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Abstract

We show that the number of halving sets of a set ofn points inR
4 is O

(

n4−1/18
)

, improving the
previous bound of [9] with a simpler (albeit similar) proof.

1 Introduction

Let S be a finite set ofn ≥ d + 1 points inR
d and let1 ≤ k ≤ n − 1 be an integer parameter. Ak-set

of S is a k-element subset ofS that can be strictly separated from its complement by a hyperplane. The
k-set problemasks for sharp bounds on the maximum numberF

(d)
k (n) of k-sets of any set ofn points in

R
d. The dimensiond is usually considered to be a constant, whilek andn are arbitrarily large. It is not

hard to see that the number ofk-sets is maximized for point setsin general position, i.e., such that nod + 1
points lie in a common hyperplane. In this setting, the following variant of the problem turns out to be
essentially equivalent and technically more convenient to study: An oriented (d − 1)-dimensional simplex
σ spanned byd points ofS is called aj-facetof S, for 0 ≤ j ≤ n − d, if there are exactlyj points ofS
in the positive open halfspace determined byσ. We denote the number ofj-facets ofS by Gj(S) and seek

sharp bounds on the maximumG(d)
j (n) of the numbersGj(S) over all setsS of n points in general position

in R
d. In dimension2, the number ofk-sets ofS is equal toGk−1(S), and in dimension3, it is equal to

1
2(Gk−2(S) + Gk−1(S)) + 2; see [3]. In higher dimensions, there are no longer any exact linear relations

between these numbers, but for any fixed dimensiond, the numbersF (d)
k (n) andG

(d)
k (n) lie within constant

multiplicative factors of one another (see, e.g., [8]).

A special case arises whenn − d is even andj = (n − d)/2. ThenG
(d)
(n−d)/2(n) counts the maximum

possible number of so-calledhalving facetsof S. If we reverse the orientation of a halving facet, we obtain
again a halving facet. Thus, we can forget about the orientation and justspeak of the underlying unoriented
simplices, which are calledhalving simplices. Bounds on the number of halving simplices can be translated
to bounds on the number ofj-facets for anyj [2], so it is sufficient to study the former quantity.

The study ofk-sets andj-facets began almost 40 years ago [5, 7], and tight bounds on the abovequanti-
ties are still elusive, even in the plane, where the maximum number of halving edges is known to be at most
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O(n4/3) [4], and at leastΩ(n ·2c
√

log n) for some constantc [10, 12]. In three dimensions the upper bound is
O(n5/2) [11], and the lower bound isΩ(n2 · 2c

√
log n). In fact, in any dimensiond, the known lower bound

is Ω(nd−1 · 2c
√

log n), which is obtained by “lifting” the 2-dimensional constructions of [10, 12].In d ≥ 5
dimensions, the known upper bounds become considerably weaker, andare of the formO(nd−δd), where
δd = 1/(4d − 3)d, leaving a fairly big gap between the upper and lower bounds. Moreover, the proof of
these bounds uses the so-called colored Tverberg theorem, for which there is no known elementary proof;
the only known proof, given in [13], uses methods from algebraic topology. See [8] for a review of this
approach.

This also used to be the case ford = 4, until the recent work of Matoǔsek et al. [9], who obtained, with
an elementary proof, the improved boundO(n4−2/45). In this note we follow their footsteps, and present,
with a somewhat simpler proof, a further improved bound ofO(n4−1/18) on the number of halving simplices
in a set ofn points inR

4.

As in essentially all known proofs of upper bounds for the number of halving simplices in any dimension,
the analysis in this paper, as the preceding one in [9], only uses a simple local property of halving simplices,
the so-calledantipodality property, first observed by Lov́asz [7], which we define in more detail next.

2 Preliminaries

We begin by reviewing the basic ingredients of the proof, many of which areborrowed from the preceding
study [9].

Lemma 2.1. Let S be a set ofn points inR
d, and letT be the collection of all halving simplices ofS.

