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LINE TRANSVERSALS OF CONVEX POLYHEDRA IN R
3∗
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Abstract. We establish a bound of O(n2k1+ε), for any ε > 0, on the combinatorial complexity
of the set T of line transversals of a collection P of k convex polyhedra in R3 with a total of n facets,
and we present a randomized algorithm which computes the boundary of T in comparable expected
time. Thus, when k � n, the new bounds on the complexity (and construction cost) of T improve
upon the previously best known bounds, which are nearly cubic in n. To obtain the above result, we
study the set T�0 of line transversals which emanate from a fixed line �0, establish an almost tight
bound of O(nk1+ε) on the complexity of T�0 , and provide a randomized algorithm which computes
T�0 in comparable expected time. Slightly improved combinatorial bounds for the complexity of T�0
and comparable improvements in the cost of constructing this set are established for two special
cases, both assuming that the polyhedra of P are pairwise disjoint: the case where �0 is disjoint from
the polyhedra of P, and the case where the polyhedra of P are unbounded in a direction parallel
to �0. Our result is related to the problem of bounding the number of geometric permutations of a
collection C of k pairwise-disjoint convex sets in R3, namely, the number of distinct orders in which
the line transversals of C visit its members. We obtain a new partial result on this problem.
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1. Introduction.
Line transversals—a brief background. In this paper we study the combinatorial

complexity of the set of line transversals of a collection of convex polyhedra in R
3.

This is a special case of the general study of line transversals to a collection of convex
sets in R

d, for any d ≥ 2, a topic that has been extensively studied for several decades;
see the survey papers [18, 28, 34].

Let P be a family of k convex sets in R
3. A line � is a transversal of P if it intersects

every member of P . The set of all line transversals of P is called the transversal space
(or stabbing region) of P and is denoted by T (P). Lines in R

3 have four degrees of
freedom, and they can be represented as points in an appropriate projective 4-space,
called the Grassmannian manifold [11, 32]. For simplicity (and with some care), we
will represent them as points in R

4. Thus T (P) is a subset of R4, and we define its
combinatorial complexity as the total number of topological faces, of all dimensions,
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forming the boundary of T (P). (If the combinatorial complexity of the individual
members of P is not constant, as is the case in this paper, the complexity of the
individual faces of ∂T (P) need not be constant either, and we need to take this into
account in the complexity bound of T (P). A more detailed definition and analysis
for the case at hand are given later in the paper.)

A standard reduction leads to a representation of T (P) as a region (a “sandwich”
region) in R

4, enclosed between the lower envelope and the upper envelope of two
collections of surfaces, describing upper and lower tangencies to each member of P ;
see, for example, [2, 24] for a description of this reduction, a special case of which is
described below. When P is a set of convex polyhedra, the surface of line tangents
to any P ∈ P is decomposed into patches, each representing tangents to P at a fixed
edge of P . The boundary vertices of T (P) correspond to extremal stabbing lines,
which are transversals of P that (i) are tangent to some polyhedra of P at specific
edges or vertices, and (ii) cannot be continuously moved while continuing to touch
the same edges and vertices of those polyhedra. As we will later note, the worst-case
combinatorial complexity of T (P) is bounded by the maximum number of vertices of
T (P), so it suffices to bound the latter quantity.

Any upper bound on the maximal combinatorial complexity of T (P) also serves
as a natural upper bound on the maximal number of connected components of T (P)
(and, aposteriori, also on the number of geometric permutations of P , as defined in
the abstract, assuming that its elements are pairwise disjoint).

In the planar case, the complexity of T (P), when the elements of P are pairwise
disjoint, is O(k) (see, e.g., [15]), but can be Ω(n) otherwise, where n is the total
description complexity of the objects of T , with an almost matching slightly super-
linear upper bound (in n); see [30, section 8.2.1] and [14] (e.g., when the objects of
P are convex polygons, and n is the overall number of their edges, the complexity of
T (P) is O(nα(n)), where α(n) is the slowly growing inverse Ackermann function). In
the three-dimensional case, the complexity of T (P) depends on n, even if the elements
of P are pairwise disjoint (see, e.g., [9]).

Consider first the case where P is a set of convex polyhedra, with a total of n
facets. The first algorithms for computing T (P) in this case run in time about O(n4)
[8, 25]. Pellegrini and Shor [27] establish an upper bound of O(n3+ε), for any ε > 0,
on the complexity of T (P) and describe an algorithm for computing the boundary
vertices of T (P), with a comparable running time. Agarwal [1] improves the upper
bound for the complexity of T (P) to O(n3 logn).

When the sets in P are semialgebraic of constant description complexity1 (for
example, if the sets in P are balls, or tetrahedra), the complexity of T (P) is O(n3+ε),
for any ε > 0, as follows from the general and more recent result of Koltun and
Sharir [24] on the complexity of sandwich regions of trivariate functions.2 In R

3

there are almost matching lower-bound constructions of n triangles in R
3, showing

that the complexity of T (P) can be Ω(n3); see [2, 26]. However, for the number of
connected components of T (P), the best known lower bounds are Ω(n2), or Ω(nd−1)
in d dimensions [31]. Narrowing this gap, even for restricted families of objects, is an
intriguing open problem already for d = 3 dimensions.

These are the best general known bounds on the complexity of T (P), but there
are some improved bounds in restricted cases: Aronov and Smorodinsky [7] proved

1That is, each set is a semialgebraic set defined by a Boolean combination of a constant number
of polynomial equalities and inequalities of constant maximum degree.

2It is indeed stated in [24] as a corollary.
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that when restricting the transversals to pass through a fixed point, the transversal
space has a maximum of Θ(kd−1) components for any collection P of k (not neces-
sarily pairwise disjoint) convex sets in R

d. Brönnimann et al. [10] gave a complete
description of the transversal space of k segments in R

3. In this case the transversal
space consists of a maximum of k connected components.

If the objects in P are pairwise disjoint, a line transversal meets them in a well-
defined order, called a geometric permutation. Another line of research, initiated
by Katchalski, Lewis, and Liu [21], studies the maximum possible number gd(k) of
geometric permutations of a set P of k pairwise disjoint convex objects in R

d. The
known bounds on gd(k) in the general case are as follows: g2(k) = 2k − 2 (see [15]),
gd(k) = O(k2d−2), d ≥ 3 (see [33]), and gd(k) = Ω(kd−1), d ≥ 3 (see [22, 31]). A tight
bound of Θ(kd−1), for all d ≥ 1, is achieved in several special cases such as pairwise
disjoint balls [31] and families of fat objects [23].

Consider now the special case studied in this paper where P is a collection of
k convex polyhedra in R

3 with a total of n facets. One of the most relevant pre-
decessors of this paper is a recent paper of Brönnimann et al. [9], who prove that
the entire arrangement A∗ of surfaces (in parametric 4-space) describing upper and
lower tangencies to the individual polyhedra of P has complexity O(n2k2), and this
bound is tight in the worst case. They also describe a deterministic algorithm which
computes the combinatorial description of A∗ in comparable time. Each cell in A∗

corresponds to a maximal connected set of lines which stab the same subset of P . In
particular, T (P) is equal to the union of all the cells in A∗(P) whose stabbed subset
is the entire P .

Efrat et al. [16] assume that the polyhedra in P are pairwise disjoint and consider
the restricted space L of lines that pass through a fixed line �0. They prove that the
set of all lines in L which stab at least one polyhedron in P (alternatively, the set of
all lines in L which miss all the polyhedra of P) has combinatorial complexity O(nk2),
and this bound is tight in the worst case. When the polyhedra in P are unbounded in
the �0-negative direction, the bound improves to O(nk2α(k)); see [16] for more details.

Other studies consider ray shooting amid such a collection of polyhedra and obtain
performance bounds that depend on both k and n; see [4, 20]. The latter study [20],
by the present authors, considers the scenario where the rays along which one shoots
are constrained to lie on lines that pass through a fixed line �0 and describes a data
structure which answers ray-shooting queries in polylogarithmic time and requires
storage which is near-linear in n.

Our contribution. We consider an arbitrary collection P of k convex polyhedra in
R

3, with a total of n facets, and derive an upper bound of O(n2k1+ε), for any ε > 0,
on the complexity of T (P). We provide a randomized (Las Vegas) algorithm for
computing a description of the boundary of T (P), with comparable expected running
time. We also present a lower bound construction of such a collection P for which
T (P) has complexity Ω(n2 + nk2).

To achieve the general upper bound on the complexity of T (P), we focus on the
restricted case where we consider only lines which pass through a fixed line �0, and we
study the resulting stabbing region T�0(P) := T (P) ∩ L, where L = L�0 is the space
of these restricted lines. Unlike the general case of lines in 3-space, which have four
degrees of freedom, lines in L have only three degrees of freedom, and we represent
them as points in an appropriately parametrized three-dimensional space. The overall
bound is obtained by repeating this analysis for all the O(n) lines �0 which contain
polyhedra edges.
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The combinatorial complexity of T�0(P) is dominated by the number of vertices
of T�0(P ), which are formed by intersections of triples of tangency surfaces and hence
represent extremal stabbing lines which pass through �0 and are tangent to three
distinct polyhedra of P (as we will argue later, the number of all other features of
T�0(P ) is proportional to nk plus the number of these vertices). We show that the
combinatorial complexity of T�0(P) is O(nk1+ε), for any ε > 0, and that the bound-
ary representation of T�0(P) can be computed in comparable randomized expected
time. To appreciate this bound, we note that the standard representation of T (P)
as a sandwich region between a lower envelope and an upper envelope also holds in
the case of T�0(P), except that here the envelopes are of bivariate functions. There
are only k functions in each collection, where each function represents an upper tan-
gency or a lower tangency to some fixed polyhedron in P , but their graphs do not
have constant description complexity—each graph is partitioned into patches, each
representing tangency at some fixed edge of the respective polyhedron. We can thus
regard the sandwich region as being formed by a total of O(n) partially defined bivari-
ate functions, each now of constant description complexity, so by the results of [3, 24],
the complexity of the stabbing region is O(n2+ε) for any ε > 0. Our contribution is
thus in making this bound depend also on k, so that it becomes only linear in n; this
is a significant improvement when k � n.

