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Abstract. We show that the combinatorial complexity of the Euclidean Voronoi diagram of
n lines in R

3 that have at most c distinct orientations is O(c3n2+ε) for any ε > 0. This result
is a step toward proving the long-standing conjecture that the Euclidean Voronoi diagram of lines
in three dimensions has near-quadratic complexity. It provides the first natural instance in which
this conjecture is shown to hold. In a broader context, our result adds a natural instance to the
(rather small) pool of instances of general 3-dimensional Voronoi diagrams for which near-quadratic
complexity bounds are known.
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1. Introduction.
Background. The Voronoi diagram of a set Γ of disjoint objects (“sites”) in some

space under some metric is a subdivision of the space into cells, one cell per site, such
that the cell associated with a site O ∈ Γ comprises the points in space for which O
is closer (under the given metric) than all other sites of Γ.

The study of Voronoi diagrams in the plane has been very extensive over the past
20 years, and the structure of such diagrams is by now thoroughly understood. The
study has covered diagrams for many kinds of sites, and for many kinds of metrics or
distance functions, and has also considered other variants of the problem, such as kth
order diagrams, constrained Delaunay triangulations, and more. Surveys of the state
of the art are given in Aurenhammer and Klein [4] and Fortune [10].

In contrast, Voronoi diagrams in three and higher dimensions have been much less
studied, and many basic problems are still wide open. Most variants of planar Voronoi
diagrams have linear complexity, which is usually a consequence of the planarity of
the diagram. In three dimensions, a prevailing conjecture is that the complexity of
Voronoi diagrams should be in general at most quadratic or near-quadratic in the
number of sites. This is known to hold only for a very few special cases, including
the cases of point sites under the Euclidean metric [16, 21], point sites under any
“polyhedral” metric or distance function (i.e., distance functions induced by a convex
polytope with O(1) facets; see [5, 15, 24] for details), line sites under similar distance
functions [6], and sphere sites under the Euclidean metric [3]. Only very recently,
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the authors [17] have shown this to hold also in the case of arbitrary polyhedral sites
under polyhedral distance functions.

In all the other, “open” cases, cubic or near-cubic upper bounds for the complexity
of 3-dimensional Voronoi diagrams are known. They are a consequence of the repre-
sentation of such diagrams as lower envelopes of trivariate functions, each measuring
the distance from a point in R

3 to one of the sites; see [8] for this representation
and [23] for the bounds just stated. In contrast, only quadratic or near-quadratic
lower bounds for the complexity of 3-dimensional diagrams are known [2, 6].

The case of the Euclidean metric appears to be harder than the case of poly-
hedral metrics (or distance functions), because the trivariate functions that measure
distances are curved (except for the special case of point sites, where they can be
transformed into linear functions), and the constraints that define the diagram are
harder to analyze. The simplest open case of 3-dimensional Euclidean diagrams is
that in which the sites are lines. This specific problem is listed as Problem 3 in
the list of open problems in computational geometry, recently published by Mitchell
and O’Rourke [19]. A recent result that lends credence to the conjecture that the
complexity of such diagrams is near-quadratic is due to Agarwal and Sharir [1], who
showed that the complexity of the union of n infinite congruent cylinders in 3-space
is near-quadratic. The boundary of this union can be interpreted as a cross-section
of the Euclidean Voronoi diagram of the axes of the cylinders, being the locus of
all those points whose distance to the nearest axis has a fixed value (equal to the
common radius of the cylinders). The complicated proof in [1] and the fact that the
result applies merely to a single cross-section of the diagram suggest that the problem
involving the whole Euclidean Voronoi diagram of lines might be particularly hard to
tackle.

Our contribution. In this paper, we obtain the first result toward the described
goal. We study the special case in which the sites are lines that have a fixed number c
of distinct orientations (and the metric is Euclidean). Even this special case is quite
nontrivial to analyze. We show that the complexity of the diagram is O(c3n2+ε)
for any ε > 0, where the constant of proportionality depends on ε. This implies,
in particular, that when the number of distinct orientations in a collection of lines
is constant (that is, c = O(1)), the complexity of its Euclidean Voronoi diagram
is O(n2+ε) for any ε > 0. This completely confirms the above-mentioned conjecture
in this case.

The motivation underlying the study of Voronoi diagrams in computational geom-
etry has always been algorithmic. They provide a natural data structure for handling
a variety of applications, important both in theory and in practice, such as proximity
(nearest neighbor) queries, high-clearance placements and motion planning problems,
clustering and classification problems, and many more (see, among others, the survey
by Aurenhammer and Klein [4] and the book by Okabe et al. [20] for a description of
many of these applications).

There are several general techniques for computing Voronoi diagrams, such as
randomized incremental construction or sweep-based methods, and many more ad hoc
approaches. However, a precursory stage to the design of any algorithm for computing
Voronoi diagrams is obtaining sharp bounds on their complexity. This will serve as a
lower bound for the efficiency of any such algorithm and quite often can be used in
the design of algorithms with roughly the same running time. Nevertheless, most of
the algorithmic study of Voronoi diagrams has been confined to planar diagrams for
the good reason that we are still lacking sharp general bounds for the complexity of
generalized 3-dimensional diagrams.
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The results presented in this paper are an attempt to remedy this situation. The
special case we treat is important because it provides us with one more problem in-
stance where near-quadratic bounds can be established. We hope that the method
developed here will find applications in the analysis of other types of 3-dimensional
Voronoi diagrams (see the remark at the end of section 3) and thereby lead us
further toward the ultimate goal of establishing near-quadratic bounds for general
3-dimensional diagrams, following which near-quadratic algorithms for their construc-
tion will not be too difficult to design.

Moreover, the considered setting of lines with a fixed number of orientations is
interesting in its own right. It is applicable, for example, to the problem of motion
planning, or of finding largest free placements, of a ball amid a collection of “beams”
or “pipes” in 3-space. It is a natural assumption that the beams have only a con-
stant number of orientations. (Typical examples of this setting occur in architectural
design.)

Organization. We first study, in section 2, the special case in which the lines
have at most three distinct orientations. In this special case, we obtain the slightly
improved bound O(nλ5(n)), where λ5(n) = O(n ·α(n)O(α(n))) is the maximum length
of Davenport–Schinzel sequences of order 5 on n symbols, and where α(n) is the
extremely slowly growing inverse Ackermann function (see [23] for details). The case
of four orientations is treated in section 3, and the simple extension to more than four
orientations is described in section 4.

2. The case of two or three orientations. Let L be a set of n lines in 3-space
which have up to three distinct orientations. Thus L can be written as R ∪ B ∪ G,
where all the lines in R (called “red” lines) have the same orientation, and the same
holds for the lines of B (“blue” lines) and those of G (“green” lines).

We adopt a limited general position assumption on L as follows. First, we assume
that each of the collections R, B, and G is in general position in the sense that its
intersection with any fixed generic plane is a collection of points in general position
(that is, it does not contain collinear triples or cocircular quadruples of points or other
degenerate configurations). We also assume that the three vectors that are parallel
to the orientations of the collections R, B, and G do not lie in a common plane.

Before we proceed, we need to mention some basic properties of bisectors and
trisectors of lines, which are, respectively, the loci of points equidistant from two and
three lines. These geometric properties are reported here without proofs, which are
given as an appendix below, in order to maintain the flow of exposition. The main
conclusions from the analysis carried out in the appendix are as follows. A bisector
of two lines is in general a hyperbolic paraboloid, which is a doubly ruled quadratic
surface. (It degenerates to a plane when the two lines are parallel.) A trisector of three
pairwise nonparallel lines is an algebraic curve of degree four and, if nonsingular, has
exactly four components, all unbounded. If two of the three defining lines are parallel,
the trisector becomes a planar conic section (of degree two, consisting of at most two
unbounded components). If all three lines are parallel, the trisector is a line parallel
to them. The fact that no component of any trisector is bounded will be significant
in our analysis. In what follows, we will denote the bisector of two lines e, f by He,f ,
and the trisector of three lines e, f, g will be denoted by τe,f,g.