ThenT is antipodal, in the sense that the following holds for anyd − 1 pointsp1, . . . , pd−1 ∈ S: Whenever
a, b ∈ S are two distinct points such that bothap1 · · · pd−1, bp1 · · · pd−1 ∈ T , then there is a third point
c ∈ S such thatcp1 · · · pd−1 ∈ T and such that the triangleabc intersects the affine hull ofp1 · · · pd−1 (see
Figure 1).

(a) (b)

p

a

b

c

p1

p2 a

b

c

Figure 1: The antipodality property (a) in two dimensions and (b) in three dimensions. (The view of both
configurations coincides if we look at (b) in the directionp1p2.

In the statements of the following two lemmas, ageneric2-plane is a two-dimensional planeπ in R
4

that lies in general position with respect toS. In particular, no point ofS lies onπ, no edge connecting
two points ofS meetsπ, and a triangle∆ spanned byS can meetπ only at a single point which lies in the
relative interior of∆.
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Lemma 2.2 (Matoǔsek et al. [9]). Let S be a set ofn points in general position inR4, and letT be the
collection of the halving simplices ofS. If t = |T | > Cn11/3, for some absolute constantC > 0, then there
is a generic2-planeπ that intersectsΩ(t3/n8) simplices ofT .

Lemma 2.3. LetS andT be as above. Then no generic2-plane intersects more thanO(n4−1/6) simplices
of T .

Lemma 2.3 constitutes the improvement in the present paper; it replaces a weaker statement in [9],
where the upper bound is onlyO(n4−2/15), with what we believe to be a simpler and shorter proof.

We emphasize that the proof only uses antipodality of the set of halving simplices, so, as in the pre-
ceding work, the result also holds for arbitrary so-called4-uniform antipodal hypergraphsin R

4 (in the
terminology of [9]). There are two main challenges raised by the present and the preceding studies: (a)
Improve further the upper bound for4-uniform antipodal hypergraphs inR4. (b) Find additional properties
of halving simplices which can help in tightening the upper bound.

3 Bounding the number of simplices stabbed by a 2-plane

Let S andT be as above, and letπ be a generic 2-plane, which crosses some simplices ofT . Note that if a
3-simplexτ ∈ T andπ intersect (necessarily generically), then the intersection is a line-segmentof positive
length whose endpoints lie in the relative interior of two triangles boundingτ .

We repeat some of the terminology of [9]. LetE be the set of line segments{τ ∩ π | τ ∈ T}, and let
V be the set of endpoints of these edges. ThenG = (V, E) is a (straight-edge) geometric graph in the plane
π, but with a particular kind of vertex and edge labelling: Each pointq ∈ V is the intersection ofπ with
some triangle spanned by a triple of distinct pointsa, b, c ∈ S, and we labelq by the (unordered) tripleabc.
Similarly, each edgee ∈ E is the intersection ofπ with some simplex spanned by four pointsa, b, c, d ∈ S,
and we labele by the pair of labels of its endpoints, which are two distinct sub-triples ofabcd. No two
objects receive the same label. In particular,m := |V | ≤

(

n
3

)

. Moreover, rephrasing what has just been
noted, if two pointsabc andxyz of V are connected by an edge, then the triplesabc andxyz must share a
common pair of indices, say,a = x andb = y, and the edge is labeled by the pair(abc, abz).

As shown in [9], the geometric graphG = (V, E) is alsoantipodal. That is, the following holds for
each vertexu of V : For any pair of edges(u, v), (u, w) of E incident tou, there is a third edge(u, z) such
thatu lies in the trianglevwz. An equivalent formulation of this property is that, if(u, v) and(u, w) are
two angularly consecutive edges ofE emanating fromu, then there is another edge(u, z) in E lying in the
wedge opposite to the one enclosed between(u, v) and(u, w). See Figure 1(a).

