
Computing Maximally Separated Sets in the Plane
and Independent Sets in the Intersection Graph of Unit Disks�

Pankaj K. Agarwaly Mark Overmarsz Micha Sharirx
Abstract

Let S be a set ofn points inR2 . Given an integer1 � k � n, we wish to find amaximally
separated subset A � S of sizek; this is a subset for which the minimum among the

�k2� pairwise
distances between its points is as large as possible. The decision problem associated with this problem
is to determine whether there existsI � S, jI j = k, so that all

�k2� pairwise distances inI are at least
2, say. This problem can also be formulated in terms of disk-intersection graphs: LetD be the set of
unit disks centered at the points ofS. Thedisk-intersection graphG of D connects pairs of points by an
edge if the disks centered at those points intersect.I now forms an independent set in the graphG. This
problem is known to be NP-Complete ifk is part of the input.

In this paper we first present a linear-time approximation algorithm for constantk. Next we giveO(n4=3polylog(n)) exact algorithms for the casesk = 3 andk = 4. We also present a simplernO(pk)-
time algorithm (as compared with the recent algorithm in [5]) for arbitrary values ofk.

1 Introduction

Let S be a set ofn points in the plane. We are interested in finding a small subset I of S such that the
pairwise distances between points inI are large. To be more precise, letI be a subset ofS of cardinalityk, for 1 � k � n. We define theseparation distance dsep(I) to be the minimum among the

�k2� pairwise
distances between itsk points. We callI Æ-separated if dsep(I) � Æ. We callI amaximally separated subset
of S if dsep(I) � dsep(I 0) for all subsetsI 0 � S of sizek. Note that a set can have
(nk�1) maximally
separatedk-sets. Letdksep(S) = maxI�S;jIj=k dsep(I).

In this paper we study algorithms for computing such maximally separated subsets. We mostly consider
small (constant) values ofk, but we also address the general case. For the casek = 2 the problem is
equivalent to finding a diametral pair ofS and thus can be solved inO(n log n) time [6]. For largerk, the
problem becomes much more complicated and is known to be NP-Complete ifk is part of the input [8].�Work by P.A. and M.S. was supported by a grant from the U.S.-Israeli Binational Science Foundation. Work by P.A. was also
supported by NSF under grants CCR-00-86013 EIA-98-70724, EIA-99-72879, EIA-01-31905, and CCR-02-04118. Work by M.S.
was also supported by NSF Grants CCR-97-32101 and CCR-00-98246, by a grant from the Israel Science Fund (for a Center of
Excellence in Geometric Computing), and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.
Part of the research was done during the 2003 Bellairs workshop on computational geometry, organized by Godfried Toussaint, and
the 2003 Dagstuhl Workshop on Computational Geometry.yDepartment of Computer Science, Duke University, Durham, NC 27708-0129, USA. E-mail:pankaj@cs.duke.eduzDepartment of Computer Science, Utrecht University, the Netherlands. E-mail:markov@cs.uu.nlxSchool of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; and Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012, USA. E-mail:michas@post.tau.ac.il

1

INTRODUCTION 2

Finding small well-separated subsets is important in certain pattern-matching problems, where the points
in the subset form a representation of the total set of points. For example, Vleugels and Veltkamp [18]
described a method for fast indexing of multimedia databases using vantage objects. These vantage objects
are points in the feature space for the matching problem. It has been observed that the chosen vantage
objects best be well-separated.

The decision problem associated with the problem of computing a maximally separated subset of sizek
asks us to determine whether aÆ-separated subsetI of sizek exists for a givenÆ > 0. This problem can also
be formulated in terms of disk-intersection graphs: LetD be the set of disks of radiusÆ=2 centered at the
points ofS. Thedisk-intersection graphG of D has the disks as nodes and two disks are connected by an
edge if they intersect. Clearly, aÆ-separated subsetI is the set of centers of an independent set inG. So the
decision problem is equivalent to the problem of finding an independent set of sizek in the disk-intersection
graphG. Recently, the problem of computing the maximum independent set in intersection graphs have
received much attention because of its application in geographic information systems (GIS); see [2, 9, 10]
and references therein.

Related work. The problem of computing an independent set in a graph is one of the earliest problems
known to be NP-Complete [11]. In fact, for a general graph with n vertices, there cannot be a polynomial-
time algorithm with approximation ratio better thann1�", for any" > 0, unlessNP = ZPP [13]. The
best known algorithm finds an independent set of size
(� log2(n)=n), where� is the size of the maximum
independent set in the graph [7]. However, better algorithms are known for intersection graphs of geometric
objects. The maximum independent set in the intersection graph of intervals on a line can be computed in
polynomial time, but the problem remains NP-Ccomplete for intersection graphs of orthogonal segments,
unit disks, and unit squares [8]. For example,(1 + ")-approximation algorithms have been proposed for
intersection graphs of unit disks, unit squares, and arbitrary disks [9, 15], andO(log n)-approximation
algorithm is known for intersection graphs of rectangles [2].

Little is known about computing maximally spearable sets. Formann and Wagner [10] developed a2-approximation algorithm under theL1-metric. Alber and Fiala [5] present an algorithm that computes
an independent set of cardinalityk in arbitrary disk-intersection graphs in timenO(pk). Their algorithm,
however, is rather complicated, and they do not consider cases involving small values ofk. Moreover, since
they consider the entire graph, their algorithm takes
(n2) time even for small values ofk.