Denote the Euclidean Voronoi diagram of L by Vor(L). We begin by bounding
the number of its vertices. Let v be such a vertex, incident to the cells of four lines
�1, �2, �3, �4. At least two of them must be of the same color. Suppose first that three
of them are of the same color, say, �1, �2, �3 ∈ R. Project v and all the lines of R
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onto a plane π orthogonal to these lines. Then each line of R projects to a point,
and v projects onto a vertex v∗ of the planar Voronoi diagram of the projected points
within π. The number of such vertex projections v∗ is thus at most 2n−4. Moreover,
the number of vertices v that can project onto the same point v∗ is at most 2n. This
is because the radius r of the ball centered at v and touching �1, �2, �3 is equal to the
radius of the disk within π centered at v∗ and touching the point projections of these
three lines. As we slide a ball of radius r while maintaining contact with �1, �2, �3, we
reach at most 2n placements where it touches a fourth line. Each of these touching
placements in which the ball is not crossed by any other line gives rise to a Voronoi
vertex that projects onto v∗. This implies that the overall number of Voronoi vertices
of the kind under consideration is at most (2n− 4) · 2n = O(n2).

Suppose then that exactly two of the four lines are of the same color, say,
�1, �2 ∈ R, �3 ∈ B, and �4 ∈ G. If we project v and the lines of R onto the same
plane π as above, we obtain that the projection of v lies on a Voronoi edge of the
planar diagram of the point projections of the red lines. The number of such edges
is O(n).

Fix such an edge e, and consider the 2-dimensional slab Σe obtained by sweeping
e in the direction of the red lines; by construction, v ∈ Σe. Moreover, Σe is the locus
of all the centers of balls that touch �1 and �2 and no other red line. Let He denote
the plane containing Σe, and let �0 be the line of intersection between He and the
plane π0 spanned by �1 and �2—this intersection is the midline of the 2-dimensional
slab spanned by �1 and �2. Denote the two halfspaces bounded by π0 as π+

0 and π−
0 .

See Figure 1.

�1

�2

Σe

e

�0

p λp

π0

Fig. 1. The bisector of �1 and �2.

Fix a point p ∈ �0, and consider the line λp that passes through p, lies in He, and
is orthogonal to �0. Parametrize λp by a real parameter y, where y = 0 at p, y > 0
within π+

0 , and y < 0 within π−
0 . Move a point q along the entire λp in the direction

of increasing y. The ball centered at q and touching �1, �2 has the property that its
intersection with π+

0 keeps expanding during the motion (i.e., any point of π+
0 that

the moving ball meets will remain inside the ball as its center keeps moving in the
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above direction). Similarly, the portion of the moving ball within π−
0 keeps shrinking

“into itself.”
Let each line � ∈ B∪G define two rays �+ = �∩π+

0 , �
− = �∩π−

0 . With each ray �+

(resp., �−), associate a function ψ
+ (resp., ψ
−) on �0, where ψ
+(p) (resp., ψ
−(p))
for p ∈ �0 is the y-value of the center of the ball that touches �1, �2, and �

+ (resp., �−),
where the center lies on λp. The functions ψ
+ , ψ
− are defined (and continuous) when
� does not intersect the disk centered at p, lying in π0, and touching �1 and �2. Hence
the (common) domain of definition of ψ
+ and ψ
− is either the full line �0 if � does
not intersect the 2-dimensional slab spanned by �1 and �2 or the union of two rays
along �0 otherwise.

Denote the collection of the functions ψ
+ (resp., ψ
−) for � ∈ B ∪ G by Ψ+

(resp., by Ψ−). The preceding observations imply that any Voronoi vertex v ∈ Σe
under consideration (two of whose defining lines are in B ∪G) corresponds either to
a vertex of the lower envelope of Ψ+ or to a vertex of the upper envelope of Ψ− or to
an intersection point between the two envelopes.

It is easily seen that any pair of functions of the above kind intersect in at most
four points. Indeed, any such intersection point w is equidistant from �1, �2, and from
two other lines �3, �4 ∈ B ∪G. That is, we have

d2(w, �1)
(
= d2(w, �2)

)
= d2(w, �3) = d2(w, �4).

The squared distance of a point w from a line that passes through a point a and has
unit direction u is

‖w − a‖2 − ((w − a) · u)2,
which is a quadratic polynomial in the coordinates of w. Since w lies on the plane He,
we obtain a system of two quadratic equations in two variables which has at most
four solutions (see also the proof of Lemma 3.1 below).

It is shown, e.g., in [23, Lemma 1.8] that the complexity of the upper or lower
envelope of continuous functions, so that each function is defined on a ray or on
the whole real line, and so that each pair of them intersect in at most four points, is
O(λ5(n)) = O(n·α(n)O(α(n))) [23], where λ5(n) is the maximum length of Davenport–
Schinzel sequences of order 5 on n symbols, and where α(n) is the extremely slowly
growing inverse Ackermann function. As observed above, we can split each partially
defined function in Ψ+∪Ψ− into two functions, each defined over a ray. We thus con-
clude that the number of Voronoi vertices in (the relative interior of) Σe is O(λ5(n)).
Multiplying this bound by the number O(n) of edges e and adding the preceding
bound O(n2) on the number of vertices defined by three lines of the same color, we
conclude that the number of vertices of the diagram Vor(L) is O(nλ5(n)).

We next bound the number of edges of Vor(L). If an edge e is delimited by a
Voronoi vertex v, we charge e to v. By the general position assumption, each v is
charged at most four times, so the number of edges e of this kind is O(nλ5(n)). Let
e be a Voronoi edge that has no incident Voronoi vertex. As mentioned above, the
analysis of trisectors implies that e is not bounded.

Fix two planes π±: z = ±z0 such that each unbounded edge of Vor(L) intersects
at least one of them. (Assuming that the coordinate directions are generic, such planes
exist.) It therefore suffices to bound the complexity of the cross-sections of Vor(L)
with the planes π±. Consider, say, the plane π+. The Voronoi cells in each of the
monochromatic diagrams Vor(R), Vor(B), Vor(G) are unbounded convex prisms,
whose faces are all parallel to the orientation of the respective collection of lines, and
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the overall complexity of each diagram isO(n). Hence, the intersection of π+ with each
of these monochromatic diagrams is a planar convex subdivision of complexity O(n).
The overlay of these cross-sections is a planar convex subdivision of complexity O(n2).
For each cell ξ of the overlay, there exist a fixed red line r, a fixed blue line b, and a
fixed green line g, which are the nearest red, blue, and green lines to any point in ξ,
respectively. It follows that the complexity of the overall diagram Vor(L) within ξ is
bounded by a constant, which implies that the complexity of the diagram within π+

(and, symmetrically, within π−) is O(n2).
This implies that the number of unbounded edges of Vor(L) is O(n2). It is

easily seen that the number of 2-faces of the diagram is proportional to the number
of vertices plus the number of edges plus O(n2). Finally, the number of 3-cells is
only n: Each line has a connected, star-shaped Voronoi cell [18]. Hence we obtain the
following theorem, the main result of this section.
Theorem 2.1. The complexity of the Voronoi diagram of a set of n lines with at

most three distinct orientations is O(nλ5(n)) = O(n2 · α(n)O(α(n))).

3. The case of four orientations. We now assume that the given set L of
lines is the union of four subsets, each consisting of lines at a fixed direction. We
denote these subsets by R (consisting of “red” lines), B (consisting of “blue” lines),
G (consisting of “green” lines), and Y (consisting of “yellow” lines). The proof of the
following elementary geometric fact is provided for completeness.
Lemma 3.1. The maximum number of balls tangent to four given lines in 3-space,

assuming general position, is 8.
Proof. As already noted, the distance d(x, �) between a point x ∈ R

3 and a line �,
passing through a point a and having unit direction u, satisfies

d2(x, �) = ‖x − a‖2 − ((x − a) · u)2,
which is a quadratic function of x. Given four lines �1, �2, �3, �4 in general position,
the center x of a ball that is tangent to all four lines has to satisfy the equations

d2(x, �1) = d2(x, �2) = d2(x, �3) = d2(x, �4).

These are three quadratic equations, so, by Bezout’s theorem [14], the number of
solutions is at most 23 = 8.

The number 8 can be attained: We first give a construction where the lines are
not in general position. Take �1, �2, �3 to be any three nonconcurrent lines in the
xy-plane. They determine four disks D1, D2, D3, D4 in that plane that are tangent to
all three of them, as shown in Figure 2. Take �4 to be any line perpendicular to the
xy-plane, meeting the plane at a point not lying in any of these disks. Fix a disk Di,
and let λi be the z-vertical line passing through the center of Di; this is the locus of
all centers of balls that touch �1, �2, �3 and meet the xy-plane at Di. It is easily seen
that there are exactly two points on λi, symmetric to each other with respect to the
xy-plane, that are centers of balls that also touch �4. For any specific disc Di, this
yields two distinct balls that touch all four lines, giving us eight such balls overall. By
slightly perturbing the lines, we can obtain a construction for lines in general position.
This completes the proof of the lemma.

