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Abstract

We show, with an elementary proof, that the number of halving sim-
plices in a set of n points in R

4 in general position is O(n4−2/45). This
improves the previous bound of O(n4−1/134

). Our main new ingredient is
a bound on the maximum number of halving simplices intersecting a fixed
2-plane.

1 Introduction

Let S be a finite set of n ≥ d + 1 points in R
d and let k be an integer parameter,

1 ≤ k ≤ n − 1. A k-set of S is a k-element subset of S that can be strictly
separated from its complement by a hyperplane. The k-set problem asks for
sharp bounds on the maximum number F

(d)
k (n) of k-sets of any set of n points in

R
d. The dimension d is usually considered to be a constant, while k, n → ∞. It

is not hard to see that the number of k-sets is maximized for point sets in general
position, i.e., such that no d+1 points lie in a common hyperplane. In this setting,
the following variant of the problem turns out to be essentially equivalent and
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technically more convenient to study: An oriented (d− 1)-dimensional simplex σ
spanned by d points of S is called a j-facet of S, for 0 ≤ j ≤ n − d, if there are
exactly j points of S in the positive open halfspace determined by σ. We denote
the number of j-facets of S by Gj(S) and seek sharp bounds on the maximum

G
(d)
j (n) of the numbers Gj(S) over all sets S of n points in general position in R

d.
In dimension 2, the number of k-sets of S is equal to Gk−1(S), and in dimension
3, it is equal to 1

2
(Gk−2(S) + Gk−1(S)) + 2; see [4]. In higher dimensions, there

are no longer any exact linear relations between these numbers, but for any fixed
dimension d, the numbers F

(d)
k (n) and G

(d)
k (n) lie within constant multiplicative

factors of one another (see, e.g., [12]).

A special case arises when n− d is even and j = (n− d)/2. Then G
(d)
(n−d)/2(n)

counts the maximum possible number of so-called halving facets of S. If we
reverse the orientation of a halving facet, we obtain again a halving facet. Thus,
we can forget about the orientation and just speak of the underlying unoriented
simplices, which are called halving simplices. Bounds on the number of halving
simplices can be translated to bounds on the number of j-facets for any j, so it is
sufficient to study the former quantity. More precisely, if the maximum number
of halving facets of n points in dimension d can be bounded by O(nd−cd) for some

constant cd > 0, this implies a bound of G
(d)
j (n) = O

(

nbd/2c(j + 1)dd/2e−cd

)

for all
j, see [2].

The study of k-sets and j-facets began more than 30 years ago [9, 11], and
tight bounds on the above quantities are still elusive, even in the plane, where
the maximum number of halving edges is known to be at most O(n4/3) [6], and
at least Ω(n · 2c

√
log n) for some constant c [16]. In three dimensions the upper

bound is O(n5/2) [14], and the lower bound is Ω(n2 · 2c
√

log n). In fact, in any
dimension d, the known lower bound is Ω(nd−1 · 2c

√
log n), which is obtained by

“lifting” the 2-dimensional construction of [16]. In d ≥ 4 dimensions, the known
upper bounds become considerably weaker, and are of the form O(nd−δd), where
δd = 1/(4d − 3)d, leaving a fairly big gap between the upper and lower bounds.
Moreover, the proof of these bounds uses the so-called colored Tverberg theorem,
for which there is no known elementary proof; the only known proof, given in
[17], uses methods from algebraic topology. See [12] for a review of this approach.

In this paper we study the problem in four dimensions, and obtain the first
elementary derivation of an upper bound on the number of halving simplices,
which also considerably improves the previous upper bound mentioned above.
Specifically, we show that the number of halving simplices in a set of n points in
R

4 is O(n4−2/45). As mentioned above, this implies a bound of O(n2(k +1)2−2/45)
for the number of k-facets (and k-sets) for all k.

As in essentially all known proofs of upper bounds for the number of halving
simplices in any dimension, we only use a simple local property of halving sim-
plices, the so-called antipodality property, first observed by Lovász [11], which we
define in more detail below.

2



2 The Structure of the Proof

We begin by reviewing the notion of antipodal geometric (hyper)graphs. We
formulate the definitions for general dimension. Later on, we will restrict our
attention to dimensions 2 and 4.

Definition 2.1. A geometric hypergraph in R
d is a pair (S, T ), where S is a

finite set of points in general position, and T is a collection of simplices spanned
by points from S. The elements of T are also called hyperedges. A geometric
hypergraph is called k-uniform if all hyperedges have k vertices, i.e., if all hyper-
edges are simplices of dimension k− 1. For a 2-uniform geometric hypergraph in
R

2 we drop the prefix “hyper” and just speak of a geometric graph and its edges.