Our results. In this paper we mostly focus on small values ofk and develop exact and approximation
algorithms. The paper contains four main results:

(i) For constant values ofk, we present a simple, linear-time algorithm that returns a subsetI of sizek such thatdsep(I) � (1 � ")dksep(S). Such an approximation algorithm is suitable for the pattern-
matching application mentioned above (Section 2).

(ii) We presentO(n4=3polylog(n)) algorithms for computing maximally separated subsets of size3 and4 (Sections 3 and 4).

(iii) We also present a simplernO(pk)-time algorithm (as compared with the algorithm in [5]) for arbitrary
values ofk (Section 5).

Our approximation algorithm relies on a standard bucketingtechnique but with an additional twist. Our
exact algorithms fork = 3; 4 analyze the underlying geometric structure using results from the theory of
ararngements and show that one can represent this structureimplicitly, which is sufficient for our purpose.

AN "-APPROXIMATION ALGORITHM 3

2 An "-Approximation Algorithm

In this section we show that for any constantk and any" > 0 we can find in linear time a subsetI of S of
cardinalityk such thatdsep(I) � (1� ")dksep(S).

If k = 2, then we can compute an"-approximation of a diametral pair inO(n) time [1], so assume thatk � 3. Using induction, we assume that for all2 � k0 < k an"-approximation ofdk0sep(S) can be computed
in linear time. We compute the smallest axis-parallel bounding boxB of S. Letw be the width ofB andh
the height ofB. Without loss of generality we may assume thatw � h.

We first consider the case in whichdksep(S) � w=(k + 1). We subdivide the boxB into k + 1 vertical
stripss0; : : : ; sk, each of widthw=(k + 1) and letSi = S \ si. Any solution will use points from at mostk of thesek + 1 strips. For each stripsi, we compute an"-approximation of a maximally separated set inS nSi. The best among thosek+1 solutions is the answer we are looking for. So let us assume the solution
does not use stripsi.

Let us first consider the casei = 0. Let pl be the point on the left border of the boxB. Let I 0 be an"-approximate maximally separated set of sizek � 1 in S n S0. ThenI 0 [fplg is a solution becausepl lies
at distance at leastw=(k + 1) from all points inI 0. A similar procedure works fori = k.

Now consider a value ofi between 1 andk� 1. LetSl = Sj<i Sj andSr = Sj>i Sj. Since bothSl andSr are nonempty and the distance between points ofSl andSr is at leastw=(k + 1), there exists a solution
that uses points from bothSl andSr. Let us assume we uset points fromSl andk � t points fromSr. We
compute an"-approximate maximally separated setIl of sizet in Sl and a setIr of sizek � t in Sr. Il [Ir
form a solution to the problem. We need to repeat this for every value oft between 1 andk� 1. So for each
strip we must solve2(k� 1) problems with a size smaller thank. In total we need to solveO(k2) problems.
Denoting byTk(n; ") the maximum time needed to"-approximatedksep(S) over setsS of n points, we thus
obtain a total cost ofO(k2Tk�1(n; ")).

So we are left with the case in which the maximal separation distancedksep(S) is larger thanw=(k + 1).
Let Æ = "w2p2(k+1) . We split the bounding boxB of the setS into O(k2="2) grid cells of size at mostÆ � Æ. we choose an arbitrary point ofS from each nonempty cell of the grid. LetA be the resulting set of
representative points;jAj = O(k2="2). We compute a maximally separable setI of sizek for A.

We claim thatdsep(I) � (1 � ")dksep(S). Indeed, letfp1; : : : ; pkg � S be a maximally separated set of
sizek. Assuming" is small enough, these points will lie in different cells. Let p0i 2 A be the representative
point from the cell in whichpi lies, and letI 0 = fp01; : : : ; p0kg. It is easily seen thatdsep(I 0) � dksep(S)� 2p2Æ = dksep(S)� "wk + 1 :
Now, asdksep(S) > w=(k + 1), it follows thatdsep(I 0) > (1 � ")dksep(S). Since we solve the problem
exactly forA, dsep(I) � dsep(I 0) > (1 � ")dksep(S). The running time boundTk(n; ") thus satisfies the
recurrenceTk(n; ") = O(k2Tk�1(n; ") +Ck(k2="2)), whereCk(m) is the time needed to compute exactly
a maximally separated subset of sizek in a set ofm points. Clearly, the solution of this recurrence isO(n),
for any constantk, where the constant of proportionality depends exponentially on k. That is, we have:

Theorem 2.1 For a set S of n points in the plane and any constants k and " < 1 we can compute in O(n)
time a subset I � S of size k such that dsep(I) � (1� ")dksep(S).

COMPUTING A MAXIMALLY SEPARATED TRIPLE 4

3 Computing a Maximally Separated Triple

LetS be a set ofn points inR2 . We wish to compute a maximally separated triple inS. Our overall approach
consists of three steps. First, we perform a binary search onthe pairwise distances ofS, and for each distanceÆ we determine whetherS contains aÆ-separated triple. Next, in order to compute aÆ-separated triple, we
draw a sufficiently small grid on the bounding box ofS so that each point of aÆ-separated triple ofS lies in a
distinct grid cell. We thus reduce the problem of computing aÆ-separated triple to a multi-colored variant of
this problem. Finally, we compute a trichomaticÆ-separated triple inO(n4=3 log10=3 n) time. For simplicity,
we describe these steps in the reverse order. That is, we firstdescribe the algorithm for the multi-colored
version, then we show how to reduce the original decision problem to the multi-colored problem, and finally
we sketch the binary-search procedure.

