
Finding the Largest Disk Containing a Query Point in

Logarithmic Time with Linear Storage∗

Tal Kaminker† Micha Sharir ‡

July 16, 2014

Abstract

Let D be a set of n disks in the plane. We present a data structure of size O(n) that
can compute, for any query point q, the largest disk in D that contains q, in O(log n)
time. The structure can be constructed in O(n log3 n) time. The optimal storage and
query time of the structure improve several recent results on this and related problems
[1, 2, 4].

1 Introduction

Let D be a set of n disks in the plane. We present a data structure of size O(n) that can
compute, for any query point q ∈ R

2, the largest disk in D that contains q, in O(logn) time.
The structure can be constructed in O(n log3 n) time.

For simplicity, we assume general position of the disks in D, meaning, in particular,
that all disks are of different sizes, and all the y-coordinates of the disk centers are distinct;
we also assume distinctness of the coordinates in the directions ±π/6. Finally, we assume
that no query point lies on the boundary of any disk in D. Degenerate situations where
these assumptions do not hold can be handled by a variety of standard techniques, such as
symbolic perturbations; see, e.g., [7].

Background. The problem of constructing an efficient data structure for finding the
largest disk containing a query point appears to have been first considered by Augustine
et al. [1] (see also the later version of their paper [2]), as a subproblem that arose in
their solution of the problem of finding the largest disk containing a query point, under
the condition that the disk does not contain any point of an n-element input point set P

∗A preliminary version of this paper has appeared in Proc. 30th Annu. ACM Sympos. Comput. Geom.,
2014, 206–213. Work on this paper has been supported by Grant 2012/229 from the U.S.-Israeli Binational
Science Foundation, by Grant 892/13 from the Israel Science Foundation, by the Israeli Centers of Research
Excellence (I-CORE) program (Center No. 4/11), and by the Hermann Minkowski–MINERVA Center for
Geometry at Tel Aviv University.

†Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel;
tkaminker@gmail.com

‡Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; michas@tau.ac.il

1

(the largest P -empty disk containing q). They presented two solutions for this problem.
The first solution uses a divide-and-conquer approach that produces a data structure of
size O(n logn) that can answer a query in O(log2 n) time. Another solution uses a simple
sweeping technique that produces a data structure of size O(n2) that can answer a query
in O(logn) time. A subsequent paper by Kaplan and Sharir [4], considering the same
problem studied in [1, 2], presents an improved solution that uses only near-linear storage,
with O(log2 n) query time. It is argued in [4] that the center of the largest P -empty disk
containing a query point q must lie either on an edge of the Voronoi diagram of P , or at a
Voronoi vertex (assuming that the query point lies inside the convex hull of P). Surprisingly,
finding the largest P -empty disk containing q whose center lies in the relative interior of
some Voronoi edge can be done in O(log n) time using a data structure of linear size [4].
In contrast, finding the largest P -empty disk containing q and centered at a Voronoi vertex
(these are the Delaunay disks of P), with a structure of near-linear size, could only be done
in [4] in O(log2 n) time (using the same idea as in the first solution of Augustine et al. [1],
which also requires Θ(n logn) storage).

This leads to a special case of the problem studied in this paper: Given the O(n)
Delaunay disks of P , preprocess them into a data structure of linear size, so that the largest
disk containing a query point can be found in O(logn) time. Kaplan and Sharir present
some partial results, where the query time improves to O(k log n), for any prespecified

paramenter k, but the storage grows to O(n1+ 1
k).

To recap, the failure of the previous works to solve the problem with optimal query time
and storage makes it an interesting challenge: Given n disks in the plane, construct a data
structure of linear size that can find, in O(logn) time, the largest disk containing a query
point.

Our algorithm meets this challenge, as specified. The only (slightly) suboptimal perfor-
mance parameter of our algorithm is the preprocessing, which takes O(n log3 n) time. In
particular, this improves the result of [4], yielding an overall algorithm that preprocesses a
set P of n points in the plane, in O(n log3 n) time, into a data structure of linear size, that
can find, in O(log n) time, the largest P -empty disk containing a query point.

We note that this problem is a special case of a more general range searching setting
where ranges have priorities (in our case the size of the disk is its priority) and we want a
data structure that can find the range of highest priority, containing a query point.

1.1 Overview

We first describe the data structure and its high-level construction. Then we present and
analyze the querying procedure. Finally, we provide a detailed description of an efficient
implementation of the construction of the structure.

Construction of the data structure. The algorithm divides each disk into three equal
parts, called the right, top, and bottom parts, by the radii at orientations π

3 , π , and − π
3

(see Figure 1). The algorithm will be run separately on all the right parts of the disks, on
all the top parts, and on all the bottom parts. The resulting substructures will then be
combined into one global structure. For simplicity, and with no loss of generality, we will
only describe the algorithm for the right portions of the disks.

