Reporting Neighbors in High-Dimensional Euclidean Space *

Dror Aigerf Haim Kaplan? Micha Sharir?

Abstract

We consider the following problem, which arises in many database and web-based
applications: Given a set P of n points in a high-dimensional space R% and a distance 7,
we want to report all pairs of points of P at Euclidean distance at most r. We present
two randomized algorithms, one based on randomly shifted grids, and the other on
randomly shifted and rotated grids. The running time of both algorithms is of the form
C(d)(n + k)logn, where k is the output size and C(d) is a constant that depends on
the dimension d. The logn factor is needed to guarantee, with high probability, that all
neighbor pairs are reported, and can be dropped if it suffices to report, in expectation,
an arbitrarily large fraction of the pairs. When only translations are used, C(d) is of
the form (av/d)?, for some (small) absolute constant a ~ 0.484; this bound is worst-case
tight, up to an exponential factor of about 2¢. When both rotations and translations
are used, C(d) can be improved to roughly 6.74%, getting rid of the super-exponential

factor \/&d. When the input set (lies in a subset of d-space that) has low doubling
dimension §, the performance of the first algorithm improves to C(d,d)(n + k)logn
(or to C(d,d)(n + k)), where C(d,8) = O((ed/§)?), for § < V/d. Otherwise, C(d,) =
5

0 (e‘/E\/E)

We also present experimental results on several large datasets, demonstrating that
our algorithms run significantly faster than all the leading existing algorithms for re-
porting neighbors.

1 Introduction

Problems involving distances between points in high-dimensional Euclidean space are of
major importance in many areas, including pattern recognition [28], searching in multimedia
data [28], vector compression [22], computational statistics [18], and data mining [39]. Most
of these applications involve huge data sets (tens of billions of images or documents) and
the dimensionality of the points (that is, number of real attributes representing or encoding

*Work by Haim Kaplan and Micha Sharir has been supported by the Israeli Centers of Research Excellence
(I-CORE) program (Center No. 4/11). Work by Haim Kaplan has also been supported by grant 822/10
from the Israel Science Fund and by Grant 2006/204 from the U.S.-Israel Binational Science Foundation.
Work by Micha Sharir has also been supported by Grant 338/09 from the Israel Science Fund, and by the
Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University. A preliminary version of the
paper has appeared in Proc. 24th ACM-SIAM Sympos. Discrete Algorithm, 2013.

fGoogle Inc.; email: aigerd@google.com

#School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; email: haimk@tau.ac.il

8School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute of
Mathematical Sciences, New York University, New York, NY 10012, USA; email: michas@tau.ac.il

a point) is usually large as well (typically in the hundreds). It is therefore important to
have algorithms that scale well with the input size and with the dimension.

The class of proximity problems of this kind includes nearest neighbor searching, near
neighbor reporting, closest pair, diameter, minimum spanning tree and a variety of cluster-
ing problems; see [23]. In this paper we focus on the all near-neighbors reporting problem.
That is, given an input set P of n points in R?, we wish to report all pairs of points of P
at (Euclidean) distance at most some given value 7.

We continue with a review of some (rather small) subset of the vast work on such
proximity problems which is most relevant to our work.

Background. For arbitrary fixed dimension d and for the L,-distance, the grid technique
used by Lenhof and Smid [32] can be modified to solve the all near-neighbors problem in
optimal O(n + k) time, where k is the output size. The algorithm simply inspects all pairs
of points that lie in adjacent grid cells (or in the same cell) of some fixed uniform grid of
cell size r. The efficiency of the algorithm follows from a packing lemma, established in [32]
and similar to an earlier variant by Salowe [36]. It asserts that, for any r > 0, the number
of pairs at L-distance at most 27 is at most a constant multiple of n plus the number of
pairs at Loo-distance at most r; see also Chan [13] for a simplified version.

A major drawback of the algorithms in [13, 32] is that their analysis only caters to
L-distances. Although the algorithms also work for any L,-distance, no analysis of the
corresponding variant of the packing lemma is provided; consequently, no sharp bounds on
the performance of the algorithms have been established. Our paper considers the case of
Euclidean distance and provides a rather intricate analysis of this case, which replaces the
simpler Lo-based analysis of [13, 32].

The use of the Ls-metric as a proximity measure is common, in particular in computer
vision applications, for identifying similar images based on distances between feature vectors
extracted from the images [9]. In high dimensional spaces the sparsity of the data makes
the estimation of similarity by distance problematic. Specifically, consider the L, norm for
some p > 1. It has been shown [11, 27] (see also [1]) that for n points drawn independently
at random from any distribution in d dimensions® (think of n as fixed and of d as going to
infinity) the difference between the distances of the farthest point and of the nearest point

from the origin increases at a rate of d%_%. The expression d%_% goes to 0 for p > 2, equals
1 for p = 2, and goes to oo for 1 < p < 2. This suggests L1 and Lo as the best simple
norms for similarity estimation in high dimensional spaces, with an advantage for L;. In
this paper we consider only the Ls-metric. Extending our ideas to deal with the L;-metric
is an interesting open problem.

We note that the constants of proportionality in the bounds in [13, 32] are exponential
in d, which might make the algorithms rather inefficient when d is large (as is generally
the case in practice). In fact, this “curse of dimensionality” is omnipresent in most of the
algorithms for proximity problems in higher dimensions, and the bounds in our paper are
no exception, although we make every effort to reduce the dependence on d.

The results mentioned so far are for “one-shot” problems, where we are given an input
set and wish to compute certain proximity attributes thereof. A considerably larger effort
has been invested in preprocessing-and-query problems, where the goal is to construct some

!Technically it is a different arbitrary distribution for each dimension d.

data structure on the input point set which supports proximity queries of a certain kind.
The most ubiquitous of this kind of problems is nearest neighbor searching, where we are
given a set P of n points in a high-dimensional space R, and wish to construct a data
structure that, given a query point ¢, finds the point in P closest to q. Extensive research
on this problem has led to a variety of interesting solutions, both exact and approximate.
Here too the dependence on d of the performance of the resulting algorithms is at least
exponential.

Many of the known exact and approximate nearest neighbor searching data structures
can be modified to report all (or most) points of P that are within a certain given distance
r from a query point q. Consequently, one can use such a structure to solve the all near-
neighbors reporting problem, by first building a nearest-neighbor data structure for the
points of P, and then querying this structure with each ¢ € P, thereby obtaining the points
in P at distance at most r from ¢. The running time of such a solution is the time it takes
to build the nearest neighbor data structure plus the time for n queries. The space required
is the total space used by the data structure plus the output size.

We give a brief review of the state-of-the-art approximate nearest neighbor data struc-
tures. For more information and related references see Har-Peled’s recent book [24]. These
approximate nearest neighbor data structures return, for any query point ¢, a point p whose
distance from ¢ is at most (1 4) times the distance between g and its nearest neighbor.

A data structure based on Box-Decomposition Trees, partitioning space into axis-aligned
boxes, was given by Arya et al. [7]. This structure takes O(n) space, can be constructed
in O(nlogn) time, and answers a query in O(E% logn) time. Several improvements to this
data structure have been given [10, 14, 15, 19]; in particular, the query time was reduced
to O(E% +logn).2 A nice feature of this data structure is that ¢ does not have to be
specified at the preprocessing stage but only at query time (and can vary with the query).
In subsequent work it was shown that the query time can be reduced further, at the expense
of larger storage. One of the main tools used to obtain these results is the approximate
Voronoi diagram of Har-Peled, with a quadtree-like search structure on top of it [25]. To
date, many trade-offs between query time and space have been achieved, and in all of the
more efficient ones the product of the term depending on ¢ in the storage and the square
of the term depending on ¢ in the query time is roughly Eid [6].

To overcome the exponential dependence on d of the performance of all these data
structures, Indyk and Motwani introduced a different technique called Locally Sensitive
Hashing (LSH) [30]. The first component in this method is a reduction from the problem
of approximate nearest neighbor search to the problem of finding a neighbor at distance
< (1 + e)r if there exists a neighbor at distance r, for some prespecified » > 0. Then the
latter problem is solved using a family of hash functions that tend to map close points to
the same bin (an LSH family in short). If we neglect polylogarithmic factors (but this time

do not hide factors exponential in the dimension) then the solution of Indyk and Motwani
1 1
answers a query in O(nT) time and takes O(n'TT+) preprocessing time and storage.
1

This was later improved, using more complex hash functions, to O(n(+9?) query time and

1
O(n1+(1+5)2) preprocessing and storage [3, 17]. For a survey on the LSH technique see [5].

Our results. In this paper we present two simple randomized algorithms for reporting

2We still hide factors exponential in d which are independent of e.

all near neighbors in a set P of n points in a high-dimensional Euclidean space R?. That
is, given a threshold distance r, we want to report all (or most) pairs of input points at
FEuclidean distance at most 7.