The crossings between edges ofG will be of central importance in our analysis. We recall the following
fundamental result, first proved by Ajtai et al. [1] and independently byLeighton [6] (see also [8]):

Theorem 3.1(Crossing Lemma). If G = (V, E) is a simple graph, then in any drawing ofG in the plane,
there are at leastΩ(|E|3/|V |2) crossings between the (not necessarily straight) arcs representing the edges
of G, provided that|E| ≥ 4|V |. Consequently, we always have|E| = O(|V | + |V |2/3X1/3), whereX is
the minimum number of crossings in any drawing ofG.

For antipodal geometric graphs we also have the following result by Dey [4].

Lemma 3.2(Dey). The number of crossings between the edges of an antipodal geometric graphG = (V, E)
is at most|V |2.
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Proof. We present the proof of the lemma (borrowed from [9]), because we willlater need the notions of
convexandconcave chainsthat the proof exploits. We remark that the proof presented here is simpler than
the original proof of Dey; see also [8, p. 288].

By choosing an appropriate coordinate system for the planeπ, we may assume that no edge inE is
vertical. Let us consider an edge(u, v) ∈ E with left endpointu and right endpointv. If there exists an
edge with left endpointv and with slope larger than the slope of(u, v), then let(v, w) be the edge that has
the smallest slope among all such edges and we call(v, w) the convex successorof (u, v); otherwise, the
convex successor is not defined. The antipodality property guarantees that no two edges can have the same
convex successor. Thus, if we define a convex chain as a maximal sequencee1, . . . , ek ∈ E such that each
ei+1 is the convex successor ofei, then these chains form a partition of the edge setE, and clearly, each
chain is anx-monotone convex polygonal curve. Note that if(u, v) is the rightmost edge of a convex chain,
(u, v) must have the largest slope among all the edges with right endpointv, for otherwise, the antipodality
property would imply that(u, v) has a convex successor. Thus, every vertexv is the right endpoint of at
most one convex chain, so there are at most|V | such chains. Similarly, there are at most|V | concave chains,
which are defined analogously (by reversing the direction of they-axis). If two edges inE cross, then we
can extend one of them to a convex chain and the other one to a concave chain, and charge the crossing to
the pair of chains. Since a convex curve and a concave curve can cross at most twice, and since a crossing
in G can be charged to two different pairs of chains, the total number of crossings is at most|V |2.

As observed in [9], by applying Lemma 3.2 to the graph of halving edges ofn points in the plane, we
see that there are onlyO(n2) crossings between the halving edges. Together with the Crossing Lemma, this
yields a simplified proof of Dey’s bound ofO(n4/3) for the number of halving edges.

In our setting, however, direct application of Lemma 3.2 does not yield a sharp bound: The number of
vertices is|V | = O(n3), so Lemma 3.2 only implies that the number of crossings inG is O(n6). Combining
this bound with the bound of the Crossing Lemma, we only obtain the trivial bound |E| = O(n4). We
circumvent this difficulty as follows.

3.1 Bounding the number of edges ofG

For each paira, b of points ofS, let Gab denote the graph(Vab, Eab), whereVab is the set of all the vertices
labeled bya andb (so they are of the formabc, for c ∈ S \ {a, b}), andEab is the set of all edges labeled
by a andb (so they are of the form(abc, abd), for c, d ∈ S \ {a, b}; such an edge represents (i.e., is the
intersection ofπ with) the simplexabcd). Clearly,nab = |Vab| ≤ n − 2 < n.

The graphG is the union of all the graphsGab, for a, b ∈ S. As argued above (in the proof of
Lemma 3.2), the edges ofG can be decomposed intoO(n3) convex pairwise edge-disjoint chains, and,
independently, intoO(n3) concave pairwise edge-disjoint chains. As noted above, this implies that the
numberX of crossings between the edges ofG is O(n6).

