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Introdution 2number of lines that pass through a pair of points of S and have exatly k points of S inone of the open halfplanes that they de�ne?1 In a dual setting, we are given a set L of nlines in the plane in general position, and want to bound the maximum possible number ofverties v of the arrangement A(L), so that exatly k lines pass below v. We denote thisset of verties by Vk. The k-th level of the arrangement is de�ned to be the losure of theset of points that lie on the lines and have exatly k lines below them. The set of vertiesof this level is Vk [ Vk�1. See Figure 1 for an illustration.
Figure 1: The third level in an arrangement of lines. The verties of V2 are indiated byempty irles and the verties of V3 | by blak ones.The k-set problem was �rst studied about 1970 by Erd}os et al. [14℄ and Lov�asz [22℄.These papers have established an upper bound O(npk) and a lower bound 
(n log k) onthe desired quantity, for k > 0, leaving a fairly big gap. The upper bound was slightlyimproved to O(npk= log� k) by Pah et al. [25℄. After the original submission of this paper,signi�ant progress has been made by Dey [8℄, who improved the upper bound to O(nk1=3),for k > 0. Dey's proof is based on some of the ideas presented in this paper.In the dual setting, the problem an be generalized in an obvious manner: In the plane,we are given a olletion � of n x-monotone urves, eah being the graph of a ontinuoustotally or partially de�ned funtion, and a parameter 0 � k < n, and wish to bound theomplexity (i.e., the number of verties) of the k-th level in the arrangement A(�), de�nedexatly as in the ase of lines. In this more general setting only two results are known:A reent seemingly weak, but elegant analysis by Tamaki and Tokuyama [28℄ yields thebound O(n23=12) on the omplexity of a level in an arrangement of n pseudo-parabolas,whih are graphs of total funtions, eah pair of whih interset at most twie. We alsomention the ase of pseudo-lines, whih in this ontext are graphs of ontinuous totallyde�ned funtions, eah pair of whih interset exatly one, where a slightly larger lowerbound of 
(n � 2plog n) for the omplexity of the median level is established in [21℄. Ourproof tehniques and upper bounds apply equally well to the ase of pseudo-lines. Reently,Dey's tehniques have also been extended to the ase of pseudo-lines [9, 29℄.1Atually, the k-set problem seeks bounds on the number of subsets of S of size k that an be separatedfrom their omplements by a line. This quantity and the one de�ned above are related but not idential(they do have the same asymptoti worst-ase behavior); see [2℄ for a reent survey that disusses this issue.Levels in arrangements Otober 8, 2001



Introdution 3Similar extensions apply in higher dimensions. In the primal setting, we are given aset S of n points in Rd in general position, and wish to bound the number of hyperplanes� passing through d of the points suh that one of the halfspaes bounded by � ontainsexatly k points of S.2 For d = 3, the best known upper and lower bounds are, respetively,O(n8=3) and 
(n2 log n) [4, 10℄. For d > 3, the best known upper bound is O(nd�d), forsome exponentially small but positive onstant d [30℄. Note that, in ontrast to the planarase, these bounds depend only on n and not on k.We an formulate the problem in an arbitrary dimension, in a dual setting: We onsideran arrangement of hyperplanes, or, more generally, of surfaes that are graphs of ontinuoustotal or partial funtions, and de�ne the k-th level of the arrangement exatly as in theplanar ase. We now seek bounds on the maximum possible number of verties (or of faesof all dimensions) of the level. Exept for the ase of hyperplanes, whih is equivalent to (avariant of) the k-set problem mentioned in the preeding paragraph, no nontrivial boundsfor the entire range of values of k are known.In spite of the sorry state of the problem, even after Dey's improvements, one anobtain improved nontrivial bounds when k is small. The probabilisti analysis of Clarksonand Shor [7℄ (see also [26℄) yields fairly sharp bounds on the ombined omplexity of the�rst k levels in arrangements. For the ase of hyperplanes, for example, the bound is�(nbd=2kdd=2e). For suÆiently small k, this gives a better upper bound on the omplexityof a single level than the general bound stated above.New Results. In this paper we make several ontributions to these problems:In the preliminary version of this paper [1℄, we have briey reviewed and simpli�ed someold proofs of the upper bound O(npk) for the original planar k-set problem (or, dually, forthe ase of the k-th level in an arrangement of n straight lines in the plane). These proofsare related to the proof tehnique of Gus�eld [16, 17℄. We also gave a simple proof of thedual version of what is known as \Lov�asz Lemma" that is used to prove the bound. Thesetehniques apply equally well to arrangements of pseudo-lines; see, for example, [15℄. Forthe sake of brevity, this part is not inluded in this version of the paper.We adapt our proof tehniques to obtain the bound O(n3=2) on the omplexity of thek-th level in an arrangement of n line segments (or \pseudo-segments," to be de�ned below).The same bound also follows from a result by Katoh et al. [20℄. We then desribe two simpleapproahes that redue the bound to O(npk�(n=k)), where �(n) is the inverse Akermannfuntion.We then proeed to study the k-set problem for higher-dimensional point sets (or, dually,though not quite equivalently, to bound the omplexity of the k-th level in a hyperplanearrangement). In the preliminary version of this paper [1℄, we have observed that the2Again, in the atual k-set problem we want to bound the number of subsets of size k that an beseparated from their omplements by a hyperplane; see [2℄.Levels in arrangements Otober 8, 2001