Our algorithms are straightforward to implement, and indeed this work has started with
the implementation of these algorithms, and with the realization that they work very well
in practice. We have then aimed at a rigorous analysis of the worst-case performance of
the algorithms, and its dependence on n, on the output size k, and, equally importantly,
on the dimension d. This analysis has turned out to be rather intricate; it requires the
exploitation of several interesting properties of balls, Minkowski sums, and other structures
in high-dimensional spaces.

Our first (and simpler) algorithm lays down a randomly shifted uniform grid of certain
cell size ¢ (that is, each cell is an axis-parallel cube with side-length c¢), collects the points
of P in each grid cell, and inspects all pairs of points within each cell (this latter feature
is similar to the approach of [32]), reporting those that are at Euclidean distance at most r
from each other. This is repeated a suitable number of times to guarantee that, with high
probability, all, or most pairs of points at Euclidean distance at most r will be detected,
that is, will both fall into the same grid cell. See later for full details concerning the issue
of reporting all vs. most pairs.

There are two factors that determine the efficiency of the algorithm. The first factor is
the number of repetitions of the grid layout procedure just described. This number depends
(reciprocally) on the probability that, for a specific pair a, b of points at Euclidean distance
at most 7, both a and b will fall into the same cell of a randomly shifted grid of cell size c.

For a very naive lower bound on this probability, put * = a — b, so ||z|| < r. The
probability that a and b fall into different cells is at most (Zle x;)/c, which, by the Cauchy—
Schwarz inequality, is at most ||z||v/d/c < rv/d/c. This means that two points a and b at
distance at most 1 end up in the same grid cell with probability at least 1 — rv/d /c. Notice
however that this bound is meaningful only for ¢ > rv/d. Our experiments however showed
that one can get very good results with much smaller cells, of size even close to r. This has
motivated us to prove a better lower bound on this probability which is meaningful also for
small values of ¢. The analysis of this probability estimation is presented in Section 2.

We note that a related approach is to cover the point set P with random balls, such
that each point is assigned to one particular ball. As shown in [16, Section 3] it is rather
easy to construct such a cover with balls of diameter ¢ such that the probability that two
points a and b are in different balls is at most ||z|v/d/c where 2 = a — b as before. This
is similar to the randomly shifted grid technique but harder to implement as it requires to
draw a random center in a union of balls. We also recall that the hash functions underlying
the most efficient variants of LSH map points into balls such that close points tend to map
to the same ball. Whether such a scheme based on balls can be made practical and if so
how well does it perform in practice are open questions.

The other factor determining the performance of such partitioning schemes is the ra-
tio between the number of pairs that the algorithm inspects (which, for a fixed grid, is
> (IP QTI), where the sum is over all cells 7 of the grid), and the output size k, namely, the
number of pairs at Euclidean distance at most r. The intuition is that if a cell 7 contains
many points, and if the cell size c¢ is relatively small, many pairs of these points should be

close to each other in the Euclidean metric. While this intuition is correct, sharp calibration

of the number of such pairs (especially its dependence on the dimension d) turns out to be
rather involved. This analysis is presented in Section 3.

There is a trade-off in the choice of the cell size c. On one hand we would like to make
it large, to increase the probability of capturing near neighbors in the same grid cell (and
thereby decrease the number of repetitions of the basic grid layout procedure), but on the
other hand a large value of ¢ will increase the ratio between the number of pairs inspected by
the algorithm and the number of pairs at (Euclidean) distance at most r (the output size),
which will increase the running time of each step. One interesting finding of our analysis is
that in most cases the (theoretically) best choice for ¢ is a value very close to r.

Specifically, we show (see Corollary 3.4) that, for a given set P of n points in R? and for
a threshold distance r, the running time of the algorithm is C'(d)(n+ k) log n (for reporting,
with high probability, all pairs at distance at most r), or C(d)(n+k) (for reporting, in expec-

é(ﬂ/2)1/3d2/3
tation, bitrarily large fraction of th irs), where C/(d) = O [eVd(/d)e2 .
ation, an arbitrarily large fraction o ese palrs) where () (e (\/77/2)61

Here the “big-O” notation only hides factors depending polynomially on d, k is the output
size, and the success probability or the expected fraction of reported pairs can be made
arbitrarily close to 1 by increasing C'(d) by an appropriate absolute constant factor.

A major drawback of the first algorithm is that the cell size ¢ must clearly be greater
than r (in particular, if we want to report all pairs). In this case the ratio between the
number of pairs of points in a cell and the number of these pairs at Euclidean distance at

most 7 is large in the worst case, and its dependence on d is super-exponential, about \/&d.
Informally, this is a consequence of the fact that the volume of the d-dimensional Euclidean
ball is much smaller than the volume of a cube of the same size (the ratio between the
volumes involves the super-exponential factor just mentioned).

To overcome this super-exponential dependence on d, we turn to our second algorithm,
which is similar to the first one, except that at each step it first applies a random rotation of
the coordinate frame, and then lays down a randomly shifted grid of an appropriate cell size
¢. As might seem surprising at first glance, here we can choose ¢ to be much smaller than
r; specifically, we choose ¢ to be proportional to r/ V/d. An appropriate such choice of ¢ still
ensures non-negligible positive probability of capturing a pair of points at Euclidean distance
at most r in the same grid cell. This probability is much smaller than the corresponding
probability in the first algorithm (where ¢ was chosen to be much larger), and consequently
the number of repetitions of the basic step is much larger. However, because the cell size
is now so small, we more than compensate for this degradation by drastically reducing the
ratio between the number of inspected pairs and the output size. Overall, the dependence
on d of the performance of the algorithm now becomes only exponential in d (where the
best base that this method seems to yield is about 6.74). Specifically, the running time
of the algorithm is O(6.74%(n + k)logn) (for reporting, with high probability, all pairs at
distance at most r), or O(6.74%(n + k)) (for reporting, in expectation, an arbitrarily large
fraction of these pairs), where the constant of proportionality depends polynomially on d, k
is the output size, and the success probability or the expected fraction of reported pairs can
be made arbitrarily close to 1 by increasing the bound by an appropriate absolute constant
factor. This algorithm and its analysis are presented in Section 5.

In spite of all this progress, an exponential dependence on d is far from satisfactory,
especially when d is really large. In retrospect, though, it appears that a major factor

affecting the observed efficiency of the algorithms in practice is the fact that the input point
sets tend to be of low doubling dimension 0 < d with respect to the Euclidean metric [8].
That is, for every Euclidean ball B, the set BN P can be covered by at most 2° balls of half
the radius. As it turns out, our first algorithm is suitable for handling such input sets, and
its analysis can be modified, to yield a much improved dependence of its performance on
d and 6. Specifically, the dependence is now sub-exponential in d and exponential only in
d; see Corollary 4.2 for the precise bound. This provides theoretical substantiation for the
efficiency of the algorithm in practice. Low doubling dimension occurs naturally in practical
applications and was exploited before for fast algorithms for approximate nearest neighbor
searching [26, 31].

As already mentioned, our work has started with the implementation of our algorithms
and with testing them on large data sets, observing that they work very well in practice.
After providing the theoretical analysis that supports these findings, we end the paper by
presenting some experimental results that manifest the efficiency of our implementations. In
these results we compare our first algorithm (based on randomly shifted grids) with several
of the leading existing software packages for reporting neighbors. As the results show, our
algorithm runs significantly faster than any of its competitors. These results are presented
in Section 6.

The techniques used by our algorithms are not new. Randomly shifted grids and random
rotations have been used in the past in algorithms for various proximity problems and
metric embeddings. Examples can be found in Har-Peled’s book [24] and in the survey on
metric embeddings by Indyk and Matousek [29]. In particular, randomly shifted grids have
been suggested and analyzed as an LSH family for the L;-distance in [4]. A similar LSH
family for Lo-distance based on projecting into quantized random lines was analyzed in [17].
Nevertheless, our precise and intricate theoretical and experimental analysis of algorithms
based on randomly shifted grids for reporting all near neighbors appears to be new.

2 Randomly shifted grids

In this section we present and analyze our first algorithm, which is based on randomly
shifted grids. To simplify the notation, and without loss of generality, we consider the
problem of reporting all (or most) pairs of points at Euclidean distance at most 1 in a set
P of n points in R%.

The simple algorithm consists of the following steps.

(a) Fix a parameter ¢ > 1 and fairly close to 1; the exact choice of ¢ will be discussed in
detail below.

(b) Place a randomly shifted uniform axis-parallel grid G of cell size ¢ in R?, and compute,
for each cell 7 of G, the subset P- = PN .

(c) For each cell 7 with |P;| > 2, go over all pairs of points of P, and report those pairs at
Euclidean distance at most 1.

