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Introdu
tion 2number of lines that pass through a pair of points of S and have exa
tly k points of S inone of the open halfplanes that they de�ne?1 In a dual setting, we are given a set L of nlines in the plane in general position, and want to bound the maximum possible number ofverti
es v of the arrangement A(L), so that exa
tly k lines pass below v. We denote thisset of verti
es by Vk. The k-th level of the arrangement is de�ned to be the 
losure of theset of points that lie on the lines and have exa
tly k lines below them. The set of verti
esof this level is Vk [ Vk�1. See Figure 1 for an illustration.
Figure 1: The third level in an arrangement of lines. The verti
es of V2 are indi
ated byempty 
ir
les and the verti
es of V3 | by bla
k ones.The k-set problem was �rst studied about 1970 by Erd}os et al. [14℄ and Lov�asz [22℄.These papers have established an upper bound O(npk) and a lower bound 
(n log k) onthe desired quantity, for k > 0, leaving a fairly big gap. The upper bound was slightlyimproved to O(npk= log� k) by Pa
h et al. [25℄. After the original submission of this paper,signi�
ant progress has been made by Dey [8℄, who improved the upper bound to O(nk1=3),for k > 0. Dey's proof is based on some of the ideas presented in this paper.In the dual setting, the problem 
an be generalized in an obvious manner: In the plane,we are given a 
olle
tion � of n x-monotone 
urves, ea
h being the graph of a 
ontinuoustotally or partially de�ned fun
tion, and a parameter 0 � k < n, and wish to bound the
omplexity (i.e., the number of verti
es) of the k-th level in the arrangement A(�), de�nedexa
tly as in the 
ase of lines. In this more general setting only two results are known:A re
ent seemingly weak, but elegant analysis by Tamaki and Tokuyama [28℄ yields thebound O(n23=12) on the 
omplexity of a level in an arrangement of n pseudo-parabolas,whi
h are graphs of total fun
tions, ea
h pair of whi
h interse
t at most twi
e. We alsomention the 
ase of pseudo-lines, whi
h in this 
ontext are graphs of 
ontinuous totallyde�ned fun
tions, ea
h pair of whi
h interse
t exa
tly on
e, where a slightly larger lowerbound of 
(n � 2
plog n) for the 
omplexity of the median level is established in [21℄. Ourproof te
hniques and upper bounds apply equally well to the 
ase of pseudo-lines. Re
ently,Dey's te
hniques have also been extended to the 
ase of pseudo-lines [9, 29℄.1A
tually, the k-set problem seeks bounds on the number of subsets of S of size k that 
an be separatedfrom their 
omplements by a line. This quantity and the one de�ned above are related but not identi
al(they do have the same asymptoti
 worst-
ase behavior); see [2℄ for a re
ent survey that dis
usses this issue.Levels in arrangements O
tober 8, 2001



Introdu
tion 3Similar extensions apply in higher dimensions. In the primal setting, we are given aset S of n points in Rd in general position, and wish to bound the number of hyperplanes� passing through d of the points su
h that one of the halfspa
es bounded by � 
ontainsexa
tly k points of S.2 For d = 3, the best known upper and lower bounds are, respe
tively,O(n8=3) and 
(n2 log n) [4, 10℄. For d > 3, the best known upper bound is O(nd�
d), forsome exponentially small but positive 
onstant 
d [30℄. Note that, in 
ontrast to the planar
ase, these bounds depend only on n and not on k.We 
an formulate the problem in an arbitrary dimension, in a dual setting: We 
onsideran arrangement of hyperplanes, or, more generally, of surfa
es that are graphs of 
ontinuoustotal or partial fun
tions, and de�ne the k-th level of the arrangement exa
tly as in theplanar 
ase. We now seek bounds on the maximum possible number of verti
es (or of fa
esof all dimensions) of the level. Ex
ept for the 
ase of hyperplanes, whi
h is equivalent to (avariant of) the k-set problem mentioned in the pre
eding paragraph, no nontrivial boundsfor the entire range of values of k are known.In spite of the sorry state of the problem, even after Dey's improvements, one 
anobtain improved nontrivial bounds when k is small. The probabilisti
 analysis of Clarksonand Shor [7℄ (see also [26℄) yields fairly sharp bounds on the 
ombined 
omplexity of the�rst k levels in arrangements. For the 
ase of hyperplanes, for example, the bound is�(nbd=2
kdd=2e). For suÆ
iently small k, this gives a better upper bound on the 
omplexityof a single level than the general bound stated above.New Results. In this paper we make several 
ontributions to these problems:In the preliminary version of this paper [1℄, we have brie
y reviewed and simpli�ed someold proofs of the upper bound O(npk) for the original planar k-set problem (or, dually, forthe 
ase of the k-th level in an arrangement of n straight lines in the plane). These proofsare related to the proof te
hnique of Gus�eld [16, 17℄. We also gave a simple proof of thedual version of what is known as \Lov�asz Lemma" that is used to prove the bound. Thesete
hniques apply equally well to arrangements of pseudo-lines; see, for example, [15℄. Forthe sake of brevity, this part is not in
luded in this version of the paper.We adapt our proof te
hniques to obtain the bound O(n3=2) on the 
omplexity of thek-th level in an arrangement of n line segments (or \pseudo-segments," to be de�ned below).The same bound also follows from a result by Katoh et al. [20℄. We then des
ribe two simpleapproa
hes that redu
e the bound to O(npk�(n=k)), where �(n) is the inverse A
kermannfun
tion.We then pro
eed to study the k-set problem for higher-dimensional point sets (or, dually,though not quite equivalently, to bound the 
omplexity of the k-th level in a hyperplanearrangement). In the preliminary version of this paper [1℄, we have observed that the2Again, in the a
tual k-set problem we want to bound the number of subsets of size k that 
an beseparated from their 
omplements by a hyperplane; see [2℄.Levels in arrangements O
tober 8, 2001