Arrangements of Segments 4O(n8=3) bound in R3 an be immediately brought down to O(n2k2=3), if one exploits asimple improved version of the Lov�asz Lemma in an arbitrary dimension derived in thispaper. However, using Clarkson and Shor's tehnique, we improve this bound further toO(nk5=3), in a manner that makes no use of the improved Lov�asz Lemma. Although theimproved lemma has so far no signi�ant appliations, we inlude it here beause we believeit to be of independent interest and an extension of it is needed for the ase of trianglesin R3 . Over the whole range of k > 0, the O(nk5=3) bound is stronger than all previousbounds, inluding the aforementioned O(nk2) bound on the overall omplexity of the �rstk levels. A similar improved bound, of the form O(nbd=2kdd=2e�d), an be obtained in anydimension d > 3, for the same onstant d > 0 obtained by �Zivaljevi� and Vre�ia [30℄.Again, this bound is the best known upper bound, for all values of k > 0.Finally, we onsider the problem of bounding the omplexity of the k-th level in anarrangement of n triangles in 3-spae. We �rst obtain a nontrivial bound of O(n17=6) andthen improve it to O(n2k5=6�(n=k)). Our bound strongly depends on an upper bound onthe omplexity of a single level in an arrangement of line segments in the plane.As disussed above, Dey's results supersede some of the bounds obtained in this pa-per, but they do rely on some of the mahinery developed here. Some other, more reentbounds derived here an be further improved by exploiting Dey's results. We have writtenthis revised version of our paper in a manner that is mostly independent of Dey's progress.Nevertheless, for ompleteness, we onlude the paper with a brief overview of the onne-tions between Dey's results and ours.2 Arrangements of Segments2.1 A �rst boundLet S be a olletion of n segments in the plane in general position. For k = 0; : : : ; n� 1,the k-th level in the arrangement A(S) of S is de�ned to be the losure of the set of allpoints w that lie on segments of S and are suh that the open downward-direted vertialray emanating from w intersets exatly k segments of S (that is, there are k segmentsof S below w). Unlike the ase of lines, a level of A(S) is not neessarily onneted. Itmay involve vertial jumps from a segment to the segment lying diretly above or below it,when a new segment starts or ends at a point below the level. The omplexity of a levelis the number of verties of A(S) that lie on the level plus the number of disontinuitiesof the level. Clearly, the number of suh disontinuities is at most 2n. We de�ne Vk, fork = 0; : : : ; n� 2, to be the set of verties of A(S) (exluding segment endpoints and pointsof disontinuity) that have exatly k segments passing below them. The set of verties ofthe k-th level, exluding segment endpoints and jump disontinuities, is Vk�1 [ Vk. Thelevel bends to the left at verties of Vk�1 and to the right at verties of Vk. See Figure 2 foran illustration.Levels in arrangements Otober 8, 2001



Arrangements of Segments 5

Figure 2: The seond level in an arrangement of segments; here jV1j = 1 and jV2j = 4.Theorem 2.1 The omplexity of any single level in an arrangement of n line segments inthe plane in general position is O(n3=2).Proof. We �rst extend to the ase of segments the notion of onave hains, introdued inthe preliminary version of the paper [1℄ for arrangements of lines. These hains are not anew onept, and have been used in various earlier works, suh as [16, 17℄. The hains areonstruted as follows. We start a new hain (i) at the left endpoint of any segment (or, ifthe segment is a line or a leftward-direted ray, at a point at x = �1 on this line or ray) ifthat point lies below the k-th level, and (ii) at any point of disontinuity of the level, whenthe level jumps up from a segment si to a segment sj (the hain is started along the lowersegment si). As x inreases, eah hain  follows the segment that it lies on, exept whenof the following situations ours:(i)  reahes the right endpoint of that segment, and then  terminates there;(ii)  follows a segment si and reahes a disontinuity of the k-th level, where the leveljumps down to si, in whih ase  is terminated at that point; or(iii)  reahes a vertex v 2 Vk�1, in whih ase  bends to the right, and ontinues alongthe other segment inident to v.We thus get a olletion of at most 2n onave hains (if all the segments are lines, weget exatly k hains). See Figure 3 for an illustration in the ase of lines.It is easily seen that the resulting hains satisfy the following properties:(a) The union of the hains is the losure of the portion of the union of the segments thatlies below the k-th level. Exept for the verties of Vk�1, the union of the hains liesstritly below the k-th level.Levels in arrangements Otober 8, 2001



