
Pruning Planes in Megiddo's 3-Dimensional LP algorithm

Geometri
 Optimization

April 22, 2002

We re
all the situation studied in 
lass: We have 
onstraints of the form z � a

i

x+ b

i

+ 


or z � a

i

x+ b

i

+ 
 (let's ignore other types of 
onstraints for now), and we want to �nd the

minimum z

�

of the z-
oordinates of points in the feasible region K.

We have a de
ision pro
edure that 
ompares z

�

with any given value z

0

. It does so

by running a \1-dimensional LP" algorithm on a line y = y

0

within the plane z = z

0

,

determining whether the given halfspa
es, when restri
ted to this line, have a nonempty

solution.

Figure 1: Example

We want to 
onsider a generi
 simulation of this pro
edure on the unknown plane z = z

�

and on the unknown line y = y

�

within this plane, whi
h 
ontains the lowest point of K.

(If we assume general position, this is the only feasible point on this line and plane).

Let us assume that we have a generalization of our de
ision pro
edure that 
an also

determines on whi
h side of an arbitrary plane the optimum lies. (I skip here details of su
h

a pro
edure|not too hard to �ll in.)

Consider a halfspa
e, say z � a

i

x+ b

i

+ 


i

. Its interse
tion with the line z = z

�

, y = y

�

is the ray

z

�

� a

i

x+ b

i

y

�

+ 


i

:

Assuming that a

i

> 0, we get the ray

x �

�b

i

y

�

+ z

�

� 


i

a

i

:

Re
all that we have to 
ompute the maximum of the left endpoints of all rightward-dire
ted

su
h rays, and the minimum of the right endpoints of all leftward-dire
ted rays. To do

1



Figure 2: Example

this with a parallel algorithm, we simply 
ompare pairs of left endpoints, and pairs of right

endpoints, n=2 pairs in total. Ea
h su
h 
omparison 
ompares two expressions of the form

�b

i

y

�

+ z

�

� 


i

a

i

:

�b

j

y

�

+ z

�

� 


j

a

j

;

whi
h amounts to determining the sign of some linear expression

�

ij

y

�

+ �

ij

z

�

+ 


ij

:

If we proje
t this onto the yz-plane, we obtain a 
olle
tion of lines �

ij

y + �

ij

z + 


ij

= 0,

and we need to determine the side of ea
h of them that 
ontains the optimum (y

�

; z

�

).

Figure 3: Example

Here Megiddo uses the following tri
k.

(a) Find the median of the slopes of these lines. Rotate the yz-plane, so that half of these

lines have positive slopes and half have negative slopes.

(b) Pair the lines, so that in ea
h pair we have one line with a positive slope, and one

with a negative slope. Find the interse
tion points of these pairs of lines. (We have n=4

points.)

2



Figure 4: Example

Figure 5: Example

(
) Find the median z

m

of the z-
oordinates of the interse
tion points. Test whether z

�

is larger or smaller than z

m

. Suppose, without loss of generality, that z

�

> z

m

.

(d) Find the median y

m

of the y-
oordinates of those interse
tion points, whose z-
oordinate

lie on the other side of z

m

(in the 
urrent 
ase, on the side z < z

m

). Test whether y

�

is

larger or smaller than y

m

(using the generalized de
ision pro
edure that we have assumed

above). Suppose, without loss of generality, that y

�

> y

m

.

(e) Now look at the points whose z- and y-
oordinates both lie in the `wrong' sides; that

is, z < z

m

and y < y

m

. Let p be su
h a point, the interse
tion of `

+

with a positive

slope and of `

�

with a negative slope. Observe that we know whi
h side of `

�


ontains the

optimum (it is the top-right side). Sin
e `

�

itself was a line with the propert that for ea
h

point (y

�

; z

�

) on it, the values of two endpoints of two spe
i�
 rays on the line y = y

�

in

the plane z = z

�


oin
ide, it follows that we now know that one of these endpoints must

lie to the left of the other at the optimum value (y

�

; z

�

), so we 
an delete one of the rays

without a�e
ting the result of the generi
 de
ision pro
edure.

Note that, after step (
) we have n=8 points and after step (d) we have n=16 points. In

step (e), for ea
h of these remaining points, we throw away one halfspa
e. So we managed

to delete n=16 
onstraints, and we 
an stop the whole pro
ess and restart it from s
rat
h

with the remaining 15n=16 
onstraints.

3



Figure 6: Example

Altogether, everything 
an be implemented in linear time, so the whole algoroithm also

takes linear time (as we argued for the 2-dimensional 
ase in the basi
 
ourse).

Figure 7: Example

4