2

The algorithm constructs a planar map Mr, over the right portions, with the following
properties:

1. Each disk contributes at most one connnected arc to Mr.

2. No two arcs in Mr cross each other1.

3. For each q ∈ R
2, let Dmax(q) denote the largest disk in D that contains q. Suppose

that q lies in the right portion of Dmax(q). Then the first arc of Mr hit by the rightward-
directed ray emanating from q is the arc that Dmax(q) contributes to Mr.

Properties (1) and (2) also hold for the two other maps. Property (3) holds too, except
that the relevant ray emanates from q in direction 2π/3 (for the map of the top parts) or
in direction −2π/3 (for the map of the bottom parts).

Properties (1) and (2) imply that all the maps have linear complexity. Property (3)
suggests that one should construct a point location structure on Mr for locating the first
arc that lies straight to the right from a query point, and construct similar structures for
the other two maps, with respect to the corresponding ray orientations ±2π/3 mentioned
above. By combining the results from all three point location answers, one can easily find
Dmax(q): it is the largest disk that contains q among the three retrieved disks. See Figure
2 for an illustration.

top

right

bottom

Figure 1: The partition of a disk into three equal parts; the orientation of the three dividing
radii are the same for all disks.

1.2 Construction of Mr: High level description

This section presents a high-level description of the construction of the map Mr. An actual
efficient implementation of this construction will be described later in Section 1.3.

As stated above, we divide each disk into three parts. Each part contributes at most
one arc (a subarc of its boundary arc) to the corresponding map. As already stated, we
focus only on the right part of each disk, and on the corresponding map Mr. For each disk
d ∈ D we denote by Td the right part of d, and by Ad the right arc (the arc bounding Td).
For each arc Ad, we go over all disks larger than d, and each such disk d′ might shrink Ad

into a potentialy smaller subarc Ad′

d (possibly eliminating it altogether). This yields, for

each arc Ad, a set of subarcs
{

Ad′

d | d′ is larger than d
}

, and its intersection A∗
d =

⋂

d′
Ad′

d

1In general, an arc may terminate at a point that lies in the relative interior of another arc.

3

q2

q1

Figure 2: A set of disks and the corresponding map Mr (consisting of the thicker arcs).
Note that the map returns the correct answer for q1 but not for q2, because q2 does not lie
in the right portion of the largest disk containing it.

(over the disks d′ larger than d), which, as will be seen immediately, is a single (possibly
empty) connected subarc, is added to Mr.
(This description can trivially be turned into an O(n2) algorithm for constructing Mr; a
more efficient near-linear construction is described in Section 1.3.)

There are two rules for creating Ad′

d from Ad and d′, which depend on the number of
connected components of Ad\Td′ .

1. If Ad\Td′ consists of a single connected component2 then Ad′

d = Ad\Td′ ; see Figure
3(a).

2. If Ad\Td′ consists of two connected components3 then, if the center of disk d is higher
(in the y-direction) than the center of d′, then Ad′

d is the top part of Ad\Td′ ; otherwise, A
d′

d

is the bottom part of Ad\Td′ ; see Figure 3(b).

Each of these rules creates a single (potentialy smaller) subarc of Ad, and thus, as already
noted, A∗

d =
⋂

d′ A
d′

d is a connected subarc of Ad. In some cases A∗
d might be empty, and

then the arc Ad does not contribute anything to Mr, or A
∗
d might be equal to Ad, and then

the arc is not affected by other disks (for instance, this is always the case for the largest
disk in D). This implies the first property postulated for Mr. It is easy to see that, after
the execution of these rules on an arc Ad and a disk d′ which is larger than d, the resulting
subarc Ad′

d does not cross the arc Ad′ , although it might have one or both endpoints lying
on Ad′ . Since A∗

d ⊆ Ad′

d , this implies the second propery of Mr. To complete the analysis,
we next establish property (3), the main property of the map.

Lemma 1.1 For each q ∈ R
2, let d = Dmax(q) be the largest disk of D that contains q. If

q belongs to the right portion Td of d, then the first arc of Mr to the right of q is A∗
d.

2The trivial cases where Ad ∩ Td′ = ∅ or Ad ⊂ Td′ are also considered under this rule.
3It is easy to check that Ad \ Td′ cannot have more than two connected components, because Td and Td′

are homothetic — see later in the paper.

4

Ad′

d
Td

Td′ Td′

Ad′

d

Td

(b)(a)

Figure 3: The two cases of the rule for constructing Ad′

d . (a) Ad \ Td′ consists of one
connected component. (b) Ad \ Td′ consists of two connected components. In both cases
Ad′

d is the thick arc (the lowest portion of Ad).

Proof. First we note that it suffices to prove the lemma for the simpler case where there
are only two disks, that is, D = {d, d′}. Indeed, if the lemma were false, the ray emanating
from q would not have hit A∗

d first. That is, it would have either hit first another arc A∗
d′ ,

or reach infinity without hitting any arc, and then the point where the ray hits Ad (which
always exists) must have been removed by another disk d′′. It is easily seen that in either
case, the same situation would arise in the presence of just d and the other disk d′ or d′′.

