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Abstract

We show that the number of halving sets of a set @oints inR* is O (n*~1/18), improving the
previous bound of [9] with a simpler (albeit similar) proof.

1 Introduction

Let S be a finite set ohh > d + 1 points inR% and letl < k < n —1be an integer parameter. /Aset

of S is ak-element subset of that can be strictly separated from its complement by a hyperplane. The
k-set problemasks for sharp bounds on the maximum numﬁgr)(n) of k-sets of any set of points in

R?. The dimensionl is usually considered to be a constant, wiilandn are arbitrarily large. It is not
hard to see that the number/ofets is maximized for point seits general positioni.e., such that nd + 1
points lie in a common hyperplane. In this setting, the following variant of thelgno turns out to be
essentially equivalent and technically more convenient to study: An odédte 1)-dimensional simplex

o spanned byl points of S is called aj-facetof S, for 0 < j < n — d, if there are exactly points of.S

in the positive open halfspace determinedsbyWe denote the number gffacets ofS by G;(.S) and seek

sharp bounds on the maximlﬂi“;d) (n) of the numberg-;(.S) over all setsS of n points in general position

in R%. In dimension2, the number of-sets ofS is equal toG_1(S), and in dimensior, it is equal to
3(Gr_2(S) + Gr_1(S)) + 2; see [3]. In higher dimensions, there are no longer any exact linksiores

between these numbers, but for any fixed dimengidghe numbersF,gd) (n) andG;d) (n) lie within constant
multiplicative factors of one another (see, e.g., [8]).

A special case arises when- d is even and = (n — d)/2. ThenGEfL)_d)/Q(n) counts the maximum
possible number of so-calldthlving facetof S. If we reverse the orientation of a halving facet, we obtain
again a halving facet. Thus, we can forget about the orientation ansijeak of the underlying unoriented
simplices, which are calleldalving simplicesBounds on the number of halving simplices can be translated

to bounds on the number gffacets for anyj [2], so it is sufficient to study the former quantity.

The study ofk-sets and-facets began almost 40 years ago [5, 7], and tight bounds on the qbant-
ties are still elusive, even in the plane, where the maximum number of halviyes éslknown to be at most
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O(n*/3) [4], and at leasf)(n - 2¢V1°s™) for some constant[10, 12]. In three dimensions the upper bound is
O(n®/?) [11], and the lower bound i€(n? - 2¢V1°2™)_ In fact, in any dimensiod, the known lower bound
is Q(n1 . 2¢vlogn) which is obtained by “lifting” the 2-dimensional constructions of [10, 12]d > 5
dimensions, the known upper bounds become considerably weakeayaod the formO(n?=%), where

64 = 1/(4d — 3)?, leaving a fairly big gap between the upper and lower bounds. Morgtheproof of
these bounds uses the so-called colored Tverberg theorem, for whrehisino known elementary proof;
the only known proof, given in [13], uses methods from algebraic tapol®ee [8] for a review of this
approach.

This also used to be the case &b 4, until the recent work of Matdiek et al. [9], who obtained, with
an elementary proof, the improved boufidn*~2/4%). In this note we follow their footsteps, and present,
with a somewhat simpler proof, a further improved boun®¢#*~1/18) on the number of halving simplices
in a set ofn points inR*.

As in essentially all known proofs of upper bounds for the number oftgsimplices in any dimension,
the analysis in this paper, as the preceding one in [9], only uses a simdlpioparty of halving simplices,
the so-calledntipodality propertyfirst observed by La&sz [7], which we define in more detail next.

2 Preliminaries

We begin by reviewing the basic ingredients of the proof, many of whiclham@wed from the preceding
study [9].

Lemma 2.1. Let S be a set ofx points inR¢, and letT" be the collection of all halving simplices 6t
ThenT is antipoda] in the sense that the following holds for afy- 1 pointspy, ..., pq_1 € S: Whenever
a,b € S are two distinct points such that bottp; - - - ps_1,bp1 - - -ps—1 € T, then there is a third point
c € Ssuchthatep; ---pg_1 € T and such that the trianglebc intersects the affine hull of, - - - p;_1 (see
Figure 1).

c P2 a

p1

(b)

Figure 1. The antipodality property (a) in two dimensions and (b) in three difoes. (The view of both
configurations coincides if we look at (b) in the directiom,.