We will often denote a simplex by an (unordered) list of its vertices. Thus,
p1 · · · pk = conv{p1, . . . , pk}, with the understanding that the points are affinely
independent.

Definition 2.2. A d-uniform geometric hypergraph (S, T ) in dimension d is
called antipodal if the following holds for any d−1 points p1, . . . , pd−1 ∈ S: When-
ever a, b ∈ S are two distinct points such that both ap1 · · · pd−1, bp1 · · ·pd−1 ∈ T ,
then there is a third point c ∈ S such that cp1 · · · pd−1 ∈ T and such that the
triangle abc intersects the affine hull of p1 · · · pd−1 (see Figure 1).

a

b

c

p1

p2

Figure 1: The antipodality property in dimension 3.

The crucial property is that the family of halving simplices of a point set has
this property (see, e.g., [12]):

Lemma 2.3. Let S be a finite set of points in R
d in general position, and let

T be the set of halving simplices of S. Then (S, T ) is an antipodal d-uniform
geometric hypergraph.

Thus, our goal is to prove the following:
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Theorem 2.4. Let (S, T ) be an antipodal 4-uniform geometric hypergraph in R
4,

with t := |T | hyperedges and n := |S| points. Then

t = O(n4−2/45).

The earlier proofs of upper bounds for the number of halving simplices con-
sist of two steps. First, one shows that, for an arbitrary d-uniform geometric
hypergraph in R

d with t hyperedges and n points, there is a line that intersects
“many” of the hyperedges, namely, at least Ω(tsdnd(1−sd)) many, where s2 = 2,
s3 = 3 and sd = (4d − 3)d for d ≥ 4. Then one shows that if the hypergraph
is antipodal, then every line intersects only “few” hyperedges, namely, at most
O(nd−1) many (this latter observation is often referred to as Lovász’ Lemma; see
[5, 11]). We note, though, that the currently best bounds for d = 2 [6] and d = 3
[14] are derived using different techniques; see below.

The main new idea in our proof is to use 2-planes instead of lines. The
proof then derives the following two lemmas, which stand in analogy to similar
lemmas established in the preceding proofs, and which, together, immediately
imply Theorem 2.4.

In the statements of the lemmas, a generic 2-plane is a plane π that lies in
general position with respect to S. In particular, no point of S lies on π, no edge
connecting two points of S meets π, and a triangle ∆ spanned by S can meet π
only at a single point that lies in the relative interior of ∆.

Lemma 2.5. Let (S, T ) be a 4-uniform geometric hypergraph in R
4, with n = |S|

points and t = |T | simplices. If t > Cn11/3, for some absolute constant C > 0,
then there is a generic 2-dimensional plane π that intersects Ω(t3/n8) simplices
of T .

Lemma 2.6. Let (S, T ) be an antipodal 4-uniform geometric hypergraph on n
points in R

4 in general position. Then no generic 2-dimensional plane intersects
more than O(n4−2/15) simplices of T .

Sections 3 and 4 are devoted to the respective proofs of these lemmas.

3 Selecting a Stabbing Plane

We will need a result of Dey and Pach [8] on crossing simplices. Two simplices
σ and τ in R

d, of arbitrary dimensions 0 ≤ dim σ, dim τ ≤ d, are said to have a
nontrivial intersection if their relative interiors intersect. They cross each other
if they have a nontrivial intersection and their vertex sets are disjoint.

Theorem 3.1 (Dey and Pach). There exists a real constant c(d) > 0 that
depends only on d, so that the following holds. Let (S, T ) be a (d + 1)-uniform
geometric hypergraph in R

d on n = |S| points in general position. If t = |T | ≥
c(d)

(

n
d

)

, then there are two simplices τ1, τ2 ∈ T that cross each other.
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We also recall the following simple geometric fact:

Lemma 3.2. If σ, τ are two simplices in R
d such that σ ∩ τ 6= ∅, then there are

two faces σ′ and τ ′ of σ and τ , respectively, such that dim σ′ + dim τ ′ ≤ d and σ′

and τ ′ intersect nontrivially.