Let �1, �2, �3, �4 be four given lines of different colors. Let s ≤ 8 denote the number
of balls tangent to all four of them, and let c1, . . . , cs denote the centers of these balls,
sorted in increasing order of their x-coordinate. (The coordinate frame is assumed to
be generic so that no two ci’s have the same x-coordinates.) Define the index ind(ci)
of ci to be min{i− 1, s− i}, so we have 0 ≤ ind(ci) ≤ 3 for each i.
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�1

�2

�3

�4

Fig. 2. Four lines having eight Voronoi vertices.

With each line � ∈ L = R∪B ∪G∪Y we associate the squared distance function
f
: R

3 �→ R, given by f
(x) = d2(x, �). Let EF denote the lower envelope of the set
F = F(L) = {f
 | � ∈ L}. Clearly, the minimization diagram of EF , namely, the
projection of (the graph of) EF onto the xyz-space, is the Voronoi diagram Vor(L)
(see also [8]).

For each point q = (q1, q2, q3, q4) ∈ R
4, define its R-level (resp., B-level, G-level,

Y -level) to be the number of lines � ∈ R (resp., � ∈ B, � ∈ G, � ∈ Y ) whose
corresponding function graphs pass below q; that is, q4 > f
(q1, q2, q3). The combined
level of q is the sum of its red, blue, green, and yellow levels. We denote the graph of
each f
 ∈ F by f̃
. Denote by R̃ the collection of all graphs f̃
 for � ∈ R, and define
B̃, G̃, Ỹ , and L̃ analogously. Let A(L̃) denote the arrangement in R

4 of the graphs f̃

of the functions in L̃. Clearly, for a vertex q of A(L̃), q is a vertex of EF if and only
if the combined level of q is 0.

Let V
(j)
0 (L) (resp., V

(j)
≤k (L)) denote the number of “4-colored” vertices q of A(L̃)

(i.e., vertices incident to a red graph, a blue graph, a green graph, and a yellow graph)

of index ≤ j, whose combined level is 0 (resp., at most k). Put V0(L) = V
(3)
0 (L) and

V≤k(L) = V
(3)
≤k (L). We also put V

(j)
0 (n) = maxL V

(j)
0 (L), where the maximum is

taken over all families L of n lines, each having one of the four given orientations;

V
(j)
≤k (n) is defined analogously. Using the Clarkson–Shor bound on levels [7], we have

V
(j)
≤k (n) = O

(
k4V

(j)
0

(n
k

))
.

As mentioned in section 2 and proven in the appendix, every connected component
of any trisector is unbounded. However, in the proof below, we will not make use
of this property at all. This will be significant when we extend the analysis to more
general setups—see a discussion at the end of this section.

3.1. Irregular vertices. Let v be a 4-colored vertex of the diagram, interpreted
as a vertex of the lower envelope EF , incident to four graphs f̃r, f̃b, f̃g, f̃y for some
r ∈ R, b ∈ B, g ∈ G, and y ∈ Y . The vertex v is incident to four edges of the envelope,
which we denote mnemonically as rbg, rby, rgy, and bgy, where rbg ⊆ τr,b,g denotes

the edge lying on the graphs f̃r, f̃b, f̃g, and similarly for the three other edges. As
noted in [22], at least one of these edges emanates from v in the positive x-direction,
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and at least one edge emanates in the negative x-direction. We call v a regular vertex
if exactly two of these edges emanate from v in the positive x-direction and exactly
two emanate from v in the negative x-direction. Otherwise, we call v irregular.

Lemma 3.2. There are only O(nλ5(n)) irregular vertices.

Proof. Let v be an irregular vertex. If v is not 4-colored, then the claim follows
from Theorem 2.1, so assume that v is 4-colored, and use the above notation to denote
the surfaces and edges incident to v. Suppose, without loss of generality, that three
of the incident edges emanate from v to the left, and assume that they are rbg, rby,
and rgy. In this case (assuming general position), v is a locally x-maximal vertex of
the Voronoi cell V (r) of r. Clearly, each line has a single connected Voronoi cell. In
fact, each cell, star-shaped with respect to its defining line, is also simply connected;
see, e.g., [18].

As shown, e.g., in [12, Lemma 2.4], the number of locally x-extremal points of
a simply connected 3-dimensional region K is proportional to 1 plus the number of
critical points of ∂K (relative to the x-direction). These are points w for which the
cross-section of the interior of K with the yz-parallel plane through w is disconnected
near w but becomes connected (near w) when the plane slightly translates in some
direction. Hence the number of irregular vertices of Vor(L) is proportional to the
number of critical points of cell boundaries plus O(n).

Assuming general position, each critical point w of ∂V (r) is incident to only three
surfaces; it is typically a locally x-extremal point of a Voronoi edge of V (r). Suppose,
without loss of generality, that w is incident to f̃r, f̃b1 , f̃g1 for some b1 ∈ B, g1 ∈ G.
Then w is a locally x-extremal point of (the relative interior of) a Voronoi edge (a
portion of τr,b1,g1) of the 3-colored Voronoi diagram Vor(R∪B∪G). By Theorem 2.1,
the overall number of such features is O(nλ5(n)), and this completes the proof of the
lemma.

3.2. The counting scheme. In light of Lemma 3.2, this section is devoted to
bounding the number of regular vertices of Vor(L). This number is estimated using
a variation of the “counting scheme” technique, as introduced by Halperin and Sharir
[11, 22] (see also [23]).

Let v be a 4-colored regular vertex, incident to f̃r, f̃b, f̃g, f̃y, using the notation
introduced above. Let 0 ≤ j ≤ 3 be the index of v. Without loss of generality,
assume that there are exactly j vertices incident to f̃r, f̃b, f̃g, f̃y to the right (that is,
in the x-increasing direction) of v. By definition, v is incident to two edges of EF
that emanate from it to the right, and to two edges that emanate from it to the
left. Without loss of generality, assume that the edges emanating to the right are rbg
and rby and the edges emanating to the left are rgy and bgy.

Consider the 2-dimensional bisector Hg,y. Denote by Rgy the set of trisectors
τg,y,r′ drawn as curves along Hg,y for red lines r′ ∈ R. Define in an analogous manner
the sets Bgy, Ggy, and Ygy (where the latter two sets exclude the ill-defined trisectors
induced by g and y themselves). Let Agy denote the 2-dimensional arrangement of
the collection Rgy ∪Bgy ∪Ggy ∪Ygy of curves within Hg,y. It follows that there exists
a face of Agy that is also a 2-face of EF on Hg,y, such that v is a locally x-maximal
vertex of that face.

Let γr ∈ Rgy (resp., γb ∈ Bgy) denote the trisector τr,g,y (resp., τb,g,y), regarded
as a curve within Hg,y. If we follow γr from v to the right, we lie, locally near v,

above EF (actually, above f̃b), and similarly for γb (which lies locally above f̃r). See
Figure 3.
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v
E

γr

γb

Fig. 3. The vertex v on Hg,y—a view from the bottom (in R
4).

3.2.1. Initial counting stages and vertices of index 0 and 1.

Lemma 3.3. V
(0)
0 (n) and V

(1)
0 (n) are bounded by O(nλ5(n)).

Proof. Trace the curve γr from v to the right, and stop as soon as we reach one
of the following critical events along γr:

(a) We reach another intersection of the four graphs f̃r, f̃b, f̃g, f̃y.
(b) We reach a 3-colored vertex.
(c) We reach x = +∞.
(d) We reach a locally x-extremal point of the curve γr.

We refer to events of types (b)–(d) as terminal events.

Perform a similar tracing along γb. Suppose that at least one of the tracings,
say, along γr, reaches a terminal event. The first such event either is a vertex of the
3-colored Voronoi diagram of R∪G∪Y or can be charged to an edge of this diagram.
By Theorem 2.1, the number of such events is thus O(nλ5(n)), and each such event
is uniquely counted by some vertex v. (This follows since between v and the terminal
event we are always above EF .) Hence the number of vertices v that fall in this case
is O(nλ5(n)). In particular, this bounds the number of vertices of index 0.

We may thus assume that the tracing of γr ends at a vertex u, and the tracing of γb
ends at a vertex w, so that both u and w are incident to f̃r, f̃b, f̃g, f̃y (see Figure 4).

Moreover, the portion δ
(1)
r of γr between v and u and the portion δ

(1)
b of γb between

v and w are both x-monotone, and neither of them contains a 3-colored vertex or
another terminal event. In particular, u and w lie to the right of v, the red, green,
and yellow levels of u are all 0, and the blue, green, and yellow levels of w are all 0.

v

u

w

δ
(1)
r

δ
(1)
b

Fig. 4. Tracing from v to the right.

