p € R, then it lies below the upper boundary of eag} thereby implying thap lies belowLr.
Conversely, suppose thatlies belowL. Thenp lies below the upper boundary of eveRy. Let =" be
the same as in the proof of Lemma 3.3. Sihges| = |cacs| = 1, O3 C ¥, and thusS; is also contained
in ©T. The argument in the proof of Lemma 3.3 implies that lies above the lower boundaries of every
K (A;) and of everyK (B;). Hencep lies in eachR; and thus also ifR. O

In view of Lemma 3.4, we may proceed as follows. For eaate computes (4;), K(B;), R;, andl;.
The total time spent in this step is

O (Z(|Az| + ‘BZD log(m + TlQ)) =0 ((Tlf/%’n;/% +n1+ TLQ) log2(n1 + TIQ)) .

=1

Since each arc it is a portion of the upper boundary of a unit-radius disk, tnas®fT" intersect in at most
one point. Hence, we can compute the lower envelbpef I" in O(|T'| log n) time using the algorithm of
Hershberger [14]. For each edgef L we store the index such that € I';. Finally, for each poinp € S

we determine whetherlies below or abové . If p lies abovel, then the test yields an arc 6f that lies
belowp. If this arc belongs td'; then we deduce that¢ R; (by Lemma 3.4). Then, scanning the points of
A; U B; in additionalO(|A;| +|B;|) time, we are certain to findlaseparated tripléa, b, p) € A; x B; x S;.
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The total running time of the algorithm @((n?/3n§/3 411 +ny) log?(n1 +ng) +n3log(n; +ny)). Hence,

we obtain the following result.

Theorem 3.5 Let Sy, S, and S3 be three sets of pointsin R? that satisfy property (A), and put n; = |S;|,
for i = 1,2, 3. Then one can construct, in O((n$/3n§/3 +nq +ny) log?(ny + na) + nzlog(ni + ny)) time,

a l-separated triplein S; x S, x Ss, if one exists, or determine that no such triple exists.

3.2 Reduction to3-partite graphs and finding a maximally separated triple

Let S be a set of: points inIR?. We wish to compute a-separated triple it5. We fix a small constant
e < 1/16, and seu = [1/e]. We draw a square grid of sizein the plane. Fot, j € Z, let C;; denote the
grid cell [ie, (2 + 1)e) x [je, (5 + 1)e), and letS;; = SN C;;. Let € denote the set of nonempty grid cells
(i.e., those withS;; # 0). We construct a grapfi = (C, ) where(C, C") € £ if min{|pp'| | p€ C,p €
C'} < 1.

Lemma 3.6 If G is not connected or € spans more than 3 + 1 columns or rows, then a 1-separated triple
in .S can be computed in O(n) time.

Proof: Omitted. Informally, ifG is disconnected, then the problem reduces to computingigmeeter of
various pairwise-disjoint subsets §f If € spans more thaBu + 1 rows or columns, then &separated
triple can easily be computed (»(n) time. O

By the above lemma, it remains to consider the case whéseconnected an@ spans at mosiy + 1
rows and columns. Clearly, in this cag® < (3u + 1)2. We consider all triples”,,Cy,C3 € € and
determine whethef; x S, x S3 contains al-separated triple, whetg;, = C; N S, fori = 1,2,3. If the
maximum distance between two of these three cells,GagndCs, is less tharl, then nol -separated triple
in S1 x Sy x S3 exists. Hence, we can assume that the maximum distancedretwvery pair of’, Co, C3
is at leastl. There are four cases to consider, depending on the nutnifezdges of§ between these three
cells:

() &k = 0; that is,Cy, C4, C5 is an independent set j Then any triple inS; x Sy x S3 is 1-separated and
we return any of them.

(i) £ = 1; suppose, without loss of generality, thiat;, Cy) € € and(C1, Cs), (Cy, C3) & . We compute
the diametral paifp, q) of S; U Sy. If |[pg| > 1, then we return(p, ¢, ), wherer is any point ofSs. If
lpg| < 1, no triple inS; x Sy x S3 is 1-separated.

(i) & = 2; suppose, without loss of generality, th@t;, C,), (Cy,C3) € € and (Cy,C3) ¢ E. We
computeK (S2) and K (S3). If a pointp € S; lies neither inK (S2) nor in K (S3), then there exists a pair
(q,7) € So x S3 s0thatp ¢ D(q) UD(r) and thus(p, ¢, r) is 1-separated. I6; C K(S;) U K(S3) then,
arguing as in the proof of Lemma 3.1, no tripleSn x So x S5 is 1-separated.