Proof. Let σ′ and τ ′ be faces of σ and τ , respectively, such that σ′ ∩ τ ′ 6= ∅
and dim σ′ + dim τ ′ is minimal among all such intersecting pairs of faces. Let
x ∈ σ′ ∩ τ ′. If x were contained in the relative boundary of σ′, say, then there
would be a proper face σ′′ of σ′ still intersecting τ ′, contradicting the minimality
of the dimensions. Thus, x lies in the relative interior of both σ′ and τ ′. Moreover,
if dim σ′ + dim τ ′ > d, then the intersection of the affine hulls of σ′ and τ ′ would
contain a whole line through x. Moving along this line away from x until we
first reach the relative boundary of σ′ or of τ ′, we would again find a point x′

contained in the intersection of the two simplices and in the relative boundary of
at least one of them, thus reaching the same contradiction as before.

We are now ready to prove Lemma 2.5. We project S and T orthogonally
onto a generic hyperplane in R

4, apply the following lemma to the resulting con-
figuration, and then lift the resulting line ` orthogonally back to R

4, to obtain
the desired 2-plane π. (Actually, additional arguments, based on a slight pertur-
bation of π, are needed to ensure that π is generic.)

Lemma 3.3. There exists an absolute constant C > 0, such that if (S, T ) is
a 4-uniform geometric hypergraph in R

3, with n ≥ 6 points in general position,
and t ≥ C

(

n
3

)

hyperedges, then there is a line ` that intersects at least Ω(t3/n8)
simplices of T .

Proof. We take C := max(2c(3), 1), where c(3) is the constant in Theorem 3.1.
First assume that t > C

2

(

n
3

)

. By Theorem 3.1, there exist two simplices τ1, τ2 ∈ T
that cross each other. By Lemma 3.2, there exist two faces σ1 and σ2 of τ1 and
τ2, respectively, that cross as well, and such that dim σ1 + dim σ2 ≤ 3. Moreover,
since the points of S are in general position, we cannot have dimσ1 +dim σ2 < 3.
Thus, up to symmetry, either σ1 is an edge ab and σ2 is a triangle xyz, or σ1 is a
point a contained in the interior of the 3-simplex σ2 = τ2 = xyzw. In both cases
there exists a crossing edge-simplex pair (ab, τ) consisting of an edge ab spanned
by two points of S and a simplex τ ∈ T , such that ab crosses τ . Indeed, in both
cases, take τ to be τ2. In the former case, ab is the edge provided by the preceding
analysis, and in the latter case, ab is any edge that has a as one endpoint, and
a point b ∈ S, which is different from a and from the four vertices of τ2, as the
other endpoint (such a b exists since we assume that n ≥ 6).

Let x denote the number of such crossing edge-simplex pairs induced by (S, T ).
It follows that we have

x ≥ t −
C

2

(

n

3

)

(1)
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for any t and n ≥ 6. This is trivially true if t ≤ c(3)
(

n
3

)

. Otherwise, for each
crossing edge-simplex pair (ab, τ), delete τ from T . Then the remaining set T ′

of simplices does not generate any crossing edge-simplex pair, so t − x = |T ′| ≤
c(3)

(

n
3

)

.
It will be convenient to use (1) for all integers n ≥ 0. For n ≤ 3 there are no

hyperedges, so t = 0, x = 0, and (1) holds. For n = 4, 5 direct calculation shows
that t ≤

(

n
4

)

≤ 1
2

(

n
3

)

≤ C
2

(

n
3

)

and (1) holds as well.
We now apply a standard random sampling argument to derive a stronger

bound. For a parameter α ∈ (0, 1), to be specified later, let Sα be a random
sample obtained by picking each point of S independently with probability α. Let
Tα be the set consisting of those simplices τ ∈ T all of whose vertices are present
in Sα. By the previous argument, the random variables nα = |Sα|, tα = |Tα|,
and the random variable xα counting the number of crossing edge-simplex pairs
of (Sα, Tα) satisfy

xα ≥ tα −
C

2

(

nα

3

)

.

In particular, this inequality also holds for the expected values of these random
variables. We have E[xα] = α6x, E[tα] = α4t, and E[

(

nα

3

)

] = α3
(

n
3

)

(in the last
equality, both sides express the expected number of unordered triples in Sα).
Hence

α6x ≥ α4t −
α3C

2

(

n

3

)

.

Set α := C
(

n
3

)

/t, which, by assumption, lies in (0, 1). We conclude that there are

x ≥
1

α2
t −

C

2α3

(

n

3

)

=
t3

2C2
(

n
3

)2 = Ω

(

t3

n6

)

crossing edge-simplex pairs for (S, T ). Since there are
(

n
2

)

edges ab, one of them
participates in Ω(t3/n8) crossing edge-simplex pairs, so the line spanned by that
edge intersects the asserted number of simplices of T .