We need a few notations. For a pointp 2 R2 , let D (p) denote the disk of unit radius centered atp. For
a setA of points inR2 , letK(A) = Tp2A D (p). K(A) is a convex region bounded by circular arcs that lie
on the boundaries of the disksD (p), and each disk contributes at most one such arc to@K(A). K(A) can
be constructed in timeO(jAj log jAj).
3.1 Computing a trichromatic 1-separated triangle

Let S1, S2, andS3 be three sets of points inR2 that satisfy the following property:

(4) There is a constantÆ � 1=6 so that, fori = 1; 2; 3, Si is contained in a diskOi of radiusÆ centered at
a pointci andjc1c2j = jc2c3j = jc3c1j = 1.

Without loss of generality, we assume thatc1 = (0; 0); c2 = (1; 0), andc3 = (1=2;p3=2). See Figure 1.
Setni = jSij, for i = 1; 2; 3. We wish to compute a1-separated triple inS1 � S2 � S3. (Clearly, no other
triple of points inS1 [S2 [S3 can be 1-separated.)

111 c3O1 O2O3c1 c2 O1 O2
�+WAK(Ai) K(Bi)WB

Æ 11� Æ K(Ai) K(Bi)
(i) (ii) (iii)

Figure 1: (i) An instance of three point sets (contained in the shaded disks) with property (4). (ii) The annuliWA;WB
and their top intersection�+. (iii) K(Ai),K(Bi), and the edges of�i (drawn as thick lines).

LetG � S1 � S2 denote the bipartite graphG = f(p; q) j p 2 S1; q 2 S2; jpqj � 1g:
Using the algorithm of Katz and Sharir [16], we compute inO((n2=31 n2=32 + n1 + n2) log n) time a familyF = fA1 �B1; : : : ; Au �Bug, which is a partition ofG into complete bipartite graphs, satisfyingXi (jAij+ jBij) = O((n2=31 n2=32 + n1 + n2) log n):

COMPUTING A MAXIMALLY SEPARATED TRIPLE 5

For each1 � i � u, letRi = K(Ai)[K(Bi). SetR = Tui=1Ri. The following lemma is a straightforward
reformulation of the original problem.

Lemma 3.1 There exists a 1-separated triple in S1 � S2 � S3 if and only if S3 6� R.

The following simple observation is crucial for our algorithm.

Lemma 3.2 Let P be a set of points lying in a disk of radius Æ centered at a point c. Then @K(P) lies
between two concentric circles of radius 1 + Æ and 1� Æ centered at c.
Lemma 3.3 For each 1 � i � u, the upper (resp., lower) boundaries of K(Ai) and K(Bi) cross at exactly
one point.

Proof: Let WA (resp.,WB) denote the annulus bounded by the concentric circles of radii 1 + Æ and1 �Æ centered atc1 (resp.,c2). By Lemma 3.2,@K(Ai) (resp.,@K(Bi)) is contained inWA (resp.,WB).
Therefore@K(Ai) \ @K(Bi) � WA \WB . SinceÆ < 1=6 and jc1c2j = 1, the inner circles ofWA andWB intersect and thusWA \WB consists of two connected components�+;��, where�+ lies above thex-axis and�� below thex-axis; see Figure 1(ii). Moreover, by the choice ofÆ, �+ lies fully to the right ofO1, to the left ofO2, and above both these disks. This implies that within�+, the boundary of eachD (p),
for p 2 Ai, is the graph of a strictly monotone decreasing function, and thus@K(Ai) is also the graph of
a strictly decreasing function within�+. By a fully symmetric argument,@K(Bi) is the graph of a strictly
monotone increasing function within�+. Moreover,@K(Ai) \ �+ is contained in the upper boundary
of K(Ai), and similarly forK(Bi), because�+ lies aboveO1 andO2. This is easily seen to imply the
assertion of the lemma. 2

Lemma 3.3 implies that@Ri consists of a connected portion of@K(Ai) and a connected portion of@K(Bi). The leftmost and the rightmost points ofRi partition@Ri into two parts, which we refer to as its
upper and lower boundaries. Let�i be the set of circular arcs forming the upper boundary ofRi; we havej�ij � jAij+ jBij. Set� = Sui=1 �i; j�j �Pui=1(jAij+ jBij). LetL� denote the lower envelope of�.

Lemma 3.4 A point p 2 S3 lies inside R if and only if p lies below the lower envelope L�.