Arrangements of Segments 4O(n8=3) bound in R3 
an be immediately brought down to O(n2k2=3), if one exploits asimple improved version of the Lov�asz Lemma in an arbitrary dimension derived in thispaper. However, using Clarkson and Shor's te
hnique, we improve this bound further toO(nk5=3), in a manner that makes no use of the improved Lov�asz Lemma. Although theimproved lemma has so far no signi�
ant appli
ations, we in
lude it here be
ause we believeit to be of independent interest and an extension of it is needed for the 
ase of trianglesin R3 . Over the whole range of k > 0, the O(nk5=3) bound is stronger than all previousbounds, in
luding the aforementioned O(nk2) bound on the overall 
omplexity of the �rstk levels. A similar improved bound, of the form O(nbd=2
kdd=2e�
d), 
an be obtained in anydimension d > 3, for the same 
onstant 
d > 0 obtained by �Zivaljevi�
 and Vre�
i
a [30℄.Again, this bound is the best known upper bound, for all values of k > 0.Finally, we 
onsider the problem of bounding the 
omplexity of the k-th level in anarrangement of n triangles in 3-spa
e. We �rst obtain a nontrivial bound of O(n17=6) andthen improve it to O(n2k5=6�(n=k)). Our bound strongly depends on an upper bound onthe 
omplexity of a single level in an arrangement of line segments in the plane.As dis
ussed above, Dey's results supersede some of the bounds obtained in this pa-per, but they do rely on some of the ma
hinery developed here. Some other, more re
entbounds derived here 
an be further improved by exploiting Dey's results. We have writtenthis revised version of our paper in a manner that is mostly independent of Dey's progress.Nevertheless, for 
ompleteness, we 
on
lude the paper with a brief overview of the 
onne
-tions between Dey's results and ours.2 Arrangements of Segments2.1 A �rst boundLet S be a 
olle
tion of n segments in the plane in general position. For k = 0; : : : ; n� 1,the k-th level in the arrangement A(S) of S is de�ned to be the 
losure of the set of allpoints w that lie on segments of S and are su
h that the open downward-dire
ted verti
alray emanating from w interse
ts exa
tly k segments of S (that is, there are k segmentsof S below w). Unlike the 
ase of lines, a level of A(S) is not ne
essarily 
onne
ted. Itmay involve verti
al jumps from a segment to the segment lying dire
tly above or below it,when a new segment starts or ends at a point below the level. The 
omplexity of a levelis the number of verti
es of A(S) that lie on the level plus the number of dis
ontinuitiesof the level. Clearly, the number of su
h dis
ontinuities is at most 2n. We de�ne Vk, fork = 0; : : : ; n� 2, to be the set of verti
es of A(S) (ex
luding segment endpoints and pointsof dis
ontinuity) that have exa
tly k segments passing below them. The set of verti
es ofthe k-th level, ex
luding segment endpoints and jump dis
ontinuities, is Vk�1 [ Vk. Thelevel bends to the left at verti
es of Vk�1 and to the right at verti
es of Vk. See Figure 2 foran illustration.Levels in arrangements O
tober 8, 2001



Arrangements of Segments 5

Figure 2: The se
ond level in an arrangement of segments; here jV1j = 1 and jV2j = 4.Theorem 2.1 The 
omplexity of any single level in an arrangement of n line segments inthe plane in general position is O(n3=2).Proof. We �rst extend to the 
ase of segments the notion of 
on
ave 
hains, introdu
ed inthe preliminary version of the paper [1℄ for arrangements of lines. These 
hains are not anew 
on
ept, and have been used in various earlier works, su
h as [16, 17℄. The 
hains are
onstru
ted as follows. We start a new 
hain (i) at the left endpoint of any segment (or, ifthe segment is a line or a leftward-dire
ted ray, at a point at x = �1 on this line or ray) ifthat point lies below the k-th level, and (ii) at any point of dis
ontinuity of the level, whenthe level jumps up from a segment si to a segment sj (the 
hain is started along the lowersegment si). As x in
reases, ea
h 
hain 
 follows the segment that it lies on, ex
ept whenof the following situations o

urs:(i) 
 rea
hes the right endpoint of that segment, and then 
 terminates there;(ii) 
 follows a segment si and rea
hes a dis
ontinuity of the k-th level, where the leveljumps down to si, in whi
h 
ase 
 is terminated at that point; or(iii) 
 rea
hes a vertex v 2 Vk�1, in whi
h 
ase 
 bends to the right, and 
ontinues alongthe other segment in
ident to v.We thus get a 
olle
tion of at most 2n 
on
ave 
hains (if all the segments are lines, weget exa
tly k 
hains). See Figure 3 for an illustration in the 
ase of lines.It is easily seen that the resulting 
hains satisfy the following properties:(a) The union of the 
hains is the 
losure of the portion of the union of the segments thatlies below the k-th level. Ex
ept for the verti
es of Vk�1, the union of the 
hains liesstri
tly below the k-th level.Levels in arrangements O
tober 8, 2001