We also consider a pair of restricted instances of the problem, both of which
assume that the polyhedra of P are pairwise disjoint. In the first case, when the poly-
hedra of P are disjoint from �0, our general analysis easily implies that the complexity
of the stabbing region is only O((nk + k3)β4(k)), where

3 β4(k) = 2α(k) and α(k) is
the extremely slowly growing inverse Ackermann function. In the second case, when
all the polyhedra in P are unbounded in a direction parallel to �0, we improve the
upper bound on the stabbing region to O(nkβ4(k)). In this case, the sandwich region
degenerates to the region above the upper envelope of the lower tangency functions
or, symmetrically, to the region below the lower envelope of the upper tangency func-
tions. The improved bound then follows by showing that the complexity of a single
envelope, rather than of a sandwich region between two envelopes, is only O(nkβ4(k)).
(This bound holds regardless of whether the polyhedra are unbounded or not, but it
requires them to be pairwise disjoint.) In both special instances, the stabbing region
within L can be computed in deterministic time, asymptotically close to its worst-case
complexity.

We also show that, for any collection P of k pairwise disjoint convex objects in R
3,

one of which is a line, the number of geometric permutations of P is O(k3). A naive
bound on this number is O(k4) (which is the general bound mentioned above [33]).
In the special case where P is a pairwise disjoint collection of convex polyhedra (all
disjoint from �0), the number of geometric permutations of P induced by lines in L
(i.e., the number of geometric permutations of P ∪ {�0}) is O(min{k3, nk1+ε}), for
any ε > 0, where the second term follows from the fact that the number of geometric
permutations is always upper bounded by the complexity of T (P ). We also apply
our general O(nk1+ε) bound on the complexity of T�0(P) to obtain an upper bound
of O(k3+ε), for any ε > 0, on the number of geometric permutations of a collection
P of k pairwise disjoint convex objects, induced by lines passing through some fixed
line �0. The advantage of this seemingly weaker bound is that it does not require �0
to be disjoint from all of the objects of P . Still, the only known lower bound on this

3The reason for the index 4 is that β4(k) = Θ(λ4(k)/k), where λ4(k) is the maximum length of
Davenport–Schinzel sequences of order 4 on k symbols; see [30] and below.
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Fig. 1. Representing an oriented line � ∈ L. The plane Πθ(�) contains �, (θ(�), ϕ(�)) are the
spherical coordinates of the orientation vector of �, and z(�) = � ∩ �0 is the z-intercept of �.

quantity is Ω(k2), and it would be very interesting to show that this is also an upper
bound in the special case of collections of pairwise disjoint convex objects in R

3, one
of which is a line. See section 7 for details.

2. Preliminaries. Let P = {P1, . . . , Pk} be a collection of k convex polyhedra
in R

3 with a total of n facets, and let �0 be a fixed line. Without loss of generality,
we take �0, for the time being, to be the z-axis.4

Let L = L�0 denote the space of all lines that pass through �0 (other than �0
itself). Lines in L have three degrees of freedom, and we represent each (directed)
line � ∈ L by a triple (θ(�), ϕ(�), z(�)), where z(�) is the z-coordinate of the intercept
of � at �0 and (θ(�), ϕ(�)) are the spherical coordinates of the orientation of �. Clearly,
all lines � with θ(�) = θ lie in the plane through �0 at xy-orientation θ; we denote
this plane by Πθ. See Figure 1. The intersection of Πθ with a polyhedron P is the
polygon P (θ) = P ∩ Πθ (if it is not empty).

We define, for each polyhedron P ∈ P , a pair of (partial) bivariate functions σ+
P

and σ−
P over the θϕ-domain, so that σ−

P (θ, ϕ) (resp., σ+
P (θ, ϕ)) is the z-intercept (at

�0) of the line whose orientation has spherical coordinates (θ, ϕ) and which is tangent
to P from below (resp., above).

For each P ∈ P , the graphs of σ+
P and σ−

P are (θ, ϕ)-monotone surfaces, rep-
resenting tangents to the upper and lower portions of ∂P , respectively. With an
appropriate reparametrization (e.g., replacing θ with tan θ

2 and ϕ with cot ϕ
2 ), each

surface σ−
P (resp., σ+

P ) consists of monotone semialgebraic surface patches, each of
which is a graph of a partially defined function, representing lower (resp., upper)
tangents to P at a fixed edge of its lower (resp., upper) boundary. For simplicity of
presentation, we continue to use the coordinates θ, ϕ.

The set T�0(P) of all transversals to P (in L) is then the sandwich region

{
(θ, ϕ, z) ∈ L | max

P∈P
σ−
P (θ, ϕ) ≤ z ≤ min

P∈P
σ+
P (θ, ϕ)

}
(2.1)

between the upper envelope EU = maxP∈P σ−
P of the functions σ−

P and the lower
envelope EL = minP∈P σ+

P of the functions σ+
P .

Following [9, 27] (see also the introduction), we define an extremal line to be
a line � ∈ L tangent to some polyhedra of P at a set A of respective vertices and

4Later, in section 3, we will use a separate coordinate system attached to each edge of every
polyhedron in P.
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edges, so that � cannot be continuously moved (within L) while remaining transversal
to the elements of A. An extremal stabbing line is an extremal line, which is also a
transversal of P . Every vertex of T�0(P) corresponds to an extremal stabbing line; see,
e.g., [27]. Assuming �0 is not coplanar with any facet or edge of any polyhedron of P ,
the converse statement also holds. Namely, each extremal stabbing line corresponds
to a vertex of T�0(P); see a discussion of this issue in the end of section 3.

The following theorem was proven by Brönnimann et al. [9]; see also [20].
Theorem 2.1. Let P and Q be two convex polyhedra in R

3, having nP and nQ

facets, respectively. Then the arrangement of the tangency surfaces σ+
P , σ

−
P , σ

+
Q, and

σ−
Q has combinatorial complexity O(nP + nQ), and it can be computed in O((nP +

nQ) log(nP +nQ)) time. In particular, the combinatorial complexity of T�0({P,Q}) is
O(nP + nQ), and it can be computed in (deterministic) O((nP + nQ) log(nP + nQ))
time.

Henceforth, we assume that the polyhedra of P and �0 are in general position. In
particular, at most three edges, or a vertex and an edge of the given polyhedra, can
admit a common transversal through �0, no edge of any polyhedron is coplanar with
�0 or with an edge of another polyhedron, and no facet of any polyhedron contains a
vertex of another polyhedron. In addition, we assume that lines containing polyhedra
edges are in general position, in the sense that at most three of these lines can lie
in a common regulus (see [32] and below). In particular, any four of these lines
admit at most two common transversal lines [32]. This assumption involves no loss of
generality, because, as we will show toward the end of section 3, the bounds obtained
under this assumption continue to hold also for collections of polyhedra which are not
in general position.

We say that a vertex or an edge ξ of ∂T�0(P) is defined by a set of polyhedra
P ′ ⊂ P if P ′ is a minimal set of polyhedra such that ξ is present in ∂T�0(P ′). Assuming
general position, each vertex v of ∂T�0(P) is defined by a unique set of between one and
three polyhedra. By Theorem 2.1, any two polyhedra P,Q ∈ P , having, respectively,
nP and nQ facets, define O(nP + nQ) features of ∂T�0(P), each of which is the locus
of lines tangent to P and Q at a fixed number (at most three) specific boundary edges
and vertices. Summing over all pairs of polyhedra in P , we obtain a bound of O(nk)
on the number of features of this kind defined by at most two polyhedra. Any other
feature is incident to at least one vertex of T�0(P) and can be charged to it, so that
each vertex is charged by only O(1) incident features of T�0(P).

Therefore, it is sufficient to bound the number of vertices of ∂T�0(P) which are
defined by three polyhedra; each such vertex is an extremal stabbing line (in L) which
is a common tangent to three polyhedra of P , at (the relative interiors of) three edges,
one of each polyhedron. The additional complexity O(nk) will be subsumed in the
bound that we will obtain for the latter kind of vertices.

Let P and Q be a pair of polyhedra of P , and let ζ be a boundary edge of
T�0({P,Q}), contained in the common intersection of two semialgebraic patches σe, σe′ ,
where σe (resp., σe′ ) is contained in σ+

P ∪σ−
P (resp., σ+

Q ∪σ−
Q) and represents oriented

lines (in L) tangent to P (resp., Q) at e (resp., e′). That is, ζ represents (i.e., is the
trace of) a maximal connected set of lines that are tangent to P at e and to Q at e′.
Note that ζ is a connected portion of the locus of lines that pass through three fixed
lines, namely, �0, and the two lines supporting e and e′, respectively. In general posi-
tion, this locus is commonly referred to as a regulus, whose lines have only one degree
of freedom and trace (a portion of) a ruled surface in R

3, which is either a hyperbolic
paraboloid or a 1-sheeted hyperboloid; see [11, 32] for more details on reguli.
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In the restricted context of this paper, a regulus denotes a maximal connected set
of oriented lines in L that are tangent to two fixed polyhedra of P at two fixed edges,
one of each polyhedron. In particular, each regulus represents some boundary edge
of T�0({P,Q}) for some pair of distinct polyhedra P,Q ∈ P . Theorem 2.1, together
with the follow-up discussion, imply that the polyhedra of P define a total of O(nk)
such reguli.

Transversals parallel to a fixed plane. Let h be a fixed plane in R
3. Denote by Lh

the space of lines passing through �0 and parallel to h. Clearly, lines in Lh have only
two degrees of freedom, and if h is generic (i.e., it is not parallel to any extremal line
in L that is tangent to three polyhedra in P), any extremal stabbing line within Lh

is tangent to at most two polyhedra at a corresponding pair of edges. We establish
the following lemma, which we need in our analysis.

Lemma 2.2. Let h be a fixed plane in R
3. Then the number of extremal stabbing

lines of P within the space Lh, as defined above, is O(nβ4(k)) = O(n · 2α(k)).
Proof. Assume first that h is not parallel to �0. Then lines in Lh can be

parametrized by their two coordinates (θ, z), where the third coordinate ϕ = ϕh(θ)
depends only on θ. Hence, using (2.1), the stabbing region of P within Lh is the set

{
(θ, z) | max

P∈P
σ−
P (θ, ϕh(θ)) ≤ z ≤ min

P∈P
σ+
P (θ, ϕh(θ))

}
.

That is, the transversal space within Lh is the sandwich region between the lower
envelope of the k univariate functions σ+

P (θ, ϕh(θ)) and the upper envelope of the
k univariate functions σ−

P (θ, ϕh(θ)) for P ∈ P . The graphs of these functions are
(connected and) piecewise smooth, where each piece represents lines tangent to some
specific polyhedron at some specific edge of its boundary. The overall number of these
pieces (subarcs) is thus O(n), and any pair of them intersect at most twice. Indeed,
any such intersection represents a line � in L, parallel to h, which intersects the two
polyhedra edges e1 and e2 corresponding to those subarcs. Hence, � is a line that
passes through �0, the two lines containing e1 and e2, and the line at infinity in h.
Assuming general position, there are at most two such lines � [32] (see also [10]).