Proof: If p 2 R, then it lies below the upper boundary of eachRi, thereby implying thatp lies belowL�.
Conversely, suppose thatp lies belowL�. Thenp lies below the upper boundary of everyRi. Let �+ be
the same as in the proof of Lemma 3.3. Sincejc1c3j = jc2c3j = 1, O3 � �+, and thusS3 is also contained
in �+. The argument in the proof of Lemma 3.3 implies that�+ lies above the lower boundaries of everyK(Ai) and of everyK(Bi). Hence,p lies in eachRi and thus also inR. 2

In view of Lemma 3.4, we may proceed as follows. For eachi, we computeK(Ai), K(Bi), Ri, and�i.
The total time spent in this step isO uXi=1(jAij+ jBij) log(n1 + n2)! = O �(n2=31 n2=32 + n1 + n2) log2(n1 + n2)� :
Since each arc in� is a portion of the upper boundary of a unit-radius disk, two arcs of� intersect in at most
one point. Hence, we can compute the lower envelopeL� of � in O(j�j log n) time using the algorithm of
Hershberger [14]. For each edge� of L� we store the indexj such that� 2 �j. Finally, for each pointp 2 S3
we determine whetherp lies below or aboveL�. If p lies aboveL�, then the test yields an arc ofL� that lies
belowp. If this arc belongs to�i then we deduce thatp =2 Ri (by Lemma 3.4). Then, scanning the points ofAi[Bi in additionalO(jAij+ jBij) time, we are certain to find a1-separated triple(a; b; p) 2 Ai�Bi�S3.

COMPUTING A MAXIMALLY SEPARATED TRIPLE 6

The total running time of the algorithm isO((n2=31 n2=32 +n1+n2) log2(n1+n2)+n3 log(n1+n2)). Hence,
we obtain the following result.

Theorem 3.5 Let S1, S2, and S3 be three sets of points in R2 that satisfy property (4), and put ni = jSij,
for i = 1; 2; 3. Then one can construct, in O((n2=31 n2=32 +n1+n2) log2(n1+ n2) +n3 log(n1+n2)) time,
a 1-separated triple in S1 � S2 � S3, if one exists, or determine that no such triple exists.

3.2 Reduction to3-partite graphs and finding a maximally separated triple

Let S be a set ofn points inR2 . We wish to compute a1-separated triple inS. We fix a small constant"� 1=16, and set� = d1="e. We draw a square grid of size" in the plane. Fori; j 2 Z, letCij denote the
grid cell [i"; (i + 1)") � [j"; (j + 1)"), and letSij = S \ Cij. LetC denote the set of nonempty grid cells
(i.e., those withSij 6= ;). We construct a graphG = (C;E) where(C;C 0) 2 E if minfjpp0j j p 2 C; p 2C 0g < 1.

Lemma 3.6 If G is not connected or C spans more than 3�+ 1 columns or rows, then a 1-separated triple
in S can be computed in O(n) time.

Proof: Omitted. Informally, ifG is disconnected, then the problem reduces to computing the diameter of
various pairwise-disjoint subsets ofS. If C spans more than3� + 1 rows or columns, then a1-separated
triple can easily be computed inO(n) time. 2

By the above lemma, it remains to consider the case whereG is connected andC spans at most3� + 1
rows and columns. Clearly, in this casejCj � (3� + 1)2. We consider all triplesC1; C2; C3 2 C and
determine whetherS1 � S2 � S3 contains a1-separated triple, whereSi = Ci \ S, for i = 1; 2; 3. If the
maximum distance between two of these three cells, say,C1 andC2, is less than1, then no1-separated triple
in S1�S2�S3 exists. Hence, we can assume that the maximum distance between every pair ofC1; C2; C3
is at least1. There are four cases to consider, depending on the numberk of edges ofG between these three
cells:
(i) k = 0; that is,C1; C2; C3 is an independent set inG. Then any triple inS1 � S2 � S3 is 1-separated and
we return any of them.
(ii) k = 1; suppose, without loss of generality, that(C1; C2) 2 E and(C1; C3); (C2; C3) 62 E. We compute
the diametral pair(p; q) of S1 [S2. If jpqj � 1, then we return(p; q; r), wherer is any point ofS3. Ifjpqj < 1, no triple inS1 � S2 � S3 is 1-separated.
(iii) k = 2; suppose, without loss of generality, that(C1; C2); (C1; C3) 2 E and (C2; C3) 62 E. We
computeK(S2) andK(S3). If a point p 2 S1 lies neither inK(S2) nor inK(S3), then there exists a pair(q; r) 2 S2 � S3 so thatp 62 D (q) [D (r) and thus(p; q; r) is 1-separated. IfS1 � K(S2) [K(S3) then,
arguing as in the proof of Lemma 3.1, no triple inS1 � S2 � S3 is 1-separated.
(iv) k = 3; that is,(C1; C2); (C1; C3); (C2; C3) 2 E. In other words, for any pairi 6= j 2 f1; 2; 3g we haveminfjxyj j x 2 Ci; y 2 Cjg < 1 � max fjxyj j x 2 Ci; y 2 Cjg:
By the triangle inequality, this implies that anyx 2 Ci, y 2 Cj satisfy1 � 2p2" � jxyj � 1 + 2p2".
We claim that our choice of" implies that there exist pointsc1; c2; c3 2 R2 so thatjcicj j = 1 for each pair
of distinct pointsci; cj , andSi is contained in the diskOi of radiusÆ � 1=6 centered atci, for i = 1; 2; 3.
To see this, letc1 2 C1, c2 2 C2 be such thatjc1c2j = 1. Let c3 2 R2 be a point such that�c1c2c3 is
equilateral andc3 lies on the same side of the line throughc1 andc2 asC3 (our choice of" is easily seen to
imply thatC3 does not intersect such a line). It can be shown thatC3 is fully contained in the disk of radius

COMPUTING A MAXIMALLY SEPARATED QUADRUPLE 71=6 centered atc3. We can therefore use Theorem 3.5 to compute a1-separated triple inS1 � S2 � S3, if
one exists, or to determine that no such triple exists.