Suppose first that d′ is smaller than d. In this case, by construction, Ad is not affected
by d′, and Ad

d′ does not enter the region Td, thus rendering the lemma trivial. Suppose then
that d′ is larger than d, so q /∈ d′. Note that in this case we have A∗

d = Ad′

d . We may assume,
without loss of generality, that the center of d is lower (in the y-direction) than the center
of d′; the case when the center of d is higher is handled in a fully symmetric manner. Let
rd′ and rd denote the respective radii of d′ and d.

We need to show that either Ad′

d is the only arc that is to the right of q, or else it comes
before (that is, to the left of) Ad′ (clearly, since d′ is larger, Ad′ appears in its entirety in
the map of only the disks d, d′).

First, for any point (x0, y0) ∈ R
2 and any compact geometric object A, define the

(rightward) distance in the x-direction from (x0, y0) to A by

distx ((x0, y0), A) = min {x− x0 | (x, y0) ∈ A, x ≥ x0} .

The analysis relies on the following simple but crucial property. Consider the region Ld′

of all points p in the plane such that distx(p, Td′) ≤ rd′ (see Figure 4). Then, as follows by
simple geometry, Ld′ ⊂ d′. We will also consider the region Kd′ of all points p in the plane
such that distx(p, Ad′) ≤ rd′ (see Figure 5). Since Ad′ ⊆ Td′ we have Kd′ ⊆ Ld′ ⊂ d′.

Consider the rightward-directed ray v emanating from q. Clearly v hits Ad (since q ∈ Td).
Suppose that v hits Ad′ before it hits Ad. This implies that distx(q, Ad′) < distx(q, Ad) ≤
rd < rd′ . Thus q ∈ Kd′ ⊂ d′, contradicting our assumption. That is, either v misses Ad′

altogether, or v hits Ad′ after it hits Ad.

It remains to show that the point I of intersection of v with Ad belongs to A∗
d = Ad′

d .
We proceed according to the rule by which Ad′

d was constructed.

5

Td′

rd′

rd′

d′

Figure 4: The (shaded) region Ld′ of all points p satisfying distx(p, Td′) ≤ rd′ .

Td′

d′
rd′

rd′

Figure 5: The (shaded) region Kd′ of all the points p satisfying distx(p, Ad′) ≤ rd′ .

Case 1: Ad\Td′ consists of a single connected component.

Recall that in this case Ad′

d = Ad\Td′ . Assume to the contrary that I /∈ Ad′

d , so I ∈ Td′ . But
then distx(q, Td′) ≤ |qI| ≤ rd < rd′ . Thus q ∈ Ld′ ⊂ d′, contrary to our assumption. Hence
I ∈ Ad′

d in this case.

Case 2: Ad\Td′ consists of two connected components.

Let c, c′ be the top and bottom vertices of Td, respectively. Since Td and Td′ are homothetic
copies of each other, their boundaries intersect in two points (see [5]), both of which lie on
Ad in this case4. This implies that either both c and c′ lie inside Td′ or both lie outside Td′ .
If c and c′ lie inside Td′ then, as is easily checked, both intersection points of ∂Td and ∂Td′

also lie on Ad′ , and the portion Ad \Td′ would have to be the middle portion of Ad (between
the two intersection points), so Ad \Td′ would be connected, contrary to assumption. Using
the facts that both c and c′ lie outside Td′ and no more intersection points between ∂Td and
∂Td′ exist except the two on Ad, we conclude that the only part of ∂Td that is inside Td′ is
the middle portion of Ad. See Figure 7.

Let l, l′ denote the horizontal lines touching the top and bottom vertices of Td′ , respec-
tively (see Figure 6). Clearly the top vertex c of Td lies above l′, and since the center of
d is lower than the center of d′, and rd < rd′ , the point c has to lie below the line l. In
conclusion c lies between l and l′. Observe also that c is behind (in the x-direction) Td′ , for
otherwise, using the fact that both the top and the bottom straight edges of Td are outside
Td′ , it would be impossible for ∂Td and ∂Td′ to cross each other, contrary to assumption.
Denote by a the top intersection point of Ad and ∂Td′ . Using the fact that c is outside and

4Our general position assumption allows us to assume that ∂Td and ∂Td′ do not overlap (in some straight
segment).

6

behind Td′ and between l and l′, and the fact that the top subarc ac of Ad does not cross
∂Td′ (except touching it at a), we conclude that a lies on one of the straight edges of Td′ .

d′

ℓ

ℓ′

Td′

Ld′

a

Td

b

c

Figure 6: The triangle-like region abc bounded by ab, bc, and ac. The lightly-shaded region
is Ld′ , as in Figure 4.