(iv) k = 3; that is,(C1, Cy), (C1,C3), (Cq, C3) € E. In other words, for any pair# j € {1,2,3} we have

min{|zy| | z € Cj,y € Cj} <1 <max{|zy| | z € Cj,y € C}}.

By the triangle inequality, this implies that anye C;, y € C; satisfy1 — 2v/2e < |zy| < 1+ 2V/2e.
We claim that our choice of implies that there exist points, ¢z, c3 € R? so that|c;c;| = 1 for each pair
of distinct pointsc;, ¢;, andS; is contained in the disk); of radiusé < 1/6 centered at;, fori = 1,2, 3.
To see this, let; € Cy, co € Cy be such thafeicy| = 1. Letez € R? be a point such thalc;cocs is
equilateral ands lies on the same side of the line throughandcs asCs5 (our choice of: is easily seen to
imply thatC5 does not intersect such a line). It can be shownhais fully contained in the disk of radius
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1/6 centered at3;. We can therefore use Theorem 3.5 to computesaparated triple it%; x Sy x S, if
one exists, or to determine that no such triple exists.

The total running time of the algorithm is dominated by thera¥l cost of handling case (iv), and is
thus, by Theorem 3.8)(1*n*/? log? ). We thus obtain the following main result of this section.

Theorem 3.7 Let S bea set of n pointsin R2. We can compute, in O(n*/? log? n) time, a 1-separated triple
in S, if one exists, or determine that no such triple exists.

Finally, we run a binary search on ttﬁ@) pairwise distances ii§. Thekth smallest pairwise distance
s in S, foranyl < k < (%), can be computed in tim®(n*/?log? n) [16], and by Theorem 3.7, we
can determine whetherd-separated triple exists ifi within the same time bound. Hence, we obtain the
following.

Theorem 3.8 Let S be a set of n points in R?. We can compute, in O(n*/31og®n) time, a maximally
separated triplein S.

4 Computing a Maximally Separated Quadruple

Our overall approach is the same as in Section 3. We first denai multi-colored version of this problem,
in which we are given four setS;, So, S5, and S, of points, placed “reasonably far’ from each other,
and we wish to compute &separated quadruple 15y, x Sy x S3 x S4. We present an algorithm for a
special configuration of these sets, which we refer todiaraond configuration. We then sketch the overall
algorithm, which, as above, reduces the general problenttmstant number of multi-colored instances.

4.1 The diamond configuration
Let S;, S, S3, andS, be four sets of points ii®? that satisfy the following property:

(©) There is a constardt < 1/8 so that eaclb; is contained in a disk); of radiusé centered at; so that
lcre3], [eacs], [ereal, [cacal = 1,1 < |erea] < |eseq|, and|eseq| > 1+ 26.

Without loss of generality assume thagt = (0, 0), ¢4 lies on thez-axis to the right ofcs, ande¢; (resp.,
c9) lies below (resp., above) the-axis (in symmetric positions). The conditions on th&s imply that
|(31(}2‘, |(33C4‘ < \/g See Figure 2 (I) Set, = |Sz‘, fori = 1,...,4.

Figure 2: (i) A diamond configuration. (ii) Implicit representatioh®@R,,; D(p) does not appear ank,,. (iii) Implicit
representation d¥R,; D(p) appears o0 R,,.

For a pointp € Sy, let S,(f) ={q € S3 | |pq|l > 1} andS,(,4> = {q € S4 | |pg| = 1}. (We ignore for
the time being the issue of efficient construction of thess; sbis will be addressed later on.) We remove
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from S; any pointp for which one of these sets is empty, because syclannot be part of a 1-separated
quadruple. Set

E® = (] D), K= ) D), RB=KIUKPUDp), R= ()R,

aess? st pes:

The following lemma is fairly straightforward.

Lemma 4.1 There exists a 1-separated quadruple in S; x So x S3 x Sy ifand onlyif Sy Z R.
The following is a variant of Lemma 3.3, proved in a similarrmar.

Lemma 4.2 (i) For any p € Sy, 8K,E3> and 8K,()4) intersect above the z-axis at exactly one point o,,, which
lies on the upper boundaries of both regions.

(i) For any p € Sy, 8K,()3) and 0D(p) intersect above the z-axis exactly once, and similarly for 8K,()4)
and 0D(p).