In the statements of the following two lemmasgeneric2-plane is a two-dimensional plamein R*
that lies in general position with respect$o In particular, no point ofS lies onx, no edge connecting
two points ofS meetsr, and a triangle\ spanned bys' can meetr only at a single point which lies in the
relative interior ofA.



Lemma 2.2 (Matousek et al. [9]) Let S be a set ofr points in general position ifR*, and letT" be the
collection of the halving simplices &f If t = |T'| > Cn'!/3, for some absolute constaft > 0, then there
is a generi2-planer that intersect£2(¢3 /n®) simplices off".

Lemma 2.3. Let S andT be as above. Then no genefiplane intersects more thad(n*~1/%) simplices
of T.

Lemma 2.3 constitutes the improvement in the present paper; it replaces arvgtatement in [9],
where the upper bound is ony(n*~2/1%), with what we believe to be a simpler and shorter proof.

We emphasize that the proof only uses antipodality of the set of halving simmp$ioe as in the pre-
ceding work, the result also holds for arbitrary so-calledniform antipodal hypergraphs R* (in the
terminology of [9]). There are two main challenges raised by the presehthee preceding studies: (a)
Improve further the upper bound faruniform antipodal hypergraphs R?*. (b) Find additional properties
of halving simplices which can help in tightening the upper bound.

3 Bounding the number of simplices stabbed by a 2-plane

Let S andT be as above, and letbe a generic 2-plane, which crosses some simplicds dfote that if a
3-simplexr € T andr intersect (necessarily generically), then the intersection is a line-segiheositive
length whose endpoints lie in the relative interior of two triangles bounding

We repeat some of the terminology of [9]. LEtbe the set of line segmenfs N 7 | 7 € T'}, and let
V be the set of endpoints of these edges. Then (V, F) is a (straight-edge) geometric graph in the plane
m, but with a particular kind of vertex and edge labelling: Each pgiat V' is the intersection ofr with
some triangle spanned by a triple of distinct poits, ¢ € .S, and we labef; by the (unordered) triplebc.
Similarly, each edge € F is the intersection of with some simplex spanned by four poiuats, ¢,d € S,
and we labek by the pair of labels of its endpoints, which are two distinct sub-triplesbofi. No two
objects receive the same label. In particutar,= |V| < (g) Moreover, rephrasing what has just been
noted, if two pointszbc andxyz of V' are connected by an edge, then the triplesandzyz must share a

common pair of indices, say,= x andb = y, and the edge is labeled by the paibc, abz).

As shown in [9], the geometric graghl = (V, E) is alsoantipodal That is, the following holds for
each vertex, of V: For any pair of edge&u, v), (u, w) of E incident tou, there is a third edgéu, z) such
thatu lies in the trianglevwz. An equivalent formulation of this property is that,(if, v) and (u, w) are
two angularly consecutive edges Bfemanating fromu, then there is another edge, z) in E lying in the
wedge opposite to the one enclosed between) and(u, w). See Figure 1(a).

The crossings between edge<oWill be of central importance in our analysis. We recall the following
fundamental result, first proved by Ajtai et al. [1] and independentlizdighton [6] (see also [8]):

Theorem 3.1(Crossing Lemma)lf G = (V, E) is a simple graph, then in any drawing 6fin the plane,
there are at leas)(|E|3/|V|?) crossings between the (not necessarily straight) arcs representingltjes e
of G, provided that | > 4|V|. Consequently, we always ha\g| = O(|V| + [V|*/3X1/3), whereX is
the minimum number of crossings in any drawing-of

For antipodal geometric graphs we also have the following result by Oey [4

Lemma 3.2(Dey). The number of crossings between the edges of an antipodal geonapiog = (V, F)
is at mostV|?.



Proof. We present the proof of the lemma (borrowed from [9]), because wdaidlt need the notions of
convexandconcave chainghat the proof exploits. We remark that the proof presented here is simpler th
the original proof of Dey; see also [8, p. 288].