(d) Repeat steps (b) and (c¢) M times, for an appropriate parameter M (that depends on
¢, d, and optionally on n; see below for its precise choice). In doing so we filter out pairs
that have already been reported.

The algorithm is clearly very simple to implement. Step (b) can be implemented in
O(n) time if we assume availability of a constant-cost implementation of the floor function
and of hashing. Similarly, each filtering operation in step (d) can be implemented in O(1)
time using constant-cost hashing. All the other steps are trivial to implement.

As the analysis below will show, for appropriate choices of ¢ and M, the algorithm has
the following properties: (i) With high probability, every pair at distance at most 1 will be
reported; alternatively, with an appropriate choice of a smaller value of M, an arbitrarily
large fraction of these pairs will be reported in expectation. (ii) The algorithm is output-
sensitive, in the sense that the number of pairs that it examines is at most C(d)(n+ k) logn
(for reporting all pairs), or C'(d)(n + k) (for reporting an expected arbitrarily large fraction
of the pairs), where C'(d) is a constant that depends on d, and k is the output size (the
number of pairs at Euclidean distance at most 1).

The constant C'(d) that we obtain grows super-exponentially in d; specifically, it is of
the form (av/d)?, for some (small) absolute constant a. We show that an approach like ours

must incur a constant that in the worst case is at least roughly (\/&/ V 27re> ~ (0.242V/d)“.

so the challenge is to make the base a in our bound as small as possible. The best parameter

that we can obtain is a & ,/% ~ 0.484, when d is sufficiently large, using some non-trivial

analysis. This gets us reasonably close to the worst-case lower bound (within a factor of
roughly 2¢). Later, in Section 5, we will be able to reduce the constant to roughly 6.74¢,

thereby getting rid of the super-exponential factor v/d . This is achieved by using in addition
random rotations of the coordinate frame.

Capturing a unit vector in a grid cell. One of the main steps in the analysis is
to establish property (i) of the algorithm, namely that every pair of points at Euclidean
distance at most 1 will be captured in the same cell of a randomly shifted grid with at
least some probability ¢ > 0. Then, repeating the grid construction M = glogn times, the
probability that a fixed pair will not be captured will be at most (1 — ()M ~ e~tlogn —
1/n®, so, by the probability union bound, the probability that all appropriate pairs will
be captured will be at least 1 — (5)/n® > 1 — 1/(2r~2), which we can make arbitrarily
small by choosing b > 2 sufficiently large. Alternatively, repeating the process only M’ = g
times, the success probability of capturing any fixed pair is ~ 1 — e~*. Hence, choosing b
arbitrarily large, we can ensure that an arbitrarily large fraction of the desired pairs will be
reported. As noted, this is sufficient in many applications.

We now proceed to estimate ¢. As is intuitively clear, the worst lower bound for (
occurs when the distance between the points in the pair is 1; this will be briefly justified
more rigorously at the end of the analysis.

So let ¢ > 1 be fixed, and let uv be a unit vector in Re. Let G be a randomly shifted
uniform axis-parallel grid in R? of cell size c; that is, we draw a point o uniformly at random
from [0, c]? and shift the grid so that o is one of its vertices. Our goal is to derive a lower
bound for the probability ¢ that both « and v lie in the same grid cell.

Write b = (21,22, ...,24), with 22 +---+22% = 1. For each i = 1,...,d, the probability
that the z;-projections of u and v both lie in the same edge of a grid cell is (¢ — |z;|) /¢, so

the probability of capturing both u and v in the same grid cell is

(c = Jz1])(c = |a2]) - - (c = |z4l)
cd ’

In other words, the problem can be stated as follows. Let o denote the unit (d — 1)-sphere
in R?, given by 24ai++ xg =1, and let ¢ > 1 be a parameter. We want to find the
minimum value of the function

Roo = (110 (-l)

for x = (x1,...,24) € 0.

To simplify the analysis, let o denote the portion of ¢ in the positive orthant. It
suffices to find the minimum of F,. on o, in which case we can rewrite F.(x) as

pi = (1-2) (1-2)-(1-).

The case ¢ > /2. Assume first that ¢ > /2. In this case, using Lagrange multipliers,
we claim that the unique extremum of F, in the relative interior of o™ (namely, at points
whose coordinates are all positive) is attained at

x1:$2:-~-:$d:

Sl

and the value of F, at that point is

(d) L
FO = (1) |
¢ < cx@)

To see this, note that the Lagrange multipliers technique yields the equations

1
20z; = — F.(x), fori=1,...,d, (1)

— 4y

or, equivalently, all the products z;(c — ;) are equal. Thus z;(c — 2;) = z;(c — x;) for any
i # j, which is equivalent to (x; — x;)(z; + z; — ¢) = 0. However, since z? + a;? < 1 we have
T +x; < V2 < ¢, so we must have z; = xj, implying that all coordinates at the extremum
are equal.

The other local extrema of F, on ¢ must occur on the boundary of o, at points where

some coordinates are 0. By symmetry, it suffices to examine d — 1 additional subproblems,
where in the j-th subproblem, j =1,...,d — 1, we seek the extrema of F, on

J;_:O'—i_ﬂ{X’iL‘j_H:xj+2:~-':xd:0}.

Arguing as in the case of the whole o™, the unique extremum of F, in the relative interior
of a;-r is attained at

1
x1:x2:"':$j:7\/».7 Tjy1 = Tjyo = -+ =xq9 =0,
J

and the value of F, at that point is

() Ly
Fc —]. ey .
()

In other words, the minimum of F, over ¢ is the minimum of the sequence

s;(c) = (1—6\1/5>j, j=1,...,d.

To simplify matters further, consider instead the minimum of the sequence

1
tj:lnsj(c):jln<1—,>, j:].,...,d,
V)

or rather its continuous version

1
We have

T 1

oy o1 _ _
=15 e

ln<1_c\1/§> T 910—1)‘

Put y = ¢\/z. Since we are interested in the range z > 1, we have y > /2. However, to
accommodate also the case 1 < ¢ < \/i, discussed next, we consider the extended range

y > 1. We need to solve
1 1
21n(1—)—|—:O.
y) y-1

Note that this equation is independent of c¢. Using the WolframAlpha software and some
numerical calculations, we find that there is a unique zero at yg ~ 1.39795, where f attains
its mazimum (f" is positive for y < yo and negative for y > y9). That means that the
maximum of f is attained at zg = y2/c? < 0.977 < 1 (for ¢ > /2).

In particular, f decreases for x > zy, and therefore the minimum value of s;(c), for
j > 1> xg, is attained at j = d. That is, we have shown that

F.(x) > (1 - C\l/g>d (2)

for all x € o, provided that ¢ > /2.

The case 1 < ¢ < /2. We first note that the analysis given for the preceding case
continues to apply here too, in the sense that all the values s;(c), for 1 < j < d, continue to
be local extrema of F, (more precisely, s;(c) continues to be a local extremum in the relative
interior of a (j — 1)-dimensional sub-sphere of ¢). The maximum of the corresponding
continuous function f(z) is still attained at x = y3/c? which is smaller than 2 for any ¢ > 1,

implying that the suffix sa(c), s3(c), ..., sq(c) is decreasing, so its minimum is still s4(c), as
given in (2). Here however we have a new contender for the minimum, namely

1
si(c)=1-— =

which, when ¢ is very close to 1, can indeed be smaller than s4(c). To avoid this case, we
will require that

The right inequality always holds, being an instance of the inequality e™® > 1 —x for z > 0.
The left inequality will hold, for ¢ < v/2, if we choose

1
c> —,
T 1 eV
which in turn holds if

c>1+42e"VI2, (3)

1

The latter implication follows since 1+ 2x > T2 for x < 1/2, and e~ VI2 < 1/2 for
—z

d> 2.

In the remainder of this section we will only consider the case where c satisfies (3).

Equation (3) guarantees that si(c) > sg(c) but this still does not make sg(c) the min-
imum of F.(z) over oF since for 1 < ¢ < /2, F. has some additional local extrema.
Specifically, using the Lagrange multipliers technique, and the implied analysis following
Equation (1), we conclude that, at an extremum x of F,. on ¢, some coordinates x; may be
zero, and any pair x;, x; of nonzero coordinates must satisfy either x; = x; or x; + z; = c.
This implies right away that (on o) the nonzero coordinates of x have only two distinct
values, which we denote as t and ¢ — ¢, and assume that t <c—t¢,s0c—1<t< 5.

Suppose that we have a coordinates equal to ¢ and b coordinates equal to ¢ — ¢, with
a+ b <d. We then must have
at®> + b(c —t)? = 1. (4)

Since t < ¢ — t we get that ¢ — ¢ > 1/2, which is easily seen to imply that b < 3.