Consider next the case where h is parallel to �0. We can assume that h contains �0,
and thus equals to a plane Πθh , for some fixed 0 ≤ θh ≤ 2π. That is, the transversal
space within Lh is the sandwich region between the lower envelope of the k univariate
functions (of ϕ) σ+

P (θh, ϕ) and the upper envelope of the k functions σ−
P (θh, ϕ) for

P ∈ P . Again, the graphs of those functions are connected and piecewise smooth,
where each piece represents lines tangent to some specific polygon P (θh) at some
specific vertex of its boundary; in this case any pair of these pieces intersect at most
once—the intersection corresponds to the unique line in Πθh that passes through the
two respective vertices. See [20] for a similar analysis. The overall number of these
pieces is, as above, O(n).

In both cases, the lemma follows from the upper bound on the complexity of
the sandwich region defined by O(k) piecewise-smooth connected curves in R

2, which
are composed of a total of O(n) algebraic arcs, each pair of which intersect at most
twice. Recalling our definition of β4(k), this bound is O(nkλ4(k)) = O(nβ4(k)), where

λ4(k) = Θ(k ·2α(k)) is the maximum length of Davenport–Schinzel sequences of order
4 on k symbols; see [30, Theorem 1.4].

Separating convex bodies in R
3. We denote by S

2 the unit sphere in 3-space
centered at the origin. For each oriented line � in 3-space, we denote its orientation
by �d(�) and represent it as a point on S

2, with spherical coordinates (θ(�), ϕ(�)). For
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a plane h ⊂ R
3, we denote by Ch ⊂ S

2 the great circle obtained by intersecting S
2

with the plane parallel to h through the origin; equivalently, Ch is the locus of all
orientations on S

2 that are parallel to h. The following (easy) lemma has been proven
by Wenger [33].

Lemma 2.3. Let P and Q be a pair of disjoint convex bodies in R
3, and let h be

a plane which separates them. Then Ch partitions S
2 into a pair of hemispheres S

+
h

and S
−
h such that, for any (oriented) common transversal � of P and Q, � stabs P

before (resp., after) Q if and only if �d(�) ∈ S
+
h (resp., �d(�) ∈ S

−
h ).

3. The complexity of T�0(P). We first establish Theorem 3.1 that bounds
the complexity of T�0(P). In order to get the bound on the complexity of T�0(P) to
depend on k, we reduce the global problem, involving a sandwich region in the three-
dimensional space L, to a collection of two-dimensional problems. The difficulty is
that a naive reduction of this sort yields subproblems in which the relevant portion
of T�0(P) is not a sandwich region. Our solution uses a more involved approach to
ensure that the resulting subproblems do have a sandwich structure, but this requires
a more careful and somewhat intricate analysis.

Theorem 3.1. Let P be a set of k convex polyhedra in R
3 with a total of n facets,

and let �0 be a fixed line. Then the space T�0(P) of line transversals to P in L = L�0

has combinatorial complexity O(nk1+ε) for any ε > 0.
The bound is almost tight; below we show how to construct collections of k convex

polyhedra in general position, with a total of n facets, for arbitrarily large values of
k and n, and a line �0 in general position with respect to P for which the number of
extremal stabbing lines, as above, is Ω(nk).

In addition, the proof given below assumes general position of �0 and P , as defined
in section 2. Later, toward the end of this section, we will explain how to extend this
theorem to degenerate configurations.

Proof. For each polyhedron P ∈ P and each connected component C of �0 \P , we
choose a single plane that separates C from P (there are at most two such components,
and therefore at most two corresponding planes are chosen; if �0 ∩ P = ∅, we choose
a single separating plane which is parallel to �0). See Figure 2 for an illustration. Let
H be the resulting set of at most 2k separating planes. These planes intersect �0 in
at most 2k points, partitioning it into a collection I of up to 2k + 1 open “atomic”
intervals, so that, for each interval I ∈ I and for each polyhedron P ∈ P , either I is
fully contained in P or I is disjoint from P .

Let CH denote the collection of the great circles Ch ⊂ S
2, for h ∈ H , as defined

in the previous section, and let A(CH) denote the arrangement that they form on the
sphere S

2. The construction and Lemma 2.3 imply that for each cell D of A(CH)

C2

h1

P

h2

C1

0

Fig. 2. We separate the components C1 and C2 of �0 \P by the planes h1 and h2, respectively,
each containing a facet of P .
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e0

0

Π̃θ

θ = θ( )
P0

0(θ)

ϕ( )

e0

P̃ (θ)

Π̃θ

ϕ−(θ)

e00(θ)

ϕ+(θ)
P̃ (θ)

Fig. 3. Representing lines in L[e0]: A side view (left), and the cross-section within the plane
Π̃θ (right).

and for each I ∈ I, there exists a partition of P into three subsets P0 = P0(D, I),
P− = P−(D, I), and P+ = P+(D, I) with the following property. For any oriented
stabbing line � ∈ L which emanates from a point on I and has orientation in D, the
point q = � ∩ �0 lies in P if P ∈ P0, before � ∩ P along (the oriented) � if P ∈ P−,
and after � ∩ P along (the oriented) � if P ∈ P+.

As mentioned above, it is sufficient to bound the number of extremal stabbing
lines to P in L that are tangent to some three polyhedra in P at three respective
edges. We now fix an edge e0 on the boundary of some polyhedron P0 ∈ P , and
we denote by L[e0] the set of oriented lines which pass through �0 and are tangent
to P0 at (the relative interior of) e0. (Assuming general position of P and �0, we
can exclude extremal stabbing lines that pass through one of the endpoints of e0 or
overlap a facet of P0. As argued in section 2 (see Theorem 2.1) the number of such
“degenerate” extremal stabbers is only O(nk).) We parametrize these lines by the
appropriately rotated spherical coordinate system, in which the line �e0 supporting
e0 is the z-axis (with a fixed assigned orientation), and the xz-plane supports one of
the facets of P0 incident to e0. It is easy to check that, in general position, this is a
unique parametrization. Thus, in the new system, which, for convenience, we continue
to denote by (θ, ϕ), the angle θ encodes the orientation of a plane Π̃θ containing e0
and rotating about it. However, we are only interested in values of θ for which Π̃θ is
tangent to P0 at e0. Thus, if θ0 denotes π minus the dihedral angle of P0 at e0, then
we can restrict θ to lie in the union of the two antipodal angular ranges (0, θ0) and
(π, θ0 + π). For simplicity, and with no loss of generality, we consider only lines in
L[e0] whose orientation (θ, ϕ) satisfies 0 < θ < θ0. See Figure 3 for an illustration.

For a fixed 0 < θ < θ0, we intersect each P ∈ P with the plane Π̃θ, thus obtaining
a set P̃(θ) of (possibly empty) convex polygons of the form P̃ (θ) := P ∩ Π̃θ. In
particular, we have P̃0(θ) ≡ e0 for all θ ∈ (0, θ0).

Let �0(θ) denote the point �0 ∩ Π̃θ. By the general position assumption, e0 is not
coplanar with �0, so the point �0(θ) is well defined, except for the unique orientation
θ∗e0 , if it exists, at which Π̃θ is parallel to �0.

5 Clearly, an oriented line � in L[e0]
with θ(�) = θ must pass through �0(θ). If θ∗e0 exists, then we split (0, θ0) into the
two subintervals (0, θ∗e0) and (θ∗e0 , θ0), and we apply the ongoing analysis to each of
them separately. (By the definition of θ∗e0 , we have θ(�) �= θ∗e0 for all � ∈ L[e0].) For
simplicity of presentation and with no loss of generality, we assume that θ∗e0 does not

5By saying that θ∗e0 exists, we mean that it lies in (0, θ0). Note also that, by the general position,
this orientation cannot be 0 or θ0.
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0(θ)

P̃ (θ)

e0

Π̃θ

γ−
P (θ)

γ+
P (θ)

e0

0(θ)

P̃ (θ)

γ−
P (θ)

γ+
P (θ)

Π̃θ

Fig. 4. The interval (γ−
P (θ), γ+

P (θ)) for P ∈ P+ (left) and for P ∈ P− (right).

exist, and we deal with the entire original interval (0, θ0). Thus, we can assume that,
for all θ ∈ (0, θ0), the point �0(θ) remains within Π̃θ on the same side of �e0 .

Now with all these preparations, the portion under consideration of L[e0], which,
for simplicity of presentation, we continue to denote by L[e0], is represented as the
region6

{
(θ, ϕ) | 0 < θ < θ0, ϕ

−(θ) < ϕ < ϕ+(θ)
}
,

where ϕ−(θ), ϕ+(θ) are the ϕ-coordinates of the respective lines passing through �0(θ)
and through each of the endpoints of e0. See Figure 3 (right) for an illustration.

Next we fix a cell D of A(CH) (defined at the beginning of the proof) and consider
the subset L[e0, D] of those lines � ∈ L[e0] with orientation in D. (If L[e0, D] is empty,
then we ignore D.)

For each polyhedron P ∈ P , we define two functions γ−
P (θ), γ+

P (θ), for θ ∈ (0, θ0),
as follows. Let I ∈ I be the segment which contains �0(θ). Then we define γ−

P (θ)
(resp., γ+

P (θ)) to be the minimum (resp., maximum) value of ϕ ∈ (ϕ−(θ), ϕ+(θ))
such that (a) the line � with representation (θ, ϕ) intersects P , and (b) the order of
�0∩� = �0(θ) and P∩� along � is as prescribed byD and I; see Figure 4. It is easily seen
that, for any fixed θ, the range of values of ϕ for which the line � with local coordinates
(θ, ϕ) satisfies (a) and (b) is an angular interval, which we denote by T+

P (θ) (resp.,
T−
P (θ)) for P ∈ P+(D, I) (resp., P ∈ P−(D, I)). The interval coincides with the full

range (ϕ−(θ), ϕ+(θ)) when P ∈ P0(D, I) and is empty when P̃ (θ) = ∅. In the latter
case, γ−

P (θ) and γ+
P (θ) are undefined, but we use the convention of artificially defining

them as γ−
P (θ) = ϕ+(θ) and γ+

P (θ) = ϕ−(θ). The definition is tailored to the task of
expressing the stabbing region in L[e0, D] as a sandwich region; see Lemma 3.2.

It follows that, for θ ∈ (0, θ0), the line � having representation (θ, γ−
P (θ)) or

(θ, γ+
P (θ)) is either (a) a tangent to P̃ (θ) passing through �0(θ) in the plane Π̃θ, or

(b) a line which connects �0(θ) with one of the endpoints of e0 = P̃0(θ). The graph of
each of the functions γ−

P , γ+
P is connected and piecewise smooth, composed of maximal

subarcs, so that each arc represents either lines in L[e0] that are tangent to P at some
fixed edge, or lines tangent to P0 at one of the endpoints of e0. Since, by construction,
all lines in L[e0] have ϕ ∈ (ϕ−(θ), ϕ+(θ)), the arcs of the latter type are redundant,

6The inequalities are sharp since lines in L[e0] can neither overlap a facet of P0 incident to e0
nor pass through any of the endpoints of e0; see the definition of L[e0].