To complete the proof of Lemma 2.5, we note that the line ` produced by
Lemma 3.3 is not generic, since it passes through two points a, b ∈ S. If we
slightly perturb ` into generic position, we may lose intersections only with those
simplices that are incident to either a or b (or both). The number of such simplices
is at most 2

(

n
3

)

< n3. Hence, as long as t � n11/3, the new generic line `′ will
still intersect Ω(t3/n8) simplices of T . Lifting `′ back to 4-space, we obtain the
desired generic 2-plane π.
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4 Bounding the Number of Simplices Stabbed

by a 2-Plane

Let (S, T ) be a 4-uniform geometric hypergraph in R
4 and let π be a generic

2-dimensional plane. Our goal is to bound the number of hyperedges τ ∈ T inter-
sected by π, under the assumption that (S, T ) satisfies the antipodality property.
If a 3-simplex τ ∈ T and π intersect (necessarily generically), then the intersec-
tion is a line-segment of positive length whose endpoints lie in the relative interior
of two triangles bounding τ .

Let E be the set of line segments {τ ∩ π | τ ∈ T}, and let V be the set of
endpoints of these edges. Then G = (V, E) is a geometric graph in the plane π,
but with a particular kind of vertex and edge labelling: Each point q ∈ V is the
intersection of π with some triangle spanned by a triple of points a, b, c ∈ S, and
we label q by the triple abc. Similarly, each edge e ∈ E is the intersection of π
with some simplex spanned by four points a, b, c, d ∈ S, and we label e by the
quadruple abcd. The (labels of the) endpoints of e are two distinct sub-triples
of abcd. The order of the indices (points of S) in the label is immaterial, but
all indices are distinct. No two objects receive the same label. In particular,
m := |V | ≤

(

n
3

)

. Moreover, rephrasing what has just been noted, if two points
abc and xyz of V are connected by an edge, then the triples abc and xyz must
share a common pair of indices, say, a = x and b = y, and the edge is labeled by
the quadruple abcz. We say that the geometric graph G has a special n-labeling
if its vertices and edges are labeled in this manner (that is, vertices are labeled
by distinct triples and each edge is labeled by the quadruple that is the union of
the labels of its end vertices).

So far, everything holds for general 4-uniform geometric hypergraphs. It is
time to exploit antipodality.

Lemma 4.1. If (S, T ) satisfies the antipodality property, then so does the graph
G = (V, E).

Proof. Let us fix a triangle pqr of S that intersects the plane π at a point o, also
labeled by pqr. We view o as the origin of R

4 as well as of the plane π. Since the
2-dimensional planes aff(pqr) and π intersect at the single point o, every point
x ∈ R

4 can be written uniquely as a x = xπ+xpqr with xπ ∈ π and xpqr ∈ aff(pqr).
Then the projection x 7→ xπ is a linear map R

4 → π, and a point x projects onto
xπ = o iff x ∈ aff(pqr).

Now, suppose that E contains two edges e, f incident to the point o. These
edges correspond to simplices apqr, bpqr ∈ T that are incident to the triangle pqr.
By the antipodality of (S, T ), there is a third simplex cpqr ∈ T incident to pqr,
such that aff(pqr) intersects the triangle abc. Since the simplex cpqr intersects
the plane π (the point o is contained in both), our genericity assumption implies
that the intersection is a line segment. One endpoint of this line segment is the
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point o, and the other endpoint w arises as the intersection of some other facet
of cpqr with π, say w = cpq ∩ π. Our genericity assumption now implies that w
lies in the relative interior of cpq, and thus it can be written as w = νc+ ρp+ ηq,
with ν + ρ + η = 1 and ν, ρ, η > 0. Applying our projection map, it follows
that w = νcπ. Similarly, each of the edges e (labeled by apqr) and f (labeled
by bpqr) have o as one of their endpoints, and the other endpoint is of the form
u = λaπ and v = µbπ, respectively. It remains to observe that abc ∩ aff(pqr) 6= ∅
implies that o ∈ aπbπcπ, and since λ, µ, ν > 0 and we chose o as the origin of our
coordinate system, this implies that o ∈ uvw, as asserted.