Arrangements of Segments 6
32 1Figure 3: The onave hains assoiated with the third level in an arrangement of lines.The level itself is drawn in bold; the dashed paths denote the onave hains 1; 2; 3; andthe irles denote the verties of V2.(b) The hains are vertex-disjoint and have non-overlapping edges, but they may rosseah other.() All the verties of the hains lie on the upper envelope of the hains. Indeed, eahhain, exept for its verties, lies fully below the k-th level, so any vertex of any hainlies above all the hains that are not inident to it.Gus�eld's analysis [16, 17℄ an be adapted to obtain the following more general bound,whih learly implies Theorem 2.1. The same result, for the ase of lines, was obtainedindependently by Halperin and Sharir [18℄, who were not aware of Gus�eld's earlier work:Theorem 2.2 The overall number of verties of t onave hains that have non-overlappingedges (and are thus vertex-disjoint), in an arrangement of n segments in the plane, isO(npt).Proof: In the preliminary version of the paper [1℄, the theorem was proved �rst for thease of lines and then extended to the ase of segments. Two proofs were given there, andwe give here only one of them; see [1℄ for more details.We use the following potential funtion tehnique, whih is a variant of the tehniqueof [16, 17℄. Let the segments in S be s1; s2; : : : ; sn, sorted in the order of dereasing slopesof their ontaining lines, and let V denote the set of verties of the hains (exluding hainendpoints). For eah x 2 R, de�ne�(x) =Xfj j `j lies on one of the hains at xg :We learly have �(�1), �(+1) = O(nt) (for bounded segments, both quantities are zero;as a matter of fat, �(x) = O(nt) for eah x). As we sweep A(S) with a vertial line fromleft to right, the value of �(x) an hange only when either a hain starts or ends at x, or xequals the absissa vx of a vertex v 2 V (refer to Figures 2 or 3). Suppose that v 2 V is theLevels in arrangements Otober 8, 2001



Arrangements of Segments 7intersetion point of segments si and sj, with j > i. Then, as easily heked, the hange��(vx) = �(vx+ ")��(vx� "), for a suÆiently small " > 0, is j � i > 0. If a hain startsor ends at x then j��(x)j � n, and there are at most 2t suh points. In other words,Xv2V ��(vx) = �(+1)� �(�1) +O(nt) = O(nt) ;with eah of these hanges being a positive integer.The number of verties v at whih ��(vx) > pt is no more than O(npt), as the sumof ��(vx) at these verties is O(nt), and eah term in the sum is larger than pt. Theset of verties v at whih the hange is at most pt onsists of at most n� 1 verties withorresponding pairs of indies (i; i+ 1), n� 2 verties with pairs (i; i + 2), et., so its totalsize is at most (n� 1) + (n� 2) + � � � + (n�pt+ 1) < npt :Combining the two estimates, we onlude that jV j = O(npt). 2Remark: The proof of Theorem 2.2 (as well as the other proof given in [1℄) also appliesto the ases of pseudo-lines and pseudo-segments. We have already de�ned the notion ofa family of pseudo-lines. A olletion S of n x-monotone onneted ars is a family ofpseudo-segments if eah of them an be extended to an x-monotone onneted unboundedurve, so that this family of urves is a olletion of pseudo-lines. (This is a muh strongerde�nition than just requiring eah pair of pseudo-segments to interset at most one; seeFigure 4.) We leave it to the reader to verify that the proof goes through in the ase ofpseudo-segments, with straightforward modi�ations.
Figure 4: These four ars do not form an arrangement of pseudo-segments.2.2 A k-sensitive boundTheorem 2.1 does not yield an upper bound for the k-th level that depends on k. Fork �pn, the known O(nk�(n=k)) bound for the overall omplexity of the �rst k levels [26℄is atually smaller than the O(n3=2) bound. We o�er two approahes for deriving betterk-sensitive bounds for the k-th level, obtaining the following result.Levels in arrangements Otober 8, 2001