We next claim that the point a lies above the center of d. Indeed, suppose to the contrary
that both intersection points of Ad with ∂Td′ (a and the second, lower point a′) are on the
bottom half of Ad (i.e., on the subarc of Ad starting at the bottom vertex c′ of Ad up until
the middle of Ad). Since the center of d is lower than the center of d′, both intersection
points are on the bottom half of ∂Td′ (i.e., each lying either on the bottom edge of Td′ or on
the bottom half of Ad′). Since the bottom half of Ad is the graph of a monotone increasing
function and the bottom edge of Td′ is the graph of a monotone decreasing function, the
bottom half of Ad and the bottom edge of Td′ cross each other at most once. This means
that at least one intersection point lies on Ad′ , which, as we have just argued, must be the
lower point a′ (because a lies on an edge of Td′). This however is impossible, because a′ lies
to the left of a, and thus it lies to the left of Ad′ , contrary to assumption. This contradiction
establishes our claim.

To proceed, we consider the possible ways in which Ad can intersect ∂Td′ twice (see
Figure 7). As proven before, the top intersection point of Ad and ∂Td′ lies on one of the
edges of Td′ . It is impossible that both intersection points lie on the top edge of Td′ , for
then the center of d would have to be higher than the center of d′, as is easily checked. This
leaves us with four subcases: Either (i) both intersection points lie on the bottom edge of
Td′ (see Figure 7(a)), or (ii) one intersection point lies on Ad′ and one on the top edge of
Td′ (see Figure 7(b)), or (iii) one intersection point lies on the bottom edge and one on the
top edge of Td′ (see Figure 7(c)), or (iv) one intersection point lies on Ad′ and one on the
bottom edge of Td′ (see Figure 7(d)).

The proof below deals with all of these situations in the same manner. The proof-related
Figures 6 and 8 are shown for situation 7(c), but the proof applies, as is, for the other cases
as well. Recall that we have assumed that the center of d is below the center of d′ (in the
y-direction), so that Ad′

d is the bottom part of Ad. As noted before, we only need to prove
that the intersection point I of Ad with the ray v belongs to Ad′

d . Suppose to the contrary
that this is not the case. Then either I is in the middle part of Ad or I is in the top part
(see Figure 8) . An almost identical proof to the one in case 1 shows that if I is in the
middle part of Ad then q ∈ d′, contrary to our assumption. Suppose then that I is in the
top part of Ad.

Denote by b the point of intersection of ∂Td and the leftward-directed ray emanating
from a; see Figure 6. Since |ba| ≤ rd < rd′ , we get that b lies in Ld′ . By what has been

7

(a) (b) (c) (d)

TdTd Td

Td′

Ad

Ad′

d

Td′

Ad

Ad′

d

Td′

Ad

Ad′

d

Td

Td′

Ad

Ad′

d

Figure 7: The four situations of case 2; the grey disk is the smaller disk d. (a) Ad crosses
the bottom edge of Td′ twice. (b) Ad crosses Ad′ and the top edge of Td′ . (c) Ad crosses
both the top and bottom edges of Td′ . (d) Ad crosses Ad′ and the bottom edge of Td′ .

Td′

Td

bottom

middle

top

Figure 8: Decomposition of Ad in case 2; Ad′

d is the bottom subarc.

argued above, b lies on the top edge e of Td. Since e is parallel to the top left edge e∗ of
Ld′ , starts (at its bottom) below e∗, and is shorter than e∗, it follows that the top endpoint
c of e lies in Ld′ . In conclusion, b and c both lie in Ld′ and outside Td′ . The top subarc ac
of Ad is the graph of a monotone decreasing function, both of whose endpoints lie in Ld′ .
It then easily follows that the entire arc is contained in Ld′ . Since b lies on the top edge
of Td, the triangle-like region abc, bounded by ab, bc, and the arc ac, is fully contained in
Ld′ . Since q lies in this region by assumption, it follows that q ∈ Ld′ ⊂ d′, contrary to our
assumption. Hence I must lie in Ad′

d , as claimed.

This concludes the proof of the lemma, and thus establishes property (3) of Mr. ✷

We summarize the results of this section in the following theorem.

Theorem 1.2 Given a set D of n disks in the plane, one can construct a data structure of
linear size, consisting of (point location structures for) the map Mr and its two symmetric
counterparts Mt and Mb, constructed respectively over the top parts and over the bottom
parts of the disks of D, such that, for a given query point q ∈ R

2, the largest disk of D
containing q is the largest of the disks that contain q among the three disks dr, dt, db where
dr is the disk whose arc A∗

dr
is the first arc of Mr hit by the rightward directed ray from q,

and where dt, db are similarly defined for Mt, Mb, respectively, and for the respective rays
in directions 2π/3, −2π/3. The query time is O(logn).

8

Remark. The reason for dividing each disk into three parts is to ensure that Ld ⊂ d (and
thus also Kd ⊂ d) for each disk d. Both properties fail if Td is larger than a third of a disk.

1.3 Efficient Construction of Mr

As already noted, the operational definition of the map Mr, as given in Section 1.2, leads to
a straightforward and simple O(n2) algorithm for constructing the map. We now describe
a more efficient procedure for constructing Mr, which runs in O(n log3 n) time.