If u = w, then this is a vertex of the diagram (because all its colored levels are 0)
of index at most j − 1 (because it lies to the right of v). The number of vertices v in

this subcase is thus at most V
(j−1)
0 (n). In particular, this is easily seen to imply that
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the number of vertices of index 1 is O(nλ5(n)). We have thus shown the following:

V
(0)
0 (n) = O(nλ5(n)), V

(1)
0 (n) = O(nλ5(n)),

which completes the proof of the lemma.

3.2.2. Subsequent counting stages and vertices of index 2. In what fol-
lows, we assume that j = 2 or 3. In light of the arguments made in the proof of
Lemma 3.3, we may assume that u �= w. Fix some threshold parameter k to be
determined later.

Lemma 3.4. V
(2)
0 (n) is bounded by O(k3nλ5(n) + k2V0(

n
5k )).

Proof. Suppose that the blue (and thus the combined) level of u is at most 4k.
In this case, we charge v to u. The charging is unique, implying that the number of
vertices v in this case is at most

V
(j−1)
≤4k (n) = O

(
k4V

(j−1)
0

( n

4k

))
,

where, as already mentioned, we use the Clarkson–Shor bound on levels [7]. A similar
charging is applied if the level of w is at most 4k. Hence, in what follows, we may
assume that u �= w and that both lie at combined level > 4k.

LetW denote the portion of Hg,y consisting of all points that lie above the graphs
of both fr and fb, and let W0 be the connected component of W whose boundary
contains v. The region W0 is bounded, locally near v and to its right, by the two

arcs δ
(1)
r and δ

(1)
b , and v is a locally leftmost (x-minimal) vertex of W0. Let δ

(2)
b

(resp., δ
(2)
r ) denote the other edge of ∂W0 incident to u (resp., to w). Both δ

(1)
r

and δ
(2)
r are contained in the trisector τr,g,y, although they do not have to lie on

the same component of that curve. Similarly, δ
(1)
b and δ

(2)
b are contained in τb,g,y.

Without loss of generality, we assume that δ
(1)
r lies clockwise to δ

(1)
b (when viewed

from above); see Figure 5 for an illustration of several possible shapes of W0.

Fig. 5. Several possible structures of the region W0. In all cases, at most three vertices of W0

lie to the right of v.
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Let ζ be a vertex of Agy along δ
(1)
r , incident to the graph of some other blue

function fβ . (Recall that, by assumption, all vertices along δ
(1)
r are 4-colored.) Con-

sider the trisector τβ,g,y as a curve γβ within Hg,y, and let δβ denote the connected
component of γβ∩W0 incident to ζ. We say that δβ is a deep arc if it contains at least
k vertices of Agy. If δβ is not deep and it contains a terminal event (namely, it con-
tains a 3-colored vertex, or contains a locally x-extremal point, or reaches x = ±∞),
we call it a terminal arc. Otherwise, we call it shallow. See Figure 6 for a special
case of a shallow arc. Similar notation applies to red arcs that emanate from vertices

of Agy along δ
(1)
b .

v

u

w

δ
(1)
b

δβζ
ζ ′

δ
(1)
r

Fig. 6. A shallow arc that lands back on δ
(1)
r .

Consider the first 4k vertices along δ
(1)
r . (By assumption, δ

(1)
r must contain at

least this many vertices.) If at least 2k of the corresponding arcs δβ are deep, then
collecting the first k vertices along each of these arcs yields a set of at least 2k2 vertices
of Agy within W0, all lying at combined level at most 5k. We claim that each of them
is charged by vertices like v at most a constant number of times. Indeed, let η be
such a vertex, lying on a deep blue arc δβ . Note that the starting point ζ of δβ is at
red level 0, but all points in the relative interior of δβ have strictly positive red levels.
Hence we can trace δβ back from η (there are two possible directions for this tracing)

until we reach the first point ζ at red level 0. The point ζ must lie on δ
(1)
r , and we can

trace δ
(1)
r from ζ backward (to the left) until we reach v—the first vertex at combined

level 0. Hence, using [7], as above, the number of vertices v in this subcase is at most

O

(
1

k2
V≤5k(n)

)
= O

(
k2V0

(
n

5k

))
.

The same bound applies to the number of vertices v for which at least 2k of the first

4k vertices along δ
(1)
b are sources of deep red arcs.

Hence we may assume that, among the first 4k vertices along δ
(1)
r , at least 2k

are sources of shallow or terminal arcs, and similarly for δ
(1)
b . If any of these arcs

is terminal, we charge v to the corresponding terminal event along the arc. We
note that such an event η lies at combined level at most 5k. Hence η is or can be
charged to a (≤ 5k)-level feature of one of the 4-dimensional 3-colored arrangements
A(B̃ ∪ G̃ ∪ Ỹ ), A(R̃ ∪ G̃ ∪ Ỹ ). Moreover, arguing as in the preceding paragraph,
η is charged by vertices like v at most twice. By Theorem 2.1 and [7], the number of
such events η, and thus also the number of vertices v that fall into this subcase, is at
most

O

(
k4 · n

5k
λ5

(
n

5k

))
= O(k2nλ5(n)).
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Hence we may assume that at least 2k of the first 4k vertices along δ
(1)
r are sources

of shallow arcs, and none of these vertices are sources of terminal arcs. Moreover, the

same property holds for δ
(1)
b .

Suppose that one of these shallow arcs, δβ , emanating from δ
(1)
r , terminates also

on δ
(1)
r , as in Figure 6. By definition, δβ does not encounter any blue graph f̃β′ (for

then δβ would contain a 3-colored vertex and thus would be terminal). Hence the
blue level of the terminal endpoint ζ ′ of δβ is equal to the blue level of the starting
point ζ, and all other levels of both endpoints are 0. In this case, we skip the portion

of δ
(1)
r between ζ and ζ ′. More precisely, we modify the tracing procedure used so

far as follows: Trace δ
(1)
r to the right, starting from v, and attempt to collect either

2k deep arcs or a terminal arc or 2k shallow arcs that do not terminate on δ
(1)
r . If

during this tracing we reach a shallow arc δβ that does terminate on δ
(1)
r , we take a

“shortcut” along δβ and continue the tracing of δ
(1)
r from the other endpoint of δβ . It

is clear that this modified process must terminate successfully, or else we would reach

the endpoint u of δ
(1)
r , which then would lie at level ≤ 4k, contrary to assumption.

From now on, we apply a similarly modified tracing procedure to δ
(1)
b as well.

We thus reach the following situation. We have collected at least 2k shallow blue

arcs that emanate from δ
(1)
r and terminate on other red edges of ∂W0 and at least

2k shallow red arcs that emanate from δ
(1)
b and terminate on other blue edges of ∂W0.

The combined level of any point on any of these arcs is at most 5k.

Suppose that one of the shallow blue arcs δβ that emanates from δ
(1)
r terminates

on a (red) edge δ
(3)
r of ∂W0 that does not intersect τb,g,y at all. That is, δ

(3)
r is a

full (bounded or unbounded) component of the trisector τr,g,y, which lies fully above

the graph of fb, as in Figure 7. Let η be the “landing point” of δβ on δ
(3)
r . The

combined level of η is at most 5k. Trace δ
(3)
r from η to the right (i.e., in the positive

x-direction) until we reach a terminal event η′, to which we charge v. (Such an η′

always exists: even if we do not encounter any finite event, we will reach x = +∞,
which is a terminal event, by definition.) Note that η′ is or can be charged to a
feature of the 4-dimensional arrangement A(R̃∪G̃∪ Ỹ ), whose combined level (in this
3-colored arrangement) is at most 5k. Arguing as above, the number of such events
is O(k2nλ5(n)). Here we cannot claim that η′ is uniquely charged by v, but we can
still bound the number of times η′ is charged, as follows.

Fig. 7. Charging v when a shallow arc lands on an edge of W0 that does not meet other such
edges.
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Trace δ
(3)
r back (in the negative x-direction) from η′ (there may be two choices

for r and for δ
(3)
r given a specific η′, since η′ may be a 3-colored vertex) until the first

time we reach a point whose combined level (including the blue level) is at most 5k.
This backward tracing has to succeed: it will reach η or stop earlier. Then any
charging vertex v must be a vertex incident to f̃r, f̃g, f̃y, and to some f̃b1 , from the
at most 5k blue surfaces b1 that lie below the stopping point. In other words, η′ can
be charged at most O(k) times, implying that the number of vertices v that fall into
this subcase is

O(k3nλ5(n)).(1)

A symmetric analysis applies if a shallow red arc lands on a blue edge of ∂W0

which is a full component of τb,g,y. Moreover, the analysis just given also holds if δ
(3)
r

meets f̃b in only one of the two directions from η and extends to infinity in the other
direction. It also holds if, in at least one of the two directions, we meet a terminal
event before meeting f̃b. And it also holds in the symmetric extended cases, in which
the roles of the red and blue colors are interchanged.