By choosing an appropriate coordinate system for the ptange may assume that no edge Ahis
vertical. Let us consider an edge,v) € FE with left endpointu and right endpoinv. If there exists an
edge with left endpoint and with slope larger than the slope(af v), then let(v, w) be the edge that has
the smallest slope among all such edges and we(calh) the convex successaf (u, v); otherwise, the
convex successor is not defined. The antipodality property guasathi@eno two edges can have the same
convex successor. Thus, if we define a convex chain as a maximarsagy, . . ., ¢, € E such that each
e;+1 1S the convex successor ef, then these chains form a partition of the edgefseaind clearly, each
chain is anc-monotone convex polygonal curve. Note thatif v) is the rightmost edge of a convex chain,
(u,v) must have the largest slope among all the edges with right endpdit otherwise, the antipodality
property would imply thafu, v) has a convex successor. Thus, every vertéxthe right endpoint of at
most one convex chain, so there are at mig$such chains. Similarly, there are at mggt concave chains
which are defined analogously (by reversing the direction ofjthgis). If two edges inF cross, then we
can extend one of them to a convex chain and the other one to a cone@angearid charge the crossing to
the pair of chains. Since a convex curve and a concave curve cssarmost twice, and since a crossing
in G can be charged to two different pairs of chains, the total number oiagsis at mosfi/|2. O]

As observed in [9], by applying Lemma 3.2 to the graph of halving edgespdfints in the plane, we
see that there are onty(n?) crossings between the halving edges. Together with the Crossing Lemma, this
yields a simplified proof of Dey’s bound @(n*/3) for the number of halving edges.

In our setting, however, direct application of Lemma 3.2 does not yield g $ftund: The number of
vertices igV| = O(n?), so Lemma 3.2 only implies that the number of crossings ia O(n%). Combining
this bound with the bound of the Crossing Lemma, we only obtain the trivial dbolih = O(n*). We
circumvent this difficulty as follows.

3.1 Bounding the number of edges of/

For each pair, b of points of S, let G, denote the graptV,,, E.;), whereV,, is the set of all the vertices
labeled bya andb (so they are of the formbc, for ¢ € S\ {a,b}), andE,;, is the set of all edges labeled
by a andb (so they are of the fornfabc, abd), for c¢,d € S\ {a,b}; such an edge represents (i.e., is the
intersection ofr with) the simplexabed). Clearly,ng, = |Vap| <n — 2 < n.

The graphG is the union of all the graph&/,,, for a,b € S. As argued above (in the proof of
Lemma 3.2), the edges @f can be decomposed intd(n?) convex pairwise edge-disjoint chains, and,
independently, inta)(n?) concave pairwise edge-disjoint chains. As noted above, this implies that the
numberX of crossings between the edgesbis O(nf).

We next partition each (convex or concave) chaiaf GG into a sequence of maximal contiguous sub-
chains, each contained in some subgréfh (in the worst case, a subchain might consist of a single edge).
Consider the passage from one subchain to a different one. Fopawpaijate choice of symbols, this takes
place at a nodebc of v, so thaty entersube by an edgdabz, abc) and leaves it by an eddebc, acy); thus
abc is a common delimiter of a subchain @f;, and of a subchain af,,..

For each nodebc, denote byQ .. the number of chains passing through: for which the incoming
edge and the outgoing edge belong to different subchains, as aBven Enlyabc, there are)(1) possi-
bilities for the pair of subgraphs that are involved in such a transition; hewvgivenabc and-~, the pair of



subgraphs is unique.) Cleart9,,;. = O(n).

We decompose the set of verticés= | J,, , Vu,, into a logarithmic number of subsets, placing in ith

subset ®), for k = 1,2, ..., those verticesbc for which 25~ < Q. < 2F (vertices withQ,,. = 0 are
ignored). We fixk, and apply the following construction only to the vertices/df). We will then repeat
the analysis for each separately.

So letk be fixed, and let:be be a vertex of’(¥). We take each of th®(Q?,.) = ©(4*) pairs of an
incoming edge and an outgoing edge of two such transitory chains, soehaittof selected edges is itself
involved in such a transition, and “shortcut” each pair to ob&@in”) new straight edges. Specifically, we
take an incoming edgé:ibz, abe) of one transitory chain and an outgoing edgéc, acy) of another (or
the same) transitory chain, and connect the two other endpoints of thges legl a straight segment, to
obtain the edgéabx, acy); see Figure 2. For technical reasons, we retain either only the shorthate
the new edge lies below the middle vert@x, or only the shortcuts where the new edge lies above the
middle vertex, choosing the larger of the two subcollections. We lose at nfastos of 2 by imposing this
restriction. Without loss of generality, we consider only shortcuts wherae¢iw edge lies below the middle
vertex. We note that (i) the new edges are not necessarily edges(idf some of the shortcuts may arise
from pairs of convex chains, some from pairs of concave chainss@me from mixed pairs of a convex and
a concave chain, (iii) the endpointéz, acy of a shortcut edge are not necessarilyiff), only the middle
vertexabe is, and (iv) there are onl@ (1) ways in which a new edge can be formed: the middle vertex must
be labeled by:, by one ofb, z, and by one ot, y.