Fix a disk d ∈ D, and let Dd denote the set of all disks in D larger than d. Let Td
denote the collection of the right portions Td′ of all the disks d′ ∈ Dd, and let Ud denote
their union. Since the elements of Td are homothetic copies of one another, their union has
linear complexity; see [5, 6].

Before we proceed, we first establish the following lemma. For an arc Ad of some disk
d, and a point p ∈ Ad in the top (resp., bottom) half of Ad, we define the conjugate point
p̄ of p (with respect to Ad) to be the second intersection point of Ad and the vertical line
through p; see Figure 9(a).

Lemma 1.3 Let d, d′ ∈ D such that d′ is larger than d and the center of d′ lies above
(resp., below) the center of d (in the y-direction). Let p ∈ Ad \ Td′ be a point in the top
(resp., bottom) half of Ad. Then the conjugate point p̄ of p (with respect to Ad) is also in
Ad \ Td′ .

Proof. See Figure 9(b) for an illustration. We may assume, without loss of generality, that
the center of d′ lies above the center of d; the complementary case can be handled in a
fully symmetric manner. In this case p lies in the top half of Ad and p̄ lies in the bottom
half. Suppose to the contrary that p̄ lies in Td′ . Let l be the vertical line through p and p̄.
Let u and v denote the two intersection points of l with ∂Td′ , with u lying above v; these
points must exist, for otherwise p̄ would trivially lie in Ad \ Td′ . Observe that either u lies
on the top edge of Td′ and v on the bottom edge, or both points lie on Ad′ . In either case,
the midpoint w of uv has the same y-coordinate as the center of d′, and therefore must lie
above the midpoint p0 of pp̄, whose y-coordinate is equal to that of the center of d. Since
p lies outside Td′ and p̄ lies inside, it follows that u lies between p and p̄ and v lies below
p̄. But then w must lie below p0, as is easily checked, a contradiction that completes the
proof. ✷

Let D
(a)
d (resp., D

(b)
d) denote the collection of all the disks d′ such that d′ is larger

than d and the center of d′ lies above (resp., below) the center of d (in the y-direction);

thus Dd = D
(a)
d ∪ D

(b)
d . Let T

(a)
d (resp., T

(b)
d) denote the collection of the regions Td′ , for

d′ ∈ D
(a)
d (resp., d′ ∈ D

(b)
d), and let U

(a)
d (resp., U

(b)
d) denote the union of T

(a)
d (resp., T

(b)
d);

in particular, Ud = U
(a)
d ∪ U

(b)
d . Lemma 1.3 implies the following corollary.

Corollary 1.4 Let p ∈ Ad \U
(a)
d (resp., p ∈ Ad \U

(b)
d) be a point in the top (resp., bottom)

half of Ad. Then the conjugate point p̄ of p (with respect to Ad) is also in Ad \ U
(a)
d (resp.,

Ad \ U
(b)
d).

Set A
(a)
d :=

⋂

d′∈D
(a)
d

Ad′

d , and A
(b)
d :=

⋂

d′∈D
(b)
d

Ad′

d . That is, A
(a)
d (resp., A

(b)
d) is the subarc

9

p

p̄

Ad

(a) (b)

Td′

Ad

p

p̄

p0

w

v

u

Figure 9: (a) Point p ∈ Ad and its conjugate point p̄. (b) Illustrating the setup in Lemma
1.3.

of Ad resulting from applying the rule for creating A∗
d only to the disks in D

(a)
d (resp., in

D
(b)
d). By definition, A∗

d = A
(a)
d ∩A

(b)
d . The algorithm uses the following lemma to construct

A
(a)
d and A

(b)
d .

Lemma 1.5 A
(a)
d (resp., A

(b)
d) is the lowest (resp., highest) connected component of Ad \

U
(a)
d (resp., Ad \ U

(b)
d).

Proof. Without loss of generality, we prove the lemma only for A
(a)
d , as the handling of A

(b)
d

is fully symmetric. For disks d′ ∈ D
(a)
d , both rules for constructing Ad′

d boil down to the

single rule that Ad′

d is the lowest connected component of Ad \ Td′ . By applying this rule to

all of the disks d′ ∈ D
(a)
d , we get that A

(a)
d is disjoint from U

(a)
d , and since all the subarcs

Ad′

d , for d′ ∈ D
(a)
d , are connected, we conclude that A

(a)
d is connected and contained in a

single connected component of Ad \ U
(a)
d . In particular, if Ad \ U

(a)
d = ∅ then A

(a)
d is also

empty. For each d′ ∈ D
(a)
d , each of the endpoints of the subarc Ad′

d (if Ad′

d 6= ∅) is either a
vertex of Ad or one of the intersection points of Ad and ∂Td′ . Thus, each endpoint of the

subarc A
(a)
d , which is a finite intersection of such arcs Ad′

d , is also either a vertex of Ad or

one of the intersection points of Ad with some Td′ . This implies that, if not empty, A
(a)
d is

a maximal connected component of5 Ad\U
(a)
d .