LINE TRANSVERSALS OF CONVEX POLYHEDRA IN R3 3293

in the sense that they lie on the boundary of L[e0], and can thus be safely ignored in
the subsequent analysis. (Alternatively, whatever happens along these arcs involves
only two polyhedra and is therefore already accounted for in Theorem 2.1.)

Now consider arcs of the first kind. An endpoint of such an arc of, say, γ+
P , occurs

at some θ for which one of the following conditions holds:
(i) P̃ (θ) is a singleton point, namely, a vertex v of P . The line �+(θ) represented

by (θ, γ+
P (θ)) is tangent to P at v.

(ii) �+(θ) (as defined in (i)) changes the edge of P it is tangent to. This can happen
either when �+(θ) passes through a vertex of P (while continuing to be tangent to P )
or when it overlaps with a facet of P .

(iii) �0(θ) coincides with an endpoint of an interval in I which lies on ∂P . At
that moment, �+(θ) overlaps a facet of P .

(iv) The line �+(θ) passes through a vertex of e0 and, at the same time, is tangent
to P̃ (θ) in Π̃θ.

As was shown in [9], at each one of the events (i)–(iv), (θ, γ+
P (θ)) represents an

extremal stabbing line to {P0, P}, and, therefore, it is a vertex of T�0({P0, P}).
Note that in this analysis we do not “start” or “stop” an arc at orientations at

which it enters or leavesD, so a single arc can straddle several regionsD; an exception
is case (iii), where the crossing point into/from D occurs at a boundary great circle
induced by P itself. Moreover, the arc does not even have to meet D at all. Each
subarc ζ of γ+

P , defined by some fixed edge e of P , represents a regulus defined by e0
and e. Namely, ζ represents a maximal connected set of (oriented) lines in L that are
tangent to P0 at e0 and to P at e.

In particular, it follows that any pair of arcs, corresponding to a pair of edges e, e′

of distinct respective polyhedra P, P ′, intersect at most twice, since these intersections
represent lines that pass through four fixed lines: �0, and the lines containing the edges
e0, e, and e′; see [32].

The discussion following Theorem 2.1 implies that the overall number of distinct
arcs that comprise the graphs of the functions γ+

P , γ−
P , over all possible edges e0,

polyhedra P , and cells D is O(nk) (where, as noted, a single arc may traverse several
cells D ∈ D, but then we count it only once in this bound). Indeed, for a given pair of
distinct polyhedra P1, P2 ∈ P , the regulus of lines tangent to P1, at a fixed edge e1,
and to P2, at a fixed edge e2, can show up (with different parametrizations) only in
the subspaces L[e1], L[e2] of L (although it can appear in the subsets L[e1, D] of L[e1]
for several cells D and similarly for e2). This, combined with Theorem 2.1, implies
the claim.

Lemma 3.2. Let e0, D, and P be as above, and let � be an oriented line in
L[e0, D], with (the L[e0]-local) spherical coordinates (θ, ϕ). Then � stabs P if and
only if

γ−
P (θ) ≤ ϕ ≤ γ+

P (θ).(3.1)

Proof. If �0(θ) /∈ P , then � stabs P if and only if ϕ lies in one of the two angular
intervals T−

P (θ), T+
P (θ). (Note that the choice of � ∈ L[e0] trivially ensures that ϕ lies

in the interval (ϕ−(θ), ϕ+(θ)).) However, since � ∈ L[e0, D], ϕ can belong only to one
of these intervals (that is, to T−

P (θ) if P belongs to the corresponding set P− or to
T+
P (θ) if P ∈ P+). The claim now follows by definition.

If �0(θ) ∈ P , then � stabs P , and by definition, (3.1) becomes ϕ−(θ) ≤ ϕ ≤ ϕ+(θ),
which holds trivially. If P̃ (θ) = ∅, the inequality becomes vacuous because of our
convention, so the lemma holds in this case too.
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ϕ

θ

γ+
P2

D
γ−

P1

Fig. 5. The sandwich region in L[e0, D], as given by (3.2), overlayed with (the shaded) D and
drawn on the unit sphere S

2. Note that γ−
P1

and γ+
P2

appear on the boundary of the sandwich region,

but not within D, so their arcs are not counted in R[e0, D].

It follows from Lemma 3.2 that for a fixed D and e0, a line � ∈ L[e0, D], with
coordinates (θ, ϕ), is a transversal to P if and only if

max
P∈P

γ−
P (θ) ≤ ϕ ≤ min

P∈P
γ+
P (θ).(3.2)

Corollary 3.3. Let e0 and D be as above, and let � be an oriented extremal
stabbing line to P in L[e0, D] with coordinates (θ, ϕ). Then the point (θ, ϕ) is a vertex
on the boundary of the sandwich region given by (3.2).

Note that we do not guarantee that the great circular arc {θ}× (γ−
P (θ), γ+

P (θ)) is
contained or even meets D at all. Still, since D is spherically convex (and contained
in a hemisphere), the arc intersects D in a connected subarc, so the portion of the
sandwich region within D is also θ-monotone (see Figure 5).

Hence, the number of extremal stabbing lines in L[e0, D] is upper bounded by the
complexity of the sandwich region given by (3.2). Since this region is formed by the
graphs of O(k) functions, consisting of some number Γ[e0, D] of connected subarcs,
each pair of which intersect at most twice, it follows from [30, Theorem 1.4] (as in the
proof of Lemma 2.2) that the complexity of the sandwich region is O(Γ[e0, D]β4(k)).

In other words, if we fix D and sum this bound over all edges e0 of the polyhedra
of P , we get an overall bound of O(nkβ4(k)). Unfortunately, multiplying this bound
by the number O(k2) of cells D yields an upper bound of O(nk3β4(k)), which is much
too large.7 (Here we face the difficulty that an arc may appear in several cells D, so
we do not have a good bound on

∑
e0,D

Γ[e0, D].)
In order to keep the overall bound close to O(nk), we note that we can replace

Γ[e0, D] by the number R[e0, D] of those arcs that actually show up on the boundary
of the sandwich region (3.2) at points which represent lines in L[e0, D]. That is, we
exclude arcs which either do not appear on the boundary of the sandwich region at all
or appear there but only at (lines represented by) orientations outside D. Our goal
is to bound

∑
e0,D

R[e0, D]. See Figure 5 for an illustration.
To recap, the preceding analysis implies that the number N [e0, D] of extremal

stabbing lines in L[e0, D] satisfies

N [e0, D] = O (R[e0, D]β4(k)) .(3.3)

Put

N =
∑
e0,D

N [e0, D] and R =
∑
e0,D

R[e0, D],

7It is an easy exercise, omitted here, to reduce this bound to O(nk2), but we are after a stronger
bound.
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where the sums extend over all choices of edges e0 of the polyhedra in P and all cells
D of A(CH). Denote by N(n, k) (resp., R(n, k)) the maximum value of N (resp.,
R) over all possible choices of a collection P of k convex polyhedra with a total of n
facets and of a fixed line �0.

By (3.3), we have

N(n, k) = O(R(n, k)β4(k)).(3.4)

We next derive a recurrence formula for N(n, k) as follows. For any line � ∈ L,
define the depth of � to be the number of polyhedra of P which are not stabbed by �.
For any integer t ≥ 0, denote by N≤t(n, k) the number of extremal lines in L whose
depth is at most t. Since each extremal line in L is defined by at most three polyhedra,
the standard probabilistic argument of Clarkson and Shor [12] implies that

N≤t(n, k) = E

{
O

(
t3N

(
nR,

k

t

))}
,

where the expectation is with respect to a random sample R of k
t polyhedra of P

and where nR is the random variable equal to the number of facets in the sampled
polyhedra. Clearly, the expected value of nR is n

t . To simplify the presentation, we
will rewrite the Clarkson–Shor bound as

N≤t(n, k) = O

(
t3N

(
n

t
,
k

t

))
.(3.5)

The justification of this bound is similar to those used in earlier works, such as
in [17], and will become clearer later in the analysis.

Let r be a regulus of lines passing through �0 that are tangent to P0 at e0, and to
some other polyhedron P , at a fixed edge e of its boundary. According to section 2, r
corresponds to an edge of T�0({P0, P}), and there is a total of O(nk) such edges over
all choices of e0 and P . Since lines in r have one degree of freedom, r is represented
by a connected subarc of a constant-degree curve, within the (θ, ϕ)-parametric space
L[e0] (or, rather, within an algebraically reparametrized version of it). To recursively
bound N(n, k), we distinguish between two possible cases.

(i) There is at most one cellD ∈ A(CH) such that r contains an extremal stabbing
line � ∈ L[e0, D]. Then r contributes at most one unit to the sum

∑
D∈A(CH) R[e0, D].

The total contribution in this case is O(nk).
(ii) There are m > 1 cells D ∈ A(CH) such that r contains an extremal stabbing

line in L[e0, D]. Each such cell D contains a connected portion r̃ of r ∩ D, one of
whose endpoints, call it a, belongs to the boundary of D and the other, call it b,
represents an extremal stabbing line in L[e0, D].

Choose a positive threshold t. If the depth of (the line represented by) a is less
than t, we charge the appearance of r in D to a. Since a is contained in the boundary
of D, there is a plane h ∈ H such that a represents a line in the space Lh of lines
which pass through �0 and are parallel to h. Moreover, since r is a common tangent
to P0 and P and lines in Lh have two degrees of freedom, a represents an extremal
line at depth at most t, within Lh. By Lemma 2.2, the number of extremal lines
at depth 0 within Lh is O(nβ4(k)). (More precisely, if h is defined by a polytope
Q which is disjoint from �0, then no line in Lh has depth 0, and the above bound
holds for lines at depth one. Nevertheless, the asymptotic bound of Clarkson and
Shor continues to hold in this degenerate situation.) By applying the Clarkson–Shor
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y

0

P0

x

z

0

Π̃θ

P

Fig. 6. A lower-bound construction, viewed from above (left). (The actual gaps between the
pairs of parallel “plates” around �0, relative to the width of the plates, are much smaller than
depicted.) If P consists of a single polygon, which is coplanar with �0, then every pair of distinct
vertices of P define an extremal stabbing line passing through them (right).

argument [12], as above, and using the fact that an extremal stabbing line in Lh is
defined by at most two polyhedra, we conclude that the number of such extremal lines
at depth at most t, within Lh, is O(t2 · E{nRβ4(k/t)}), where nR is the number of
facets in a random sample of k/t polyhedra of P . Since E{nR} = n/t, the bound is
O(tnβ4(k/t)). Since |H | = O(k), the overall number of lines a, as above, of depth
smaller than t is O(tnkβ4(k/t)) = O(tnkβ4(k)). Moreover, any such line a is charged
at most a constant number of times, over all possible choices of e0 and D.