.a:b_uﬂ___ abc ____---®qcz

abx acy

Figure 2: Constructing a shortcut edge(ef.

Altogether we gei® = © ( wbe 2&) = O (4¥|V(®)]) new edges. We form new graphs=?, one

for eacha € S, and place each new edge, of the fquhz, acy), in the respective grapfi’, labeled with the
(unique) symbol common to the two endpoints. Egtdenote the number of edges@f, so) ", P, = P.

Next, we apply the Crossing Lemma (Theorem 3.1) to each of the gtaphset Z, denote the number
of crossings inG:. Observing that the number of vertices@f is O(n?), we get

P,=0 <n4/3Z;/3 + n2> .

Counting crossings inG:. To estimateZ,, consider a crossing between two edge&df say,(abz, acy)
and (adu, aev), with respective middle verticeghc andade. Since(abz, acy) and (adu, aev) cross each
other, one of the following situations must arise:

(a) There exists a crossing between an edge ani@rig:, abc), (abe, acy)} and{(adu, ade), (ade, aev)},
say, it is a crossing betweéabz, abc) and(ade, aev); see Figure 3(a). We charge the crossingrjnto the
latter crossing, and note that such a crossing is charged atihtistes. Indeed, given the crossing edges
(abz, abc) and(ade, aev), there areD(2") choices for each of andv. The overall number of crossings in
this case, over alt € S, is thereforeD (4¥n°), namelyO(4%) times the number of crossings

5



acy

(b)

(©) ()

Figure 3: Charging a crossing (& (a) to a crossing id+; (b) to a further crossing it involving the chain
~; (c) to an endpoint ofy; or (d) to a vertex ofy closest to the top of the triangle.

(b) There does not exist a crossing as in (a). Since the boundaribe dfiangles(abz, abc, acy) and
(adu, ade, aev) must intersect at least twice, there must exist another intersection beineefthe “bases”
(abz, acy), (adu,aev) and a “short” edge of the other triangle. Without loss of generality, assoatehe
short edgdade, aev) crosses the bagebz, acy). In this case one of the endpoint of the short edge must lie
inside the triangléabx, abe, acy); without loss of generality, assume that lies inside the triangle. See
Figure 3(b,c,d).

The edg€ade, aev) belongs to some (unique) global concave chailVe follow v from aev onwards
(away fromade) until one of the following events occurs:

(b.i) We reach an edggqr, pgs) of v which crosses one of the eddgesz, abc), (abe, acy), say,(abe, acy);

see Figure 3(b). In this case we charge our original crossing to themasing, and claim, as in (a), that
the new crossing is charged at maxi”) times. Indeed, given the new crossing, we first “guess” which
of the two endpointsgbe, acy, of the crossed edge is the middle vertéx (allowing only vertices irl/ (¥)

to be guessed), and then guessn O(2%) ways, and thereby obtain the first shortcut edger, acy). We
then trace the unique concave chainontaining(pqr, pgs) backwards until it crossegbz, acy). Since a
concave chain can cross a straight segment at most twice, there ateomlgssible crossings of the above
kind (and a more careful examination of the configuration shows that iherdy one crossing). We thus
retrieve the edgéude, aev). We then guess which of its two endpoints, the one that lies inside the triangle
(abz, abe, acy) or the one that lies outside, is the middle vertek (allowing, as above, only vertices in
V(*) to be guessed), and then guessn O(2¥) ways, and retrieve the original charging crossing. Hence,
here too, the overall number of crossings in this cage(ig'nf).