Let L be the lowest connected component of Ad \ U
(a)
d . Clearly, if L 6= A

(a)
d then either

A
(a)
d = ∅ and L 6= ∅, or A

(a)
d 6= ∅ but L is a lower connected component of Ad \ U

(a)
d than

A
(a)
d . Assume first to the contrary that A

(a)
d 6= ∅ but L is a lower connected component of

Ad \U
(a)
d than A

(a)
d . Pick points p ∈ A

(a)
d and p′ ∈ L, so p′ is lower than p. By construction,

p ∈ Ad′

d for every disk d′ ∈ D
(a)
d , and p′ ∈ Ad \ Td′ . By definition of Ad′

d , p
′ must also belong

to this arc. Since this holds for all d′ ∈ D
(a)
d , p′ ∈ A

(a)
d , contrary to our assumption. Thus

L = A
(a)
d .

Suppose then, again to the contrary, that A
(a)
d = ∅ and L 6= ∅ and let p be some

5Clearly, if Ad \ U (a)
d = ∅ then A

(a)
d = ∅ as well; the converse implication will shortly be established.

10

arbitrary point in L. Notice that in order for that to happen, p must be in the top connected

component of Ad \Td′ for some d′ ∈ D
(a)
d , i.e., Ad \Td′ consists of two connected components

and p is in the top one. Indeed, if this does not happen, p, which lies outside all the sets

Td′ , for d
′ ∈ D

(a)
d , must lie in all the arcs Ad′

d and thus also in A
(a)
d , which is impossible. As

shown in the analysis of case 2 in the proof of Lemma 1.1, the top intersection point of Ad

and ∂Td′ is above the center of d. Hence p must lie in the top half of Ad, which means that
L is contained in the top half of Ad. Using Corollary 1.4 we conclude that the conjugate

point p̄ of p, which lies in the bottom half of Ad, is in Ad \ U
(a)
d as well, contradicting the

fact L is the lowest component of Ad \ U
(a)
d .

In conclusion, we have shown that L = A
(a)
d in all cases. This, and a symmetric argument

for A
(b)
d , complete the proof of the lemma. ✷ Remark. Implicitly, the lemma also asserts

that A
(a)
d (resp., A

(b)
d) is empty if and only if Ad \ U

(a)
d (resp., Ad \ U

(b)
d) is empty.

In other words, A∗
d is the intersection of the lowest component of Ad \ U

(a)
d and the

highest component of Ad \ U
(b)
d .

Decomposability. We note that the observations just made are more general in nature,
and yield the following decomposability property of the construction of A∗

d. Suppose that

Dd = D1 ∪D2 ∪ · · · ∪Ds. For each j = 1, . . . , s, let D
(a)
j (resp., D

(b)
j) denote the set of those

disks in Dj whose centers lie above (resp., below) the center of d, and let A
(a)
d;j (resp., A

(b)
d;j)

denote the lowest (resp., highest) connected component of Ad\
⋃

D
(a)
j (resp., of Ad\

⋃

D
(b)
j).

Then A∗
d =

s
⋂

j=1

(

A
(a)
d;j ∩A

(b)
d;j

)

.

A divide-and-conquer algorithm. The preceding analysis suggests the following divide-
and-conquer procedure for constructing Mr. Let D

+ (resp., D−) denote the collection of the
n/2 larger (resp., smaller) disks of D, and let M+

r (resp., M−
r) denote the map constructed

(recursively) on the right portions of the disks in D+ (resp., D−).

Note that all the arcs in M+
r are arcs of the final map Mr (they are not affected by the

addition of the smaller disks), but the arcs of M−
r might require some trimming to turn

them into the correct arcs in Mr, because of the effect of the larger disks in D+ on them.
Let A−

d be an arc in M−
r , contributed by some disk d ∈ D−. To incorporate the effect that

the disks in D+ have on A−
d , we compute the lowest (resp., highest) connected arc A

+(a)
d

(resp., A
+(b)
d) of Ad \

⋃

d′∈D+∩D
(a)
d

Td′ (resp., Ad \
⋃

d′∈D+∩D
(b)
d

Td′), and add to the final map

Mr the arc A∗
d := A

+(a)
d ∩A

+(b)
d ∩A−

d . The last identity follows directly from the definition:

A∗
d =

⋂

d′∈Dd

Ad′

d =

(

⋂

d′∈D+∩D
(a)
d

Ad′

d

)

∩

(

⋂

d′∈D+∩D
(b)
d

Ad′

d

)

∩

(

⋂

d′∈D−∩Dd

Ad′

d

)

= A
+(a)
d ∩A

+(b)
d ∩A−

d .