Arrangements of Segments 6

3
2 
1Figure 3: The 
on
ave 
hains asso
iated with the third level in an arrangement of lines.The level itself is drawn in bold; the dashed paths denote the 
on
ave 
hains 
1; 
2; 
3; andthe 
ir
les denote the verti
es of V2.(b) The 
hains are vertex-disjoint and have non-overlapping edges, but they may 
rossea
h other.(
) All the verti
es of the 
hains lie on the upper envelope of the 
hains. Indeed, ea
h
hain, ex
ept for its verti
es, lies fully below the k-th level, so any vertex of any 
hainlies above all the 
hains that are not in
ident to it.Gus�eld's analysis [16, 17℄ 
an be adapted to obtain the following more general bound,whi
h 
learly implies Theorem 2.1. The same result, for the 
ase of lines, was obtainedindependently by Halperin and Sharir [18℄, who were not aware of Gus�eld's earlier work:Theorem 2.2 The overall number of verti
es of t 
on
ave 
hains that have non-overlappingedges (and are thus vertex-disjoint), in an arrangement of n segments in the plane, isO(npt).Proof: In the preliminary version of the paper [1℄, the theorem was proved �rst for the
ase of lines and then extended to the 
ase of segments. Two proofs were given there, andwe give here only one of them; see [1℄ for more details.We use the following potential fun
tion te
hnique, whi
h is a variant of the te
hniqueof [16, 17℄. Let the segments in S be s1; s2; : : : ; sn, sorted in the order of de
reasing slopesof their 
ontaining lines, and let V denote the set of verti
es of the 
hains (ex
luding 
hainendpoints). For ea
h x 2 R, de�ne�(x) =Xfj j `j lies on one of the 
hains at xg :We 
learly have �(�1), �(+1) = O(nt) (for bounded segments, both quantities are zero;as a matter of fa
t, �(x) = O(nt) for ea
h x). As we sweep A(S) with a verti
al line fromleft to right, the value of �(x) 
an 
hange only when either a 
hain starts or ends at x, or xequals the abs
issa vx of a vertex v 2 V (refer to Figures 2 or 3). Suppose that v 2 V is theLevels in arrangements O
tober 8, 2001



Arrangements of Segments 7interse
tion point of segments si and sj, with j > i. Then, as easily 
he
ked, the 
hange��(vx) = �(vx+ ")��(vx� "), for a suÆ
iently small " > 0, is j � i > 0. If a 
hain startsor ends at x then j��(x)j � n, and there are at most 2t su
h points. In other words,Xv2V ��(vx) = �(+1)� �(�1) +O(nt) = O(nt) ;with ea
h of these 
hanges being a positive integer.The number of verti
es v at whi
h ��(vx) > pt is no more than O(npt), as the sumof ��(vx) at these verti
es is O(nt), and ea
h term in the sum is larger than pt. Theset of verti
es v at whi
h the 
hange is at most pt 
onsists of at most n� 1 verti
es with
orresponding pairs of indi
es (i; i+ 1), n� 2 verti
es with pairs (i; i + 2), et
., so its totalsize is at most (n� 1) + (n� 2) + � � � + (n�pt+ 1) < npt :Combining the two estimates, we 
on
lude that jV j = O(npt). 2Remark: The proof of Theorem 2.2 (as well as the other proof given in [1℄) also appliesto the 
ases of pseudo-lines and pseudo-segments. We have already de�ned the notion ofa family of pseudo-lines. A 
olle
tion S of n x-monotone 
onne
ted ar
s is a family ofpseudo-segments if ea
h of them 
an be extended to an x-monotone 
onne
ted unbounded
urve, so that this family of 
urves is a 
olle
tion of pseudo-lines. (This is a mu
h strongerde�nition than just requiring ea
h pair of pseudo-segments to interse
t at most on
e; seeFigure 4.) We leave it to the reader to verify that the proof goes through in the 
ase ofpseudo-segments, with straightforward modi�
ations.
Figure 4: These four ar
s do not form an arrangement of pseudo-segments.2.2 A k-sensitive boundTheorem 2.1 does not yield an upper bound for the k-th level that depends on k. Fork �pn, the known O(nk�(n=k)) bound for the overall 
omplexity of the �rst k levels [26℄is a
tually smaller than the O(n3=2) bound. We o�er two approa
hes for deriving betterk-sensitive bounds for the k-th level, obtaining the following result.Levels in arrangements O
tober 8, 2001



Arrangements of Segments 8Theorem 2.3 The 
omplexity of the k-th level in an arrangement of n line segments inthe plane in general position is O(npk�(n=k)), for k > 0.Proof. The �rst approa
h involves a bound on the 
omplexity of the k-th level in terms ofthe 
omplexity of higher levels. Re
all that the 
omplexity of the k-th level, whi
h we willdenote by Nk, is the total number of its (inner) verti
es and dis
ontinuous jumps.Lemma 2.4 Nk = O(Njpj) for any k < j � n.Proof: Divide the plane into O(Nj=j) verti
al slabs so that ea
h slab 
ontains O(j) ver-ti
es/dis
ontinuities of the j-th level. Given one su
h slab � , let S� be the set of segmentsthat 
ontain a point on a level � j inside � . Ea
h segment s 2 S� is of one of the followingthree types:(i) s is on a level � j at the left wall of � .(ii) s is on a level > j at the left wall. In this 
ase, s must 
ross the j-th level within � ,so it must 
ontain a vertex or a dis
ontinuity on the j-th level.(iii) s does not interse
t the left wall of � . If the left endpoint of s lies below the j-thlevel, then the endpoint 
auses a dis
ontinuity in the level; otherwise, s 
rosses thej-th level within � , so the argument for 
ase (ii) applies.The number of segments in the �rst 
ase is 
learly at most j + 1. The number of segmentsin the next two 
ases is O(j) by our 
onstru
tion of the slabs. We therefore 
on
lude thatjS� j = O(j).As k < j, the k-th level in A(S) 
oin
ides with the k-th level in A(S� ) when restri
tedto � . By Theorem 2.1, the 
omplexity of the k-th level within ea
h slab is O(j3=2). Thetotal 
omplexity of the k-th level in A(S) is thus O((Nj=j) � j3=2). 2The theorem 
an now be proved as follows:Nk = O0�1k Xk<j�2kNjpj1A = O0� 1pk Xj�2kNj1A = O(npk�(n=k));sin
e the �rst 2k levels have 
omplexity O(nk�(n=k)) [26℄.The above proof uses the known upper bound on the 
ombined 
omplexity of the �rstO(k) levels, whi
h is a
tually proved using the probabilisti
 te
hnique of Clarkson andShor [7℄. We now des
ribe a se
ond proof that dire
tly applies Clarkson and Shor's te
h-nique.Take a random sample R � S of size r = bn=2k
. Let LE(R) be the 
losure of the regionbeneath the lower envelope (i.e., the 0-th level) in A(R). By inserting verti
al downward-dire
ted rays at ea
h vertex and dis
ontinuity point, we obtain a de
omposition of LE(R)Levels in arrangements O
tober 8, 2001