The total running time of the algorithm is dominated by the overall cost of handling case (iv), and is
thus, by Theorem 3.5,O(�3n4=3 log2 n). We thus obtain the following main result of this section.

Theorem 3.7 Let S be a set of n points in R2 . We can compute, in O(n4=3 log2 n) time, a 1-separated triple
in S, if one exists, or determine that no such triple exists.

Finally, we run a binary search on the
�n2� pairwise distances inS. Thekth smallest pairwise distanceÆk in S, for any 1 � k � �n2�, can be computed in timeO(n4=3 log2 n) [16], and by Theorem 3.7, we

can determine whether aÆk-separated triple exists inS within the same time bound. Hence, we obtain the
following.

Theorem 3.8 Let S be a set of n points in R2 . We can compute, in O(n4=3 log3 n) time, a maximally
separated triple in S.

4 Computing a Maximally Separated Quadruple

Our overall approach is the same as in Section 3. We first consider a multi-colored version of this problem,
in which we are given four setsS1; S2; S3, andS4 of points, placed “reasonably far” from each other,
and we wish to compute a1-separated quadruple inS1 � S2 � S3 � S4. We present an algorithm for a
special configuration of these sets, which we refer to as adiamond configuration. We then sketch the overall
algorithm, which, as above, reduces the general problem to aconstant number of multi-colored instances.

4.1 The diamond configuration

Let S1, S2, S3, andS4 be four sets of points inR2 that satisfy the following property:

(3) There is a constantÆ � 1=8 so that eachSi is contained in a diskOi of radiusÆ centered atci so thatjc1c3j; jc2c3j; jc1c4j; jc2c4j = 1, 1 � jc1c2j � jc3c4j, andjc3c4j > 1 + 2Æ.
Without loss of generality assume thatc3 = (0; 0), c4 lies on thex-axis to the right ofc3, andc1 (resp.,c2) lies below (resp., above) thex-axis (in symmetric positions). The conditions on theci’s imply thatjc1c2j; jc3c4j � p3. See Figure 2 (i). Setni = jSij, for i = 1; : : : ; 4.� p3 1111O3c3 c4O4O1O2c2

c1
�p
(3)p p �(4)pK(4)p
(4)p�p K(3)p
(3)p pK(3)p�p �(4)pK(4)p
(4)p�p �pD(p)

(i) (ii) (iii)

Figure 2: (i) A diamond configuration. (ii) Implicit representation of @Rp; D (p) does not appear on@Rp. (iii) Implicit
representation of@Rp; D (p) appears on@Rp.

For a pointp 2 S1, let S(3)p = fq 2 S3 j jpqj � 1g andS(4)p = fq 2 S4 j jpqj � 1g. (We ignore for
the time being the issue of efficient construction of these sets; this will be addressed later on.) We remove

COMPUTING A MAXIMALLY SEPARATED QUADRUPLE 8

from S1 any pointp for which one of these sets is empty, because such ap cannot be part of a 1-separated
quadruple. SetK(3)p = \q2S(3)p D (q); K(4)p = \q2S(4)p D (q); Rp = K(3)p [K(4)p [D (p); R = \p2S1Rp:

The following lemma is fairly straightforward.

Lemma 4.1 There exists a 1-separated quadruple in S1 � S2 � S3 � S4 if and only if S2 6� R.

The following is a variant of Lemma 3.3, proved in a similar manner.

Lemma 4.2 (i) For any p 2 S1, @K(3)p and @K(4)p intersect above the x-axis at exactly one point �p, which
lies on the upper boundaries of both regions.

(ii) For any p 2 S1, @K(3)p and @D (p) intersect above the x-axis exactly once, and similarly for @K(4)p
and @D (p).
Definition 4.3 For a pointp 2 S1, let�p denote, as in Lemma 4.2, the unique intersection point of theupper

boundaries ofK(3)p andK(4)p , and let�p (resp.,�p) denote the intersection point of the upper boundary ofK(3)p (resp.,K(4)p) with D (p), if such a point exists.

Consider the upper envelope of the upper boundaries ofK(3)p , K(4)p , andD (p). The preceding analysis
implies that the envelope has one of the following two structures: (i) EitherD (p) does not appear on the

envelope, and then it consists of a connected portion
(3)p of the upper boundary ofK(3)p and a connected

portion
(4)p of the upper boundary ofK(4)p , meeting at the point�p (see Figure 2 (ii)); or (ii)D (p) appears

on the envelope, and then it consists of a connected portion
(3)p of the upper boundary ofK(3)p , a connected

portion Æp of the upper boundary ofD (p), and a connected portion
(4)p of the upper boundary ofK(4)p , so
that the first and second portions meet at�p and the second and third portions meet at�p (see Figure 2 (iii)).