The above analysis implies, in particular, that in what follows we may assume

that none of the first 2k shallow arcs that emanate from δ
(1)
r and δ

(1)
b terminate on

a bounded component of ∂W0 that does not meet other components of ∂W0. Note

also that the analysis holds if δ
(3)
r is a bounded component of τr,g,y that lies fully to

the right of v. Indeed, even if such a component does meet f̃b, it must meet it at two
points, both different from u,w and lying to the right of v, which is impossible.

Suppose now that one of the collected blue shallow arcs δβ terminates on δ
(2)
r ,

as in Figure 8. Each of the ≥ 2k red shallow arcs that we have collected along δ
(1)
b

must cross δβ . Indeed, none of these arcs terminate on δ
(1)
b , by construction; they

cannot terminate on δ
(1)
r or on δ

(2)
r , for that would have made them terminal; and, as

argued above, they also do not terminate on an isolated bounded component of ∂W0.
This, however, contradicts the shallowness of δβ , since it cannot contain more than
k crossings with other arcs. We have thus showed that none of the collected blue

shallow arcs terminate on δ
(2)
r . Symmetrically, it can be shown that none of the

collected red shallow arcs terminate on δ
(2)
b .

δ
(1)
r

δ
(1)
b

δ
(2)
r

Fig. 8. A shallow blue arc cannot “intercept,” by terminating on δ
(2)
r , the shallow red arcs

emanating from δ
(1)
b
.

The bounds accumulated so far account for all the vertices v with index at most 2.
Specifically, we have

V
(2)
0 (n) = O

(
k3nλ5(n) + k2V0

( n

5k

))
,
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thereby proving the lemma.

3.2.3. Final counting stages and vertices of index 3.

Lemma 3.5. V
(3)
0 (n) is bounded by

O

((
k2�2 + �3

)
nλ5(n) + V

(2)
0 (n) + k4V

(2)
0

( n

4k

)

+ k2V
(3)
0

( n

5k

)
+ �4V

(2)
0

( n

5�

)
+ k2�2V

(3)
0

( n

6�

))
.

Proof. From now on, we deal with vertices v of index 3. They are treated
by considering a number of possible structures of the region W0 as well as possible
behavior patterns of arcs inside W0 and bounding the maximal number of vertices v
in each case. This will often be performed by charging v to certain features in W0.

We already have sufficient machinery to dispose of vertices v for which δ
(2)
r and δ

(2)
b

meet at a common endpoint, as in Figure 9. The preceding arguments allow us to

assume that there are no shallow arcs that connect δ
(1)
r to δ

(2)
r , or δ

(1)
b to δ

(2)
b , and

that there are no shallow arcs that land on any bounded component of W0 within the

quadrangle formed by δ
(1)
r , δ

(1)
b , δ

(2)
r , and δ

(2)
b . This means that, in this case, unless

u and w have level O(k), we can either collect a terminal arc or at least 2k deep arcs
when sliding from v as above. In other words, we can charge v (almost uniquely)
either to Θ(k2) low-level vertices (at level O(k)) within W0 or to a low-level terminal
event within W0 or to some other vertex of W0 (that is, to u or to w) which lies at
level at most 4k and has a smaller index. Arguing as above, the number of vertices v
that fall into this case is

O
(
k3nλ5(n) + k2V0

( n

5k

)
+ k4V

(2)
0

( n

4k

))
.

We may thus assume that δ
(2)
r and δ

(2)
b do not meet.

δ
(1)
r

δ
(1)
b

δ
(2)
r

δ
(2)
b

v

Fig. 9. The case in which W0 is a quadrangle.

Suppose, without loss of generality, that the vertex u lies to the left of w. Then

any shallow blue arc δβ that emanates from δ
(1)
r must terminate at a point that lies

to the right of v (regardless of whether it extends to the right or to the left); see
Figure 10. This is due to the fact that these arcs are x-monotone. Let η be the

terminal point of δβ , and let δ
(3)
r �= δ

(1)
r , δ

(2)
r denote the red edge of ∂W0 that contains

η. (The preceding analysis implies that we may assume that all shallow blue arcs

that we have collected do land on a new red edge of ∂W0.) Trace δ
(3)
r from η in the
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increasing x-direction. (Note the two different situations that can arise, where we can

turn from δβ to the traced portion of δ
(3)
r either to the left or to the right.1) By the

analysis just given, we may assume that this portion of δ
(3)
r terminates at a vertex t

of W0, incident to f̃r, f̃b, f̃g, f̃y, which lies to the right of v and is different from
u,w. That is, t is the “missing” third sibling vertex of v that lies to the right of v.

Moreover, the portion of δ
(3)
r between η and t contains no terminal event.

Fig. 10. If u lies to the left of w, a shallow arc emanating from δ
(1)
r must terminate to the

right of v. In (a), we make a left turn from δβ to δ
(3)
r at η, and in (b), we make a right turn. In

both cases, δ
(3)
r has to contain a vertex t of W0 in the direction of our tracing.

Suppose first that w lies to the left of t; see Figure 11. There must exist a red

shallow arc δρ that emanates from δ
(1)
b and does not cross δβ (and it also cannot cross

δ
(1)
r , δ

(2)
r , or δ

(3)
r ). Since δρ is x-monotone, it must terminate at a point η′ to the right

of v, regardless of whether it extends to the right or to the left: the concatenation of

δ
(1)
r , δβ , and δ

(3)
r up to t does not allow δρ to reach points left of v because t lies to the

right of w; see Figure 11. The point η′ lies on some blue edge δ
(3)
b �= δ

(1)
b , δ

(2)
b . Tracing

δ
(3)
b from η′ in the positive x-direction, we may assume that it terminates at a vertex
of W0 (the case of a terminal event can be charged as above), which is necessarily t

itself. Moreover, the portion of δ
(3)
b between η′ and t contains no terminal event. We

now note that the red and blue levels of t are both at most k since the red level of η

and the blue level of η′ are at most k and since there are no terminal events on δ
(3)
r

between η and t and on δ
(3)
b between η′ and t. Thus the combined level of t is O(k).

Since t is of index at most 1 (it lies to the right of w) and is uniquely charged by v,
the number of vertices v in this subcase is O(k2nλ5(n)).

Suppose then that w lies to the right of t. If any shallow red arc that emanates

from δ
(1)
b and does not cross δβ terminates to the right of v, we proceed as in the

case, just treated, where t lies to the right of w. The only way in which this does not

occur is when all these shallow red arcs emanate from δ
(1)
b in the negative x-direction,

starting to the right of t and “bypassing” the concatenation of δ
(1)
r , δβ , and δ

(3)
r up

to t. See Figure 12.
To handle this case, choose another threshold parameter � � k, to be determined

later. If t lies at level at most 5k + 4�, we charge v to t. We note, as above, that the

1Recall that, in the analysis of W0, we refer to the view of this region from above (in the vertical
direction of R

4).
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ζ

v

u

t

δ
(1)
r

η
δ̄
(3)
r

w

δβ

δ
(1)
b

η′δρ

Fig. 11. The case in which w lies to the left of t.

charging is unique and use the fact that the index of t is at most 2 to conclude that

the number of vertices v in this subcase is at most V
(2)
≤5k+4
(n). Our choice of � will

ensure that 5k+4� ≤ 5�, so, using [7], the number of vertices v under consideration is

O
(
�4V

(2)
0

( n

5�

))
.

Assume then that the level of t is > 5k+4�. Then the portion δ̄
(3)
r of δ

(3)
r between

η and tmust contain at least 4� (4-colored) vertices. We now apply a collection process

for blue arcs that emanate from δ̄
(3)
r . The process is very similar to that applied to δ

(1)
r

(and to δ
(1)
b ), except that we redefine the notions of being deep, terminal, or shallow

in terms of the parameter � rather than k. To distinguish between the old and new
notions, we say that an arc is �-deep (resp., �-shallow) if it contains at least � (resp.,
fewer than �) vertices (and so that none of the first � vertices is terminal). If one of
the first � vertices lying on an arc is terminal, the arc is said to be �-terminal. The
old notions are from now on designated, in complete analogy, as k-deep, k-shallow,
and k-terminal.