Arrangements of Planes 9into `semi-unbounded' trapezoids (the \verti
al de
omposition"). Ea
h trapezoid is de�nedby at most three segments, and the number of trapezoids is proportional to the 
omplexityof the lower envelope, whi
h is �(r) = O(r�(r)) [27℄.We now estimate E[N ℄, the expe
ted number of k-th level verti
es that lie in LE(R).For ea
h trapezoid � , let S� be the set of segments of S that interse
t � (the \
on
i
tlist"). Inside � , the k-th level in A(S) 
oin
ides with the k-th level in A(S� ) and thus hasO(jS� j3=2) verti
es by Theorem 2.1. It follows thatE[N ℄ = O E "X� jS� j3=2#! :The standard probabilisti
 analysis of Clarkson and Shor reveals that this quantity isO(�(r)�(n=r)3=2) = O(npk�(n=k)).On the other hand, for a �xed k-th level vertex v, the probability that v 62 LE(R) isthe probability that one of the k segments below v is 
hosen in the random sample R; thisprobability is at most kr=n � 1=2. Therefore, E[N ℄ is at least half the number of k-th levelverti
es, and the se
ond proof is 
ompleted. 2Remarks: (1) The ideas in both proofs apply to pseudo-segments and other families of
urves in the plane. For instan
e, Tamaki and Tokuyama's O(n23=12) bound on the k-th level in an arrangement of n pseudo-parabolas [28℄, as mentioned in the introdu
tion,improves to O(nk11=12) (for the �rst proof, we 
an use the known O(nk) bound [26℄ on the�rst O(k) levels).(2) The se
ond proof of the theorem is fairly general, and we will apply the same te
hniquetwi
e more later in the paper (in the proofs of Theorems 3.1 and 5.3). In general, foranalyzing the 
omplexity of the k-th level in an arrangement of 
urves or surfa
es, we takea random sample of about n=k of the surfa
es, 
ompute their lower envelope, and 
onstru
tthe verti
al de
omposition of the region below the envelope. Within ea
h 
ell � of thede
omposition, the k-th level of the whole arrangement 
oin
ides with the k-th level ofthe subarrangement formed by the surfa
es that 
ross � . The number of these surfa
es is`on the average' only O(k). Roughly speaking, we 
omplete the analysis by applying anyinsensitive bound on the 
omplexity of the level within ea
h � , and by multiply the boundby the number of 
ells of the de
omposition. We hope that this te
hnique will �nd furtherappli
ations on top of those obtained in this paper.3 Arrangements of PlanesLet P = f�1; : : : ; �ng be a 
olle
tion of n planes in 3-spa
e in general position, and letA(P ) denote the arrangement of P . The k-th level of A(P ) is de�ned as the 
losure of theset of all points that lie in the union of the planes and have exa
tly k planes lying belowthem. The 
omplexity of the level, regarded as a polyhedral surfa
e, is the number of itsLevels in arrangements O
tober 8, 2001



Arrangements of Planes 10verti
es, edges and fa
es. This is 
learly proportional to only the number of verti
es, andwe will fo
us on bounding this latter quantity.Theorem 3.1 The number of verti
es of the k-th level of A(P ) is O(nk5=3), for k > 0.This theorem improves the bound O(n8=3) established in [10℄ (see also [3℄) for k � n,and is also better than the bound O(nk2) on the overall 
omplexity of the �rst k levels.Proof: We follow the se
ond proof of Theorem 2.3 and 
onsider a random sample R � Pof size r = bn=2k
. The analysis of Clarkson and Shor [7℄ implies that LE(R), the regionbeneath the lower envelope of R, 
an be de
omposed into O(r) verti
al triangular prismsf�ig so that ea
h prism is de�ned by a 
onstant number of planes, andE "Xi jP�i j8=3# = O(r � (n=r)8=3) = O(nk5=3); (1)where P�i denotes the set of planes of P interse
ting �i. Inside ea
h prism �i, the k-thlevel of A(P ) 
oin
ides with the k-th level of A(P�i), be
ause any plane in P n P�i passesabove �i. Hen
e, the number of k-th level verti
es (of A(P )) inside ea
h �i is O(jP�i j8=3)by Dey and Edelsbrunner's bound [10℄. The expe
ted number, E[N ℄, of k-th level verti
esinside LE(R), is thus O(nk5=3) by (1). The proof is 
ompleted by observing, as in the proofof Theorem 2.3, that E[N ℄ is at least half the total number of k-th level verti
es. 2Instead of the above probabilisti
 argument, an alternative proof 
an be obtained fromresults on geometri
 