Let �(3) = f
(3)p j p 2 S1g, �(4) = f
(4)p j p 2 S1g, and� = fÆp j p 2 S1g. LetL(3) (resp.,L(4),L(1)) denote the lower envelope of�(3) (resp.,�(4), �).

The following lemma is a corollary of Lemma 3.4 and Lemma 4.2.Its proof uses the obvious observation
that the lower envelope ofL(3), L(4), andL(1) is the same as the lower envelope of the upper boundaries of
the regionsRp, for p 2 S1. (We follow here the convention that if a lower envelope is undefined at somex,
it is assumed to be+1 there.)

Corollary 4.4 A point q 2 S2 lies in R if and only if q lies below each of L(3), L(4), and L(1).
We thus computeL(3), L(4), andL(1) separately, and determine whether any point ofS2 lies above any

of them. If the answer is yes, we can conclude that a1-separated quadruple inS1 � S2 � S3 � S4 exists,
and we can compute it in additional linear time. Otherwise nosuch quadruple exists. Computing these
envelopes explicitly is however expensive, so we representthem implicitly. We first describe the implicit
representation of the envelopes and of its arcs, following asimilar representation used by Agarwal et al. [4],
and then present the algorithm for computing the envelopes.

Implicit representation of K(3)p ;K(4)p , and of the lower envelopes. For a subsetQ � S1, letL(3)Q denote

the lower envelope of arcs in the setf
(3)p j p 2 Qg. We representL(3)Q by the sequence of itsbreakpoints in

increasing order of theirx-coordinates. The breakpoints are defined so that each portion � of L(3)R between

COMPUTING A MAXIMALLY SEPARATED QUADRUPLE 9

two consecutive breakpoints is contained in a single
(3)p (such a� may overlap with many
(3)p ’s, but there

is (at least) one pointp 2 S1 such that� is fully contained in
(3)p). We maintain� implicitly, by recording a

point p 2 R that satisfies� �
(3)p .

Let D = fD (q) j q 2 S3g. To represent each
(3)p implicitly, we choose a parametern3 � s � n23,
compute a familyfD(1); : : : ;D(u)g of canonical subsets ofD and associate with eachD(i) its intersection

region �K(i) = TD(i), such that
Pui=1 jD(i)j = O(s logn3), and such that for anyp 2 S1, K(3)p can

be represented as the intersection ofO((n3=ps) log n3) of these canonical regions�K(i). Let Jp denote

the set of indices of these canonical subsets (i.e.,K(3)p = Ti2Jp �K(i)). Katz and Sharir [16] have shown
that the construction of such a family of canonical sets, andof the corresponding sets of indicesfJpgp2S1 ,
can be accomplished in timeO(s logn3). For each canonical subsetD(j), the construction of�K(j) can
be performed inO(jD(j)j log jD(j)j) time. We store the vertices of the upper boundary of�K(j) in a list,
sorted in increasing order of theirx-coordinates. For each such boundary vertex, we also store the disk
whose boundary appears on@ �K(j) immediately to its right. The total time spent in computing this implicit
representation of theK(3)p ’s is

Puj=1O(jD(j)j log n3) = O(s log2 n3).
As shown by Agarwalet al. [4], each of the following three operations on the arcs in�(3) andf@K(3)p gp2S1

can be performed inO((n3=ps) log3 n3) time.

(S1) Leftmost and rightmost points:Given a pointp 2 S1, compute the leftmost and the rightmost points
of K(3)p .

(S2) Intersection point(s) with a vertical line:Given a vertical linè and a pointp 2 S1, determine the
intersection point(s) of̀ with
(3)p or with @K(3)p .

(S3) Intersection points with a unit disk:Given a unit diskD and a pointp 2 S1, determine the intersection
point(s) ofD with
(3)p or with @K(3)p .

(S4) Crossing point of two arcs:Given two pointsp; q 2 S1 and anx-interval[a; b] contained in thex-span

of both
(3)p and
(3)q , determine whether the top boundaries ofK(3)p andK(3)q cross in[a; b]. If so,
return their crossing point. If theyweakly cross in [a; b], i.e., overlap over some subintervalJ of [a; b]
and their vertical order to the right ofJ is the reverse of their vertical order to the left ofJ , then return
the leftmost endpoint of their common overlap in[a; b].

In a fully analogous fashion, we choose a parametern4 � s0 � n24 and processS4 in O(s0 log2 n4) time

to compute an implicit representation of all the arcs
(4)p . Each of the operations (S1)–(S4) on�(4) can be
performed inO((n4=ps0) log3 n4) time.

ComputingL(3),L(4), andL(1). Using the subroutine (S1), we first compute the lefmost point�p of K(3)p
and the rightmost point�p of K(4)p , for eachp 2 S1. Next, using (S3) and (S4), we compute the intersection

point �p of the upper boundaries ofK(3)p andK(4)p , the intersection point�p of the upper boundaries ofK(3)p andD (p), and the intersection point�p of the upper boundaries ofK(4)p andD (p). By comparing
thex-coordinates of these three points, we can determine whether the upper boundary ofRp is of the first

kind (without D (p)) or of the second kind (withD (p)). In the first case, we represent the arc
(3)p by the

interval [x(�p); x(�p)] and by the setJp of indices as described above, and the arc
(4)p by the interval

COMPUTING A MAXIMALLY SEPARATED QUADRUPLE 10[x(�p); x(�p)] and by the corresponding setJ 0p of indices. In the second case, we represent
(3)p by the

interval[x(�p); x(�p)], Æp by the interval[x(�p); x(�p)], and
(4)p by the interval[x(�p); x(�p)]; in addition,
each arc is associated with its corresponding setJp of indices.