Assume first that t > 1 — % Then

_ _ #)2 _
_loble—t? _1-bMA 34
t? t2 3/2— /2

so a < &. In this case we have

= (9 0-2) = (9 (-2
Since t/c > t/vV2 > (vV2—1)/2and 1 —t/c = (c —t)/c > (c —1)/vV2 > 1/(2V/2), F.(x) is

at least some absolute constant

= (ﬂ2—1>3 (2%)

10

a

=3(3/2+V2) <9,

Since sq4(c) decreases to 0 as d grows (as argued above, it is upper bounded by e~Vd/e <
e~ V42) F,(x), for any new local extremum x, will be larger than sq(c) when d is at least
some sufficiently large constant dy (independent of ¢).

Ift<1- % then 1 —t > % In this case (¢ —t)? > 1/2 and then (4) implies that
b =1, and also that

_1—(c—t)2<2t—t2_2 L2
N 12 2t t

Substituting a and b into the expression for F,(x), we get that

2/t
F.(x) > ! (1 — t) > £674/C .
c c c

a

Here we use the inequality 1 — z > e~2%, which holds for = % < 1/2. If
te4/e > ce~Vile (5)

then F.(x) = %e“l/ ¢ will be larger than sg(c). Inequality (5) is equivalent to

C
Vd-4

t>

e

5}

If c—1> —~£— we are done since we always have ¢t > ¢ — 1, so the new extremal values of

F, will all 6becgreater than sg4(c). (Note that for this inequality to hold, d must be at least

17.) So assume that ¢ — 1 < —~£—, or
e ¢
c V2 W2 —\/d]2 —\/d)2
c<lt—— <1+ —— <1+V2e2V2e V2 <1+ 2e : (6)
e c e V2
It remains to consider the case where c satisfies this inequality and ¢ —1 < t < —£—. Here

Vi
e ¢
we use the fact that a < d — 1. So we also have the bound

F,(x) > (t/e)(1 —t/e)t L.
The function g(t) = (t/c)(1 —t/c)*~! on the right-hand side has a maximum at t = ¢/d, as
is easily verified. Assume that d is sufficiently large so that

c__¢
Vi—a = "

o

(&

Then, for c — 1 <t < —5— < £, we have F,(x) > g(c— 1) = (c—1)/c".
e ¢

However, for d sufficiently large, we have

Cc;dl > (1 - 6\1/&>d "

Indeed, recall that c is assumed to satisfy (3) and (6); that is,

N

142 V2 <0< 1424 V42,

11

We then have (using the inequality 1 + z < e* for z > 0)
c—1 2e~V /2 2~V /2
> > 5
cd (1 + 246—\/d/2)d e24de_\/d/2

which, for d sufficiently large, will be larger than

d

VA2 > ~Vife 5 (1 1)

e e —)
N N eVd

as claimed.

In summary, we have obtained the following result.

Theorem 2.1 There exists some threshold dimension dy so that, for every d > dy and
for every c satisfying (3), we have F.(x) > sq(c) for every x € o. As a consequence,
the probability of capturing both endpoints of a unit vector in R% inside the same cell of a
randomly shifted grid of cell size ¢ is at least sq(c).

Remarks. (1) The analysis so far has only considered unit vectors, but it can easily be
adapted to apply to vectors of smaller length. The simplest way of doing this is perhaps as
follows. If the length of the vector uv is r < 1 then, by scaling space by the factor 1/r, we
turn uwv into a unit vector, and c is replaced by the larger parameter ¢/r. The probability
of capturing v and v in the same cell is now at least sq(c/r), which is larger than sg(c).

(2) It is perhaps tempting to use a larger value of ¢ so as to increase the probability s4(c) of
capturing u and v in the same cell. The value of s4(c), for ¢ close to 1, e.g., for ¢ meeting the
lower bound in (3), is rather small; namely it is approximately e Vd/e ng o=V, However, to
make this probability really large, we need to choose ¢ quite large, about v/d. The penalty
for using such a large grid size will be incurred in having to inspect too many pairs of points
in P. This trade-off, between (i) the success probability of capturing a unit vector in a grid
cell, and (ii) the ratio between the number of pairs at Euclidean distance at most 1 and
the overall number of pairs in a grid cell, is a major theme in our analysis, here and in the
following sections.

(3) It would be interesting to obtain a sharp calibration of the value of the threshold
dimension dy, and to analyze the situation when d < dj.

As already noted at the beginning of the section, if we repeat the randomly shifted grid
construction e () logn (or just - t}) times, for some b > 2 sufficiently large, we ensure, with
high probability, that every pair of points at Euclidean distance at most 1 will be captured
in the same cell of one of the grids (or ensure an arbitrarily large expected number of such
pairs). This however is only one side of the story, because, as noted in Remark (2) above,
the algorithm examines all pairs of points in the same grid cell, and we wish to ensure that
the latter number is not significantly larger than the number of pairs, within the same cell,
at Euclidean distance at most 1. This analysis will be undertaken in the next section.

3 The number of Euclidean neighbors in a grid cell

Let G be a randomly shifted grid, of cell size ¢, with ¢ satisfying the condition in (3). Let 7
be a cell of G and put P = PN7. The algorithm of Section 2 examines every pair of points

12

of P;, and reports those pairs at Fuclidean distance at most 1. In this section we argue
that the number of pairs examined by the algorithm, namely ('I;T‘), is comparable with the
number No(P;) of pairs of points of P, at Euclidean distance at most 1. Specifically, we
show that Ny(P;) > y(d)(“';') — Z|P-|, where y(d) is some constant fraction that depends
on d.

To establish this inequality, we fix a grid cell 7 of size ¢ > 0 (we will later on consider
values of ¢ smaller than 1, and the analysis in this section applies to these choices too). For
simplicity, we regard P: as the entire set P, and denote its size by n.

An upper bound on 7(d). To understand what values of v(d) one might expect to get,
we start with a simple upper bound on that quantity. Let P be a set of n points drawn
independently and uniformly at random in 7. A ball of radius 1 around one such point p

contains, in expectation, at most W points of P\ {p}, where

/2

Vi = Fag a2

is the volume of a unit ball in R?%; T'(-) is the Gamma function; see, e.g., [38, p. 136]. This
bound on the expectation follows from the fact that the points of P are drawn independently,
so the probability of another point ¢ € P to fall into the ball is the volume of its portion
within 7 divided by Vol(r) = ¢®. The point p forms with each point ¢ € P in this ball a
pair at Euclidean distance at most 1, and every such pair (p, q) arises exactly twice in this
manner, once for the ball centered at p and once for the ball centered at q.

Summing up over all points p € P, we get that the expected number of pairs at Euclidean
distance at most 1 is at most

b (D)% ™)

This shows that we cannot hope for a worst-case lower bound for v(d) larger than V/c?.
Using the above expression for V; and applying Stirling’s approximation, we get that, up
to factors polynomial in d,

(d) < E = L ~ (27T6)d
P> T Al T S

(8)

In other words, in this case (assuming that c is sufficiently close to 1) the number of pairs

d d
that the algorithm examines within 7 is at least v/d c¢?/ (\/27re)d ~ Vd /4.14% times the
number of pairs at Euclidean distance 1. This shows that to get rid of the super-exponential

d
factor v/d we have to use a very small value of ¢, proportional to 1 / Vd. We clearly cannot
do that when only random translations are used. However, as will be shown in Section 5,
one can choose such small values for ¢ when random rotations are also employed.

A lower bound for y(d). We partition the cell 7 of size ¢ into a grid of (¢v/d)? smaller
cells of size % each. Let £ be one of the small cells, and let ne be the number of points

13

of P in &. Every pair of points in £ are at distance at most 1, so we have at least Zg ("25)
pairs at distance at most 1 in 7. Using the Cauchy-Schwarz inequality we get that
2

n ne(ng — 1 n n
NQ(PT)z§<§>:§ el 5 >22(C\/3>d_2' (9)

Another lower bound for v(d). We enlarge 7 by shifting each of its facets f by 1/2 away
from 7 in the direction orthogonal to f; let 7* denote the cube formed by the hyperplanes
that support the shifted facets. We then consider a ball of radius 1/2 whose center is picked
uniformly at random in 7*. The probability that this ball contains a point p € 7 is at
least V(3)?/(c+1)¢, which is the volume of such a ball divided by the volume of 7*. (The
random ball contains p iff we pick its center in a ball of radius 1/2 around p, and this latter
ball is contained in its entirety in 7*.) It follows, in particular, that there is a ball of radius
1/2 that contains at least Xi(r%l))Zn points of P. We take one such ball, and remove from P all
points in that ball. As long as we have not removed more than n/2 points, a probabilistic
argument similar to the one just given implies that there is a ball of radius 1/2 containing
Va($)?