uttings, spe
i�
ally, the shallow 
uttings of Matou�sek [23℄:Let H be a 
olle
tion of n hyperplanes in Rd in general position. A (1=r)-
utting ofthe �rst k levels is a 
olle
tion of simpli
es f�ig 
overing all points of levels � k, su
h thatjH�i j � n=r for ea
h i, where H�i is the set of all hyperplanes of H that interse
t the interiorof �i.Lemma 3.2 (Matou�sek's Shallow Cutting Lemma) Let r � n and q = k(r=n) + 1.There exists a (1=r)-
utting for the �rst k levels of A(H), 
onsisting of O(rbd=2
qdd=2e)simpli
es.Se
ond Proof of Theorem 3.1: We 
an prove our theorem by setting d = 3, r = n=k,and q = 2 in the above lemma. We obtain a 
olle
tion of O(n=k) simpli
es, ea
h of whi
his interse
ted by O(k) planes and 
onsequently 
ontains O(k8=3) verti
es of the k-th levelof A(P ). (This follows from the fa
t that the interse
tion of the k-th level with a simplex�i lies at a �xed level (� k) of A(P�i), where, as above, P�i is the set of planes 
rossing �i.)Hen
e, the total number of k-th level verti
es is O((n=k) � k8=3) = O(nk5=3). However, weprefer the earlier proof, as the proof of the shallow 
utting lemma itself requires a
tuallymore involved probabilisti
 te
hniques, in
luding an argument similar to one of the previousproofs [23℄. 2Levels in arrangements O
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Improved Lov�asz Lemma in Higher Dimensions 11Remark: As before, any improvement in the worst-
ase k-insensitive upper bound wouldimply an improvement in our k-sensitive bound. Extensions to d-dimensional arrangementsof hyperplanes are also immediate: if we have an O(nd�
d) bound on the 
omplexity of asingle level, then the 
omplexity of the k-th level isO(rbd=2
�(n=r)d�
d) = O(nbd=2
kdd=2e�
d),as the number of simpli
es used in either proof is O(rbd=2
).4 Improved Lov�asz Lemma in Higher DimensionsIn the preliminary version of the paper [1℄, we have obtained the k-sensitive bound ofO(n2k2=3), whi
h is weaker than the one in Theorem 3.1. The proof follows the te
hniquesof [3, 10℄, whi
h exploit a generalization of Lov�asz Lemma to three dimensions. We presenthere an improved version of this lemma, in arbitrary dimension, that has a simple proof andmay be of independent interest. So far, the improved lemma has no signi�
ant appli
ationsbe
ause the best upper bounds, derived above, are not based on it. We, however, believe thatthe lemma deserves exposition be
ause it has been one of the very few tools for atta
kingthe k-set problem so far and a generalization of the lemma is needed in Se
tion 5.Let H be a 
olle
tion of n hyperplanes in Rd in general position, and let 0 � k � n� d.Let Vk denote the set of those verti
es v of A(H) for whi
h exa
tly k hyperplanes of H passbelow v. For ea
h v 2 Vk, we denote by Hv the set of the d hyperplanes in
ident to v, andlet Rv denote the 
losed region (`
orridor') lying between the upper and lower envelopes ofthe hyperplanes of Hv.Lemma 4.1 (Dual Lov�asz Lemma in Arbitrary Dimension) For any (d � 2)-
at fin Rd , we have ���fv 2 Vk j f � Rvg��� = O(kd�1) :The previous bound was O(nd�1) (see [4, 22℄). It will be more 
onvenient to state andprove the primal version of this lemma. Fix a set S of n points in Rd , in general position.A k-fa
et is a (d� 1)-dimensional simplex spanned by d points of S with the property thatits aÆne hull has pre
isely k points of S on one side of it.Lemma 4.2 (Primal Lov�asz Lemma in Arbitrary Dimension) Let S be a �nite pointset in Rd . Then, for any line `, the number of k-fa
ets meeting ` is O(kd�1).Proof: Note that this formulation of the lemma is independent of the 
hoi
e of the 
o-ordinate system. Constru
t a 
oordinate system in whi
h ` 
oin
ides with the xd-axis.Dualize S to a system S� of n hyperplanes, using the standard duality that maps a point(a1; : : : ; ad) to the hyperplane xd = �a1x1 � a2x2 � � � � � ad�1xd�1 + ad, and a hyperplanexd = b1x1 + b2x2+ � � �+ bd�1xd�1 + bd to the point (b1; : : : ; bd) (see, e.g., [11℄); this dualityLevels in arrangements O
tober 8, 2001



Arrangements of Triangles 12preserves in
iden
es and above-below relationships between points and hyperplanes (thatis, a point p lies below, on, or above a hyperplane h if and only if the dual hyperplane p�of p lies below, on, or above the point h� dual to h). An appli
ation of su
h a duality alsoshows that this lemma and the pre
eding one are indeed dual versions of ea
h other. ItsuÆ
es to 
ount the number of k-fa
ets whose aÆne hulls have k points of S stri
tly belowthem. The remaining 
lass of k-fa
ets is handled by a symmetri
 argument.The properties of the duality imply that the aÆne hull of a k-fa
et � as above is mappedinto a vertex �� of the arrangement of S� whi
h has pre
isely k hyperplanes below it (and dhyperplanes passing through it). Hen
e �� is a vertex of the k-th level of A(S�). Moreover,� meets the xd-axis ` if and only if the horizontal hyperplane through �� is 
ontained inR�� , i.e., �� is a lo
al maximum of the k-th level of A(S�).3 Indeed, � meets ` if andonly if every hyperplane that 
ontains ` does not have all verti
es of � on one side. Theset of these hyperplanes is mapped by our duality to the set of all the points at in�nity inhorizontal dire
tions. Hen
e � meets ` if and only if every point at in�nity in a horizontaldire
tion lies in R�� , whi
h is equivalent to the 
ondition that the horizontal hyperplanethrough �� is 
ontained in R�� , as asserted. As shown by Clarkson [5℄, the number of lo
alextrema of the k-th level in an arrangement of hyperplanes in d-spa
e is O(kd�1), and this
ompletes the proof of the lemma. 25 Arrangements of TrianglesLet T = f�1; : : : ;�ng be a 
olle
tion of n triangles in 3-spa
e in general position, and letA(T ) denote the arrangement of T . The k-th level of A(T ) is de�ned, again, as the 
losureof the set of all points that lie in the union of the triangles and have exa
tly k triangles belowthem (that is, the relatively open verti
al downward-dire
ted ray emerging from su
h a pointinterse
ts exa
tly k triangles). As in the 
ase of segments, the k-th level is not ne
essarily
onne
ted, and may have jump dis
ontinuities at points that lie verti
ally above or on sometriangle edge. The 
omplexity of the level, regarded as a polyhedral surfa
e, is the numberof its verti
es, edges and fa
es. Assuming general position, this is 
learly proportional to thenumber of verti
es only, and we will fo
us on bounding the number of inner verti
es, whi
hare 
ontained in the interiors of three distin
t triangles. Any other, `outer' vertex of thelevel lies in the verti
al plane He spanned by some triangle edge e. Moreover, if we interse
tall the triangles with He, we get a 
olle
tion of at most n segments, and the verti
es of thek-th level of A(T ) that lie in He are verti
es of the k-th level of any of the 2-dimensionalarrangements of these segments within He, where e itself is either in
luded or ex
luded.By Theorem 2.1, the number of su
h verti
es is O(n3=2). Repeating this analysis for ea
htriangle edge e, we 
on
lude that the number of outer verti
es of the level is O(n5=2).We bound the number of inner verti
es using a variant of the dual version of Lov�asz3The 
onne
tion between lo
al extrema of k-th levels and Lov�asz Lemma was �rst observed by Clarkson,as brie
y remarked in the introdu
tion of [5℄.Levels in arrangements O
tober 8, 2001