Thex-coordinate of any pointp 2 S1 is at most
p3=2+Æ and thex-coordinate of the rightmost point ofRp is at least1� Æ. This easily implies thatp lies belowK(3)p (i.e., the vertical ray emanating upward fromp intersectsK(3)p). Since this holds for any pointp 2 S1, Theorem 2.8 of Agarwalet al. [4] (concerning the

“pseudo-diskness” of the regionsK(3)p) implies that, for anyp; q 2 S1,
(3)p and
(3)q cross in at most one
point. A similar argument proves the corresponding claim for �(4). Hence, each of�(3);�(4) is a collection
of pseudo-segments. We can therefore compute the lower envelopesL(3);L(4) using the divide-and-conquer
algorithm of Hershberger [14], mentioned above. In the mainstep of this algorithm, we have available the
envelopesL(3)A ;L(3)B of two subsetsA;B � �(3), and we need to merge these envelopes to computeL(3)A[B.

The only nontrivial part in the merge step is computing the crossing point of two arcs
(3)p and
(3)q in a givenx-interval [a; b]. Using the subroutine (S4), we can perform this step inO((n3=ps) log3 n3) time. Plugging
this bound into Hershberger’s algorithm, we can compute an implicit representation ofL(3) in overall timeO((n1n3=ps) log3 n3 log n1 + s log2 n3). Similarly, we can compute an implicit representation ofL(4) in
timeO((n1n4=ps0) log3 n4 logn1 + s0 log2 n4). ComputingL(1) is easier, since no implicit representation
is needed here: We simply have to compute the lower envelope of n1 upper unit circular arcs, which behave
as pseudo-segments, so their envelope can be computed inO(n1 logn1) time (as in [14]). Finally, for
each pointp 2 S2, we determine inO((n3=ps) log3 n3 + (n4=ps0) log3 n4) time, using the subroutine
(S2), whetherp lies aboveL(3) or aboveL(4). Testing whetherp lies aboveL(1) is easy to accomplish inO(log n) time. The total time spent is thusO�(n1 + n2)� n3ps + n4ps0� log3(n3 + n4) log(n1 + n2) + (s+ s0) log2(n3 + n4)�: (4.1)

In summary, we have shown:

Lemma 4.5 Let S1, S2, S3, and S4 be four sets of points in R2 that satisfy property (3). Let ni = jSij,
for i = 1; : : : ; 4, and let n3 � s � n23, n4 � s0 � n24, be two parameters. One can determine whetherS1�S2�S3�S4 contains a 1-separated quadruple, and, if so, compute such a quadruple, within the time
bound in (4.1).

In particular, boundingn1; n2; n3; n4 by n and choosings = s0 = n4=3 log4=3 n, we obtain:

Theorem 4.6 For a set S of n points in the plane of the form S1 [S2 [S3 [S4, where the Si’s satisfy
property (3), one can determine whether S contains a 1-separated quadruple, and, if so, compute such a
quadruple, in O(n4=3 log10=3 n) time.

4.2 Reducing to4-partite graphs and finding a maximally separated quadruple

As in Section 3, we construct a square grid of size", for a sufficiently small constant parameter" > 0. LetCij ; Sij;C;G be as before. Following the same argument used earlier, we can assume thatG is connected
andC spans at most4� rows and columns. We now try all quadruplesC1; C2; C3; C4 2 C and determine
whether the corresponding quadrupleS1 � S2 � S3 � S4 contains a1-separated quadruple. We can assume
that the maximum distance between any pair of these cells is at least one and that the subgraph induced by
these four cells is connected, because if the former assumption is violated then no1-separated quadruple
exists, and if the latter is violated then the problem can be reduced to finding a1-separated triple (or two

AN EXACT ALGORITHM FOR AN ARBITRARY VALUE OF k 11

pairs of diametral points). Following a case analysis similar to the previous section, but somewhat more
involved, we obtain:

Theorem 4.7 Let S be a set of n points in R2 . A 1-separated quadruple in S can be computed in timeO(n4=3 log10=3 n).
Finally, by performing a binary search on the pairwise distances inS, as above, we obtain the following.

Theorem 4.8 Let S be a set of n points in R2 . A maximally separated quadruple in S can be computed inO(n4=3 log13=3 n) time.

5 An Exact Algorithm for an Arbitrary Value of k
Let S be a set ofn points inR2 , and letk > 0 be an integer. We describe annO(pk)-time algorithm for
computing a maximally separated subset ofS of sizek. Because of lack of space we only provide a sketch
of the algorithm and omit the details. As in the previous sections, we focus on the decision problem: Given
a setD of n unit disks and an integer1 � k � n, is there a subsetI � D of k pairwise-disjoint disks?
SupposeD lies inside a stripW of width w. By a sweep-line algorithm we can compute the largest subset
of pairwise disjoint disks inO(nw) time as follows. Our algorithm is similar to the one by Gonzalez [12]
for computing ak-center.