GEt

at least remaining points of P. So we keep collecting such balls, each containing

1\d
‘(/34(31; 5 points of P, so that these sets are pairwise disjoint, until we are
left with fewer than n/2 points. The number of balls that we collect is therefore at most
(c+1)?
Va($)4
> ;i > n/2. Since each pair of points associated with a particular ball are at Euclidean

distance at most 1, the Cauchy-Schwarz inequality implies, as above, that at least

n; ni(n; — 1 n? Vy(H)t
Z(2>:Z (2)28(cd+21)d_2 (10)

i i

a set of at least

Let n; be the number of points associated with the ith ball. By construction we have

pairs of points are at Euclidean distance at most 1. Substituting the explicit expression for
Va4, and using Stirling’s approximation, as in Equation (8), we get that this lower bound is
approximately

d

n2 (me/ 2) n

8 \/3‘1(6 +1)d 2
The main drawback in this second lower bound is the presence of the factor (¢ + 1)? in
the denominator. (If we could have replaced (¢ + 1)¢ by ¢? then since \/me/2 =~ 2.07 the
second lower bound in Equation (10) would have clearly dominated the first lower bound
in Equation (9).) The factor (c + 1)? essentially makes the lower bound in Equation (10)
useless when c is very small, such as O(ﬁ); such small values of ¢ will indeed be used in
Section 5. In the next subsection we overcome this drawback by drawing the center of the
random ball of radius 1/2 in the Minkowski sum of 7 and a ball of radius 1/2, rather than

in the much larger cell 7* (and we will show that the Minkowski sum is indeed much smaller
than 7).

3.1 The Minkowski sum of a cube and a ball

Let K denote the unit cube [0, 1]d in R?, and let » > 0 be a parameter. Let B, denote
the ball of radius r centered at the origin, and let K, = K @ B, denote their Minkowski

14

sum. Our next task is to estimate the volume of K, which is accomplished in the following
lemma.?

Lemma 3.1
1/342/3,2/3

Vol(K,) < Be2(m : (11)

where B is a constant that depends polynomially on d.

Proof. We note that Vol(K,) can be expressed as a special case of Steiner’s formula, which
asserts that, for any convex body K in R?,

Vol(K & B,) = Zd: <d> W (K)r,

=0
where W;(K), called the j-th quermassintegral of K, is the mized volume
V(K,K,....K,B,B,...,B)

~~

d — j times j times

of d — j copies of K and j copies of the unit ball B; see, e.g., [20, 37]. As follows from the
forthcoming analysis, the unit cube K has the property that W;(K) is the volume V; of the
j-dimensional unit ball, for j =0,...,d. So far we did not manage to find in the literature
an explicit statement of this property, although we are fairly certain that it has been made.
It can be established using properties of Minkowski sums involving segments (the cube, as
well as any of its faces, is such a sum); see, e.g., formula (A.43), p. 407, in [20]. We establish
this property in the following explicit manner.

We first obtain the following representation of K,. For each j = 0,...,d there are 2 (;l)
(d — j)-faces of K, so that each such face f is defined in terms of a subset o of {1,...,d} of
size j and a mapping § : o — {0,1}, so that

f={xe K|z, =), fori € o}
That is, f is defined by fixing j coordinates, each to 0 or 1. Given ¢ and 9, we denote by
fo,5 the corresponding face of K.

For each such face f, s, we “push it outwards” by forming its Minkowski sum with an
appropriate portion of a j-dimensional ball of radius 7, in the directions of the coordinates
that are fixed on f, 5. Technically, for i € o and for € € {0,1}, put

o J{zi >0} ife=1

" {a <0} ife=0.

Now put A
Ki(fo5) = fos ® BY(6),

where Bﬁj) is the j-dimensional ball of radius r centered at the origin, within the subspace
spanned by the fixed coordinates of o, and

BY)(5) = BY n ﬂ Hi; 5.

€0

3Note that we simplify the analysis by considering a unit cube K instead of the grid cell 7. We will later
scale the bound that we obtain to fit it to the actual setup with an arbitrary cell size c.

15

With all these preparations, we can finally write K, as the disjoint union

d
Kr = U UKT<fo,5>7

7=00,0

where the inner union is over all (C.l) possible choices o of j coordinates and 2/ 0/1 “sign
patterns” § on these coordinates. Note that the special case j = 0 yields K itself (there are
no coordinates to be “pushed”). (The proofs of the above equality and of the disjointness
of the constituents of the union are straightforward albeit a bit tedious, and we omit them.)

Figure 1: The Minkowski sum of a square and a disk.

The reader is invited to check Figure 1 for an illustration of the case d = 2, and to work
out the concrete form of the above expression for d = 3, where the “fringe” of K, consists
of six boxes (obtained by pushing out the facets), twelve quarters of cylinders (obtained by
pushing out the edges), and eight eighths of balls (obtained by pushing out the vertices).*

The volume of K,. Note that each of the sums K,(f55) = fos ® Bﬁj)(d) is a (1/27)-

portion of the cylinder f, 5@ B7(:j) whose axis is fo,s and whose radius is r. Since the volume

of any face f of K (within its affine hull) is always 1, the volume of K, (f,s) is 1/27 of the
)

volume of Bﬁj , which we can write as V;r/, where, as before,

/2
Vi= i
I'(1+/2)
is the volume of a unit j-dimensional ball. Altogether we thus obtain
d 1 ; d\ 7w/
I(K,) = 22— Vi) = - 12
Vit]20@ 2 " JZOO T(1+j/2) 12

Note that this establishes our claim that the j-th quermassintegral W;(K) of the unit cube
K is Vj, for each j =0,...,d.

We approximate the sum, up to factors that depend polynomially on d, as follows. We

use the inequalities ‘
d @’
)< = and
J j!

“The 3-dimensional case is also presented in detail in [20].

16

oy L I 4 ()Y
F1+j5/2)~ (;5/2) 2(23/2,

where ~ denotes equality up to a factor that depends polynomially in d. Hence

d

Vol(K,) < 8oy

4l 2i/2
HINFDEE

/2y

for a suitable constant 5y depending (polynomially) on d. Using Stirling’s formula we
further obtain that

d J
91/2.1/2,3/2 g,
Vol(K,) < 61y (]3/2 : (13)
j=0

for another suitable constant ;.

To obtain an upper bound for this sum, we replace its terms by the corresponding
function

A X
Fo) = < 3/2) . where A= 22x1/2 g,
X

over x > 1. It is simpler to analyze
3
g(z)=Inf(z)=xInA — 53:1113:.

We have

3 3
gd(x)=InA - (21nx + 2) ,
so g'(x) = 0at z = x9 = A¥3/e = (27)Y/3d?/3r2/3. Tt can easily be checked that g(z)
attains its maximum at this value, and so does f(z). The maximum value of f is therefore

Fx0) = F(AY3/e) = ea®0 = ga(@m)! /P32
Hence Vol(K,) is at most (d + 1)51 f(zo); that is,
Vol(K,) < Bf(zg) = Beg(gﬂ)l/3d2/3r2/3 ’

for another suitable constant 5 = (d+1)3; that depends polynomially on d. This completes
the proof of Lemma 3.1. O

Hence, as long as 7 = o(d"/?), Vol(K,) = e°@,

Remark. To appreciate the significance of this bound, note that if r = v/d (choosing
r to be any constant multiple of v/d would lead to a similar phenomenon) then K, fully
contains the cube [—1,2]¢, namely the cube obtained by “pushing” K by 1 in all directions.
Indeed the points of the expanded cube that are farthest from K are its vertices, and each
of them lies at distance v/d from a corresponding vertex of K. In other words, for r = v/d
the volume of K, is at least 3%, but for sufficiently smaller values of r < v/d, its volume
becomes, relatively speaking, negligible. More precisely, it is then larger than Vol(K) = 1
by only a sub-exponential factor.

17

The case of a grid cell of size c. We can apply the preceding analysis to the case where
K is a grid cell of arbitrary size ¢ # 1. To do so, we simply scale d-space by the factor 1/c,
so K becomes a unit cube and B, becomes the ball B, /.. We then scale space back, and
obtain the bound

Vol(K,) < Bcde%(Qﬂ)l/3(dr/c)2/3. (14)

The preceding remark now observes that Vol(K,)/Vol(K) is sub-exponential as long as
r < cV/d. This will become significant in the next section, where we choose ¢ = ©(1/v/d).

An improved lower bound for y(d). We next improve our second lower bound, using
the bound on Vol(K,) just derived (in (14)). We now draw a ball of radius 1/2 whose center
is picked uniformly at random in K /5, rather than in the enlarged cube. A probabilistic
argument sicllnilar to the one given above shows that there exists such a ball that contains at
v (i
least %21)/2)
same argument as before implies that at least

J d
TL72) Vd (%) _ ﬁ > B,n2 (7'('6/2)
8 Vol(Kip) 27 V' cdes (/23 (dfe)/

n points of P. We remove these points and repeat the drawing process. The

n
2

pairs of points are at Euclidean distance at most 1, where 8’ is yet another constant that
depends polynomially on d, and where we have estimated Vol(K ;) using (14), and have
approximated Vy using Stirling’s formula as before. We summarize this finding in the
following lemma.