Definition4.3 For a pointp € Sy, leto, denote, as in Lemma 4.2, the unique intersection point afipiper
boundaries oﬂ(f) andK,(fl), and leta, (resp.,3,) denote the intersection point of the upper boundary of
K,§3) (resp.,K,§4>) with D(p), if such a point exists.

Consider the upper envelope of the upper boundaridé,g@f, K,E‘”, andD(p). The preceding analysis
implies that the envelope has one of the following two strtest: (i) EitherD(p) does not appear on the
envelope, and then it consists of a connected poﬂzﬁh of the upper boundary CK,S3) and a connected
portion fy,@ of the upper boundary dK(4), meeting at the point, (see Figure 2 (ii)); or (ii)D(p) appears
on the envelope, and then it consists of a connected poyﬁémf the upper boundary dr(3), a connected
portion d,, of the upper boundary d(p), and a connected portioyﬁ) of the upper boundary dK(4), S0
that the first and second portions meetatand the second and third portions meetiatsee Figure 2 (jii)).

LetT® = {4{V | pe 5}, T®W = {49 | p e S1}, andA = {5, | p € S;}. Let£® (resp.,£@),
£ 1) denote the lower envelope bf*) (resp.. 4, A).

The following lemmais a corollary of Lemma 3.4 and Lemma #<2proof uses the obvious observation
that the lower envelope d&&®), £, andL (") is the same as the lower envelope of the upper boundaries of
the regionsi,, for p € S;. (We follow here the convention that if a lower envelope igefined at some,
it is assumed to be-oo there.)

Corollary 4.4 Apoint g € S, liesin R if and only if ¢ lies below each of £®3), £*) and £ (1),

We thus comput&®), £ andL (") separately, and determine whether any poinfpfies above any
of them. If the answer is yes, we can conclude thatseparated quadruple 8y x Sy x S3 x Sy exists,
and we can compute it in additional linear time. Otherwisesnoh quadruple exists. Computing these
envelopes explicitly is however expensive, so we repregem implicitly. We first describe the implicit
representation of the envelopes and of its arcs, followisgrélar representation used by Agarwal et al. [4],
and then present the algorithm for computing the envelopes.

Implicit representation of K,E‘”, K,§4>, and of the lower envelopes. For a subsef) C Sy, IetLS) denote
the lower envelope of arcs in the s{e.ﬁ) |p €@} We representg) by the sequence of itweakpointsin
increasing order of theit-coordinates. The breakpoints are defined so that eactopgrof a}?’ between
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two consecutive breakpoints is contained in a sih,éfé (such & may overlap with many/,()g)’s, but there
is (at least) one point € S; such that is fully contained im\"). We maintair¢ implicitly, by recording a
pointp € R that satisfieg C 77(93).

Let D = {ID(q) \ q € Sg}. To represent eaciyl,(,g) implicitly, we choose a parameter < s < n2,
compute a family{ D) ()1 of canonical subsets ofd and associate with eadh(’) its intersection

region K() = N D) such thatz ' |DW| = O(slogns), and such that for any € S, K, ( ) can
be represented as the intersectiondi{(n3//s) log n3) of these canonical region& . Let J, denote
the set of indices of these canonical subsets (I(é3> = ﬂlEJ KWW). Katz and Sharir [16] have shown
that the construction of such a family of canonical sets, @irttie corresponding sets of indicés, } ,¢s,,
can be accomphshed |n tlrr{é(slog n3). For each canonical subs&’), the construction ofx(/) can
be performed irD(|DU)|log | D)) time. We store the vertices of the upper boundarykof) in a list,
sorted in increasing order of theircoordinates. For each such boundary vertex, we also dterdisk
whose boundary appears oK () immediately to its right. The total time spent in computihgstimplicit

representation ofthK SISZ LO( DD log ng) = O(slog? ny).

As shown by Agarwatt al. [4], each of the following three operations on the arcg (i and{@K,E3> tpes:
can be performed i ((n3/+/s) log® n3) time.

(S1) Leftmost and rightmost pointsSiven a pointp € S;, compute the leftmost and the rightmost points
of K,§3)

(S2) Intersection point(s) with a vertical linéGiven a vertical line/ and a pointp € S;, determine the
intersection point(s) of with fy,@ or with 8K,()3).

(S3) Intersection points with a unit diskiven a unit diskD and a poinp € S;, determine the intersection
point(s) ofD with 7,(,3) or with 8K,E3).