If the depth of (the line represented by) a is at least t, we walk from b to a along
r̃ and collect at least t extremal lines at depth at most t contained in L[e0, D]. (These
are lines on the regulus r which are tangent to a third polyhedron, one of at least t
polyhedra that a misses.) We charge the appearance of r in D to those lines. Clearly,
each line is charged in this manner only a constant number of times, over all choices
of e0 and D. Using (3.5) and taking case (i) also into account, we get

R(n, k) = O

(
nk + tnkβ4(k) +

1

t
· t3N

(
n

t
,
k

t

))
.

Combining this with (3.4), we finally get a recurrence for N(n, k):

N(n, k) ≤ ctnkβ2
4(k) + ct2N

(
n

t
,
k

t

)
β4(k)(3.6)

for an appropriate constant c.
The recurrence terminates when k becomes smaller than t. In this case, we use

the fact, which was proved in [9], that the complexity of the arrangement, within
L, of the upper and lower tangency surfaces σ+

P , σ
−
P of all polyhedra is bounded by

O(nk2) = O(nt2), which thus also serves as an upper bound for N(n, k).
Using standard analysis, such as that in [6, 17], it follows that the solution of

the recurrence (3.6) is N(n, k) = O(nk1+ε), for any ε > 0, where the constant of
proportionality depends on ε (the choice of ε affects the choice of t). This completes8

the proof of the upper bound in Theorem 3.1.
Lower bound. A lower bound construction for the complexity of T�0(P) is depicted

in Figure 6 (left). We use k pairs of polyhedra, each of which is a thin and long vertical

8The fact that the bound that we derive is linear in n justifies the replacement of nR by its
expectation n

t
in the bound (3.5). Although this deserves a more formal argument, we omit the

details, which are similar to those in earlier studies [17, 29].
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plate, whose vertical edges and facets are all parallel to �0. The polyhedra in each
pair are parallel to each other and are situated symmetrically around �0. In addition,
we include in P one drum-like polyhedral prism P0, whose axis is horizontal (i.e.,
orthogonal to �0) and which has n � k long and narrow facets. Overall, we have
Θ(k) polyhedra with a total of Θ(n) facets.

The polyhedra in P \ {P0} are arranged so that as we rotate a line of L around
�0 by varying its θ-component while keeping its z- and ϕ-components within some
reasonable range, we obtain Θ(k) distinct geometric permutations of the polyhedra
in P \ {P0} (see Figure 6 (left) and [11, 13] for similar constructions). With an
appropriate choice of the layout, we can construct, for each of these permutations
and for each edge e of P0, a transversal line in L that realizes the permutation and
is tangent to P0 at e and to two of the other polyhedra at two respective vertical
edges. We thus obtain a lower bound of Ω(nk) on the complexity of T�0(P). (The
construction is not in general position, but can be transformed into general position
by a small perturbation of its polyhedra.)

Handling degeneracies. The proof of Theorem 3.1 assumed the general position
of �0 and the polyhedra of P .

Degenerate configurations of P ∪ {�0} lead to degeneracies in the arrangement of
the tangency surfaces {σ+

P , σ
−
P }P∈P within the three-dimensional space whose points

represent lines of L. For example, a single vertex or edge of T�0(P) may be contained
in the tangency surfaces of any number of polyhedra, and any pair of edges or 2-
faces of the tangency surfaces may be tangent to each other or overlap (partially or
completely). In addition, any polyhedron P ∈ P may contain faces of dimensions one
and two which are coplanar with �0, in which case the the stabbing region T�0({P})
of P contains z-parallel boundary faces which are not contained in σ+

P , σ
−
P . Similarly,

for any polyhedron P0 and one of its edges e0, we may encounter similar degeneracies
in the arrangement of the tangency curves {γ+

P , γ−
P }P∈P\{P0} (defined in the proof of

Theorem 3.1) within the local two-dimensional space L[e0] ⊂ L whose points represent
lines of L tangent to P0 at e0. To extend our analysis to degenerate configurations
of P ∪ {�0}, we apply a small perturbation of the polyhedra of P , as described, e.g.,
in [5, 6] and [30, Theorem 7.3.1], which can only increase the number of faces (of
dimensions zero, one, and two) bounding the full-dimensional components (cells) of
T�0(P). To prevent loss of the lower-dimensional isolated components of T�0(P) (which
are not possible in general position), we slightly enlarge the polyhedra of P and then
apply the perturbation. With some care, this expansion can be performed without
changing the boundary topology of the full-dimensional components of T�0(P); see [5]
for a similar argument. At the end, the elements of P ∪ {�0} are in general position,
and the complexity of the transversal space T�0(P) is no smaller than that of the
unperturbed collection, namely, O(nk1+ε), for any ε > 0.

Theorem 3.1 implies the bound of O(nk1+ε), for any ε > 0, on the number of
extremal stabbing lines in L that correspond to the boundary vertices of T�0(P).
In degenerate settings, however, L may contain additional extremal stabbling lines
which do not correspond to these vertices. Each of these lines � ∈ L is tangent to
some polyhedron P ∈ P but is represented on neither of the θκ-monotone surfaces
σ+
P , σ

−
P . This situation arises when � is tangent to P at its facet or edge f , which is

coplanar with �0, and � is contained in the unique plane Πθ∗ , for some 0 ≤ θ∗ ≤ 2π,
containing both �0 and f . See Figure 6 (right). In our particular parametrization of
L, the corresponding surfaces σ+

P and σ−
P contain only the points representing lines

� ∈ L that are tangent to P ∩ Πθ∗ in the plane Πθ∗ . In particular, such lines � ∈ L
that overlap the relative interior of f = P ∩ Πθ∗ are not represented on σ+

P ∪ σ−
P ;
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see also [20]. (These lines form a relatively open z-parallel 2-face on the boundary
of T�0({P}).) As noticed in [9], in such a case T�0(P) may contain Ω(n2) extremal
stabbing lines of this kind. (This construction applies even when P contains a single
polyhedron P .)

4. The combinatorial complexity of T (P). In this section we establish the
following theorem.

Theorem 4.1. Let P be a collection of k convex polyhedra in R
3 with a total of

n facets. Then the set T (P) of line transversals of P has complexity O(n2k1+ε) for
any ε > 0.

Proof. Following [24, 27], we represent the transversal space T (P ) as a sandwich
region in R

4. To do so, we represent each line as a point in R
4. For example, we can

represent each line (not orthogonal to the x-axis) {(x, y, z) | y = ax + b, z = cx + d}
by the point (a, b, c, d) ∈ R

4. Similar to section 2, each polyhedron P ∈ P defines
two abc-monotone partially defined (hyper-)surfaces σ+

P , σ
−
P in 4-space, consisting,

respectively, of points representing upper and lower tangents to P . In this four-
dimensional parametrization, T (P) is the sandwich region lying below the lower en-
velope of {σ+

P }P∈P and above the upper envelope of {σ−
P }P∈P ; see, e.g., [24]. As in

sections 2 and 3, we may assume with no loss of generality that the polyhedra of P are
in general position; otherwise we can enforce general position by slightly perturbing
(and enlarging) the polyhedra so that the number of boundary faces of T�0(P ) can
only increase. Moreover, arguing as in section 2 (see also [24, 27]), the worst-case
complexity of T (P) is dominated by the maximum possible number of its vertices,
each of which corresponds to an extremal stabbing line of P . We now proceed to
bound the number of these lines.

Let then e0 be a fixed edge of the boundary of some polyhedron P0 ∈ P , let �0 be
the line which contains e0, and let L be the space of lines passing through �0. Clearly,
any extremal stabbing line to P that is tangent to P0 at the relative interior of e0
corresponds to a boundary vertex of T�0(P \ {P0}), unless it either passes through an
endpoint of e0 or overlaps a facet of P0. Using Theorem 3.1 and summing over O(n)
possible choices of e0, we immediately derive the upper bound of O(n2k1+ε), for any
ε > 0, on the number of all extremal stabbing lines that are tangent to at least one
polyhedron at the relative interior of an edge of it. The number of remaining extremal
stabbing lines is O(n2) because each of them passes through two polyhedra vertices
or overlaps two polyhedra facets.9 Theorem 4.1 now follows from the combination of
all these bounds.

Remarks. (1) Unlike the restricted case analyzed in section 3, here we do not
have a matching lower bound. The best lower bound is the trivial Ω(n2) bound;
see [9]. A different lower bound of Ω(nk2) can be shown by slightly modifying the
“standard” example of k pairwise-disjoint convex bodies in R

3 which admit Ω(k2)
geometric permutations (realized by lines passing) through the origin; e.g., see [7].
In our construction, we take each convex set to be a convex polyhedron with O(1)
facets and denote the resulting collection by P ′. Then we place a sufficiently small
polyhedron P0 near the origin, where P0 is a sufficiently flat pyramid whose base is an
n-gon lying in some generic plane through the origin. For small enough P0, there are
Ω(k2) geometric permutations through each edge of the base of P0. Moreover, by our
construction, “almost” all lines passing though edges of the base of P0 are tangent to

9Recall that, because of the general position of P, no polyhedron facet can be coplanar with a
vertex of another polyhedron.
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P0. (The exceptional lines are nearly parallel to the base of P0 and can be ignored in
the construction.) This easily implies that, for P = P ′ ∪ {P0}, the space T (P) has
Ω(nk2) complexity. Closing the gap between the resulting lower bound Ω(n2 + nk2)
and the upper bound in Theorem 4.1 remains an interesting and challenging open
problem.

(2) Note also that, unlike the case considered in section 3, here we do not have to
distinuish between vertices of T (P) and extremal stabbing lines which are not vertices
(as in the degenerate configuration depicted in Figure 6 (right) and discussed at the
end of the previous section) because the analysis of Theorem 4.1 takes care of both
kinds of lines.

5. Constructing T (P). Let us first describe an efficient randomized algorithm
for the restricted space T�0(P).

Theorem 5.1. Let P be a set of k convex polyhedra with a total of n facets, and let
�0 be a fixed line. Then one can compute (the boundary representation of) the stabbing
region T�0(P) of P, within the set L of lines passing through �0, in O(nk1+ε logn)
randomized expected time for any ε > 0.