(b.ii) The chainy terminates at some vertgxr, still inside the triangléabx, abe, acy). Thenpgr lies below
one of the edge&ibz, abc), (abe, acy), say,(abe, acy); see Figure 3(c). In this case we charge our original
crossing to the paifpgr, §), whered is the unique concave chain containifagc, acy), and claim, as above,
that such a pair is charged at ma@3t4*) times. Indeed, given the paipgr, §), we first retrieve the edge
(abc, acy), which is the unique edge éflying abovepgr. Then we “guess” which of its two endpoints is the
middle vertexabc, and then guess, in O(2%) ways, and thereby obtain the first shortcut edger, acy).
We next retrieve the unique concave chaithat terminates gbgr (the uniqueness of follows from the
antipodality of G, as argued in the proof of Lemma 3.2), and then, as in (b.i), tralsackwards until it
crossegabz, acy). As above, this produces the edgele, aev), and we complete the picture by guessing
ade andu. Again, the overall number of crossings in this cas@(g*n%); hereO(n%) is the product of the
number of vertices and the number of global chains, both being).

(b.iii) Finally, we face the case where the chairxits the trianglgabx, abe, acy) by crossing its “base”
(abx,acy) again; see Figure 3(d). In this casemust contain a vertexqr that lies inside the triangle
(abzx, abe, acy), below one of its short edges, s@pzx, abc), so that, in a small neighborhood afr within

~, pqr is vertically nearest to the eddebzx, abc). In this case we charge our original crossing to the pair
(pqr, 6), whered is the unique concave chain containifigz, abc), and claim, as above, that such a pair is
charged at mosD(4¥) times. Indeed, given the paipgr, §), we first retrieve the edg@ibz, abe), which is
the unique edge af lying abovepgr. Then we “guesstbe andy, in O(2F) ways, and thereby obtain the
first shortcut edgéabz, acy). We next retrieve the unique concave chaithat containggr and satisfies
the local minimal vertical distance conditionzatr. Finding~ can be done by drawing througlgr a line
parallel to the edgéubz, abc); then- is the unique concave chain througdr tangent to that line; see [11]
for a similar argument. Then, similar to the preceding cases, we4rémavard or backwards (here the two
directions are meaningful) until it crosse®x, acy). As above, this produces the edgele, aev), and we
complete the picture by guessinde andu. Again, the overall number of crossings in this cas@ (g¢*n5).

The final stretch. The preceding analysis yields , Z, = O(4*nS). Applying Holder’s inequality to the
previous bound, we get

1/3
P = ZP =0 <n4/3 <Z Z;/?’) + n3> =0 <n4/3 (Z Za> -n?/3 4 n3) = O(4+/3n%).
On the other hand,
P = ZPa =0 (ZQZI)C) = <2kZQabc) 5
a a,b,c a,b,c

implying that
Z Qabc = O(n4/2k/3>

a,b,c
Whenk is small, we use instead the trivial upper bound

Z Qabc = O(2kn3)

a,b,c

That is,
3" Qupe = min {0(n4 /2413y, O(an3)} . 1)

a,b,c



We now sum this bound over il and notice that the two terms are equal whén= n?/%. This is easily
seen to imply that the overall bound@gn'%/4).

We now fix a graph#,;, and bound the number of concave and convex chains into whjghs de-
composed. Pul,, = > . Qare. Sweep a vertical liné from left to right throughr. At 2 = —oo, £ meets
no chains ofG,;, (it meets no edges of the graph). Asweeps past a vertedc, at mostl + Q.. chains
can terminate there, and at mast ()., chains can start there. (We atltb include also the global chains
that start and end abc and belong td~;, if any.) Hence, the total number of subchaing®y, is at most

n + Qab-

Regarding each crossing between a pair of edges,gfas a crossing between the concave subchain
containing one of the edges and the convex subchain containing the dgeettiee number of crossings,,
between the edges 6f,; is thusO((n + Qu)?) = O(n? + Q?,). The Crossing Lemma therefore implies
that the numbeFE,,;, of edges of7,; satisfies

Eu =0 (n2/3Xil{3 + n) =0 (n4/3 + n2/3Q(2123) .

Summing over all graph&,;, the numbel”Z of edges of7 satisfies

2/3
E = ZEab — O (n10/3 +n2/3 (Z Qzl/)3>) _ O n10/3 4 n4/3 (Z Qab) —
a,b

a,b a,b

O <n10/3 Lpd/B. ns/z) _ O(n23/6>_

This establishes Lemma 2.3. Combining this with the lower balind (3 /n?®), provided by Lemma 2.2,
we get

1= 0 (w1,

This is an improvement over the previous boubgh*~2/4%) of [9], with a simpler proof.

In summary, we have:

Theorem 3.3. The number of halving simplices in a setopoints inR* is O (n*~1/18).
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