(S4) Crossing point of two arcssiven two point®, ¢ € S; and anz-interval[a, b] contained in the:-span

of both fy,@ andyég), determine whether the top boundariele@ andKéS) cross infa, b]. If so,
return their crossing point. If theyeakly crossin [a, b], i.e., overlap over some subintervAbf [a, b]
and their vertical order to the right ofis the reverse of their vertical order to the lefthfthen return
the leftmost endpoint of their common overlap|nb.

In a fully analogous fashion, we choose a parameiex s’ < n? and process, in O(s’ log? n4) time

to compute an implicit representation of all the alyé@ Each of the operations (S1)—(S4) Bff) can be
performed inO((n4/v's") log® ny) time.

Computing £®), L@, and £1).  Using the subroutine (S1), we first compute the lefmost pojraf K>
and the rightmost poin, of K,§4), for eachp € S;. Next, using (S3) and (S4), we compute the intersection
point o, of the upper boundaries df,gg) and K,E‘”, the intersection pointy, of the upper boundaries of

K,()S) andD(p), and the intersection poirt, of the upper boundaries df’,?4> andD(p). By comparing
the z-coordinates of these three points, we can determine whtteeupper boundary ak, is of the first

kind (withoutD(p)) or of the second kind (witfi)(p)). In the first case, we represent the aﬁ@ by the
interval [z(\,), z(0,,)] and by the set/, of indices as described above, and the@&% by the interval
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[z(0p), w(pp)] @and by the corresponding séf of indices. In the second case, we represéﬁ} by the
interval [z:(\,), 7(v,)], 6, by the intervalz(ay), 2(8,)], andvy,”) by the intervalz(o,), 7(p,)]; in addition,
each arc is associated with its corresponding/seff indices.

Thez-coordinate of any poini € S; is at mosty/3/2 + ¢ and thez-coordinate of the rightmost point of
R, is at leastl — 0. This easily implies thap lies beIowK,S3> (i.e., the vertical ray emanating upward from

P intersectsK,(,3)). Since this holds for any poigte S, Theorem 2.8 of Agarwadt al. [4] (concerning the
“pseudo-diskness” of the regioﬁé,§3>) implies that, for any, g € S, 7,(,3> and7§3> cross in at most one
point. A similar argument proves the corresponding claimifd). Hence, each df®), I'¥) s a collection
of pseudo-segments. We can therefore compute the lowelopess. (3, £(4) using the divide-and-conquer
algorithm of Hershberger [14], mentioned above. In the nsé@p of this algorithm, we have available the
envelopes;(A?), L(,f) of two subsetsd, B C I'®), and we need to merge these envelopes to conipﬁig;.
The only nontrivial part in the merge step is computing tlessimg point of two arcs,@ and%(f) inagiven
z-interval [a, b]. Using the subroutine (S4), we can perform this stef (n3/+/s) log® n3) time. Plugging
this bound into Hershberger's algorithm, we can computergiicit representation of.(3) in overall time
O((nin3/+/3)log® n3logni + slog? n3). Similarly, we can compute an implicit representationCéf) in
time O((n1n4/Vs') log® nglogn; + s'log? ng). Computingl(!) is easier, since no implicit representation
is needed here: We simply have to compute the lower envelbpe wpper unit circular arcs, which behave
as pseudo-segments, so their envelope can be comput@¢inlogn,) time (as in [14]). Finally, for
each pointp € S,, we determine irO((n3/+/s)log®n3 + (n4/Vs') log® ny) time, using the subroutine
(S2), whethep lies abovel(*) or abovel(*). Testing whethep lies abovel () is easy to accomplish in
O(logn) time. The total time spent is thus

O<(n1 + ng) (7% + \/—%> log®(n3 + n4) log(ny +ng) + (s + s') log?(na + n4)>. (4.2)

In summary, we have shown:

Lemma4.5 Let S1, So, S3, and Sy be four sets of points in R? that satisfy property (¢). Let n; = |S;],
fori =1,...,4,and let ng < s < n?, ny < s’ < n2, betwo parameters. One can determine whether
S1 x S9 x S3 x S, contains a 1-separated quadruple, and, if so, compute such a quadruple, within the time
boundin (4.1).

In particular, bounding:;, no, n3, ns by n and choosing = s’ = n*/3 log4/3 n, we obtain:

Theorem 4.6 For a set S of n points in the plane of the form S; U Sy U S3 U Sy, where the S;'s satisfy
property (<), one can determine whether S contains a 1-separated quadruple, and, if so, compute such a
quadruple, in O(n*/3 10g'%/3 n) time.