Lemma 3.2 Let P be a set of n points in a cube of size ¢ > 0 in R%. Then at least

s < 7re/2)d o

ST/ 2 2

pairs of points of P are at Fuclidean distance at most 1, where ' is a constant that depends
polynomially on d.

In other words, the constant fraction multiplying n? that we get here is larger than the one
we got before roughly by the factor

d
(C—Z 1) e /2)1}3(d/)2/3 ~ ed/c_%(ﬂ/2)1/3(d/c)2/3a
65 ™ Cc

which is a significant improvement as long as ¢ < d.

Combining the bound in Lemma 3.2 with the one in Section 2, in which we approximate
sq(c) by e=Vd/ ¢, we obtain the following summary result.

Theorem 3.3 Given a set P of n points in R and a parameter ¢ > 1+ 2e~ VU2 we can

report, with high probability, all pairs of points of P at Fuclidean distance at most 1 in time
C(d)(n + k)logn, where

oo 3 (m /213 (df)2/

< We/2)d

18

C(d)y=0 | Ve (\@d

Here the “big-O” notation only hides factors depending polynomially on d, and k is the
output size. Alternatively, we can report, in expectation, an arbitrarily large fraction of the
pairs of points of P at Euclidean distance at most 1 in time C(d)(n + k), with the same
asymptotic bound on C(d). The probability of reporting all pairs in the first variant, and
the expected fraction of reported pairs in the second variant, can be made arbitrarily close
to 1 by increasing C(d) by a sufficiently large absolute constant factor.

Remark. One might attempt to minimize the value of C(d) as a function of ¢. Straight-
forward calculation shows that C(d) is minimized at ¢ = ¢y = 2°/Vd ~ 2.6/v/d, where
z =~ 1.375 is the positive root of

23—(3)1/32—1:0.

Of course, we cannot choose this value of ¢, which is much smaller than 1 (for d > 7). Since
C(d) increases for ¢ > ¢, we conclude that our best choice for ¢ is the smallest possible

value, namely, c =1+ 2e™V /2 This implies, as is easily checked, the following corollary.

Corollary 3.4 With the above choice of ¢, the running time of the algorithm is

0 (m(ﬁ)%é(w/mww

(JreT2)) (n+k)logn,

for reporting, with high probability, all pairs at Fuclidean distance at most 1, and it is

de%(ﬂ/2)1/3d2/3
) (eﬂ(\/a)(——) (n + k),

for reporting, in expectation, an arbitrarily large fraction of the pairs; the “big-O” notation
hides factors depending polynomially on d, and k is the output size.

d d
Remark. Ignoring subexponential factors, the preceding bound is roughly v/d /\/me/2,
which is roughly twice as large as the lower bound.

3.2 Packing lemma

As another interesting application of Lemma 3.1, we derive in this subsection the following
so-called packing lemma. It is reminiscent of a similar packing lemma used in Lenhof and
Smid [32], and it can also be regarded as a more natural extension of Lemma 3.2, in which
the points were confined to lie in a fixed cube.

Lemma 3.5 (Packing Lemma) Let P be a set of n points in R%, and let 7 > 0 be a
parameter. Let Noo(P) (resp., No(P)) be the number of pairs of points of P at Leo-distance
(resp., La-distance) at most r. Then we have

where

By=0 ((4/ ﬁzﬂe)ddd/zeg(gn)lmdwa) 7

where the “big-O” hides factors depending polynomially on d.

19

Proof. As done so far in this paper, we may assume, without loss of generality, that r = 1.
Cover R? by balls of diameter 1. An old result of Rogers (see, e.g., [12, Section 8.2]) asserts
that this can be done (by a lattice covering) so that each point lies in at most A = O(d log d)
balls. Let B denote the (necessarily finite) sub-collection of the cover consisting of those
balls containing points of P. For each ball B € B, let ng denote the number of points of
PN B. We clearly have Y pcznp < Anand Y g (7)) < ANa(P).

Let K denote the cube [—1,1]¢, and let B(r) denote the ball of radius 7 centered at the
origin, for any r > 0. Let p and ¢ be a pair of points of P with |[p—¢|/sc < 1. Let B, and B,
be balls of B containing p and ¢, respectively, and assume, without loss of generality, that
np, <np,. Since ¢ € p+ K, it follows that B, C B, ® K @ B(1). Since (i) the Minkowski
sum is associative, (ii) B, is congruent to B(1/2), and (iii) B(1/2) @ B(1) = B(3/2), an
application of Lemma 3.1, or rather of the bound in (14), with ¢ = 2 and r = 3/2, yields

Vol(B, @ K & B(1)) < p2de1®m'/*d**
The number M of balls of B that are fully contained in B, ® K & B(1) satisfies

v < AVol(B, © K & B(1))
= Vy(1/2)d
_ AB4de1OM PP (1 4 q/9)
- /2

=0 ((4/\/})%%(9#)1/3612/3 (d/(2e))d/2>
=0 ((4/\/%)ddd/2e%<9w>l/3dz/s> ,

where the final constant of proportionality depends polynomially on d.

We charge the pair (p,q) to By, and note that every ball B € B is charged by at most
Mn% = 2M (”;) + Mng

such pairs (recall our assumption that np, < npg,). Summing over all balls of B, and using
the inequalities observed at the beginning of the proof, we obtain

np
Noo(P) <MY np=2MY_ (5) + MY np < 2MAN(P) + MAn,
BeB BeB BeB

and the lemma follows. O

Remark. It is perhaps simpler to absorb the last sub-exponential factor of M in its first
exponential factor, by slightly increasing its base. Also, this base is smaller than 1, so a

simpler, slightly weaker form of the lemma is that Noo(P) < \/&d(NQ(P> +n).

4 Low doubling dimension

As noted in the introduction, in many applications the input set P has a restricted struc-
ture, in the sense that its points have much fewer “degrees of freedom” than the ambient

20

dimension d. For example, all the points of P might lie on, or near, some manifold of much
smaller dimension. In these cases one hopes for a better performance of the algorithm, in
the sense that the constant C'(d) in the bounds in Theorem 3.3 can be replaced by a much
smaller one. We show in this section that this is indeed the case.

One formal way of capturing such a special structure of P is through the notion of
doubling dimension; see [26, 31]. Specifically, a metric space (X, p) has doubling dimension
§ if every ball in X of any radius r can be covered by at most 2° balls of radius r /2. In what
follows we assume that P, under the Euclidean metric in d-space, has doubling dimension
)< d.

The mechanism that has led to Theorem 3.3 can easily be adapted to this case. Specif-
ically, we use a randomly shifted grid of cell size ¢, as in Section 2, and conclude that
any fixed unit vector x is captured in a grid cell with probability at least sg(c) ~ e~Vi/e,
(This part of the analysis does not seem to benefit from the fact that P has low doubling
dimension, but at any rate the dependence of s4(c) on d is “tame”, that is, sub-exponential.)

What can be improved is the analysis that leads to Lemma 3.2. Specifically, fix a grid
cell 7, containing n., points of P. Observe that 7 is fully contained in a ball of radius cv/d/2,
and in a ball of radius ¢v/d centered at any point of P, = P N 7. It easily follows from
the definition of doubling dimension that we can cover P, by (2¢V/d)° balls of radius 1/2.
Within each such ball, every pair of points is at Euclidean distance at most 1.

Let B be a minimum-size cover of P; by balls of radius 1/2. As just shown, we have
M = |B| < (2¢v/d)°. We claim that no point of P, is contained in more than 2% balls of B.
Indeed, suppose to the contrary that there exists a point p € P, that is contained in more
than 2% balls of B. Then all these balls are fully contained in the ball B(p) of radius 1
centered at p. Cover P N Bj(p) by at most 29 balls of radius 1 /2, and replace the balls of
B that are contained in B;(p) by these 2 balls. This gives us a cover of P, by fewer balls,
a contradiction that establishes the claim.

It follows that no pair of points of P, can lie together in more than 2° balls of B, so we

have P B
) (’ o ‘) < PNy(P),

BeB

where Na(P;) is the number of pairs of points of P, at Euclidean distance at most 1. On
the other hand, using the Cauchy-Schwarz inequality, as in the derivation of Equation (9),
we have

2
P, NB\ _ 1 1 I
> — P-NB - = P.NB|| >—— -2 P .
S () 2 g (Spenl) <5 (Sieam) = G -2e

BeB B
Combining the two inequalities, we obtain

Lemma 4.1 Let P be a set of n points in a cube of size ¢ > 1/(2v/d) in R?, of doubling
dimension § (with respect to the Euclidean distance). Then at least

n2 n

2(4cV/d)? 2

pairs of points of P are at Euclidean distance < 1.