Arrangements of Triangles 13Lemma in 3-spa
e. The bound that we obtain is 
onsiderably weaker than the one given inLemma 4.1, but is still nontrivial. The proof of this version of the lemma is also di�erentand somewhat more involved.Let v be an inner vertex of the k-th level, in
ident to three triangles �1, �2, �3; v 
anbe 
lassi�ed into three 
ategories, depending on whether the k-th level in the neighborhoodof v 
oin
ides with(a) the lower envelope of �1, �2, �3,(b) the �rst level of the arrangement A(f�1;�2;�3g), or(
) the upper envelope of �1, �2, �3.Note that verti
es of type (b) have the property that all six edges of A(T ) in
ident to thevertex lie on the k-th level, whereas for verti
es of type (a) or (
), only three of these edgeslie on the level, one edge on ea
h segment of interse
tion of two of the triangles �1, �2, �3.For ea
h inner vertex v of the k-th level of type (a) or (
), let Rv be the 
losed regionen
losed between the upper envelope and the lower envelope of the three planes 
ontainingthe three triangles in
ident to v; see Figure 5 for a 
ross-se
tion of su
h an Rv. We havethe following weaker version of Lov�asz lemma:
` �


Æu
Æv�41 �42�

(a) (b)
vu I �

Figure 5: (a) Cross se
tion of a region Rv in H; the line ` just be
omes 
ontained in Rv; (b)
ross se
tion of A(T ) by �; the interse
tions of Rv; Ru with � are shaded near the respe
tiveverti
es.Lemma 5.1 Any line in R3 is fully 
ontained in at most O(n5=2) regions Rv of verti
es oftype (a) and (
).Levels in arrangements O
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Arrangements of Triangles 14Proof: Let `1 be a line in R3 , and let H be the verti
al plane 
ontaining `1. For a triangle4 2 T , let �4 be the plane 
ontaining 4 and �4 = �4 \H. Let AH be the arrangementin H of the lines f�4 j 4 2 T g. Let `0 be a line 
ontained in H, parallel to `1, and lyingbelow all verti
es of AH . It is easily 
he
ked that no region Rv 
ontains `0. We will move aline ` within H upwards, parallel to itself, from the position when it 
oin
ides with `0 untilit 
oin
ides with `1. We estimate the 
hange in the number of regions Rv that 
ontain ` asit moves. Summing these 
hanges yields the bound on the desired quantity for `1.The set of regions Rv that fully 
ontain ` 
an 
hange only when ` passes through avertex of AH . Clearly, the vertex � = �41 \ �42 has to be su
h that there is an innertype-(a) or type-(
) vertex v in A in
ident to 41 and 42. Under these assumptions, for `to be
ome newly 
ontained in a region Rv, or to stop being 
ontained in Rv, as it sweepspast su
h a vertex �, it is ne
essary and suÆ
ient that the slope of ` lie between the slopesof �41 and �42; see Figure 5(a). Let � be su
h a vertex (where this latter 
ondition alsoholds). Put � = �41 \ �42 . Let s � � be the segment 41 \ 42. For all regions Rv thateither start or stop 
ontaining ` as it sweeps over �, v is 
ontained in s, so it suÆ
es to
on
entrate only on su
h regions Rv.We mark on s all the inner verti
es of the k-th level of A(T ) of types (a) and (
), and
onsider the set of maximal subintervals of s not 
ontained in the k-th level. Ea
h su
hsubinterval I is delimited by two points u, v, ea
h of whi
h is an inner vertex of the level oftype (a) or (
) (it 
annot be a vertex of type (b) be
ause all six edges in
ident to a type-(b)vertex lie on the k-th level), a point of jump dis
ontinuity of the level, or an endpoint ofs. Let qs be the number of jump dis
ontinuities of the k-th level along s. Note that ea
hsu
h dis
ontinuity is an outer vertex of the k-th level. If an inner vertex v is an endpointof an interval along s whose other endpoint v0 is either a jump dis
ontinuity or an endpointof s, we 
harge v to v0. The number of su
h inner verti
es (and therefore the 
hange in thenumber of regions that 
ontain `, 
orresponding to su
h verti
es) is at most qs + 2.Next, 
onsider an interval I, both of whose endpoints are inner verti
es, say u and v.Consider the verti
al plane � 
ontaining �, and the 
ross-se
tion of A(T ) within � (referto Figure 5(b)). Clearly, the k-th level of this 
ross-se
tion is 
ontained in the k-th level ofA(T ), so it either lies fully above I or fully below I. In the former 
ase both u and v are oftype (
), and in the latter 
ase they are both of type (a). Let 
 be the verti
al line H \ �,and let Æu = Ru\
 and Æv = Rv \
. If � 62 I, then it is easily 
he
ked that Æu and Æv lie onopposite sides of � along 
 and thus are disjoint ex
ept at their 
ommon endpoint �. Thisfa
t, and our assumptions that the slope of ` is between the slopes of �u = 4u \ H and�v = 4v \H, imply that one of Ru, Rv must be added, and the other one removed, fromthe set of regions 
ontaining f , as ` sweeps over �. Hen
e, as ` sweeps over �, Ru and Rv\
an
el" out ea
h other, in terms of 
ontainment of `.To summarize, we have shown that as ` passes through �, the 
hange in the numberof regions Rv 
ontaining ` is at most 4 + qs. This implies that the number of regions Rvthat 
ontain ` in its �nal position `1 is at mostPs(4+ qs), where the sum is over all O(n2)interse
tion segments between pairs of triangles in T . Sin
e the number of outer verti
esLevels in arrangements O
tober 8, 2001