To complete the description of this divide-and-conquer process, we present an efficient

implementation of the construction of the arcs A
+(a)
d and A

+(b)
d for the right portions of

11

all the disks d ∈ D−. In what follows we concentrate only on the efficient construction

of the arcs A
+(a)
d ; computing the corresponding arcs A

+(b)
d is done in a fully symmetric

manner. The arcs A∗
d are then obtained by the preceding rule, and the construction of Mr

is completed.

Consider first the following subproblem, which arises as a major step in the construction.
We have a set E− = {d−1 , . . . , d

−
k } of k “small” disks, and a set A− = {A1, . . . , Ak} of

noncrossing arcs, so that Aj is a subarc of the arc bounding the right portion T
d−j

of d−j ,

for j = 1, . . . , k. We also have a set E+ = {d+1 , . . . , d
+
s } of s “large” disks, so that all the

disks of E+ are larger than all the disks of E−, and the center of each disk of E+ lies above
the center of every disk of E− (in the y-direction). Let U+ denote the union of all the
right portions Td, for d ∈ E+. Our goal, according to Lemma 1.5 and the decomposability
property noted following it, is to compute, for each j = 1, . . . , k, the lowest subarc αj of
Aj \ U

+.

We first note the following operational definition of αj : Let a be the lower endpoint
of Aj . If a /∈ U+ then a is also the lower endpoint of αj , and the upper endpoint of αj

is the lowest intersection point b of Aj with ∂U+ (or the upper endpoint of Aj if no such
intersection exists). Otherwise, if a ∈ U+, the intersection point b just defined (if it exists)
is the lower endpoint of αj , and the upper endpoint is the second lowest intersection point
of Aj with ∂U+ (or, again, the upper endpoint of Aj if no second intersection exists); if b
does not exist then αj = ∅. See Figure 10 for an illustration.

Aj

a

b

αj

(a) (b)

αj

a

c

b

Aj

Figure 10: (a) αj is the arc ab when a /∈ U+. (b) αj is the arc bc when a ∈ U+.

We compute the union U+, and construct on it a standard point location data structure
(see, e.g., [3]), which allows us to determine, in logarithmic time, whether a query point lies
inside the union. As already noted several times earlier, U+, as the union of s homothetic
regions, has linear complexity (that is, O(s)). The cost of constructing U+ is discussed
below, towards the end of the presentation of the algorithm. Let B+ denote the set of all
the O(s) circular arcs and straight segments that form the boundary of U+.

We then run a horizontal line sweeping algorithm, in increasing y-direction, on the
collections A− and B+, whose goal is to compute, for each arc of A−, its lowest or two

12

lowest intersection points with the elements of B+. In more detail, for each arc Aj ∈ A−,
we locate the lower endpoint aj of Aj in U+. If aj /∈ U+, it suffices to compute the first
lowest intersection point, and otherwise we need to compute the two lowest intersections.

The implementation of the sweep is straightforward; we omit here the bulk of its de-
scription, and only give the following few comments about its execution. First, since the
arcs of A− are pairwise noncrossing, and so are the arcs and segments of B+, the sweep will
only encounter intersections between the elements of A− and those of B+. For each arc Aj

of A−, the sweep extracts from the event priority queue (the “y-structure”) the intersection
points of Aj with the elements of B+ in increasing y-order. As soon as it extracts the first
or second such intersection, as appropriate for Aj , it discards Aj , removing the arc itself
from the “x-structure” (the balanced search tree that represents the arcs crossed by the
sweepline), and removing any future events involving Aj from the queue. In this manner,
the algorithm processes only O(k + s) events, at a total cost of O((k + s) log(k + s)) time.

Returning to the original divide-and-conquer procedure, we would like to apply the
sweeping technique to the arcs of M−

r (playing the role of A−) and to the union of the right
portions Td of the disks d ∈ D+ (playing the role of U+). However, since we do not have
control over the relative positions of the centers of the two corresponding families of disks,
we need a secondary process to control the locations of the centers.

Specifically, we sort the disks of D+ in increasing y-order of their centers, and store
them in this order at the leaves of a balanced binary tree Q. For each node v ∈ Q, we
consider the subset Dv of the disks stored at the leaves of the subtree rooted at v. Note
that

∑

v |Dv| = O(n logn). Given a disk d ∈ D−, we can obtain, by searching in Q with

the center of d, the subset D+ ∩ D
(a)
d of disks of D+ whose centers lie above that of d, as

the (disjoint) union of O(logn) subsets Dv, and the decomposability propery implies that
it suffices to solve the problem for each of them separately, and form the intersection of the

O(logn) resulting subarcs of Ad, to obtain the desired subarc A
+(a)
d , as defined above. As a

result of the searches in Q with the centers of the disks of D−, each node v ∈ Q stores a set
Sv of all the disks d ∈ D− that use v as part of their decomposition (i.e., the decomposition

of D+ ∩ D
(a)
d). The overall size of the sets Sv, as well as the time to construct them, is

O(n logn).