We next partition each (convex or concave) chainγ of G into a sequence of maximal contiguous sub-
chains, each contained in some subgraphGab (in the worst case, a subchain might consist of a single edge).
Consider the passage from one subchain to a different one. For an appropriate choice of symbols, this takes
place at a nodeabc of γ, so thatγ entersabc by an edge(abx, abc) and leaves it by an edge(abc, acy); thus
abc is a common delimiter of a subchain ofGab and of a subchain ofGac.

For each nodeabc, denote byQabc the number of chains passing throughabc for which the incoming
edge and the outgoing edge belong to different subchains, as above. (Given onlyabc, there areO(1) possi-
bilities for the pair of subgraphs that are involved in such a transition; however, givenabc andγ, the pair of
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subgraphs is unique.) Clearly,Qabc = O(n).

We decompose the set of verticesV =
⋃

a,b Vab into a logarithmic number of subsets, placing in thek-th

subsetV (k), for k = 1, 2, . . ., those verticesabc for which 2k−1 ≤ Qabc < 2k (vertices withQabc = 0 are
ignored). We fixk, and apply the following construction only to the vertices ofV (k). We will then repeat
the analysis for eachk separately.

So letk be fixed, and letabc be a vertex ofV (k). We take each of theΘ(Q2
abc) = Θ(4k) pairs of an

incoming edge and an outgoing edge of two such transitory chains, so that the pair of selected edges is itself
involved in such a transition, and “shortcut” each pair to obtainΘ(4k) new straight edges. Specifically, we
take an incoming edge(abx, abc) of one transitory chain and an outgoing edge(abc, acy) of another (or
the same) transitory chain, and connect the two other endpoints of these edges by a straight segment, to
obtain the edge(abx, acy); see Figure 2. For technical reasons, we retain either only the shortcutswhere
the new edge lies below the middle vertexabc, or only the shortcuts where the new edge lies above the
middle vertex, choosing the larger of the two subcollections. We lose at most afactor of2 by imposing this
restriction. Without loss of generality, we consider only shortcuts where the new edge lies below the middle
vertex. We note that (i) the new edges are not necessarily edges ofG, (ii) some of the shortcuts may arise
from pairs of convex chains, some from pairs of concave chains, andsome from mixed pairs of a convex and
a concave chain, (iii) the endpointsabx, acy of a shortcut edge are not necessarily inV (k), only the middle
vertexabc is, and (iv) there are onlyO(1) ways in which a new edge can be formed: the middle vertex must
be labeled bya, by one ofb, x, and by one ofc, y.

aczabc

abx acy

abw

Figure 2: Constructing a shortcut edge ofG∗
a.

Altogether we getP = Θ
(

∑

a,b,c Q2
abc

)

= Θ
(

4k|V (k)|
)

new edges. We formn new graphsG∗
a, one

for eacha ∈ S, and place each new edge, of the form(abx, acy), in the respective graphG∗
a, labeled with the

(unique) symbol common to the two endpoints. LetPa denote the number of edges ofG∗
a, so

∑

a Pa = P .

Next, we apply the Crossing Lemma (Theorem 3.1) to each of the graphsG∗
a. LetZa denote the number

of crossings inG∗
a. Observing that the number of vertices ofG∗

a is O(n2), we get

Pa = O
(

n4/3Z1/3
a + n2

)

.

Counting crossings inG∗
a. To estimateZa, consider a crossing between two edges ofG∗

a, say,(abx, acy)
and(adu, aev), with respective middle verticesabc andade. Since(abx, acy) and(adu, aev) cross each
other, one of the following situations must arise:

(a) There exists a crossing between an edge among{(abx, abc), (abc, acy)} and{(adu, ade), (ade, aev)},
say, it is a crossing between(abx, abc) and(ade, aev); see Figure 3(a). We charge the crossing inG∗

a to the
latter crossing, and note that such a crossing is charged at most4k times. Indeed, given the crossing edges
(abx, abc) and(ade, aev), there areO(2k) choices for each ofy andv. The overall number of crossings in
this case, over alla ∈ S, is thereforeO(4kn6), namelyO(4k) times the number of crossings inG.
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γ

pqr
pqs

γ

pqr

δ

pqr

γ

δ

abc

abx

acy

ade

aev

adu

(a)

abc

ade

adu

aev

acy

abx

(b)

abc

ade

adu

aev

acy

abx

(c)

ade

adu

aev

acy

abx

(d)

abc

Figure 3: Charging a crossing inG∗
a (a) to a crossing inG; (b) to a further crossing inG involving the chain

γ; (c) to an endpoint ofγ; or (d) to a vertex ofγ closest to the top of the triangle.

(b) There does not exist a crossing as in (a). Since the boundaries ofthe triangles(abx, abc, acy) and
(adu, ade, aev) must intersect at least twice, there must exist another intersection betweenone of the “bases”
(abx, acy), (adu, aev) and a “short” edge of the other triangle. Without loss of generality, assumethat the
short edge(ade, aev) crosses the base(abx, acy). In this case one of the endpoint of the short edge must lie
inside the triangle(abx, abc, acy); without loss of generality, assume thataev lies inside the triangle. See
Figure 3(b,c,d).

The edge(ade, aev) belongs to some (unique) global concave chainγ. We follow γ from aev onwards
(away fromade) until one of the following events occurs:

(b.i) We reach an edge(pqr, pqs) of γ which crosses one of the edges(abx, abc), (abc, acy), say,(abc, acy);
see Figure 3(b). In this case we charge our original crossing to the newcrossing, and claim, as in (a), that
the new crossing is charged at mostO(4k) times. Indeed, given the new crossing, we first “guess” which
of the two endpoints,abc, acy, of the crossed edge is the middle vertexabc (allowing only vertices inV (k)

to be guessed), and then guessx, in O(2k) ways, and thereby obtain the first shortcut edge(abx, acy). We
then trace the unique concave chainγ containing(pqr, pqs) backwards until it crosses(abx, acy). Since a
concave chain can cross a straight segment at most twice, there are onlytwo possible crossings of the above
kind (and a more careful examination of the configuration shows that thereis only one crossing). We thus
retrieve the edge(ade, aev). We then guess which of its two endpoints, the one that lies inside the triangle
(abx, abc, acy) or the one that lies outside, is the middle vertexade (allowing, as above, only vertices in
V (k) to be guessed), and then guessu, in O(2k) ways, and retrieve the original charging crossing. Hence,
here too, the overall number of crossings in this case isO(4kn6).
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(b.ii) The chainγ terminates at some vertexpqr, still inside the triangle(abx, abc, acy). Thenpqr lies below
one of the edges(abx, abc), (abc, acy), say,(abc, acy); see Figure 3(c). In this case we charge our original
crossing to the pair(pqr, δ), whereδ is the unique concave chain containing(abc, acy), and claim, as above,
that such a pair is charged at mostO(4k) times. Indeed, given the pair(pqr, δ), we first retrieve the edge
(abc, acy), which is the unique edge ofδ lying abovepqr. Then we “guess” which of its two endpoints is the
middle vertexabc, and then guessx, in O(2k) ways, and thereby obtain the first shortcut edge(abx, acy).
We next retrieve the unique concave chainγ that terminates atpqr (the uniqueness ofγ follows from the
antipodality ofG, as argued in the proof of Lemma 3.2), and then, as in (b.i), traceγ backwards until it
crosses(abx, acy). As above, this produces the edge(ade, aev), and we complete the picture by guessing
ade andu. Again, the overall number of crossings in this case isO(4kn6); hereO(n6) is the product of the
number of vertices and the number of global chains, both beingO(n3).