Arrangements of Segments 8Theorem 2.3 The omplexity of the k-th level in an arrangement of n line segments inthe plane in general position is O(npk�(n=k)), for k > 0.Proof. The �rst approah involves a bound on the omplexity of the k-th level in terms ofthe omplexity of higher levels. Reall that the omplexity of the k-th level, whih we willdenote by Nk, is the total number of its (inner) verties and disontinuous jumps.Lemma 2.4 Nk = O(Njpj) for any k < j � n.Proof: Divide the plane into O(Nj=j) vertial slabs so that eah slab ontains O(j) ver-ties/disontinuities of the j-th level. Given one suh slab � , let S� be the set of segmentsthat ontain a point on a level � j inside � . Eah segment s 2 S� is of one of the followingthree types:(i) s is on a level � j at the left wall of � .(ii) s is on a level > j at the left wall. In this ase, s must ross the j-th level within � ,so it must ontain a vertex or a disontinuity on the j-th level.(iii) s does not interset the left wall of � . If the left endpoint of s lies below the j-thlevel, then the endpoint auses a disontinuity in the level; otherwise, s rosses thej-th level within � , so the argument for ase (ii) applies.The number of segments in the �rst ase is learly at most j + 1. The number of segmentsin the next two ases is O(j) by our onstrution of the slabs. We therefore onlude thatjS� j = O(j).As k < j, the k-th level in A(S) oinides with the k-th level in A(S� ) when restritedto � . By Theorem 2.1, the omplexity of the k-th level within eah slab is O(j3=2). Thetotal omplexity of the k-th level in A(S) is thus O((Nj=j) � j3=2). 2The theorem an now be proved as follows:Nk = O0�1k Xk<j�2kNjpj1A = O0� 1pk Xj�2kNj1A = O(npk�(n=k));sine the �rst 2k levels have omplexity O(nk�(n=k)) [26℄.The above proof uses the known upper bound on the ombined omplexity of the �rstO(k) levels, whih is atually proved using the probabilisti tehnique of Clarkson andShor [7℄. We now desribe a seond proof that diretly applies Clarkson and Shor's teh-nique.Take a random sample R � S of size r = bn=2k. Let LE(R) be the losure of the regionbeneath the lower envelope (i.e., the 0-th level) in A(R). By inserting vertial downward-direted rays at eah vertex and disontinuity point, we obtain a deomposition of LE(R)Levels in arrangements Otober 8, 2001



Arrangements of Planes 9into `semi-unbounded' trapezoids (the \vertial deomposition"). Eah trapezoid is de�nedby at most three segments, and the number of trapezoids is proportional to the omplexityof the lower envelope, whih is �(r) = O(r�(r)) [27℄.We now estimate E[N ℄, the expeted number of k-th level verties that lie in LE(R).For eah trapezoid � , let S� be the set of segments of S that interset � (the \onitlist"). Inside � , the k-th level in A(S) oinides with the k-th level in A(S� ) and thus hasO(jS� j3=2) verties by Theorem 2.1. It follows thatE[N ℄ = O E "X� jS� j3=2#! :The standard probabilisti analysis of Clarkson and Shor reveals that this quantity isO(�(r)�(n=r)3=2) = O(npk�(n=k)).On the other hand, for a �xed k-th level vertex v, the probability that v 62 LE(R) isthe probability that one of the k segments below v is hosen in the random sample R; thisprobability is at most kr=n � 1=2. Therefore, E[N ℄ is at least half the number of k-th levelverties, and the seond proof is ompleted. 2Remarks: (1) The ideas in both proofs apply to pseudo-segments and other families ofurves in the plane. For instane, Tamaki and Tokuyama's O(n23=12) bound on the k-th level in an arrangement of n pseudo-parabolas [28℄, as mentioned in the introdution,improves to O(nk11=12) (for the �rst proof, we an use the known O(nk) bound [26℄ on the�rst O(k) levels).(2) The seond proof of the theorem is fairly general, and we will apply the same tehniquetwie more later in the paper (in the proofs of Theorems 3.1 and 5.3). In general, foranalyzing the omplexity of the k-th level in an arrangement of urves or surfaes, we takea random sample of about n=k of the surfaes, ompute their lower envelope, and onstrutthe vertial deomposition of the region below the envelope. Within eah ell � of thedeomposition, the k-th level of the whole arrangement oinides with the k-th level ofthe subarrangement formed by the surfaes that ross � . The number of these surfaes is`on the average' only O(k). Roughly speaking, we omplete the analysis by applying anyinsensitive bound on the omplexity of the level within eah � , and by multiply the boundby the number of ells of the deomposition. We hope that this tehnique will �nd furtherappliations on top of those obtained in this paper.3 Arrangements of PlanesLet P = f�1; : : : ; �ng be a olletion of n planes in 3-spae in general position, and letA(P ) denote the arrangement of P . The k-th level of A(P ) is de�ned as the losure of theset of all points that lie in the union of the planes and have exatly k planes lying belowthem. The omplexity of the level, regarded as a polyhedral surfae, is the number of itsLevels in arrangements Otober 8, 2001