The collection process on δ̄
(3)
r is therefore as follows. Starting from η, we proceed

along δ̄
(3)
r , taking shortcuts along �-shallow arcs that land back on δ̄

(3)
r , and collect

either 2� �-deep blue arcs or an �-terminal blue arc or 2� �-shallow blue arcs that do

not terminate on δ̄
(3)
r . The starting point of any collected arc is at blue level at most

4k + 4� ≤ 5� and at red level at most k.
A significant technical difference between the two collection processes is that, in

the new process, we do not have the unique charging property that was utilized in the
preceding analysis. Nevertheless, we do have a weaker property that we detail next.

Suppose that we have collected 2� �-deep blue arcs, as just described. See Fig-
ure 12. We thus obtain Θ(�2) vertices along these arcs, all contained in W0 and lying
at combined level 4k + 5� ≤ 6�. We claim that each such vertex q is collected in this
fashion by at most O(k2) vertices v.

Consider such a vertex q, and attempt to trace back from q to determine the
charging vertex v as follows. Proceed from q along the �-deep blue arc δβ′ that contains
q, until the first time we reach a vertex q′ at red level ≤ k. (This will happen either

when we reach δ̄
(3)
r or earlier.) The red surface incident to any charging vertex v

must be one of the ≤ k red graphs that lie below q′. (Clearly, f̃r is one of these
graphs.) Pick any of these graphs, f̃r′ , and continue to trace δβ′ backward until the
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ζ

v

u

t
δβ

δ
(1)
r

w

δ
(1)
b

η
δ̄
(3)
r

q

δρ

Fig. 12. The case in which w lies to the right of t and at a high level. The figure depicts the

subcase in which there are many deep blue arcs emanating from δ̄
(3)
r .

first time it actually intersects f̃r′ . If the stopping point is at red level > k, then r′

is a wrong guess. We thus keep picking candidate graphs in this fashion until, for
one of them, f̃r′′ , the backward tracing of δβ′ reaches f̃r′′ at red level ≤ k. Once this
situation is attained, we trace the red curve γr′′ that we have hit, in the negative
x-direction, until the first time we reach a point ν whose blue level is at most 4k.
(As above, if no such point exists, then r′′ is a wrong guess, and we keep trying with
different candidates f̃r′′′ .) The blue arc incident to a charging vertex v that is incident
to f̃r′′ must then correspond to one of the ≤ 4k blue graphs lying below ν. (f̃b is
clearly one of them when r′′ = r.) Now note that knowing which red and blue arcs
are incident to v determines v uniquely. We have thus shown that there are only
O(k2) possible vertices v that can charge q. Hence, using [7], the number of vertices v
in this subcase is

O(k2) ·O
(
1

�2
V≤6
(n)

)
= O

(
k2�2V0

(
n

6�

))
.

Similarly, if we collect an �-terminal blue arc, the terminal event along it is charged
by at most O(k2) vertices v, and there are O(�2nλ5(n)) such events. The number of
vertices v in this subcase is thus O(k2�2nλ5(n)).

We are left to treat the case in which we have collected 2� �-shallow blue arcs.
Note that their starting points on δ̄

(3)
r are at combined level at most 5k + 4� ≤ 5�.

Trace any such arc δβ′ to its end-point η′, which lies on some red edge of ∂W0, and
at combined level ≤ 6�. Several cases can arise, as depicted in Figure 13.

(a) η′ ∈ δ
(1)
r , and we make a right turn from δβ to δ

(3)
r at η: See Figure 13(a). In

this case, we trace δ
(3)
r from η to the left (in the negative x-direction). Since η lies to

the left of w, it is easily seen that this tracing of δ
(3)
r must reach a local x-minimum

that lies to the right of v. Such cases, however, were ruled out above, where the

number of vertices v for which a terminal event on δ
(3)
r can be reached in this fashion

was bounded by O(k3nλ5(n)) in (1).

(a’) η′ ∈ δ
(1)
r , and we make a left turn from δβ to δ

(3)
r at η: See Figure 13(a’). This
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w
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b
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u
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(d)

v

w
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t

δ(1)r δβ′
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δ
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w

v

u

η′

δβ

δβ′

δ(3)r

δ
(1)

b

(c)

w

v

u

δ
(1)

b

η

δβ

δβ′

η′

δ(1)r

δ(3)r
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η′

η

η′

η
t

δ(1)r

v

w

δ
(1)

b

u

δβ′

δ(1)r

δβ

η

η′

δ(3)r

v

w

u

δ
(1)

b

t
δ(3)r

η

η′ δβ

δβ′

δ(1)r

Fig. 13. Various cases of �-shallow blue arcs that emanate from δ̄
(3)
r .
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case can arise only when δβ′ lands back on δ
(1)
r , between v and δβ , as in Figure 13(a’).

(Otherwise, the component of τr,g,y that contains δ
(3)
r would have been forced to be

bounded: It has to be contained in the region bounded by δβ , δβ′ , δ
(3)
r , and δ

(1)
r ; see

Figure 13(a”). This possibility, however, has already been ruled out, as in case (a)

above.) Observe that there are overall at most 4k arcs δβ′ that land back on δ
(1)
r in

this fashion. Therefore, at least 2�− 4k of the �-shallow arcs emanating from δ̄
(3)
r do

not belong to case (a’).

(b) η′ ∈ δ
(2)
r : See Figure 13(b). This case can arise only when we make a left turn

from δβ to δ
(3)
r at η, or else δ

(3)
r would have to be a bounded component, as in case (a’).

(The configuration would have looked like a “mirror image” of the one depicted in

Figure 13(a”).) Any red k-shallow arc that emanates from δ
(1)
b must then cross either

δβ or δβ′ . At most k of these red arcs can cross δβ , so at least k of them cross each
�-shallow arc δβ′ that falls into case (b). Since any of these k-shallow red arcs can cross

only k blue arcs, it follows that at most k of the �-shallow arcs emanating from δ̄
(3)
r

belong to case (b). Since only at most 4k arcs fall into case (a’), we conclude that
one of the cases (a), (c), or (d) must arise for at least 2�− 5k > � arcs δβ′ .

(c) η′ lies to the left of v. This case cannot arise when we make a right turn from

δβ to δ
(3)
r at η (see Figure 13(c)), for then we could reach, in the opposite direction,

a local x-extremum on δ
(3)
r , as in case (a). However, if we make a left turn at η, as

shown in Figure 13(c’), then δβ′ must leave δ
(3)
r in the positive x-direction, or else

it would have been “trapped” between δ
(1)
b on one side and δ

(1)
r , δβ , and δ

(3)
r on the

other side, which would make it impossible for δβ′ to reach to the left of v. Hence
δβ′ must have a locally x-maximal point before it reaches η′; since this is a terminal
event, this contradicts the shallowness of δβ′ .

(d) η′ lies to the right of v on a new edge δ
(4)
r of ∂W0, different from δ

(i)
r , for

i = 1, 2, 3: See Figure 13(d). In this case, we trace δ
(4)
r from η′ in the positive

x-direction, and we will not reach any vertex of W0. (We have already exhausted all
such vertices to the right of v.) The tracing will thus reach a terminal event. Since η′

lies at combined level at most 5k+5� ≤ 6�, this also bounds the 3-colored level of the
terminal event. Hence, arguing as above, the number of such events is O(�2nλ5(n)),
and each of them is charged by only O(�) vertices v. To see the latter claim, we spell
out, for the sake of completeness, a modified version of a previous argument.

Trace δ
(4)
r back (in either direction, if more than one direction is applicable, as

there may be two choices for r and for δ
(4)
r ) from the terminal event until the first

time we reach a point whose combined level (including the blue level) is at most 6�.
(This will be either at η′ or earlier.) Then any charging vertex v is a vertex incident to
f̃r, f̃g, f̃y, and to some f̃b from the at most 6� blue surfaces that lie below the stopping
point. In other words, the terminal event can be charged by at most O(�) vertices v,
implying that the number of vertices v that fall into this final subcase is O(�3nλ5(n)).

This completes the consideration of all possible situations that arise with vertices v
of index at most 3. Collecting all of the bounds obtained during the analysis of such
vertices leads to the following equation:

V
(3)
0 (n) = O

((
k2�2 + �3

)
nλ5(n)V

(2)
0 (n) + k4V

(2)
0

( n

4k

)

+ k2V
(3)
0

( n

5k

)
+ �4V

(2)
0

( n

5�

)
+ k2�2V

(3)
0

( n

6�

))
,
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which proves the lemma.