4.2 Reducing to4-partite graphs and finding a maximally separated quadruple

As in Section 3, we construct a square grid of gizéor a sufficiently small constant parameter- 0. Let
Cij, Sij, €, G be as before. Following the same argument used earlier, wassume tha$ is connected
and C spans at mosty rows and columns. We now try all quadrupl€s, Cy, Cs, Cy € € and determine
whether the corresponding quadruplex Sy x S5 x Sy contains al-separated quadruple. We can assume
that the maximum distance between any pair of these celldémst one and that the subgraph induced by
these four cells is connected, because if the former assumigtviolated then nd-separated quadruple
exists, and if the latter is violated then the problem canduticed to finding a-separated triple (or two
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pairs of diametral points). Following a case analysis simib the previous section, but somewhat more
involved, we obtain:

Theorem 4.7 Let S be a set of n points in R?. A 1-separated quadruple in S can be computed in time
O(n*/310g'/3 n).
Finally, by performing a binary search on the pairwise dis&s inS, as above, we obtain the following.

Theorem 4.8 Let S be a set of n points in R2. A maximally separated quadruple in S can be computed in
O(n*/310g"3/3 n) time.

5 An Exact Algorithm for an Arbitrary Value of &

Let S be a set of. points in[R?, and letk > 0 be an integer. We describe af(Vh)_time algorithm for
computing a maximally separated subsefaff sizek. Because of lack of space we only provide a sketch
of the algorithm and omit the details. As in the previousisest we focus on the decision problem: Given
a setD of n unit disks and an integer < k& < n, is there a subset C D of k& pairwise-disjoint disks?
SupposeD lies inside a strigV of width w. By a sweep-line algorithm we can compute the largest subset
of pairwise disjoint disks irO(n") time as follows. Our algorithm is similar to the one by Goeza]12]
for computing a-center.

For a subsetd C D and a vertical line, let x(A, ¢) C A be the set of disks that intersetctWe sweep
a vertical lineZ from left to right, stopping at the leftmost and the rightinpsint of each disk irfD. At any
time, the algorithm maintains a famify = {I,, ..., I, } of subsets of pairwise-disjoint disks that satisfies
the following invariants:

(1.1) Foreveryl <j <w,nodiskinl; C D is contained in the (closed) halfplane lying to the righthaf t
sweep line.

(1.2) Forz # y, x(1,£) # x(1y,£).

(1.3) If there is a subsett C D of pairwise-disjoint disks so that no disk #lies completely to the right
of /, then there is a subséf € F so thaty(1;, /) = x(A,¢) (x(I;,¢) may be empty) angd| < |I;|.

Since at most(w) pairwise-disjoint disks ofd can intersect, it can be argued thdff| = n°®),
Whenever the sweep-line passes through the leftmost oigihigenost point of a disk irD, the familyF can
be updated im®®) time. We leave it to the reader to verify that the invariani$)}{(l.3) ensure that the
algorithm computes the largest subset of pairwise-disgisks inD.

Hence, ifw < vk, we are done. So assume that> vk. By invoking the above algorithm at most
times, we can determine if’(V*) time whether there is a subsetC D of % pairwise-dsjoint disks that lie
in a horizontal strip of width at most’.. Hence, we can assume that no subsét péirwise-disjoint disks
lies in a horizontal strip of width/k. Using a straightforward packing lemma, we can prove thewahg.

Lemma 5.1 Let D be a set of n disksin R?, and let I C D be a subset of &k pairwise-disjoint disks that lie
in a horizontal strip of width larger than v/k. Then there exists a horizontal line tangent to one of the disks
in D that intersects O (vk) disks of 1.

In view of this lemma, we guess the horizontal lih@nd a subseD), of t = O(v/k) pairwise-disjoint
disks that interseat. Let DT (resp.,D ) be the set of disks that lie completely above (resp., beloand
do not intersect any disk ifv,. We guess an integér < [ < k — t. We recursively determine whether
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D~ (resp., D) contains a subset df(resp.,k — t — [) pairwise-disjoint disks. Each subproblem is defined
by two horizontal lines, each tangent to a disklin andO(v/k) disks of D, so we need to solve?(V)
subproblems. Using a dynamic-programming approach, wealae each of these subproblemsni?l(‘/E)
time. Omitting all the details, which are similar to thosg3h we conclude the following.

Theorem 5.2 Let S be a set of n pointsin R?, and let 1 < k& < n be an integer. A maximally separated
subset in S of size k can be computed in n®VF) time.
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