Arrangements of Planes 10verties, edges and faes. This is learly proportional to only the number of verties, andwe will fous on bounding this latter quantity.Theorem 3.1 The number of verties of the k-th level of A(P ) is O(nk5=3), for k > 0.This theorem improves the bound O(n8=3) established in [10℄ (see also [3℄) for k � n,and is also better than the bound O(nk2) on the overall omplexity of the �rst k levels.Proof: We follow the seond proof of Theorem 2.3 and onsider a random sample R � Pof size r = bn=2k. The analysis of Clarkson and Shor [7℄ implies that LE(R), the regionbeneath the lower envelope of R, an be deomposed into O(r) vertial triangular prismsf�ig so that eah prism is de�ned by a onstant number of planes, andE "Xi jP�i j8=3# = O(r � (n=r)8=3) = O(nk5=3); (1)where P�i denotes the set of planes of P interseting �i. Inside eah prism �i, the k-thlevel of A(P ) oinides with the k-th level of A(P�i), beause any plane in P n P�i passesabove �i. Hene, the number of k-th level verties (of A(P )) inside eah �i is O(jP�i j8=3)by Dey and Edelsbrunner's bound [10℄. The expeted number, E[N ℄, of k-th level vertiesinside LE(R), is thus O(nk5=3) by (1). The proof is ompleted by observing, as in the proofof Theorem 2.3, that E[N ℄ is at least half the total number of k-th level verties. 2Instead of the above probabilisti argument, an alternative proof an be obtained fromresults on geometri uttings, spei�ally, the shallow uttings of Matou�sek [23℄:Let H be a olletion of n hyperplanes in Rd in general position. A (1=r)-utting ofthe �rst k levels is a olletion of simplies f�ig overing all points of levels � k, suh thatjH�i j � n=r for eah i, where H�i is the set of all hyperplanes of H that interset the interiorof �i.Lemma 3.2 (Matou�sek's Shallow Cutting Lemma) Let r � n and q = k(r=n) + 1.There exists a (1=r)-utting for the �rst k levels of A(H), onsisting of O(rbd=2qdd=2e)simplies.Seond Proof of Theorem 3.1: We an prove our theorem by setting d = 3, r = n=k,and q = 2 in the above lemma. We obtain a olletion of O(n=k) simplies, eah of whihis interseted by O(k) planes and onsequently ontains O(k8=3) verties of the k-th levelof A(P ). (This follows from the fat that the intersetion of the k-th level with a simplex�i lies at a �xed level (� k) of A(P�i), where, as above, P�i is the set of planes rossing �i.)Hene, the total number of k-th level verties is O((n=k) � k8=3) = O(nk5=3). However, weprefer the earlier proof, as the proof of the shallow utting lemma itself requires atuallymore involved probabilisti tehniques, inluding an argument similar to one of the previousproofs [23℄. 2Levels in arrangements Otober 8, 2001



Improved Lov�asz Lemma in Higher Dimensions 11Remark: As before, any improvement in the worst-ase k-insensitive upper bound wouldimply an improvement in our k-sensitive bound. Extensions to d-dimensional arrangementsof hyperplanes are also immediate: if we have an O(nd�d) bound on the omplexity of asingle level, then the omplexity of the k-th level isO(rbd=2�(n=r)d�d) = O(nbd=2kdd=2e�d),as the number of simplies used in either proof is O(rbd=2).4 Improved Lov�asz Lemma in Higher DimensionsIn the preliminary version of the paper [1℄, we have obtained the k-sensitive bound ofO(n2k2=3), whih is weaker than the one in Theorem 3.1. The proof follows the tehniquesof [3, 10℄, whih exploit a generalization of Lov�asz Lemma to three dimensions. We presenthere an improved version of this lemma, in arbitrary dimension, that has a simple proof andmay be of independent interest. So far, the improved lemma has no signi�ant appliationsbeause the best upper bounds, derived above, are not based on it. We, however, believe thatthe lemma deserves exposition beause it has been one of the very few tools for attakingthe k-set problem so far and a generalization of the lemma is needed in Setion 5.Let H be a olletion of n hyperplanes in Rd in general position, and let 0 � k � n� d.Let Vk denote the set of those verties v of A(H) for whih exatly k hyperplanes of H passbelow v. For eah v 2 Vk, we denote by Hv the set of the d hyperplanes inident to v, andlet Rv denote the losed region (`orridor') lying between the upper and lower envelopes ofthe hyperplanes of Hv.Lemma 4.1 (Dual Lov�asz Lemma in Arbitrary Dimension) For any (d � 2)-at fin Rd , we have ���fv 2 Vk j f � Rvg��� = O(kd�1) :The previous bound was O(nd�1) (see [4, 22℄). It will be more onvenient to state andprove the primal version of this lemma. Fix a set S of n points in Rd , in general position.A k-faet is a (d� 1)-dimensional simplex spanned by d points of S with the property thatits aÆne hull has preisely k points of S on one side of it.Lemma 4.2 (Primal Lov�asz Lemma in Arbitrary Dimension) Let S be a �nite pointset in Rd . Then, for any line `, the number of k-faets meeting ` is O(kd�1).Proof: Note that this formulation of the lemma is independent of the hoie of the o-ordinate system. Construt a oordinate system in whih ` oinides with the xd-axis.Dualize S to a system S� of n hyperplanes, using the standard duality that maps a point(a1; : : : ; ad) to the hyperplane xd = �a1x1 � a2x2 � � � � � ad�1xd�1 + ad, and a hyperplanexd = b1x1 + b2x2+ � � �+ bd�1xd�1 + bd to the point (b1; : : : ; bd) (see, e.g., [11℄); this dualityLevels in arrangements Otober 8, 2001