Now, for each node v ∈ Q we have a pair (Sv,Dv) of subsets Sv ⊆ D− and Dv ⊆ D+.
We recover from M−

r the arcs that correspond to the disks in Sv, and run the sweeping
algorithm described above, where the recovered arcs play the role of A−, and where Dv

plays the role of E+. After all the sweeps are performed, we have computed, for each disk

d ∈ D−, O(logn) arcs A
(1)
d , A

(2)
d , As argued above, the intersection of all these arcs is

the desired A
+(a)
d . We then run this procedure again, essentially reversing the direction of

the y-axis, to obtain the subarcs A
+(b)
d , for d ∈ D−, and add A∗

d = A
+(a)
d ∩ A

+(b)
d ∩ A−

d to
the output map Mr.

The total time of all the sweeps is bounded by

O

(

∑

v∈Q

(|Dv|+ |Sv|) log(|Dv|+ |Sv|)

)

= O

(

∑

v∈Q

(|Dv|+ |Sv|) logn

)

= O(n log2 n).

To complete the presentation, we next discuss the cost of constructing the union U+
v =

⋃

{Td | d ∈ Dv}, for all the nodes v of Q. We construct these unions in a bottom-up manner,

13

from the leaves of Q towards its root. The construction of the leaves is trivial, because at
each leaf the union involves a single region Td. Let v be a non-leaf node of Q with children
w,z. Then U+

v = U+
w ∪ U+

z . if v has s leaves in its subtree, then each of U+
w , U+

z , U+
v has

O(s) complexity. This means that U+
v can be constructed by a straightforward line sweeping

procedure over the overlay of U+
w and U+

z , in time O(s log s). Adding up the costs, over all
nodes v of Q, all the unions U+

w can be constructed in a total of O(n log2 n) time.

In conclusion, we have presented a procedure that, given two maps M−
r and M+

r ,
constructed respectively over the n/2 smaller disks of D and over the n/2 larger disks,
merges them into the final map Mr, in O(n log2 n) time. Denoting by T (n) the maxi-
mum time for the algorithm to run on a set of n disks, we obtain the recurrence relation:
T (n) = 2T (n2) +O(n log2 n), and thus T (n) = O(n log3 n).

Remark. As described, the preprocessing algorithm uses O(n logn) space (for maintaining
all the sets Sv, Dv). To impove the storage requirement to linear, we construct Q, and the
corresponding sets Sv, Dv, in an incremental bottom-up manner, maintaining at each step
the sets Sv, Dv only within a single level of Q. The information concerning the sets Dv

and the unions of their disks is easy to transfer from each level to the next one up. To
obtain the sets Sv within a level the simplest way is to search in Q with the centers of disks
of D− from scratch, only until the desired level. This implementation takes only linear space.

Putting everything together, and summarizing the statement of Theorem 1.2, we obtain the
following summary result of this paper.

Theorem 1.6 Let D be a set of n disks in the plane. One can preprocess D into a data
structure of linear size, in time O(n log3 n), so that, for any query point q we can report the
largest disk of D that contains q or determine that there is no such disk, in O(logn) time.

Remark. Although this is somewhat marginal, it would be interesting to reduce the cost of
the preprocessing.

Acknowledgements. The authors wish to thank Haim Kaplan for helpful discussions
and feedback on the problem studied in this paper. We also thank indirectly Joe Mitchell
and Günter Rote, whose discussions of this problem with Haim were a prime motivation for
us to study this problem.

References

[1] J. Augustine, S. Das, A. Maheshwari, S. C. Nandy, S. Roy, and S. Sarvattomananda,
Recognizing the largest empty circle and axis-parallel rectangle in a desired location, in
arXiv:1004.0558, 2010.

[2] J. Augustine, S. Das, A. Maheshwari, S. C. Nandy, S. Roy, and S. Sarvat-
tomananda, Querying for the largest empty geometric object in a desired location, in
arXiv:1004.0558v2, 2010.

14

[3] M. de Berg, O. Cheong, M. van Kreveld and M. Overmars, Computational Geometry:
Algorithms and Applications, 3rd Edition, Springer Verlag, Berlin–Heidelberg, 2008.

[4] H. Kaplan and M. Sharir, Finding the maximal empty disk containing a query point, Int.
J. Comput. Geom. Appl., to appear. Also in Proc. 28-th Annu. ACM Sympos. Comput.
Geom., 2012, pp. 287–292

[5] K. Kedem, R. Livne, J. Pach, and M. Sharir, On the union of Jordan regions and
collision-free translational morion amdist polygonal obstacles, Discrete Comput. Geom.
1 (1986), 59–71.

[6] P. K. Agarwal, J. Pach and M. Sharir, State of the union (of geometric objects), in
Proc. Joint Summer Research Conf. on Discrete and Computational Geometry: 20 Years
Later, Contemp. Math. 452, AMS, 2008, pp. 9–48.

[7] C. K. Yap. Geometric consistency theorem for a symbolic perturbation scheme, Journal
of Computer and System Sciences, 1990, 40(1), pp. 2–18.

15