21

Corollary 4.2 Given a set P of n points in R? of doubling dimension § (with respect to the

Euclidean distance), and a parameter ¢ > 1+ 2e~V /2 we can report, with high probability,
all pairs of points of P at Euclidean distance at most 1 in time C(d,d)(n + k)logn, where

C(d,8) = 0 (eVVe(4e/d)’),

and where k is the output size. Alternatively, we can report, in expectation, an arbitrarily
large fraction of the pairs of points of P at Euclidean distance at most 1 in time C(d,d)(n+
k), with the same asymptotic bound on C(d). The probability of reporting all pairs in the
first variant, and the expected fraction of reported pairs in the second variant, can be made
arbitrarily close to 1 by increasing C(d,) by a sufficiently large absolute constant factor.

Remark. Simple calculation shows that the bound on C(d,d) is minimized at ¢ = v/d/é,
and then C(d,d) = O((4ed/§)?). Of course, this choice of ¢ makes sense only when &

is smaller than /d; otherwise we choose ¢ = 1 + 2e V%2 a5 in Corollary 3.4, and get
C(d,) = O (eM\/Zz‘S).

5 Randomly rotated and shifted grids

Clearly, in the preceding analysis we cannot choose ¢ < 1 because some unit vectors, such as
axis-parallel unit vectors, will have zero probability of being captured in a grid cell. However,
as we show in this section, if we also apply a random rotation, we will be able to capture
any vector of length (at most) 1 within a grid cell of size ¢ < 1 (of a randomly shifted grid),
with some fixed positive probability (depending, as usual, on ¢ and d), provided that c is
not too small. Although this probability will be significantly smaller than the corresponding
probability obtained in the preceding sections, the small value of ¢ will lead to much fewer
repetitions of the procedure and consequently to a significant improvement in the overall
running time of the algorithm.

Fix some vector x¢ of length 1 (as before, this is clearly the worst-case assumption;
vectors of smaller length will be captured with higher probability). The probabilistic model
assumed in this section is that we choose a random rotation p of d-space (there are several
ways of doing this; see, e.g., Genz [21] for an O(d?logd) procedure) followed by placing a
randomly shifted grid of cell size ¢ in the rotated space. We want to derive a lower bound
on the probability of the event A(xg) that both endpoints of the rotated image p(xg) of xq
fall into the same grid cell.

The random rotation p maps xX¢ to a random vector x = p(xp) (uniformly) on o. The
probability of capturing x = (z1,...,24) in a cell of a randomly shifted grid of cell size

c<l1lis
+ +
Fc(x):<1—‘$1|> ...<1_|xd|> 7
C C

where wt = max{w, 0}, for w € R. This is the probability of the event A(x() conditioned on
the choice of the rotation p, so the actual probability of A(xp) is the expectation (average)
of F.(p(x0)) over the space of rotations.

The symmetry of the space of rotations is easily seen to imply that the expected value p
of F.(p(x0)), over the space of rotations, is the same as the expected value of F.(x) over o

22

(because a random rotation takes xo to a random point on o, and each point has the same
(differential) probability of being reached). That is,

p= 7 [P
[o]

where |o] is the surface volume of o, which is (see [38])
27Td/2
I'(d/2)

To estimate p, we use the easily established fact, observed by Muller [35], that if we draw d
independent normal variables x;, 1 < i < d, from the standard normal distribution IN(0; 1)
and put x = (z1,...,24), then x/||x|| is a uniform random direction (a random point on
o). It follows from this observation that

1 > > R al \T g2y
”‘(%)d/?/oo /oo<1 c||xr> P owy) ¢ e dra o (15)

To obtain a lower bound on p we fix some threshold radius rg, and write g = u= + u™,
where 11~ (resp., u1) is the portion of p obtained by integrating over the multivariate normal
distribution within the region ||x|| < ro (resp., ||x|| > ro). Clearly u > ut so we focus on
lower-bounding ™.

o] =

For ||x|| > o we have

(oI (o) (oY ()
c|lx|] cl|x|| cro cro

+ +
P / PN T gy
(27T)d/2 HX||ZT0 Cro Cro

Write this right-hand integral as I — Iy, where I (resp., Iy) is obtained by integrating over
the entire R? (resp., over ||x| < rg).

SO

I is easy to compute (here we use the independence of the choice of coordinates x;), and

d
-t /OO 1— M ! e~ 24y
emd? \ o cro
1 cro T 2 d
_ 1 = —z</2
(2 (1-5))
2\ 4? 1 [ero d
(< e~ 2y — — xe_x2/2d$>
s Cro Jo

d
()d/2 (o —x2/2d1’ _ 1-— e_(CT0)2/2>
Cro

Using integration by parts, it is easily checked that

2 00 00
CTro cro cro €r

23

we get

AN

which implies that

cro —(crg)?/2
/ e 2r 4
0

Cro

¢ro 2 o0 2 o0 1 2
/ e~ 2y +/ e 2dy —I—/ —26_“"3 12y =
0 cro cro €T
> —x2/2 > 1 —x2/2
e dx + ?e dx > ~\/7/2
0 cro

where in the final inequality we neglect the second integral. Hence

() () - ()

- -
We obtain an upper bound for Iy by upper bounding <1 — @> e <1 — @) by 1,

Ccro

so we have)

< W/” | X220
x||<ro

We express this integral in spherical coordinates (7, 6), where r is the radius (distance from
the origin) and € € o is the orientation. The spherical symmetry of the multivariate normal
distribution is easily seen to yield

1 ro 2
In< ——— [1d6 d=1-r%/24 16
o A 1o

where in the first integral 8 denotes a point on ¢ and df denotes a surface volume element
on o. Informally, the identity follows since a volume element at a point x = (r,6) can be
written as 7~1df (the surface volume element on the sphere through x, of radius r) times
dr.

Iy

We note that fg 1d0 is simply the surface volume of o, which is |o| = lgerd//;), and we
thus get
1 2rd/2 o > 1 o 2
Iy < . d—1,-1%/2 4 :/ d—1,-r2/2 4.
0= 22 T(d)2) /0 Toe T T apsrpey f, O

Replacing r by v/2z, putting ro = v/td, for some 0 < ¢, and writing d/2 =k, we get

1 tk 1
Iy < / 2" e Rdz.
I'(k) Jo

The function z*~le™* is maximized at z = k — 1. If we assume that ¢+ < 1 — 2/d then

k — 1 > tk, so the integrand is an increasing function in the range 0 < z < tk, and we get
tk
/ Flem2dz < th - (th)* e = (tk)ke Mk,
0

We can also lower bound T'(k), using Stirling’s formula, by /27 /k(k/e)*. Hence we get

Io < (k/(2m) /2 (e/k)" (th) ket
— (k/(2m)) /2 (et)e ™ = (k/(2m)) /2 (te!).

24

Puttin

we conclude that
Io < (k/(2m)2B(t)". = (d/(4m))' 2 B(t)".
Note that 5(t) < 1 for any t < 1.

Putting the lower bound on I and the upper bound on Iy together, we get

V2
Vmerg

d
p>pt>I—1I> (1) — (d/(4m))'2B(t)".

Choosing c. Note that we can, and indeed intend to, take ¢ to be much smaller than 1.
The only constraint that we need to enforce is that

V3 4\ 1/
e () o

)1/(2d)

is smaller than 1.015, as is easily checked, so we replace

V2
Vmerg

Recalling the choice of rg = v/dt and the definition of 5(t), this becomes

The maximum value of (%
this constraint by

1

> 1.015 - B(¢).

c>

2
=

where

V2 - V2
V(1 — 1.015t1/2e0-0/2) = \/nt

That is, we can take ¢ to be some constant fraction (the optimal choice of ¢ will be discussed

ﬂ;); that is, we take ¢ to be

alt) = (17)

later in the section) and then take ¢ to be slightly larger than

some constant multiple of 1/v/d. In this case the (lower bound on the) expected success
probability u will decrease exponentially with d. In contrast, choosing ¢ to be some fixed
absolute fraction, similar to the choice in the purely translational case treated in Sections 2

and 3, yields a lower bound for p of the form e—avd/ ¢ for a4/ % (in this case any choice
of ¢t not too close to 1 will do).

The rationale for taking ¢ so small is that this (significant) degradation in the success
probability will be more than offset by the ratio (arising in the analysis of our algorithm)
between the number of pairs of points in a grid cell and the number of such pairs at Euclidean
distance at most 1, making the combination of these two factors only exponential in d, rather
than super-exponential, as was the case in Section 3.