Arrangements of Triangles 12preserves inidenes and above-below relationships between points and hyperplanes (thatis, a point p lies below, on, or above a hyperplane h if and only if the dual hyperplane p�of p lies below, on, or above the point h� dual to h). An appliation of suh a duality alsoshows that this lemma and the preeding one are indeed dual versions of eah other. ItsuÆes to ount the number of k-faets whose aÆne hulls have k points of S stritly belowthem. The remaining lass of k-faets is handled by a symmetri argument.The properties of the duality imply that the aÆne hull of a k-faet � as above is mappedinto a vertex �� of the arrangement of S� whih has preisely k hyperplanes below it (and dhyperplanes passing through it). Hene �� is a vertex of the k-th level of A(S�). Moreover,� meets the xd-axis ` if and only if the horizontal hyperplane through �� is ontained inR�� , i.e., �� is a loal maximum of the k-th level of A(S�).3 Indeed, � meets ` if andonly if every hyperplane that ontains ` does not have all verties of � on one side. Theset of these hyperplanes is mapped by our duality to the set of all the points at in�nity inhorizontal diretions. Hene � meets ` if and only if every point at in�nity in a horizontaldiretion lies in R�� , whih is equivalent to the ondition that the horizontal hyperplanethrough �� is ontained in R�� , as asserted. As shown by Clarkson [5℄, the number of loalextrema of the k-th level in an arrangement of hyperplanes in d-spae is O(kd�1), and thisompletes the proof of the lemma. 25 Arrangements of TrianglesLet T = f�1; : : : ;�ng be a olletion of n triangles in 3-spae in general position, and letA(T ) denote the arrangement of T . The k-th level of A(T ) is de�ned, again, as the losureof the set of all points that lie in the union of the triangles and have exatly k triangles belowthem (that is, the relatively open vertial downward-direted ray emerging from suh a pointintersets exatly k triangles). As in the ase of segments, the k-th level is not neessarilyonneted, and may have jump disontinuities at points that lie vertially above or on sometriangle edge. The omplexity of the level, regarded as a polyhedral surfae, is the numberof its verties, edges and faes. Assuming general position, this is learly proportional to thenumber of verties only, and we will fous on bounding the number of inner verties, whihare ontained in the interiors of three distint triangles. Any other, `outer' vertex of thelevel lies in the vertial plane He spanned by some triangle edge e. Moreover, if we intersetall the triangles with He, we get a olletion of at most n segments, and the verties of thek-th level of A(T ) that lie in He are verties of the k-th level of any of the 2-dimensionalarrangements of these segments within He, where e itself is either inluded or exluded.By Theorem 2.1, the number of suh verties is O(n3=2). Repeating this analysis for eahtriangle edge e, we onlude that the number of outer verties of the level is O(n5=2).We bound the number of inner verties using a variant of the dual version of Lov�asz3The onnetion between loal extrema of k-th levels and Lov�asz Lemma was �rst observed by Clarkson,as briey remarked in the introdution of [5℄.Levels in arrangements Otober 8, 2001



Arrangements of Triangles 13Lemma in 3-spae. The bound that we obtain is onsiderably weaker than the one given inLemma 4.1, but is still nontrivial. The proof of this version of the lemma is also di�erentand somewhat more involved.Let v be an inner vertex of the k-th level, inident to three triangles �1, �2, �3; v anbe lassi�ed into three ategories, depending on whether the k-th level in the neighborhoodof v oinides with(a) the lower envelope of �1, �2, �3,(b) the �rst level of the arrangement A(f�1;�2;�3g), or() the upper envelope of �1, �2, �3.Note that verties of type (b) have the property that all six edges of A(T ) inident to thevertex lie on the k-th level, whereas for verties of type (a) or (), only three of these edgeslie on the level, one edge on eah segment of intersetion of two of the triangles �1, �2, �3.For eah inner vertex v of the k-th level of type (a) or (), let Rv be the losed regionenlosed between the upper envelope and the lower envelope of the three planes ontainingthe three triangles inident to v; see Figure 5 for a ross-setion of suh an Rv. We havethe following weaker version of Lov�asz lemma:
` �

Æu
Æv�41 �42�

(a) (b)
vu I �

Figure 5: (a) Cross setion of a region Rv in H; the line ` just beomes ontained in Rv; (b)ross setion of A(T ) by �; the intersetions of Rv; Ru with � are shaded near the respetiveverties.Lemma 5.1 Any line in R3 is fully ontained in at most O(n5=2) regions Rv of verties oftype (a) and ().Levels in arrangements Otober 8, 2001



Arrangements of Triangles 14Proof: Let `1 be a line in R3 , and let H be the vertial plane ontaining `1. For a triangle4 2 T , let �4 be the plane ontaining 4 and �4 = �4 \H. Let AH be the arrangementin H of the lines f�4 j 4 2 T g. Let `0 be a line ontained in H, parallel to `1, and lyingbelow all verties of AH . It is easily heked that no region Rv ontains `0. We will move aline ` within H upwards, parallel to itself, from the position when it oinides with `0 untilit oinides with `1. We estimate the hange in the number of regions Rv that ontain ` asit moves. Summing these hanges yields the bound on the desired quantity for `1.The set of regions Rv that fully ontain ` an hange only when ` passes through avertex of AH . Clearly, the vertex � = �41 \ �42 has to be suh that there is an innertype-(a) or type-() vertex v in A inident to 41 and 42. Under these assumptions, for `to beome newly ontained in a region Rv, or to stop being ontained in Rv, as it sweepspast suh a vertex �, it is neessary and suÆient that the slope of ` lie between the slopesof �41 and �42; see Figure 5(a). Let � be suh a vertex (where this latter ondition alsoholds). Put � = �41 \ �42 . Let s � � be the segment 41 \ 42. For all regions Rv thateither start or stop ontaining ` as it sweeps over �, v is ontained in s, so it suÆes toonentrate only on suh regions Rv.We mark on s all the inner verties of the k-th level of A(T ) of types (a) and (), andonsider the set of maximal subintervals of s not ontained in the k-th level. Eah suhsubinterval I is delimited by two points u, v, eah of whih is an inner vertex of the level oftype (a) or () (it annot be a vertex of type (b) beause all six edges inident to a type-(b)vertex lie on the k-th level), a point of jump disontinuity of the level, or an endpoint ofs. Let qs be the number of jump disontinuities of the k-th level along s. Note that eahsuh disontinuity is an outer vertex of the k-th level. If an inner vertex v is an endpointof an interval along s whose other endpoint v0 is either a jump disontinuity or an endpointof s, we harge v to v0. The number of suh inner verties (and therefore the hange in thenumber of regions that ontain `, orresponding to suh verties) is at most qs + 2.Next, onsider an interval I, both of whose endpoints are inner verties, say u and v.Consider the vertial plane � ontaining �, and the ross-setion of A(T ) within � (referto Figure 5(b)). Clearly, the k-th level of this ross-setion is ontained in the k-th level ofA(T ), so it either lies fully above I or fully below I. In the former ase both u and v are oftype (), and in the latter ase they are both of type (a). Let  be the vertial line H \ �,and let Æu = Ru\ and Æv = Rv \. If � 62 I, then it is easily heked that Æu and Æv lie onopposite sides of � along  and thus are disjoint exept at their ommon endpoint �. Thisfat, and our assumptions that the slope of ` is between the slopes of �u = 4u \ H and�v = 4v \H, imply that one of Ru, Rv must be added, and the other one removed, fromthe set of regions ontaining f , as ` sweeps over �. Hene, as ` sweeps over �, Ru and Rv\anel" out eah other, in terms of ontainment of `.To summarize, we have shown that as ` passes through �, the hange in the numberof regions Rv ontaining ` is at most 4 + qs. This implies that the number of regions Rvthat ontain ` in its �nal position `1 is at mostPs(4+ qs), where the sum is over all O(n2)intersetion segments between pairs of triangles in T . Sine the number of outer vertiesLevels in arrangements Otober 8, 2001