Proof. As before, we assume general position of P∪{�0}. This assumption involves
no loss of generality. Extending the algorithm to handle degenerate inputs can be
achieved by symbolic perturbation of the tangency surfaces σ+

P , σ
−
P , which closely

follows the one described in section 3 (see [20] for a similar treatment of degenerate
configurations). Moreover, we assume, without loss of generality, that �0 is the z-axis.
Recall that for each P ∈ P , the graphs of σ+

P and σ−
P are (θ, ϕ)-monotone surfaces

which are comprised of monotone semialgebraic surface patches, each of which is a
graph of a partially defined function of constant description complexity, representing
upper (resp., lower) tangents to P at a fixed edge of its upper (resp., lower) boundary.
For each edge e of P , we denote its corresponding tangency function (and its graph)
by σe. The domain of σe is the region De ∪ D̃e, where D̃e is obtained from De by
mapping10 (θ, ϕ) to (π + θ, π − ϕ) and

De = {(θ, ϕ) | θ−e ≤ θ ≤ θ+e , τf−(θ) ≤ ϕ ≤ τf+(θ)},(5.1)

where θ−e and θ+e are the θ-coordinates of the two (clockwise and counterclockwise)
endpoints of e, f− and f+ are the two facets of P incident to e, and τf− (resp., τf+)
is the locus of all orientations (θ, ϕ) of lines parallel to f− (resp., f+); since, as is
easily checked, the sets τf− , τf+ are θ-monotone, the functional notation (5.1), as well
as the determination of which of the adjacent facets is f− and which is f+, are well
defined. If e is a silhouette edge of P , i.e., it admits a supporting plane of P parallel
to �0, then we consider it as a pair of identical copies, one of which belongs to the
upper portion of ∂P and the other to the lower portion of ∂P . In each of these cases,
one of τf+ or τf− , as appropriate, is set to +∞ or −∞, respectively.

As a preparatory step, we use the algorithm of Theorem 2.1 to construct T�0({P,Q}),
for each pair of polyhedra P,Q ∈ P , in a total of O(nk logn) time. In particular, for
each edge e of the upper (resp., lower) boundary of some polyhedron P and for each
Q ∈ P \ {P}, the above algorithm computes the intersection of σ+

Q and of σ−
Q with

the (two-dimensional) patch σe representing upper (resp., lower) tangents to P at e
(recall that silhouette edges are treated as both upper and lower edges).

The algorithm for constructing T�0(P) then proceeds as follows. First, we choose
a fixed random permutation π of the polyhedra of P . Next, we fix a polyhedron P ∈ P

10That is, if an oriented line � ∈ L has orientation (θ, ϕ) ∈ De, then the oppositely oriented copy
of � has orientation (θ + π, π − ϕ) ∈ D̃e.
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and a boundary edge e of P . Recall that σe consists of two connected patches of a
constant-degree algebraic surface (in an appropriate reparametrization); one patch is
defined over the domain De given in (5.1), and the other is defined over the symmetric
domain D̃e. Without loss of generality, we consider the portion of σe defined over De.
To obtain T�0(P), it is sufficient to compute σe ∩ T�0(P \ {P}) for all possible choices
of P and e as above; the union of all these two-dimensional patches constitutes the
boundary of T�0(P). We follow a standard randomized divide-and-conquer approach;
see [30]. Let PR be the set of the first �k−1

2 � elements of P \ {P} in the permutation

π, and let PB be the set of the �k−1
2 � remaining elements of P \ {P}. We think of

the elements of PR as “red” and of those of PB as “blue.” We start by recursively
computing the “red region”R := σe∩T�0(PR) and the “blue region” B := σe∩T�0 (PB)
within σe. Then σe∩T�0(P \{P}) = R∩B. We denote this intersection by G and refer
to it as the “green region.” Let nR, nB, and nG denote the total number of vertices
and edges on the boundary of R, B, and G, respectively. Then G can be computed in
O((nR+nB+nG) log(nR+nB+nG)) time using (an appropriate variant of) a standard
planar sweep algorithm; see, e.g., [30]. We repeat this procedure for all possible choices
of P and e. The above algorithm has expected running time O(N logN log k), where
N is the overall expected number of vertices and edges which are constructed by the
algorithm at any recursive step, over all choices of P and e.

We next establish an upper bound on N . Note that any edge of T�0(P) which
does not have any incident vertex and which appears in one of the regions constructed
by the algorithm appears in T�0({P,Q}), for some pair of polyhedra P,Q ∈ P , so,
according to Theorem 2.1, the overall number of such edges is O(nk). The appearance
of any other edge can be charged to that of an incident vertex so that each vertex
is charged at most a constant number of times, assuming general position. (The
argument is somewhat subtle because an edge can be split many times into sub-
edges. However, if we charge each newly formed subedge to a new delimiting vertex,
we ensure that every vertex is charged only O(1) times, as claimed.) Therefore, it
remains to bound the expected number of vertices which appear in some region G
throughout the execution of the algorithm (over all P and e). Clearly, the overall
number of vertices (i.e., breakpoints) of the curves σe∩σ+

Q, σe∩σ−
Q, over all choices of

P , e ∈ ∂P , and Q ∈ P \ {P}, is O(nk), since those vertices appear in the respective
regions T�0({P,Q}). Hence, it suffices to bound the expected number of vertices
defined by triples of polyhedra. For a fixed choice of P and e, any such vertex v
belongs to the intersection of σe ∩ σ+

Q (or σe ∩ σ−
Q) and σe ∩ σ+

R (or σe ∩ σ−
R ) for some

pair of distinct polyhedra Q,R ∈ P \ {P}. Let Kv denote the set of polyhedra which
are not stabbed by the extremal line �v corresponding to v. Thus, |Kv| is equal to the
depth of �v. As is easily verified, a necessary condition for v to appear in G, at some
recursive step, is that no polyhedron of Kv appears between Q and R in π. We say
that v has depth t if �v has depth t. Restricting π to the t + 2 polyhedra Q,R, and
the t polyhedra that �v misses, it follows that the probability that v is constructed by
the algorithm, when processing σe, is at most

2(t+ 1)!

(t+ 2)!
=

2

t+ 2
.

Note that v may also arise when processing the respective edges of Q and of R
which define v, so we actually need to multiply the corresponding probabilities and
expectations by 3.
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Let N≤t denote the number of extremal lines at depth at most t, summed over
all P and e. Then the overall number of extremal lines at depth t, for 0 ≤ t ≤ k − 3,
is N≤t − N≤t−1, where N≤−1 = 0 and the expected number of vertices at depth t,
which appear in some region G throughout the algorithm, again over all P and e, is
at most

6(N≤t −N≤t−1)

t+ 2
.

Summing over all depths 0 ≤ t ≤ k − 3, we get

N ≤ 6
∑

0≤t≤k−3

(N≤t −N≤t−1)

t+ 2
+O(nk).(5.2)

Rearranging the sum, we get

N ≤ 6
∑

0≤t≤k−4

N≤t

(
1

t+ 2
− 1

t+ 3

)
+

6

k − 1
N≤k−3 +O(nk)(5.3)

= 6
∑

0≤t≤k−4

N≤t

(t+ 2)(t+ 3)
+

6

k − 1
N≤k−3 +O(nk).

By Theorem 3.1, for any ε > 0, N≤0 = O(nk1+ε). Hence, by the Clarkson–Shor
probabilistic argument [12], using (3.5), N≤t = O(tnk1+ε) for all 1 ≤ t ≤ k−3; see [6]
for a similar argument. Plugging this into (5.3), we obtain that N = O(nk1+ε) for any
ε > 0. (The substitution yields a harmonic series which adds a factor O(log k) to the
bound, but this factor is “swallowed” by k1+ε, by slightly increasing ε, still keeping
it arbitrary small.) Our algorithm thus runs in O(nk1+ε logn) randomized expected
time for any ε > 0. (Again, the O(log k) factor yielded by the divide-and-conquer
process is subsumed in the factor k1+ε.)

The following theorem follows from Theorems 5.1 and 4.1.
Theorem 5.2. Let P be a set of k convex polyhedra with a total of n facets.

Then one can compute (the boundary representation of) the stabbing region T (P) in
O(n2k1+ε logn) randomized expected time for any ε > 0.

Remark. Technically, the randomized procedure of Theorem 5.1 (repeated to each
of the O(n) lines passing through the polyhedra edges) yields most of the boundary
features of T (P) but not all of them. For example, it excludes features that involve
tangencies at the polyhedra vertices only, or some features involving tangencies where
the line overlaps a facet, and so on. These extra features can be constructed by
additional ad hoc procedures, within the same running time bound. We also omit
details about gluing the features yielded by Theorem 5.1 to each other to obtain a
global representation of T (P).

6. Extensions. Assume that P is a collection of k pairwise disjoint convex
polyhedra in R

3, with a total of n facets. As in the preceding sections, we denote by
L the space of lines passing through a fixed line �0 and assume with no loss of generality
that P and �0 are in general position. In this section, we establish slightly improved
upper bounds on the complexity of the stabbing region T�0(P) in the following two
cases: the case where all polyhedra of P are disjoint from �0, and the case where the
polyhedra of P are all unbounded in one of the two directions parallel to �0. In both
cases, we also provide deterministic algorithms for efficiently computing T�0(P).
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6.1. �0 is disjoint from all polyhedra in P. When the polyhedra of P are dis-
joint from each other and from �0, we establish an improved bound on the complexity
of the restricted space T�0(P) (provided k �

√
n).

Theorem 6.1. Let P be a set of k pairwise disjoint convex polyhedra with a
total of n facets, and let �0 be a fixed line disjoint from all polyhedra of P. Then the
complexity of the stabbing region T�0(P) of P in the space L of lines passing through
�0 is O((nk+k3)β4(k)). Moreover, one can compute (the boundary representation of)
T�0(P) in O((nk + k3)(logn+ α(k) log k)) deterministic time.

Proof. To bound the number of extremal stabbing lines in L, we return to the
proof of Theorem 3.1. Recall that, in the current context where �0 is disjoint from all
the polyhedra of P , H is a collection of k planes, each separating a polyhedron P ∈ P
from �0. Clearly, we can choose H such that all of its planes contain �0.

Let e0 be a boundary edge of some polyhedron P0 ∈ P , and let D be a cell in
the arrangement A(CH), as defined above. Recall that R[e0, D] is defined to be the
number of arcs that actually show up on the boundary of the sandwich region (3.2),
at points which represent lines in L[e0, D]. Then R[e0, D] is bounded by the number
of reguli of lines (in L) that are tangent to P0 at e0 and to another polyhedron P ∈ P
at some fixed boundary edge e, and contain a line with direction in D. (Here we relax
the requirement that such a regulus contains a stabbing line with direction in D.) For
each such regulus r, we denote by r∗ the locus, on S

2, of the orientations of the lines
in r. Recall that we consider only those portions of the reguli consisting of lines that
pass through the respective edges e0 and e.