Arrangements of Triangles 15on the k-th level is O(n5=2), as argued above, and ea
h is 
ounted at most three times,Ps qs = O(n5=2). The number of regions 
ontaining ` is thus O(n2) + O(n5=2) = O(n5=2),as asserted.What if `1 a
tually passes through a vertex � = �4i\�4j of AH? Then the 
an
ellationdoes not o

ur, whi
h adds fewer than n regions Rv that 
an 
ontain `|ea
h su
h region
orresponds to some vertex of A(T ) on the segment 4i \4j. 2Theorem 5.2 The 
omplexity of any single level in an arrangement of n triangles in 3-spa
e is O(n17=6).Proof: Lemma 5.1 implies that no line ` is 
ontained in more than O(n5=2) regions Rv.Passing to the dual spa
e, we obtain the following equivalent formulation, similar to the
ase of planes: The planes 
ontaining the triangles in T are mapped to a set of n points.Ea
h inner vertex v of the k-th level is mapped to a triangle spanned by the three pointsdual to the planes 
ontaining the triangles in
ident to v. The line ` is mapped to anotherline `�, and ` is 
ontained in Rv if and only if `� 
rosses the triangle dual to v. We now havea system of X triangles in 3-spa
e, spanned by a total of n points, where X is the numberof inner verti
es of the k-th level of types (a) and (
). By the result of [10℄, there exists aline that 
rosses at least 
(X3=n6) su
h triangles. On the other hand, by Lemma 5.1, thisnumber is at most O(n5=2). Combining these two inequalities yields X = O(n17=6). We stillneed to bound the number of verti
es of type (b). However, these verti
es are verti
es oftype (a) of the (k� 1)-st level, so, repeating the above analysis for this level, we obtain thebound asserted in the theorem. 2Theorem 5.3 The 
omplexity of the k-th level in an arrangement of n triangles in 3-spa
eis O(n2k5=6�(n=k)), for k > 0.Proof: Take a random sample R � T of size r = bn=2k
. The result of Pa
h and Sharir [24℄(see also [12, 27℄) implies that the region beneath the lower envelope of R 
an be de
omposedinto �(r) = O(r2�(r)) verti
al triangular prisms f�ig, ea
h de�ned by a 
onstant numberof triangles of T . Clarkson and Shor's analysis [7℄ 
an be applied to show thatE "Xi jT�i j17=6# = O(�(r) � (n=r)17=6) = O(n2k5=6�(n=k));where T�i denotes the set of triangles of T interse
ting �i. The rest of the proof now pro
eedsas in the se
ond proof of Theorem 2.3 or the �rst proof of Theorem 3.1. 2Remark: An open problem is to extend Lemmas 4.1 and 5.1 to the respe
tive 
ases ofpseudo-hyperplanes and pseudo-triangles, under appropriate de�nitions of these obje
ts,and then to extend the proofs of Theorems 5.2 and 5.3 to these 
ases. Note that there aretwo di�erent problems to address: One is to extend Lov�asz Lemma, and the other 
alls fora dual and more general version of the analysis te
hnique of [10℄ (that yields a line thatstabs many triangles).Levels in arrangements O
tober 8, 2001



Dey's Improvements 166 Dey's ImprovementsAs promised, we 
on
lude the paper with a brief dis
ussion of Dey's re
ent results and theirinter
onne
tions to the results of this paper; we refer to Dey's paper [8℄ for more details.The 
ase of lines. Dey's proof for the 
ase of lines (the standard planar k-set problem)uses the 
on
ave 
hain stru
ture developed in this paper. His proof essentially shows thatthe 
omplexity of k 
on
ave (unbounded) 
hains in an arrangement of n lines, whi
h have nooverlapping edges, is O(nk1=3). His original proof 
aters only to the 
ase where the 
hainsare x-monotone and unbounded, but a slightly re�ned argument shows that the 
omplexityof any k 
onvex 
hains (or 
onvex polygons) in an arrangement of n lines, whi
h do not haveoverlapping edges, is O(nk1=3) for k = O(n) and O(n2=3k2=3) for larger values of k. Bothbounds 
an be shown to be tight in the worst 
ase: A mat
hing lower bound for the former
ase is given by Eppstein [13℄, and a mat
hing lower bound for the latter 
ase is immediatefrom the known tight bound on the maximum 
omplexity of k fa
es in an arrangement of nlines [6℄. Earlier work [18, 19℄ has established the bound O(k2=3n2=3 + n) for the restri
ted
ase where the 
on
ave 
hains are not allowed to 
ross ea
h other; in this restri
ted 
ase,the bound also holds for k = O(n).The 
ase of segments. Dey has improved the bound in Theorem 2.1 to O(n4=3). Thisis an immediate 
onsequen
e of the extension of his result 
on
erning the 
omplexity of anarbitrary 
olle
tion of 
onvex 
hains with non-overlapping edges in an arrangement of lines(or of segments), as just mentioned.Con
erning the k-sensitive bound (Theorem 2.3), it follows from our proofs that anyimprovement on the worst-
ase bound over all k leads to an improvement on the k-sensitivebound. Thus, 
ombining our analysis with Dey's O(n4=3) bound implies a new bound ofO(nk1=3�(n=k)) for the 
omplexity of the k-th level in an arrangement of segments.The 
ase of pseudolines and pseudosegments. Following the re
ent results of [9, 29℄,Dey's te
hnique 
an also be extended to the 
ases of pseudolines and pseudo-segments (inthe sense de�ned above). Thus all the bounds just stated also apply to the 
orresponding
ases of pseudolines or of pseudosegments.The 
ase of triangles in 3-spa
e. The analysis of the 
ase of triangles relies stronglyon bounds for the 
omplexity of a level in a planar arrangement of segments. Thus Dey'sresults 
an be `plugged into' the analysis, and improve the bounds in Theorems 5.2 and 5.3to O(n25=9) and O(n2k7=9�(n=k)), respe
tively, as is easily 
he
ked.
Levels in arrangements O
tober 8, 2001