In the remainder of this section, we derive an upper bound for the number
of edges of an antipodal geometric graph G = (V, E) with a special n-labeling as
defined above. The crossings between edges of G will be of central importance in
our analysis. We recall the following fundamental result, first proved by Ajtai et
al. [1] and independently by Leighton [10] (see also [12]):

Theorem 4.2 (Crossing Lemma). If G = (V, E) is a simple graph, then in
any drawing of G in the plane, there are at least Ω(|E|3/|V |2) crossings between
the (not necessarily straight) arcs representing the edges of G, provided that |E| ≥
4|V |. Consequently, we always have |E| = O(|V | + |V |2/3X1/3), where X is the
minimum number of crossings in any drawing of G.

The proof of this theorem exploits the kind of probabilistic argument that we
used in the proof of Lemma 3.3. For antipodal geometric graphs we also have the
following result by Dey [6].

Lemma 4.3 (Dey). The number of crossings between the edges of an antipodal
geometric graph G = (V, E) is at most |V |2.

Proof. We present the proof of the lemma, because we will later need the notions
of convex and concave chains that the proof exploits. We remark that the proof
presented here is simpler than the original proof; as far as we know, the only
previous mention of it is in [12, p. 288].

By choosing an appropriate coordinate system for the plane, we may assume
that no edge in E is vertical. Let us consider an edge uv ∈ E with left endpoint u
and right endpoint v. If there exists an edge with left endpoint v and with slope
larger than the slope of uv, then let vw be the edge that has the smallest slope
among all such edges and we call vw the convex successor of uv; otherwise, the
convex successor is not defined. The antipodality property guarantees that no
two edges can have the same convex successor. Thus, if we define a convex chain
as a maximal sequence e1, . . . , ek ∈ E such that each ei+1 is the convex successor
of ei, then these chains form a partition of the edge set E, and clearly, each chain
is an x-monotone convex polygonal curve. Note that if uv is the rightmost edge
of a convex chain, uv must have the largest slope among all the edges with right
endpoint v, for otherwise, the antipodality property would imply that uv has
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a convex successor. Thus, every vertex v is the right endpoint of at most one
convex chain, so there are at most |V | such chains. Similarly, there are at most
|V | concave chains, which are defined analogously (by reversing the direction of
the y-axis). If two edges in E cross, then we can extend one of them to a convex
chain and the other one to a concave chain, and charge the crossing to the pair
of chains. Since a convex curve and a concave curve can cross at most twice, and
since a crossing in G can be charged to two different pairs of chains, the total
number of crossings is at most |V |2.

By applying Lemma 4.3 to the graph of halving edges of n points in the plane,
we see that there are only O(n2) crossings between the halving edges. Together
with the Crossing Lemma, this yields a simplified proof of Dey’s bound of O(n4/3)
for the number of halving edges.

In our setting, however, direct application of Lemma 4.3 does not yield a
sharp bound: The number of vertices is |V | = O(n3), so Lemma 4.3 only implies
that the number of crossings in G is O(n6). Combining this bound with the
bound of the Crossing Lemma, we only obtain the trivial bound |E| = O(n4).
We circumvent this difficulty as follows.

As noted above, each edge of G connects two points abc, abd whose labels
share a common pair ab. For each pair of distinct points a, b ∈ S, we define Gab

to be the subgraph of all edges whose endpoints share the pair ab of point labels
(recall that all labels are unordered). In addition, for each a ∈ S, we define Ga

to be
⋃

b6=a Gab. Thus every edge of G belongs to two distinct subgraphs of the
form Ga, Gb, and to one subgraph of the form Gab. Note that each graph Gab

has at most n − 2 vertices and each graph Ga has at most
(

n−1
2

)

vertices. Note
also that the degree in G (in Ga, Gab, respectively) of any vertex ξ = abc is at
most 3(n − 3) (2(n − 3), n − 3, respectively) since any neighbor of ξ in G must
share two symbols out of {a, b, c} and there are only n − 3 choices for the third
symbol. (In Ga, the two shared symbols are a and one of b, c, and in Gab, the
shared symbols are a and b.)

We fix a ∈ S, and consider the graph Ga. Let ξ = abc be a vertex of Ga, and
let da(ξ) denote its degree in Ga. Each edge of Ga incident to ξ can be classified
as either a b-edge if it is of the form (abc, abx), or as a c-edge if it is of the form
(abc, ayc). We call ξ bichromatic (with respect to a) if the number dab(ξ) of its
incident b-edges and the number dac(ξ) of its incident c-edges are both at least
λda(ξ). Here λ ∈ (0, 1) is a parameter whose value will be determined later; let us
emphasize that it will depend on n. Otherwise, we call ξ monochromatic (again,
with respect to a).