3.3. Putting it all together. Recall that in section 3.2 we handled only reg-
ular vertices v. To complete the counting, we have to add the number of irregular

vertices to each of the above bounds on the quantities V
(j)
0 (n). Since there are only

O(nλ5(n)) irregular vertices, this does not affect any of these asymptotic estimates.
Thus, collecting the bounds obtained in Lemmas 3.3–3.5, we obtain the following
recurrence relations:

V
(0)
0 (n) = O(nλ5(n)),

V
(1)
0 (n) = O(nλ5(n)),

V
(2)
0 (n) = O

(
k3nλ5(n) + k2V

(3)
0

( n

5k

))
,

V
(3)
0 (n) = O

((
k2�2 + �3

)
nλ5(n) + V

(2)
0 (n) + k4V

(2)
0

( n

4k

)

+ k2V
(3)
0

( n

5k

)
+ �4V

(2)
0

( n

5�

)
+ k2�2V

(3)
0

( n

6�

))
.

We choose different values of k in the recurrences for V
(2)
0 and for V

(3)
0 and denote them

by k2 and k3, respectively. These values, together with �, are chosen to be sufficiently

large constants satisfying � = k
1/(cε)
3 and k2 = �1/(cε) for an arbitrarily small but

prescribed positive constant ε and for some fixed small positive fraction c. (Note that
this choice of parameters satisfies � � k3, which was needed in our analysis.) We also

require that kε3 be sufficiently large. The recurrence for V
(3)
0 then becomes

V
(3)
0 (n) = O

((
k
cε(2+2cε)
2 + k3cε

2

)
nλ5(n) + V

(2)
0 (n) + k4c2ε2

2 V
(2)
0

(
n

4kc
2ε2

2

)

+ k2c2ε2

2 V
(3)
0

(
n

5kc
2ε2

2

)
+ k4cε

2 V
(2)
0

(
n

5kcε2

)
+ k2cε+2c2ε2

2 V
(3)
0

(
n

6kcε2

))

= O

(
k3+2cε
2 nλ5(n) + k2

2V
(3)
0

(
n

5k2

)
+ k2+4c2ε2

2 V
(3)
0

(
n

20k1+c2ε2

2

)

+ k2c2ε2

2 V
(3)
0

(
n

5kc
2ε2

2

)
+ k2+4cε

2 V
(3)
0

(
n

25k1+cε
2

)

+ k
2cε(1+cε)
2 V

(3)
0

(
n

6kcε2

))
.

As in other works where similar recurrences have been derived (see, e.g., [23]), it
is easy to show, using induction on n, that, with an appropriate choice of c and k2

(where the choice of k2 depends on ε but the choice of c does not), the solution of
this recurrence is

V0(n) = V
(3)
0 (n) = O(n2+ε)
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for any ε, where the constant of proportionality depends on ε. We have thus shown
the following.

Theorem 3.6. The complexity of the Euclidean Voronoi diagram of a set of
n lines in R

3 with four distinct orientations is O(n2+ε) for any ε > 0.

Remark 1. Inspecting the proof of Theorem 3.6, we see that it is fairly general
and does not explicitly use the fact that the sites are lines. It can thus be extended
to the case of the Voronoi diagram of any reasonable collection of sites (of constant
description complexity), which is the union of four subfamilies, under any reasonable
metric in R

3, provided that (i) we have a near-quadratic bound for the complexity
of the diagram of any three of the given families and (ii) any four sites determine at
most eight Voronoi vertices. We strongly suspect that the requirement (ii) can be
dropped. This would require us to handle vertices v that have index x ≥ 4, which
in turn would have made the preceding analysis more complicated, mainly by having
to use additional thresholds for shallowness (like the k and � that we used). Still, it
seems plausible that the analysis could go through.

4. More than four orientations. The case of an arbitrary number c of orienta-
tions is easy to handle by noting that any vertex v of the full Voronoi diagram Vor(L)
is also a vertex of the diagram of the set of all lines whose orientations are equal to the
(at most) four orientations of the lines that are (equally) nearest to v. Let u1, . . . , uc
denote the given orientations. Let Lj , for j = 1, . . . , c, denote the set of lines in L
at orientation uj , and put nj = |Lj |. Then

∑c
j=1 nj = n. Suppose, without loss of

generality, that n1 ≤ n2 ≤ · · · ≤ nc. The number of vertices of Vor(L) is at most∑
i<j<k<l Vijkl, where Vijkl is the number of vertices of Vor(Li ∪ Lj ∪ Lk ∪ Ll). By

Theorem 3.6, Vijkl = O((ni + nj + nk + nl)
2+ε) = O(n2+ε

l ). Hence the complex-
ity of Vor(L) is at most O(

∑
i<j<k<l n

2+ε
l ) = O(

∑c
l=4 l

3n2+ε
l ). As is easily verified,

the maximum value of this latter sum is O(c3n2+ε). We thus obtain the following
theorem, the main result of the paper.

Theorem 4.1. The combinatorial complexity of the Euclidean Voronoi diagram
of n lines in three dimensions, where the lines have 1 ≤ c ≤ n distinct orientations,
is O(c3n2+ε) for any ε > 0.

Corollary 4.2. The combinatorial complexity of the Euclidean Voronoi diagram
of n lines in R

3 that have a constant number of distinct orientations is O(n2+ε) for
any ε > 0.

Remark 2. As shown in [22], the complexity of the diagram in the general
case, without any restrictions on the orientations of the lines (that is, when c = n),
is O(n3+ε). This leads us to conjecture that the bound in Theorem 4.1 can be im-
proved to at least O(cn2+ε) for any ε > 0. The latter bound is consistent with the
result of [22] (when c = O(n)) and with Corollary 4.2 (when c = O(1)) and might
be easier to obtain than a near-quadratic bound like O(n2+ε) for any 1 ≤ c ≤ n.
(Nevertheless, in line with the general conjecture concerning 3-dimensional Voronoi
diagrams, we conjecture that the latter bound does indeed hold independently of c.)

Appendix. In this appendix, we provide a study of the geometric structure of
bisectors and trisectors, which are, respectively, the loci of points equidistant from
two and three lines. This analysis is useful in its own right, but most of the details
are not needed for the main result of this paper.

We begin with the analysis of bisectors, which have also been studied, e.g.,
in [9]. Consider the bisector H
1,
2 between two lines �1, �2 at different orientations.
Without loss of generality, by translating, rotating, and scaling 3-space, we may as-
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sume that �1 and �2 are both horizontal, and �1 (resp., �2) passes through (0, 0, 1)
(resp., (0, 0,−1)) and forms a horizontal angle of α (resp., −α) with the positive
x-direction for α ∈ (−π/2, π/2].

The squared distance of a point (x, y, z) from �1 is

d2((x, y, z), �1) = x2 + y2 + (z − 1)2 − (x cosα+ y sinα)2,

and the squared distance of (x, y, z) from �2 is

d2((x, y, z), �2) = x2 + y2 + (z + 1)2 − (x cosα− y sinα)2.

Hence the equation of H
1,
2 is

x2 + y2 + (z − 1)2 − (x cosα+ y sinα)2 = x2 + y2 + (z + 1)2 − (x cosα− y sinα)2,

or

z = −xy sinα cosα.

This is the equation of a hyperbolic paraboloid. It has two sets of generating lines,
one set consisting of lines parallel to the xz-plane and the other consisting of lines
parallel to the yz-plane. Specifically, lines in the first family have the following form,
parametrized over t ∈ R:

λt : y = − t

sinα cosα
, z = tx.

Similarly, lines in the second family have the form, parametrized over s ∈ R,

λ̄s : x = − s

sinα cosα
, z = sy.

We can project H
1,
2 onto the xy-plane π0 bijectively and note that the generating
lines project to lines parallel to the axes.

Fix a line λt of the first family, having parameter t. Let �3 be a differently oriented
line passing through some point a = (a1, a2, a3) and having direction u = (u1, u2, u3),
which is a unit vector along �3 and is common to all input lines of a fixed color. By
our general position assumption, we may assume that u3 �= 0, i.e., that the direction u
is not coplanar with the directions of l1 and l2. Without loss of generality, we assume
that a · u = 0. The distance between a point w = w(x) on λt, parametrized as
(x,−t/(sinα cosα), tx), and �3 is

d2(w, �3) = ‖w − a‖2 − ((w − a) · u)2 = ‖w − a‖2 − (w · u)2

= (x− a1)
2 +

(
t

sinα cosα
+ a2

)2

+ (tx− a3)
2 −

(
xu1 − tu2

sinα cosα
+ txu3

)2

.