Recall that the number of extremal stabbing lines (in L) is

O

⎛
⎝ ∑

P0∈P,e0∈∂P

∑
D∈A(CH)

R[e0, D]β4(k)

⎞
⎠ .

As noted in section 3, there is a total of O(nk) reguli over all choices of e0. Hence,
the sum ∑

P0∈P,e0∈∂P

∑
D∈A(CH)

R[e0, D](6.1)

is bounded by O(nk) plus a constant times the number of crossings of reguli r and
boundaries of cells D ∈ A(CH). Any such intersection corresponds to a distinct
(oriented) line, contained in some plane h ∈ H and tangent to a pair of polyhedra
of P . (By the choice of H , a line in L is parallel to a plane h ∈ H if and only if it
lies in h.) Since the polyhedra of P are pairwise disjoint, the number of such lines is
O(k2) for a fixed h ∈ H . Since |H | = k, we get that the sum in (6.1) is O(nk + k3).
Hence, the number of extremal stabbing lines in L, and thus the complexity of the
stabbing region T�0(P), is O((nk + k3)β4(k)). Note that this bound constitutes an
improvement over Theorem 3.1 when k = O(

√
n).

To compute the extremal stabbing lines in L, we first compute the set of all reguli
r, in O(nk logn) overall time, using the algorithm of Theorem 2.1. Then, for each such
regulus r, we trace r∗ through the arrangementA(CH) in O((nk+k3) log k) total time.
To do so, we prepareA(CH) for point location queries and then locate, for each regulus
r, the cell of A(CH) that contains the orientation of an “endpoint” line of r. This
takes O(nk log k) time. Then, for each plane h ∈ H , we intersect the polyhedra of P
with h and find the O(k2) common tangent lines (in h) to pairs of these intersections.
This takes O(n+k2 logn) time for each h for a total of O(nk+k3 logn) time. Then we
take each such common tangent and locate the arc of A(CH) (on Ch) which contains
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its orientation. Combining the outputs of this and the preceding step, we obtain
the sets R[e0, D], for all edges e0 and cells D, in overall O((nk + k3) logn) time (see
the preceding analysis for justification of this procedure). Finally, we compute, for
each choice of P0, e0, and D, the vertices of the sandwich region, defined in the
proof of Lemma 3.1, in O(R[e0, D]β3(k) log k) = O(R[e0, D]α(k) log k) time using the
algorithm of Hershberger [19]; see also [30, Theorem 6.5]. Summing over all choices of
P0, e0, and D ∈ A(CH), the total construction cost is O((nk+k3)α(k) log k) time. We
can thus compute the extremal stabbing lines in L in O((nk+ k3)(log n+α(k) log k))
total time.

Computing the other features of T�0(P), such as edges without incident vertices,
can also be done within this time bound (see section 2 for details). This completes
the proof of the theorem.

6.2. The polyhedra of P are unbounded in a direction parallel to �0.
For this subsection, we represent lines in L as in section 2, and we establish the
following result, which holds for more general collections of convex polyhedra.

Theorem 6.2. Let P be a collection of k pairwise disjoint convex polyhedra in R
3

having a total of n facets, and let �0 be a fixed line. The number of vertices of the upper
envelope EU of the partially defined functions σ−

P , for P ∈ P (as defined in section 2),
is O(nkβ4(k)). Moreover, there is a deterministic algorithm which computes EU in
O(nk(log n+ α(k) log k)) time.

Proof. As in section 2, we assume that �0 is the z-axis. Fix a polyhedron P of P ,
and consider the graph of the function z = σ−

P (θ, ϕ), which represents lower tangents
to P in L. We denote this graph also as σ−

P and assume, without loss of generality,
that σ−

P is not empty. For each Q ∈ P \ {P}, let σ−
PQ denote the (relatively open)

portion of σ−
P that lies below σ−

Q (in the z-direction); that is, σ−
Q is higher than σ−

P

over this portion and thus “prevents” σ−
P from attaining EU at these points. Hence,

the portion of σ−
P that appears on EU is the complement of the union of the regions

σ−
PQ for Q ∈ P \ {P}.

We fix P and Q, and we study in more detail the structure of σ−
PQ. Fix some

value θ0 of θ, and consider the cross sections of σ−
P and σ−

Q at θ0. Any line � with

θ = θ0 lies in the plane Πθ0 . Any point on the intersection curve γPQ = σ−
P ∩σ−

Q , with
θ = θ0, corresponds to a line in Πθ0 , which is a common lower tangent to P (θ0) and
Q(θ0). Since these two convex polygons are disjoint, they have at most two common
lower tangents.

Moreover, the only way in which they can have two common lower tangents is
when one of P (θ0), Q(θ0) lies “fully above” the other. Formally, this happens if and
only if (i) the vertical projections of P (θ0) and Q(θ0) (on the axis of Πθ0 orthogonal
to �0) are nested within each other, and (ii) the polygon with the larger projection,
say, Q(θ0), lies above the other polygon P (θ0). We then say that Q overshadows P
(at θ0) and denote this as P ≺ Q (at θ0). Clearly, for any fixed θ0, this is a partial
order; see Figure 7 for an illustration.

Suppose then that P ≺ Q at θ0. Then, as noted, γPQ meets θ = θ0 at two
points (θ0, ϕ1), (θ0, ϕ2), with ϕ1 < ϕ2. Moreover, as is easily checked, σ−

PQ is the
portion of σP (strictly) between ϕ1 and ϕ2. This is a bad scenario because then (the
cross-section at θ = θ0 of) σ−

PQ is a “strip,” and the union of such “strips” can have
quadratic complexity; see Figure 8 (left) for an illustration.

Before proceeding to address this issue, we note that all the other cases are “good”:
If neither of P (θ0), Q(θ0) overshadows the other, then they have at most one common
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P1(θ)

P2(θ)

Fig. 7. Two polygons P1(θ) and P2(θ) can have two common lower tangents only when one of
them, P2, overshadows P1.

σ−
P σ−

P

Fig. 8. In the bad scenario (left), to be avoided, the regions σ−
PQ may appear as “strips”

within σ−
P (as defined in the text), and their union may have quadratic complexity. In the good

scenario (right), we consider only regions σ−
PQ that appear as “half-planes” (or as pairs of disjoint

half-planes) within σ−
P (as defined in the text), in which case the complement of their union (shown

unshaded) behaves like a sandwich region and has nearly linear complexity.

lower tangent line and then σ−
PQ, at θ0, is either the portion ϕ > ϕ0 or the portion

ϕ < ϕ0, where (θ0, ϕ0) is the intersection point of γPQ with θ = θ0 (if it exists at all;
if not, σ−

PQ is either empty at θ = θ0 or consists of the entire range of ϕ). If, on the

other hand, Q ≺ P at θ0, then, arguing as above, σ−
PQ consists of the portion of σ−

P

(strictly) above ϕ2 and of the portion below ϕ1. In either case, the union of these
good regions σ−

PQ is the union of “half-planes,” where each half-plane consists of those
points whose θϕ-projections lie above some θ-monotone curve (upper half-planes) or
below such a curve (lower half-planes); here “above” and “below” are with respect
to the ϕ-direction. Thus, for the “good” interactions involving P , the complement
of the union is a (two-dimensional) sandwich region between the upper envelope of
the (curves bounding the) lower half-planes and the lower envelope of the (curves
bounding the) upper half-planes. This property will be crucial for the analysis of the
number of vertices of EU . Note that, when Q ≺ P , σ−

PQ is the union of two half-planes,
so we may have up to 2(k − 1) half-planes which form the sandwich region.

Our strategy is thus as follows. Let v be a vertex of the upper envelope EU ,
incident to three surfaces, which we denote as σ−

P , σ
−
Q , σ−

R , corresponding to three
respective polyhedra P,Q,R ∈ P . We claim that there exists at least one surface, say,
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0

Πθ

P2P1P3

Fig. 9. A critical line tangent to three polyhedra of P from below. Here P1 ≺ P2 ≺ P3, so the
overshadowing relationships are “good” for P3.

σ−
P , such that neither of the relations P ≺ Q, P ≺ R holds (at the θ-coordinate of v).

Indeed, if this does not hold for σ−
P , then, say, P ≺ Q. If Q ≺ R, then, by transitivity,

we also have P ≺ R, so R has the desired property (using the antisymmetry of ≺).
If, on the other hand, Q �≺ R, then Q has the desired property. See Figure 9 for an
illustration.

Suppose, without loss of generality, that P has this property; that is, neither of
the relations P ≺ Q, P ≺ R holds. By the preceding observations, both σ−

PQ and
σ−
PR are good at (the vicinity of) v, so v appears as a vertex of the sandwich region

of the good regions σ−
PS for S ∈ P \ {P}.

It therefore suffices to bound the overall complexity of the sandwich regions of
the good portions σ−

PQ, within the respective surfaces σ−
P .

Let us study in detail the structure of a good portion σ−
PQ within σ−

P . It is a
“partially defined” half-plane, bounded by two extreme θ-values θ1 < θ2, and lying
above or below a θ-monotone portion of the curve γPQ. If Q �≺ P , then γPQ itself is
θ-monotone. If Q ≺ P , γPQ has two θ-monotone arcs, and, as already mentioned, we
consider the portions of σ−

PQ that lie above the top arc and below the bottom arc,
respectively, as two separate half-planes.

At each of the delimiting orientations θ1, θ2, the overshadowing relation between
P (θ) and Q(θ) starts or stops holding. When this happens, the vertical projections of
P (θ) and Q(θ) have a common endpoint. Alternatively, if we project the polyhedra
of P onto some plane h0 orthogonal to �0, then θ1 and θ2 are the θ-coordinates of
intersection points between the projected silhouettes of P and Q. As is easily checked,
the total number of such intersection points, over all pairs P , Q, is only O(nk). (That
is, in an arrangement of k convex polygons in the plane, with a total of n edges, there
are at most nk points where a pair of polygon boundaries cross each other.)

With an appropriate reparametrization of θ and ϕ, each curve γPQ is piecewise
algebraic. Each piece corresponds to a regulus of lower tangent lines of P , Q which
touch P , Q at two fixed respective edges e, e′ (and pass through �0). A breakpoint
of γPQ corresponds to situations where one of the incident edges e, e′ changes. As
already argued in the proof of Theorem 3.1 (see also Theorem 2.1), the number of
such breakpoints is O(nk).