Let Ma (respectively, Ba) denote the number of edges of Ga that are incident
to a monochromatic (respectively, bichromatic) vertex (an edge can contribute
to both counts). Let us put B :=

∑

a∈S Ba and M :=
∑

a∈S Ma. We first obtain
an upper bound for B in terms of n and λ, and then we will derive a relation
among M , n, λ, and B. Finally, we will optimize λ so that the resulting upper
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bound for B + M is minimized.
A vertex ξ = abc belongs to the three graphs Ga, Gb, Gc, and may be bichro-

matic in any subset of them. We put

B∗ =
∑

a∈S

∑

ξ bichromatic in Ga

da(ξ).

Note that an edge counted in B is counted at least once and at most four times
in this sum, so B∗ = Θ(B).

For each integer k ≥ 0, let Πk be the set of pairs (a, ξ) such that ξ is bichro-
matic in Ga and such that 2k−1 < da(ξ) ≤ 2k. Since the maximum value of da(ξ)
is at most 2(n − 3), the maximum value of k is at most log(2n).

For each a ∈ S and 0 ≤ k ≤ log(2n), let Va,k denote the set of the vertices ξ of
Ga with (a, ξ) ∈ Πk, and put Da,k =

∑

ξ∈Va,k
da(ξ). Note that Da,k = Θ(2k|Va,k|),

and that
∑

k≥0

∑

a∈S Da,k = B∗.
We construct a new graph G∗

a,k from Ga as follows. For each bichromatic
vertex ξ = abc in Va,k, for each b-edge (abc, abx) incident to ξ, and for each c-edge
(abc, ayc) incident to ξ, with x 6= y, we form the 2-path (abx, abc, ayc), and regard
it as a (drawing in π of an) edge (abx, ayc) in G∗

a,k. Note that an edge (abx, ayc)
can be generated at most four times, since the middle vertex must be labeled by
a, by one of b, x, and by one of c, y. We turn G∗

a,k into a simple graph by retaining
only one copy of each multiple edge, which we choose arbitrarily, and draw it as
a 2-path that passes through the respective middle vertex, as prescribed above.
The number of vertices of G∗

a,k is O(n2).
Consider a bichromatic vertex ξ = abc ∈ Va,k and choose the notation so that

dab(ξ) ≤ dac(ξ). Then we have dab(ξ) ≥ λda(ξ) because ξ is bichromatic, and
dac(ξ) ≥

1
2
da(ξ) because da(ξ) = dab(ξ) + dac(ξ). So the number of 2-paths of the

form (abx, abc, ayc) is at least dab(ξ)(dac(ξ)− 1), where we subtract 1 from dac(ξ)
to ensure that we count only 2-paths with x 6= y. Since all the degrees da(ξ), for
ξ ∈ Va,k, lie in [2k−1 + 1, 2k], we have dab(ξ)(dac(ξ)− 1) = Ω(λ2kda(ξ)). From this
we get the following lower bound the number of edges of G∗

a,k:

|E∗
a,k| ≥ Ω

(

λ2k
∑

ξ∈Va,k

da(ξ)

)

= Ω(λ2kDa,k). (2)

Let Xa denote the number of crossings between the edges of Ga. We clearly
have

∑

a Xa ≤ 2X = O(n6). Let X∗
a,k denote the number of crossings between

the edges of G∗
a,k, for the above plane embedding of that graph (after eliminating

multiple edges). A pair of edges of G∗
a,k can cross either properly, when they

contain two respective crossing edges of Ga, or improperly, when they cross each
other at a common middle vertex. See Figure 2. Since the middle vertices of both
edges in a crossing pair in G∗

a,k are such that their da-degrees lie in [2k−1 + 1, 2k],

each crossing in Ga induces at most O(22k) proper crossings in G∗
a,k, for a total

10



abc

Figure 2: On the left, the dashed path and the solid one cross improperly at the
vertex abc. On the right, the two paths cross properly.

of O(22kXa) proper crossings. Similarly, the number of improper crossings is
O(|Va,k| · 2

4k) = O(23kDa,k). That is, we have

X∗
a,k = O(23kDa,k + 22kXa).

By the Crossing Lemma, the number of edges of G∗
a,k is

|E∗
a,k| = O(n2 + (n2)2/3(X∗

a,k)
1/3),

which, combined with (2), yields

λ2kDa,k = O

(

n2 + n4/3(23kDa,k + 22kXa)
1/3

)

,

and this gives

Da,k = O
(

λ−12−kn2 + λ−1n4/3D
1/3
a,k + λ−12−k/3n4/3X1/3

a

)

.