Consider the function

F (x) = d2(w(x), �3)− d2(w(x), �1)

= (x− a1)
2 +

(
t

sinα cosα
+ a2

)2

+ (tx− a3)
2 −

(
xu1 − tu2

sinα cosα
+ txu3

)2

− x2 − t2

sin2 α cos2 α
− (tx− 1)2 +

(
x cosα− t

cosα

)2

.
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Note that F (x) is positive (resp., zero, negative) if the ball centered at w(x) and
touching �1 and �2 is disjoint from (resp., touches, intersects) �3. Hence the locus of
the roots of F (x), as we trace them by varying t from −∞ to +∞, is the trisector
τ
1,
2,
3—the locus of all centers of balls that touch �1, �2, �3 simultaneously.

The function F (x) is quadratic (for any fixed t), and its global behavior along λt
depends largely on the sign of the coefficient of x2, which is

A(t) = 1 + t2 − (u1 + tu3)
2 − 1− t2 + cos2 α = cos2 α− (u1 + tu3)

2.

Hence, if A(t) > 0, then F (x) is convex and is positive at x = ±∞, meaning that
at the extremities of λt the ball touching �1, �2 is disjoint from �3 (we are in the free
region associated with �3), whereas if A(t) < 0, then F (x) is concave, and at the
extremities of λt we are in the intersection region of �3.

In other words, assuming, as above, that u3 �= 0, and, for specificity, that u3 > 0,
we have that A(t) < 0 if and only if |u1 + tu3| > cosα or

t >
−u1 + cosα

u3
or t <

−u1 − cosα

u3
.

The corresponding critical y-values are

yT =
u1 + cosα

u3 sinα cosα
and yB =

u1 − cosα

u3 sinα cosα
,

and we denote the corresponding horizontal critical lines by λ(T ) and λ(B), respec-
tively. (Note that the critical lines depend only on the orientation u of l3.)

We next apply a symmetric analysis to lines in the other family. We obtain that
the critical x-values where the corresponding quadratic function changes from being
convex to being concave are

xR =
u2 + sinα

u3 sinα cosα
and xL =

u2 − sinα

u3 sinα cosα
;

the corresponding vertical critical lines are denoted by λ̄(R) and λ̄(L).
We next claim that, for |t| sufficiently large, the line λt intersects the trisector in

exactly two points. For this, we need to show that the discriminant of the quadratic
equation F (x) becomes positive as |t| tends to ∞.

Write F (x) as A(t)x2 + 2B(t)x+ C(t), where

A(t) = cos2 α− (u1 + tu3)
2,

B(t) = −a1 − a3t+
u2t(u1+tu3)
sinα cosα ,

C(t) = a2
1 +

(
t

sinα cosα + a2

)2
+ a2

3 − t2u2
2

sin2 α cos2 α
− t2

sin2 α cos2 α
− 1 + t2

cos2 α .

As |t| tends to∞, the sign of the discriminant ∆(t) depends only on the coefficients
of t2 in these three expressions. That is, the limit of ∆/t4 is

lim
|t|→∞

B2(t)−A(t)C(t)

t4
= lim

|t|→∞

[(
B(t)

t2

)2

− A(t)

t2
· C(t)

t2

]

=
u2

2u
2
3

sin2 α cos2 α
+ u2

3 ·
(

1

cos2 α
− u2

2

sin2 α cos2 α

)
=

u2
3

cos2 α
> 0.
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That is, for large values of |t|, the trisector τ
1,
2,
3 meets λt at two points w1(t), w2(t).
The asymptotic values of these roots are

lim
|t|→∞

w1,2(t) = lim
|t|→∞

−B(t)±√
∆(t)

A(t)
= lim

|t|→∞
−B(t)/t2 ±√

∆(t)/t4

A(t)/t2

=
− u2u3

sinα cosα ± u3

cosα

−u2
3

=
u2 ± sinα

u3 sinα cosα
.

That is, w1(t) and w2(t) tend to xL and xR, respectively.
Symmetrically, there always exist two intersection points of τ
1,
2,
3 with the

lines λ̄s, as |s| tends to ∞, and their limits are at the ordinates yB and yT .
We have thus shown that any sufficiently large circle intersects the trisector at

eight points. We denote the points “at infinity” that lie on the vertical critical lines
λ̄(L), λ̄(R) as vLB , vLT , vRB , vRT , where vLB (resp., vLT ) is the bottom (resp., top) end
of λ̄(L), and similarly for the other two points. The points at infinity on the horizontal
lines are denoted, in a similar manner, as hLB , hLT , hRB , hRT . See Figure 14(a) for
an illustration.

Assuming that the trisector is nonsingular, it has exactly four unbounded com-
ponents, each connecting two of these points at infinity. We next proceed to classify
the structure of these components.

The function F (x) becomes linear along each of the horizontal critical lines
λ(T ), λ(B), and thus each of these two critical lines is intersected by the trisector
exactly once; symmetrically, this also holds for λ̄(L), λ̄(R). Number the eight points
at infinity in a cyclic order. Then it is clear that each odd-numbered point must
be connected to an even-numbered point, since the components of the trisector are
disjoint. Hence, vLT can be connected to hLT , vLB , hRB , or to vRT , and similarly for
the other points at infinity.

Consider the second case, in which vLT is connected to vLB via one component γ1

of the trisector. This component crosses the two critical horizontal lines λ(B), λ(T )

(each exactly once). In this case, no other component of the trisector can intersect
any of these lines, so each of the remaining three components is fully contained in
one of the three horizontal slabs delimited by λ(B) and λ(T ), and each of these slabs
contains exactly one such component. It then follows that these components must
connect hLT to hLB , vRT to hRT , and vRB to hRB . Moreover, γ1 must cross λ̄(L)

(exactly once), and one of the two components on the right must cross λ̄(R) (exactly
once). Hence the trisector has a shape similar to that shown in Figure 14(b).

Consider next the third case, in which vLT is connected to hRB via one compo-
nent γ1 of the trisector. Another component, γ2, must connect vRT to hRT . We have
two subcases.

In the first subcase, hLT is connected to vRB , and hLB is connected to vLB . In
this case, none of the components can cross any of its asymptotes. See Figure 14(a).

In the second subcase, hLT is connected to hLB , and vLB is connected to vRB .
In this case, we must allow each of the lines λ(B), λ̄(L) to be crossed (once) by some
component. See Figure 14(c). This figure depicts one of several possible subcases,
depending on which component crosses which critical line. In Figure 14(c) the compo-
nent connecting vLT to hRB crosses all four critical lines, but it might also be possible
for this component to cross only λ(T ) and λ̄(R) or to cross just one more critical line
and let the left and/or bottom components cross the other one or two critical lines
(in a manner similar to that of the top-right component in Figure 14(b)).
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(a) (b)

(c)

(d) (e)

vLT vRT

hLT

hLB

vLB vRB

hRB

hRT

λ(B)

λ(T )

λ̄(L)

λ̄(R)

Fig. 14. The various possible structures of a trisector.
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If none of the above cases occur, including their various symmetric variants, then
each end of each critical line must be connected to one of its two neighbors in the
above cyclic order. Only two cases are possible.

In the first subcase, hLT is connected to hLB , vLB is connected to vRB , hRT is
connected to hRB , and vLT is connected to vRT . As above, we must let some of these
components cross some of their asymptotes to ensure that each of the four critical
lines is crossed once by the trisector. See Figure 14(d), which, as above, depicts just
one of several possible subcases.

In the second subcase, hLT is connected to vLT , hLB is connected to vLB , hRT is
connected to vRT , and hRB is connected to vRB . Again, we must let some of these
components cross some of their asymptotes. One of several possible such configura-
tions is shown in Figure 14(e).

We also note that each trisector is an algebraic curve of degree 4. By Harnack’s
theorem [13], the number of components of a real nonsingular algebraic plane curve
of degree d is at most (d − 1)(d − 2)/2 + 1. Hence the number of components of
each trisector is at most 3 · 2/2 + 1 = 4. Since it has exactly four unbounded compo-
nents, we conclude that these are all the components of the trisector. In particular,
no component of any trisector is bounded. This completes the classification of the
trisectors.

Remark 3. We conjecture that, up to symmetry, only trisectors of the kind shown
in Figure 14(b) are possible. A program that we have written to explore the structure
of trisectors has revealed only trisectors of this kind, after several tens of thousands
of tests with randomly generated lines.
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