(b.iii) Finally, we face the case where the chainγ exits the triangle(abx, abc, acy) by crossing its “base”
(abx, acy) again; see Figure 3(d). In this caseγ must contain a vertexpqr that lies inside the triangle
(abx, abc, acy), below one of its short edges, say(abx, abc), so that, in a small neighborhood ofpqr within
γ, pqr is vertically nearest to the edge(abx, abc). In this case we charge our original crossing to the pair
(pqr, δ), whereδ is the unique concave chain containing(abx, abc), and claim, as above, that such a pair is
charged at mostO(4k) times. Indeed, given the pair(pqr, δ), we first retrieve the edge(abx, abc), which is
the unique edge ofδ lying abovepqr. Then we “guess”abc andy, in O(2k) ways, and thereby obtain the
first shortcut edge(abx, acy). We next retrieve the unique concave chainγ that containspqr and satisfies
the local minimal vertical distance condition atpqr. Findingγ can be done by drawing throughpqr a line
parallel to the edge(abx, abc); thenγ is the unique concave chain throughpqr tangent to that line; see [11]
for a similar argument. Then, similar to the preceding cases, we traceγ forward or backwards (here the two
directions are meaningful) until it crosses(abx, acy). As above, this produces the edge(ade, aev), and we
complete the picture by guessingade andu. Again, the overall number of crossings in this case isO(4kn6).

The final stretch. The preceding analysis yields
∑

a Za = O(4kn6). Applying Hölder’s inequality to the
previous bound, we get

P =
∑

a

Pa = O

(

n4/3

(

∑

a

Z1/3
a

)

+ n3

)

= O



n4/3

(

∑

a

Za

)1/3

· n2/3 + n3



 = O(4k/3n4).

On the other hand,

P =
∑

a

Pa = Θ





∑

a,b,c

Q2
abc



 = Ω



2k
∑

a,b,c

Qabc



 ,

implying that
∑

a,b,c

Qabc = O(n4/2k/3).

Whenk is small, we use instead the trivial upper bound

∑

a,b,c

Qabc = O(2kn3).

That is,
∑

a,b,c

Qabc = min
{

O(n4/2k/3), O(2kn3)
}

. (1)

7



We now sum this bound over allk, and notice that the two terms are equal when2k = n3/4. This is easily
seen to imply that the overall bound isO(n15/4).

We now fix a graphGab, and bound the number of concave and convex chains into whichGab is de-
composed. PutQab =

∑

c Qabc. Sweep a vertical lineℓ from left to right throughπ. At x = −∞, ℓ meets
no chains ofGab (it meets no edges of the graph). Asℓ sweeps past a vertexabc, at most1 + Qabc chains
can terminate there, and at most1 + Qabc chains can start there. (We add1 to include also the global chains
that start and end atabc and belong toGab, if any.) Hence, the total number of subchains ofGab is at most
n + Qab.

Regarding each crossing between a pair of edges ofGab as a crossing between the concave subchain
containing one of the edges and the convex subchain containing the other edge, the number of crossingsXab

between the edges ofGab is thusO((n + Qab)
2) = O(n2 + Q2

ab). The Crossing Lemma therefore implies
that the numberEab of edges ofGab satisfies

Eab = O
(

n2/3X
1/3
ab + n

)

= O
(

n4/3 + n2/3Q
2/3
ab

)

.

Summing over all graphsGab, the numberE of edges ofG satisfies

E =
∑

a,b

Eab = O



n10/3 + n2/3





∑

a,b

Q
2/3
ab







 = O






n10/3 + n4/3





∑

a,b

Qab





2/3





=

O
(

n10/3 + n4/3 · n5/2
)

= O(n23/6).

This establishes Lemma 2.3. Combining this with the lower boundE = Ω(t3/n8), provided by Lemma 2.2,
we get

t = O
(

n4−1/18
)

.

This is an improvement over the previous boundO(n4−2/45) of [9], with a simpler proof.

In summary, we have:

Theorem 3.3. The number of halving simplices in a set ofn points inR
4 is O

(

n4−1/18
)

.
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