Referen
es 17A
knowledgments. We wish to thank J�anos Pa
h and Emo Welzl for useful dis
ussions
on
erning these problems, and Ken Clarkson for pointing out a mu
h simpler redu
tionfrom the number of lo
al extrema of k-levels to Lov�asz Lemma, as presented in this paper.We also thank Tamal Dey for 
ommuni
ating his results to us and for useful dis
ussions
on
erning them.Referen
es[1℄ P.K. Agarwal, B. Aronov and M. Sharir, On levels in arrangements of lines, segments, planes,and triangles, Pro
. 13th ACM Symp. on Computational Geometry, 1997, 30{38.[2℄ A. Andrzejak and E. Welzl, k-sets and j-fa
ets: A survey, manus
ript in preparation.[3℄ B. Aronov, B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and R. Wenger, Points andtriangles in the plane and halving planes in spa
e, Dis
rete Comput. Geom. 6 (1991), 435{442.[4℄ I. B�ar�any, Z. F�uredi, and L. Lov�asz, On the number of halving planes, Combinatori
a 10 (1990),175{183.[5℄ K. Clarkson, A bound on lo
al minima of arrangements that implies the Upper Bound Theorem,Dis
rete Comput. Geom. 10 (1993), 427{433.[6℄ K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir and E. Welzl, Combinatorial 
omplexitybounds for arrangements of 
urves and spheres, Dis
rete Comput. Geom. 5 (1990), 99{160.[7℄ K. Clarkson and P. Shor, Appli
ations of random sampling in 
omputational geometry II,Dis
rete Comput. Geom. 4 (1989), 387{421.[8℄ T. Dey, Improved bounds for k-sets and k-th levels, this issue. Also in Pro
. 38th IEEE Sympos.on Foundations of Computer S
ien
e, 1997, to appear.[9℄ T. Dey, personal 
ommuni
ation.[10℄ T. Dey and H. Edelsbrunner, Counting triangle 
rossings and halving planes, Dis
rete Comput.Geom. 12 (1994), 281{289.[11℄ H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg 1987.[12℄ H. Edelsbrunner, L. Guibas, and M. Sharir, The upper envelope of pie
ewise linear fun
tions:algorithms and appli
ations, Dis
rete Comput. Geom. 4 (1989), 311{336.[13℄ D. Eppstein, Geometri
 lower bounds for parametri
 matroid optimization, Pro
. 27th ACMSympos. Theory of Comput., 1995, 662{671.[14℄ P. Erd}os, L. Lov�asz, A. Simmons, and E. G. Straus, Disse
tion graphs of planar point sets, InJ. N. Srivastava et al., editors, A Survey of Combinatorial Theory, North-Holland, Amsterdam,1973, pp. 139{149.Levels in arrangements O
tober 8, 2001



Referen
es 18[15℄ J. E. Goodman and R. Polla
k, Allowable Sequen
es and Order Types in Dis
rete and Compu-tational Geometry, in New Trends in Dis
rete and Computational Geometry, Algorithms andCombinatori
s (J. Pa
h, Ed.), vol. 10, Springer-Verlag, 1993, 103{134.[16℄ D. Gus�eld, Sensitivity Analysis for Combinatorial Optimization, Ph.D. Thesis, University ofCalifornia at Berkeley, 1980.[17℄ D. Gus�eld, Bounds for the parametri
 minimum spanning tree problem, Pro
. Humboldt Con-feren
e on Graph Theory, Combinatori
s and Computing, 1979, Utilitas Mathemati
a, pp.173{183.[18℄ D. Halperin and M. Sharir, On disjoint 
on
ave 
hains in arrangements of (pseudo) lines,Inform. Pro
ess. Lett. 40 (1991), 189{192.[19℄ D. Halperin and M. Sharir, Corrigendum: On disjoint 
on
ave 
hains in arrangements of(pseudo) lines, Inform. Pro
ess. Lett. 51 (1994), 53{56.[20℄ N. Katoh, T. Tokuyama, and K. Iwano, On minimum and maximum spanning trees of linearlymoving points, Dis
rete Comput. Geom. 13 (1995), 161{176.[21℄ M. Klawe, M. Paterson, and N. Pippenger, unpublished manus
ript.[22℄ L. Lov�asz, On the number of halving lines, Ann. Univ. S
i. Budapest, E�otv�os, Se
. Math. 14(1971), 107{108.[23℄ J. Matou�sek, Reporting points in halfspa
es, Comput. Geom. Theory Appl. 2 (1992), 169{186.[24℄ J. Pa
h and M. Sharir, The upper envelope of pie
ewise linear fun
tions and the boundary ofa region en
losed by 
onvex plates: 
ombinatorial analysis, Dis
rete Comput. Geom. 4 (1989),291{309.[25℄ J. Pa
h, W. Steiger, and M. Szemer�edi, An upper bound on the number of planar k-sets,Dis
rete Comput. Geom. 7 (1992), 109{123.[26℄ M. Sharir, On k-sets in arrangements of 
urves and surfa
es, Dis
rete Comput. Geom. 6 (1991),593{613.[27℄ M. Sharir and P.K. Agarwal, Davenport-S
hinzel Sequen
es and Their Geometri
 Appli
ations,Cambridge University Press, New York, 1995.[28℄ H. Tamaki and T. Tokuyama, How to 
ut pseudo-parabolas into segments, Pro
. 11th ACMSymp. on Computational Geometry, 1995, 230{237.[29℄ H. Tamaki and T. Tokuyama, A 
hara
terization of planar graphs by pseudo-line arrangements,manus
ript, 1997.[30℄ R. �Zivaljevi�
 and S. Vre�
i
a, The 
olored Tverberg's problem and 
omplexes of inje
tive fun
-tions, J. Combin. Theory Ser. A 61 (1992), 309{318.
Levels in arrangements O
tober 8, 2001