For a subsetA � D and a vertical linè , let�(A; `) � A be the set of disks that intersect`. We sweep
a vertical line` from left to right, stopping at the leftmost and the rightmost point of each disk inD. At any
time, the algorithm maintains a familyF = fI1; : : : ; Iug of subsets of pairwise-disjoint disks that satisfies
the following invariants:

(I.1) For every1 � j � u, no disk inIj � D is contained in the (closed) halfplane lying to the right of the
sweep line.

(I.2) Forx 6= y, �(Ix; `) 6= �(Iy; `).
(I.3) If there is a subsetA � D of pairwise-disjoint disks so that no disk inA lies completely to the right

of `, then there is a subsetIj 2 F so that�(Ij; `) = �(A; `) (�(Ij ; `) may be empty) andjAj � jIj j.
Since at mostO(w) pairwise-disjoint disks ofD can intersect̀ , it can be argued thatjFj = nO(w).

Whenever the sweep-line passes through the leftmost or the rightmost point of a disk inD, the familyF can
be updated innO(w) time. We leave it to the reader to verify that the invariants (I.1)–(I.3) ensure that the
algorithm computes the largest subset of pairwise-disjoint disks inD.

Hence, ifw � pk, we are done. So assume thatw > pk. By invoking the above algorithm at mostn
times, we can determine innO(pk) time whether there is a subsetI � D of k pairwise-dsjoint disks that lie
in a horizontal strip of width at most

pk. Hence, we can assume that no subset ofk pairwise-disjoint disks
lies in a horizontal strip of width

pk. Using a straightforward packing lemma, we can prove the following.

Lemma 5.1 Let D be a set of n disks in R2 , and let I � D be a subset of k pairwise-disjoint disks that lie
in a horizontal strip of width larger than

pk. Then there exists a horizontal line tangent to one of the disks
in D that intersects O(pk) disks of I .

In view of this lemma, we guess the horizontal lineh and a subsetDh of t = O(pk) pairwise-disjoint
disks that intersect̀. LetD+ (resp.,D�) be the set of disks that lie completely above (resp., below)h and
do not intersect any disk inDh. We guess an integer0 � l � k � t. We recursively determine whether

REFERENCES 12D� (resp.,D+) contains a subset ofl (resp.,k � t� l) pairwise-disjoint disks. Each subproblem is defined
by two horizontal lines, each tangent to a disk inD, andO(pk) disks ofD, so we need to solvenO(pk)
subproblems. Using a dynamic-programming approach, we cansolve each of these subproblems innO(pk)
time. Omitting all the details, which are similar to those in[3], we conclude the following.

Theorem 5.2 Let S be a set of n points in R2 , and let 1 � k � n be an integer. A maximally separated
subset in S of size k can be computed in nO(pk) time.

References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, Approximating extent measures of points, submitted for
publication, 2003.

[2] P. K. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum independent set in rectangles.
Computational Geometry: Theory and Applications, 11 (1998), 209–218.

[3] P. K. Agarwal and Cecilia M. Procopiuc, Exact and approximation algorithms for clustering,Algorithmica
33 (2002), 201–226.

[4] P. K. Agarwal, M. Sharir, and E. Welzl, The discrete 2-center problem,Discrete Comput. Geom. 20 (1998),
287–305.

[5] J. Alber and J. Fiala, Geometric separation and exact solutions for the parameterized independent set problem
on disk graphs,Proc. 2nd IFIP Intern. Conf. on Theoretical Computer Science, 2002, pp. 26–37.

[6] M. de Berg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf, Computational Geometry: Algorithms and
Applications (2nd ed.), Springer-Verlag, Heidelberg, 2000.

[7] R. Boppana and M. M. Halldórsson. Approximating maximum independent sets by excluding subgraphs.Proc.
2nd Scandinavian Workshop on Algorithm Theory, 1990, 13–25.

[8] B. N. Clark, C. J. Colbourn and D. S. Johnson, Unit disk graphs,Discrete Mathematics 86 (1990), 165–177.

[9] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes for geometric graphs. InPro-
ceedings of the Twelth Annual ACM-SIAM Symposium on Discrete Algorithms, 2001, 671–679.

[10] M. Formann and F. Wangner, A packing problem with applications to letter of maps,Proc. 7th Annu. Sympos.
Comp. Geom., 1991, 281–288.

[11] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman, New York, NY, 1979.

[12] T. Gonzalez, Clustering to minimize the maximum intercluster distance,Theoret. Comput. Sci. 38 (1985), 293–
306.

[13] J. Hastad. Clique is hard to approximate withinn1��. Acta Math., 182(1999), 105–142.

[14] J. Hershberger, Finding the upper envelope ofn line segments inO(n logn) time, Inform. Process. Lett. 33
(1989), 169–174.

[15] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns. NC-
approximation schemes for NP- and PSPACE-hard problems forgeometric graphs.J. Algorithms, 26 (1998),
238–274.

[16] M. Katz and M. Sharir, An expander-based approach to geometric optimization,SIAM J. Comput. 26 (1997),
1384–1408.

[17] M. Sharir and P. K. Agarwal,Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge
University Press, New York, NY, 1995.

[18] J. Vleugels and R. C. Veltkamp, Efficient image retrieval through vantage objects,Patt. Recog. 35(2002), 69–80.