If the second term on the right dominates, then Da,k = O(λ−3/2n2). So we always
have

Da,k = O
(

λ−12−kn2 + λ−3/2n2 + λ−12−k/3n4/3X1/3
a

)

= O
(

λ−3/2n2 + λ−12−k/3n4/3X1/3
a

)

since λ−3/2n2 > λ−12−kn2. We fix a threshold integer parameter k0, that we will
shortly optimize, sum these bounds over all k ≥ 0 and a ∈ S, and use Hölder’s
inequality, to obtain

B = O

(

∑

k≥0

∑

a∈S

Da,k

)

= O

(

∑

k≤k0

∑

a∈S

Da,k +
∑

k>k0

∑

a∈S

Da,k

)

= O

(

2k0

∑

k≤k0

∑

a∈S

|Va,k| + λ−3/2n3 log n + λ−12−k0/3n4/3

(

∑

a∈S

Xa

)1/3

n2/3

)

= O
(

2k0n3 + λ−3/2n3 log n + λ−12−k0/3n4
)

.
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We now fix the threshold parameter k0 so as to minimize this bound. That is,
we choose k0 to be the integer that satisfies 2k0 ≤ λ−3/4n3/4 < 2k0+1, and obtain

B = O
(

λ−3/2n3 log n + λ−3/4n15/4
)

.

The second term dominates the first term, provided that λ > (log4/3 n)/n, which
indeed will be the case for our choice of λ. Hence the total number of edges in
all the graphs Ga that are incident to a bichromatic vertex is

B = O
(

λ−3/4n15/4
)

. (3)

We now turn to the analysis of the overall number M of edges incident to
monochromatic vertices, by analyzing the number of edges in the individual re-
fined subgraphs Gab, which proceeds by exploiting the global convex/concave
chain decomposition of the whole graph G.

The graph G is antipodal, and so it can be decomposed into O(n3) pair-
wise edge-disjoint x-monotone convex (or concave) chains, as in the proof of
Lemma 4.3. Consider the graph Gab, for a fixed pair of points a, b ∈ S. We delete
from it all the edges that are adjacent to at least one bichromatic vertex either in
Ga or in Gb, and we denote by G′

ab the resulting subgraph. We take each chain
γ from the global collection of convex and concave G-chains, and extract from
it all maximal contiguous subchains that consist exclusively of edges of G′

ab. Let
Cab denote the number of such ab-subchains. See Figure 3.

abx

abu

aby
axzξγ

Figure 3: The extraction of an ab-chain from a global chain.

Lemma 4.4.
∑

a,b Cab = O(λM + λ−3/4n15/4).

Proof. An ab-subchain γ may end, as we trace it from left to right, when the
global chain c that contains γ ends. This happens a total of O(n3) times, over all
subgraphs Gab. Otherwise, let us consider an “abrupt end” of such a chain γ at
some node ξ = abx. If the next edge s along the global chain is also an ab-edge,
it must be adjacent to a bichromatic vertex, and we charge the chain to s. Any
such edge can be charged at most once by concave chains, and at most once
by convex chains, because each charged edge belongs to a unique global convex
chain c1, and to a unique global concave chain c2, and the charging subchain γ is
contained in either c1 or c2. Hence, the total number of chains of this kind, over
all subgraphs Gab, is O(B) = O(λ−3/4n15/4).
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Let us now suppose that the next edge s is not an ab-edge. The preceding node
along the global chain c is of the form aby, and the succeeding node is of the form
axz, say (the case where the succeeding node is of the form bxz is symmetric).
See Figure 3. The two edges (aby, abx), (abx, axz) belong to Ga, and we regard
the terminal vertex ξ = abx of γ as a vertex of that graph. By construction,
ξ is monochromatic in Ga. Then either the number of b-edges incident to ξ, or
the number of its incident x-edges, is at most λda(ξ). In the former case we
charge γ to the edge (aby, abx), and in the latter case we charge it to the edge
(abx, axz). As above, an edge can be charged at most once by convex chains,
and at most once by concave chains, because it lies on the global chain that
contain the charging sub-chain γ. The overall number of edges that are charged,
over all subgraphs G′

ab, and thus the number of abrupt ends of the type under
consideration, is at most λ times the number of edges incident to monochromatic
vertices, that is, at most λM .

Since the first bound, O(λ−3/4n15/4), on the number of abrupt ends dominates
the number O(n3) of global chain ends, the lemma follows.