To recap, on each surface σ−
P , for P ∈ P , we need to bound the complexity of a

sandwich region between the lower envelope of up to k − 1 θ-monotone curves and
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the upper envelope of up to k − 1 other θ-monotone curves. Each curve consists of
several arcs, each representing tangency with some fixed pair of edges of two of the
polyhedra, and the total number of these arcs is O(nk) over all surfaces σ−

P .
We next observe that any pair of these arcs, say, γ′ ⊂ γPQ, γ

′′ ⊂ γPR, on the same
surface σP , intersect at most twice. Indeed, any such intersection point p represents
a line that passes through four lines, namely, �0, the line containing the edge e of P
touched by the line �p represented by p, and the lines containing the edges of Q and R,
corresponding to γ′, γ′′, respectively, touched by �p. Since at most two lines can touch
four distinct lines (not all lying on a common regulus; see [32]), the claim follows.

It therefore follows, using similar arguments to those given above, that the over-
all complexity of all the sandwich regions, over all surfaces σP , is O(nλ4(k)) =
O(nkβ4(k)). This completes the proof of the upper bound on the complexity of EU .

The above analysis immediately implies the existence of a deterministic algorithm
for computing the vertices of T�0(P) in O(nk(log n+α(k) log k)) time. Indeed, we can
obtain the curves γPQ, for every pair of distinct polyhedra P,Q ∈ P , using the algo-
rithm of Theorem 2.1. We then compute the good portion of each γPQ for each pair of
distinct polyhedra P,Q ∈ P . Finally, we compute, for each P ∈ P , the corresponding
sandwich region bounded by the good portions of the curves γPQ for Q ∈ P \ {P}.
As can be easily verified, the first two steps take O(nk logn) time, and the last step
takes a total of O(nkα(k) log k + nk logn) time, using Hershberger’s algorithm [19],
where the second term is the cost of sorting arc endpoints for each sandwich region
separately. The other features of EU can also be computed (deterministically) within
this time bound. This completes the proof of the theorem.

Corollary 6.3. If all the polyhedra of P are unbounded in one of the two
directions parallel to �0, then the complexity of T�0(P) is O(nkβ4(k)), and there is a
deterministic algorithm which computes (the boundary representation of) T�0(P) in
O(nk(log n+ α(k) log k)) time.

Proof. Suppose that the direction in which the polyhedra are unbounded is the
positive z-direction. In this case the functions σ+

P are all undefined, and the stabbing
region is the region above the upper envelope EU of the functions σ−

P for P ∈ P . The
claim is then immediate from Theorem 6.2.

Remarks. It would be nice to extend Theorem 6.2 to the sandwich region between
the two envelopes EU and EL, as in (2.1). The difficulty in obtaining such an extension
is that the overshadowing relation is not a necessary condition for two cross-sections
P (θ0), Q(θ0) to have two common tangents which are, say, lower tangents to P (θ0)
and upper tangents to Q(θ0); see Figure 10. Hence, the reduction to two-dimensional
sandwich regions, as in the proof of Theorem 6.2, does not carry over to the “mixed”
case. The analysis in section 3 is the way we have managed to overcome this problem,

P (θ0)

Q(θ0)

Fig. 10. The overshadowing relation is not necessary for the cross-sections P (θ), Q(θ) to have
two common tangents.
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at the cost of a slight degradation in the bound and a more involved analysis. See
also a discussion in section 8.

7. A note on geometric permutations. In this section we apply the machin-
ery developed in this paper to establish a number of results on geometric permuta-
tions.11

Theorem 7.1. Let P be a collection of k pairwise disjoint convex objects in R
3,

one of which is a line �0. Then the number of geometric permutations induced by P
is O(k3).

Proof. For each convex set C ∈ P \{�0}, let hC be a plane passing through �0 and
disjoint from C. The collection of the planes hC partitions R3 into (up to) 2(k − 1)
wedges, with the following property, which extends the discussion in the preceding
section: For each of these wedges W and for any directed line �, which is a transversal
of P so that its forward ray �+ from �0 is contained in W , the set P+ of the objects
of P \ {�0} that are crossed by �+ is the same for all such lines � (it depends only on
W and not on the choice of �). Clearly, this also holds for the complementary set P−

of objects crossed by the backward ray �− of �. Denote by W the set of these wedges.
Next, for each pair of objects C,C′ in P \ {�0}, choose an arbitrary plane hC,C′

which separates C and C′; for simplicity, we may assume that hC,C′ is not parallel
to �0. Let zC,C′ denote the point �0 ∩ hC,C′ . We may also assume that all the points

zC,C′ are distinct. These points partition �0 into
(
k−1
2

)
+ 1 intervals, and we denote

by I the set of these intervals; see Figure 11.
Each directed line � which passes through �0 can be labeled by the pair (W, I) ∈

W × I, where W is the wedge containing the forward ray of � and I is the interval
containing the intercept of � with �0. We claim that, for each fixed pair (W, I), all
transversals of P labeled by (W, I) (if only exist) generate the same geometric per-
mutation. Indeed, let � be such a transversal. As argued above, the sets P+, P−,
consisting of those objects of P \{�0} crossed by the respective forward and backward
rays �+, �− of �, are fixed and are independent of �. Moreover, we can sort, in a
unique manner independent of �, the elements of P+ along �+, as follows. For any
pair of sets C,C′ ∈ P+, consider the separating plane hC,C′ . By construction, I lies
fully on one side of hC,C′ , say, the side containing C. But then C must precede C′

along �+, for otherwise �+ would have to cross hC,C′ twice, once from a point in �0
(i.e., in I) to a point in C′ and then back to a point in C. See Figure 11. Hence the
order of any two elements of P+ along �+ is fixed for all lines � labeled by (W, I),

C

C

I

0

hC,C

zc,c +

Fig. 11. Geometric permutations through �0: the interval I lies on one side of hC,C′ .

11The proof of Theorem 7.1 uses a technique reminiscent of, and borrowing some ideas from, the
analysis in [7].
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so the suffix of the permutation induced by �, from �0 on, is fixed too. A symmetric
argument shows that the prefix of the permutation, up to �0, is also fixed, so the
permutation itself is fixed for all lines labeled by (W, I). Since the number of labels
is O(k3), the theorem follows.

Remarks. (a) Clearly, the proof shows that the number of geometric permutations
is at most O(Hk), whereH is the smallest cardinality of a set of planes which separate
P (that is, each pair of objects of P is separated by some plane in the set). Unfor-
tunately, there are constructions of sets of k pairwise disjoint polyhedra for which
H = Θ(k2). For example, consider the hyperbolic paraboloid z = xy, and draw on it
two sets, L1, L2, of generating lines, where L1 consists of the lines x = i, z = iy, for
i = 1, . . . , k/2, and L2 consists of the lines y = j, z = jx, for j = 1, . . . , k/2. Now
keep L1 intact, and shift L2 upward by some ε > 0. It is then easy to check that if
ε is chosen sufficiently small, for each pair of lines �1 ∈ L1, �2 ∈ L2, any plane that
separates �1 and �2 must intersect all the other lines in L1 ∪ L2, so H ≥ k2/4.

(b) Note that the proof of Theorem 7.1 fails if we replace �0 by a line segment,
because it may then be impossible to separate the sets of P from �0 by planes passing
through �0.

Geometric permutations induced by lines passing through a fixed line. We next
establish a slightly inferior bound for a slightly more general setup, as follows.

Theorem 7.2. Let P be a collection of k pairwise disjoint convex objects in R
3,

and let �0 be a line in R
3 (not necessarily disjoint from the elements of P). Then the

number of geometric permutations of P induced by lines passing through �0 is O(k3+ε)
for any ε > 0.

In particular, this implies a near-cubic upper bound on the number of geometric
permutations induced by a collection P of k pairwise disjoint convex objects, one of
which is a line segment.

Proof. For each pair of objects C,C′ ∈ P we select a pair of parallel planes hC,C′

and hC′,C separating them, where hC,C′ is closer to C and hC′,C is closer to C′.
Let HC,C′ denote the half-space bounded by hC,C′ and containing C, and let HC′,C
denote the half-space bounded by hC′,C and containing C′. For each C ∈ P let PC be
the polyhedron

⋂
C′∈P\{C}HC,C′ . Then C ⊆ PC , for each C ∈ P , and the collection

P̃ = {PC | C ∈ P} consists of a total of k pairwise disjoint convex polyhedra, having
a total of O(k2) facets. Plugging this into Theorem 3.1, we get that the combinatorial
complexity of T�0(P̃) is O(k3+ε), for any ε > 0, which also bounds the number of
geometric permutations of P̃ induced by lines passing through �0. The theorem then
follows since each transversal of P is also a transversal of P̃.

8. Conclusion. In this paper we obtained an improved bound, close to n2k, on
the combinatorial complexity of the set T (P) of line transversals to a collection P of
k convex polyhedra in R

3 with a total of n facets, and we showed how to compute
T (P) in comparable randomized expected time. We reduce this general problem
to the restricted instance in which line transversals of P are constrained to pass
through some fixed line �0. Specializing to this restricted instance, we obtain nearly
tight bounds, close to nk, on the maximum complexity of the stabbing region T�0(P)
within the space L of lines that pass through �0. Our analysis combines the classical
charging scheme previously used to bound various substructures in arrangements of
surfaces in R

d, multiple examples of which can be found in [30], with (also classical)
methods previously used to study geometric permutations of pairwise disjoint convex
sets, as in [7, 33]. An advantage of our main analysis is that it does not assume that
the polyhedra of P are pairwise disjoint.
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There are several challenging open problems for further research, including the
following:

(i) Close the gap between the lower and the upper bounds for the complexity of
the stabbing region T (P), as given in section 4.

(ii) Devise a deterministic algorithm for computing the stabbing region T (P),
which runs in time close to O(n2k). In particular, do so for the restricted case of
T�0(P), with running time close to O(nk).

Finally, we mention the following general open problem: We are given two col-
lections F ,G, each of k bivariate functions, whose graphs consist of a total of O(n)
patches of constant description complexity, and the complexity of the arrangement of
the graphs of any pair or triple of functions in F ∪ G is at most proportional to the
overall number of their patches. Is it true that the complexity of the sandwich region
between the upper envelope of F and the lower envelope of G is O(nk1+ε) for any
ε > 0? The lack of such a result forced us to go into the intricate analysis of section 3.
We note that the complexity of the overlay of the minimization diagrams (cf. [24])
of F and of G can be Ω(n2). Nevertheless, one can easily derive an upper bound of
O(nk2) on the complexity of the sandwich region, which is only linear in n, for any
fixed k.12 This shows that the two problems of the overlay of minimization diagrams,
and of sandwich regions, are significantly different in the above context.

Acknowledgments. We thank the anonymous referees for valuable suggestions
that helped us to improve the presentation.
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