Arrangements of Triangles 15on the k-th level is O(n5=2), as argued above, and eah is ounted at most three times,Ps qs = O(n5=2). The number of regions ontaining ` is thus O(n2) + O(n5=2) = O(n5=2),as asserted.What if `1 atually passes through a vertex � = �4i\�4j of AH? Then the anellationdoes not our, whih adds fewer than n regions Rv that an ontain `|eah suh regionorresponds to some vertex of A(T ) on the segment 4i \4j. 2Theorem 5.2 The omplexity of any single level in an arrangement of n triangles in 3-spae is O(n17=6).Proof: Lemma 5.1 implies that no line ` is ontained in more than O(n5=2) regions Rv.Passing to the dual spae, we obtain the following equivalent formulation, similar to thease of planes: The planes ontaining the triangles in T are mapped to a set of n points.Eah inner vertex v of the k-th level is mapped to a triangle spanned by the three pointsdual to the planes ontaining the triangles inident to v. The line ` is mapped to anotherline `�, and ` is ontained in Rv if and only if `� rosses the triangle dual to v. We now havea system of X triangles in 3-spae, spanned by a total of n points, where X is the numberof inner verties of the k-th level of types (a) and (). By the result of [10℄, there exists aline that rosses at least 
(X3=n6) suh triangles. On the other hand, by Lemma 5.1, thisnumber is at most O(n5=2). Combining these two inequalities yields X = O(n17=6). We stillneed to bound the number of verties of type (b). However, these verties are verties oftype (a) of the (k� 1)-st level, so, repeating the above analysis for this level, we obtain thebound asserted in the theorem. 2Theorem 5.3 The omplexity of the k-th level in an arrangement of n triangles in 3-spaeis O(n2k5=6�(n=k)), for k > 0.Proof: Take a random sample R � T of size r = bn=2k. The result of Pah and Sharir [24℄(see also [12, 27℄) implies that the region beneath the lower envelope of R an be deomposedinto �(r) = O(r2�(r)) vertial triangular prisms f�ig, eah de�ned by a onstant numberof triangles of T . Clarkson and Shor's analysis [7℄ an be applied to show thatE "Xi jT�i j17=6# = O(�(r) � (n=r)17=6) = O(n2k5=6�(n=k));where T�i denotes the set of triangles of T interseting �i. The rest of the proof now proeedsas in the seond proof of Theorem 2.3 or the �rst proof of Theorem 3.1. 2Remark: An open problem is to extend Lemmas 4.1 and 5.1 to the respetive ases ofpseudo-hyperplanes and pseudo-triangles, under appropriate de�nitions of these objets,and then to extend the proofs of Theorems 5.2 and 5.3 to these ases. Note that there aretwo di�erent problems to address: One is to extend Lov�asz Lemma, and the other alls fora dual and more general version of the analysis tehnique of [10℄ (that yields a line thatstabs many triangles).Levels in arrangements Otober 8, 2001



Dey's Improvements 166 Dey's ImprovementsAs promised, we onlude the paper with a brief disussion of Dey's reent results and theirinteronnetions to the results of this paper; we refer to Dey's paper [8℄ for more details.The ase of lines. Dey's proof for the ase of lines (the standard planar k-set problem)uses the onave hain struture developed in this paper. His proof essentially shows thatthe omplexity of k onave (unbounded) hains in an arrangement of n lines, whih have nooverlapping edges, is O(nk1=3). His original proof aters only to the ase where the hainsare x-monotone and unbounded, but a slightly re�ned argument shows that the omplexityof any k onvex hains (or onvex polygons) in an arrangement of n lines, whih do not haveoverlapping edges, is O(nk1=3) for k = O(n) and O(n2=3k2=3) for larger values of k. Bothbounds an be shown to be tight in the worst ase: A mathing lower bound for the formerase is given by Eppstein [13℄, and a mathing lower bound for the latter ase is immediatefrom the known tight bound on the maximum omplexity of k faes in an arrangement of nlines [6℄. Earlier work [18, 19℄ has established the bound O(k2=3n2=3 + n) for the restritedase where the onave hains are not allowed to ross eah other; in this restrited ase,the bound also holds for k = O(n).The ase of segments. Dey has improved the bound in Theorem 2.1 to O(n4=3). Thisis an immediate onsequene of the extension of his result onerning the omplexity of anarbitrary olletion of onvex hains with non-overlapping edges in an arrangement of lines(or of segments), as just mentioned.Conerning the k-sensitive bound (Theorem 2.3), it follows from our proofs that anyimprovement on the worst-ase bound over all k leads to an improvement on the k-sensitivebound. Thus, ombining our analysis with Dey's O(n4=3) bound implies a new bound ofO(nk1=3�(n=k)) for the omplexity of the k-th level in an arrangement of segments.The ase of pseudolines and pseudosegments. Following the reent results of [9, 29℄,Dey's tehnique an also be extended to the ases of pseudolines and pseudo-segments (inthe sense de�ned above). Thus all the bounds just stated also apply to the orrespondingases of pseudolines or of pseudosegments.The ase of triangles in 3-spae. The analysis of the ase of triangles relies stronglyon bounds for the omplexity of a level in a planar arrangement of segments. Thus Dey'sresults an be `plugged into' the analysis, and improve the bounds in Theorems 5.2 and 5.3to O(n25=9) and O(n2k7=9�(n=k)), respetively, as is easily heked.
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