The graph G′
ab has n− 2 vertices. Denote by eab the number of its edges, and

by Xab the number of crossings between its edges. As in the proof of Lemma 4.3,
we have Xab = O(C2

ab). By the Crossing Lemma, we have

eab = O(n + n2/3X
1/3
ab ) = O(n + n2/3C

2/3
ab ).

Summing these bounds over all graphs G′
ab, and using Hölder’s inequality, we

obtain

M ≤
∑

a,b

eab ≡ e

= O

(

n3 + n2/3

(

∑

a,b

Cab

)2/3

(n2)1/3

)

= O
(

n3 + n4/3
(

λM + λ−3/4n15/4
)2/3

)

,

and so

M ≤ e = O
(

n3 + n4/3
(

λ2/3M2/3 + λ−1/2n5/2
))

= O
(

n4/3
(

λ2/3M2/3 + λ−1/2n5/2
))

.

If the second term on the right dominates, then

e = O
(

λ−1/2n23/6
)

. (4)

If the first term dominates, then

M = O
(

n4/3λ2/3M2/3
)

,
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or M = O(λ2n4). The bound (3) for B is dominated by the bound in (4),
provided that λ > 1/n1/3, which again will be the case for our choice of λ. We
thus conclude that

e = O
(

λ2n4 + λ−1/2n23/6
)

.

Now we choose λ = n−1/15, and note that it satisfies both constraints assumed
along the way, namely, λ > (log4/3 n)/n and λ > 1/n1/3. We thus obtain e =
O(n4−2/15). This complete the proof of Lemma 2.6, and thus also of our main
Theorem 2.4.

As mentioned in the introduction, an upper bound on the number of halving
sets translates into a bound on the number of k-sets (see [2]). Thus, we have
obtained the following:

Corollary 4.5. A set of n points in R
4 has at most O(n2(k + 1)2−2/45) many

k-sets, 0 ≤ k ≤ n.

5 Discussion and Open Problems

Summarizing the technical ingredients of our proof, the first step is to find a 2-
plane π that intersects (generically) many halving simplices, and the second step
is to show that no 2-plane can intersect many halving simplices. The cross sections
of these simplices within π form an antipodal geometric graph G. However, direct
application of the Crossing Lemma to G fails to produce sharp bounds, because
G has (potentially) too many crossings. However, G has a special labeling of
its vertices and edges, and only nodes with ‘nearby’ labels can be connected by
an edge. We exploit this property by decomposing G into various subgraphs
according to the labels of its edges and vertices, and apply the Crossing Lemma
within each subgraph separately. The subgraphs, however, need no longer be
antipodal, so we need an estimate on the number of convex and concave chains
that cover their edges. This in turn is done by classifying vertices as being either
bichromatic or monochromatic, and by carrying out a preliminary analysis that
estimates the number of edges incident to bichromatic vertices. This bound is
then used to estimate the number of chains in the decomposition of our subgraphs.

Clearly, the main open problem is to extend the new ideas to higher dimen-
sions, where the first target is to do it in five dimensions. The difficulty in such an
extension is twofold: Finding a 2-plane that crosses many halving simplices, and
deriving an upper bound on the number of halving simplices that a 2-plane can
cross. So far we have accomplished the first step, but not the second one. The
difficulty is that the labels of the resulting geometric graph are more involved:
vertices are labeled by quadruples and edges by quintuples, which tends to make
the analysis that we have developed in this paper quite hard to extend.

Apparently, one needs some new ideas. Here are possible directions to look
for them.
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One possibility is to look for higher-dimensional flats that cross many halving
simplices. Consider, for example, a 3-dimensional cross section h. The resulting
configuration in h is still antipodal, but it now consists of convex polygons with
O(1) sides, that meet at common edges, about which antipodality holds. The
challenge is to develop new machinery that replaces / extends the convex chain
decomposition and the Crossing Lemma.

We observe that the only property of halving simplices that we have used is
the antipodality. In fact, almost all known proofs only use antipodality. Never-
theless, some progress has been made in the way antipodality is exploited. The
earlier proofs use it only implicitly, via the Lovász Lemma. Starting with Dey’s
proof, antipodality is used more explicitly, via the convex and concave chain de-
composition (see [6, 14], and the present paper, for applications in two, three,
and four dimensions, respectively). What we are seeking are new ways to exploit
this property, say directly in three dimensions.

A more challenging direction is to find and exploit additional properties of
the hypergraph of halving simplices beyond antipodality. In fact, Dey’s bound is
optimal for arbitrary antipodal geometric graphs. Strangely enough, the property
that halving simplices are halving is not used at all (other than in proving that
their hypergraph is antipodal).
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