Let a(t) be as defined in (17), and let us choose ¢ = a/v/d, for some slightly larger
a > a(t). As can be easily checked, the smallest value for a(t), attained at ¢ ~ 0.11, is
about 5.07. (Observe that we cannot choose ¢ to be smaller than 1/v/d, because then no

25

unit vector will fit into a cell of size ¢.) The best choice of the constant a is different though,
and is discussed next.
d
For ¢ = a/ Vd, pis at least roughly (1 — GL\/%) . That is, for any fixed unit vector
Xg, a random rotation followed by a placement of a randomly shifted grid of cell size ¢, for
c=a/ Vd as above, captures both endpoints of x¢ in the same grid cell with probability

d
at least (1 — a—%) , so the expected number of trials until a successful one (for the fixed
d
vectors xg) is at most My =1/ (1 — a%) . More precisely, repeating this step bMglogn

times ensures with high probability that every pair at Euclidean distance at most 1 is
captured in a grid cell. Repeating this step only bMy times ensures that an arbitrarily
large expected fraction of these pairs (a fraction approaching 1 when b increases) will be
captured.

On the other hand, assume that a grid cell 7 of size ¢ = a/ V/d contains n, points of P.
Using Lemma 3.2, we conclude that the number of pairs of points of P N7 at FKuclidean
distance at most 1 is at least

B'n? (7Te/2)d nr

T de (w213 (dfe)23 27

Substituting ¢ = a/+/d, this becomes

d
, me/2 9 Ny
—_— | N — —.
’ (aeg(w/<2a2))”3> T2

It follows that, with high probability, we report each of the k pairs of points at Fuclidean
distance at most 1 (resp., in expectation, an arbitrarily large fraction of these pairs) by
inspecting no more than C(d,a) - (n + k) logn (resp., C(d,a) - (n+ k)) pairs of points of P,
where C(d, a) is

3 2y\1/3
1 aes (7/(2a%)
C(d,a) =0 7
(1 _ ﬁ) me/2
av/rt
=0 a2e%(“/(2a2))1/3
B ay/me/2 — /et

As before the “big-O” notation here hides factors depending polynomially on d. Increasing
C(d,a) by a constant factor increases the overall success probability that we indeed report
all pairs at distance 1 (or the constant fraction of the pairs reported).

We thus get rid of the super-exponential factor d%2 that we encounter when c¢ is a fixed
fraction or when no rotation is applied, and obtain an overall exponential factor.

Recall that a = a(t) is a function of ¢ given by Equation (17). So the best lower bound
on the base in the “overhead” constant factor C(d,a) that this method yields is about

and numerical calculations show that this minimum value is about 6.74, obtained for ¢ ~
0.25.

In conclusion, we obtain the following main result.

Theorem 5.1 Given a set P of n points in R, we can report, with high probability, all
pairs of points of P at Buclidean distance at most 1, in time O(6.74%(n + k) logn), where k
is the output size. Alternatively, we can report, in expectation, an arbitrarily large fraction
of these pairs in time O(6.74%(n + k)); the success probability and the expected fraction of
reported pairs can be made arbitrarily close to 1 by increasing the constant factor hidden by
the “big-O”.

Remark. The case where P has low doubling dimension § < d does not seem to fit the
framework of this section because, as in the preceding sections, we do not know how to make
the success probability of capturing a unit vector within a grid cell depend also on 6. While
this probability was only sub-exponentially small (in d) in the case of pure translation, here,
with the very small value of ¢ that we choose, this probability becomes exponentially small.
This in turn makes the constant in the bound depend (at least) exponentially on d, a much
larger value than that obtained in Section 4.

6 Experimental results

We have implemented both algorithms in C4++ and have compared them to several leading
software packages for reporting neighbors. These do not include algorithms that lay down
a (fixed) grid of cell size r and test each point in each nonempty cell with the points in its
neighboring nonempty cells, such as the one in [32]. These algorithms are very slow due to
the large number of neighboring cells, each of which must be tested to determine whether
it is empty or not.

A natural approach to solve our problem is by using certain “off the shelf” data struc-
tures for (approximate) nearest neighbor queries. We first construct such a data structure
on our input set and then query it with each input point. Evidently in order to find all
pairs of points at distance at most r we need each query with a point ¢ to return all points
at distance at most r from ¢, rather than just the nearest neighbor of ¢q. Fortunately, the
available packages do provide functions that can be adapted for this task. Since these pack-
ages approximate the nearest neighbors they in fact only find “most” neighbors of distance
at most r. By fine-tuning the parameters of the appropriate package, we can control the
expected fraction of the pairs at distance at most r that this package reports.

We have implemented such a scheme using three publicly available software packages:
the E2LSH package for Locality Sensitive Hashing [2, 3], the ANN package by Arya et
al. [7], and the FLANN package [33, 34]. ANN and FLANN use various hierarchical space
decompositions (such as kd-trees and box decomposition trees).

The E2LSH package provides a function to learn the configuration parameters needed
for a particular success probability. This function takes a data set to index, a set of queries,
a target probability p, and a distance r. It then computes the parameters required to ensure
that for each query ¢ we report every point w at distance at most r from ¢, with probability
p. We applied this function with target probability of p = 0.9 to a moderate-size data set

27

(arising from 900 images, see below) which we used both as the data set to index, and as the
set of queries. Then in all our experiments we used the configuration parameters produced
by this training phase.

The ANN and FLANN packages support a search for the k nearest neighbors and allow
to stop the search when the distance to the jth neighbor (for some j < k) exceeds some
prespecified value r. We used this search with a large k£ and our target distance r. As an
outcome for a query point g and a parameter €, we got all points p at distance at most
r/(1+¢) from ¢, and some points p at distance at most r from ¢ (we never get points lying
further away from g). We have set € = 1.4 since for this value the number of points reported
by ANN and FLANN was comparable to the number of points reported by E2LSH (with
p = 0.9) on the training data set mentioned above. In our first algorithm, which uses a
randomly shifted grid, we set the size of a grid cell to be ¢ = 3.6r and we used 5 different
randomly shifted grids. For these parameters the total number of pairs that we report on
the training data set was comparable to the number of pairs reported by the other packages
with the parameters mentioned above.

Our points lie in Euclidean space of dimension d = 64, but ¢/r = 3.6 < Vd = 8. This is
exactly the situation mentioned in the introduction, where the easy lower bound of 1—rv/d /c
on the success probability is meaningless. Nevertheless our choice of ¢ is not as small as
our analysis suggests. The reason for that is the small intrinsic (“doubling”) dimension of
our data sets (which is probably closer to 10 than to 64). This small dimension makes the
number of points that we see in a grid cell relatively small and as a result moderate values
of ¢ work better in practice.

Note that by running the training phase of E2LSH, it is guaranteed to report 90% of
the pairs of distance at most r of each other. ANN and FLANN do not provide such
a guarantee directly but they do so indirectly since we tuned their parameters to report
about the same number of pairs as E2LSH. ANN and FLANN are guaranteed, however,
to report all pairs at distance smaller than /(1 + ¢). Our theoretical analysis in Section 2
guarantees that a pair of distance r falls into the same grid cell of one random grid is at
least sq(c/r) = s4(3.6) ~ 0.1. So the probability that we discover a close pair using 5 grids
is 1 — 0.9 = 0.41. The fact that with 5 grids we get an output size comparable to that of
E2LSH indicates that our lower bound, s4(c/7), on the probability of locating each pair is
pessimistic, and that this probability is larger in practice.

We have constructed our input set by extracting representative descriptors in R from
images, using the Speeded Up Robust Feature (SURF) method [9], which is used for com-
puter vision problems such as object recognition and 3D reconstruction. SURF first identi-
fies interesting points at significant corner locations of the image. Then it summarizes the
region around each interesting point, using the Haar wavelet transform, into a descriptor of
64 numbers in [0, 1]. The vectors of these descriptors form the points in R% that we used
as our input data set.

Finding all pairs of descriptors at distance at most r from each other is a common method
for identifying similar images. Images are declared to be similar if there are sufficiently many
pairs of descriptors, one from each image, at distance at most r from each other. We used
r = 0.08 which is appropriate for the underlying image matching application. We used a
collection of images containing pairs that were taken at the same geographic location or of
the same object. Such pairs of images have many close descriptors. These pairs of close

28

descriptors are the pairs of points in R% that our algorithm tries to identify. (For training
LSH we used a set of descriptors extracted from 900 images from the same set.)

The table in Figure 2 shows the results for four data sets obtained respectively from 50,
100, 200, and 400 images. The second column gives the total number of points (in R%4)
extracted from these images. This is about 260 points per image. The third column gives the
exact number of pairs of points at distance at most . The last four columns give the results
for the four algorithms that we compared. We show two numbers in each entry of these
columns: the number of reported pairs at distance at most r, and in parenthesis the running
time in seconds. We can see from this table that the fraction of reported pairs in all instances
is about 96% of the total number of pairs at distance at most r, except for FLANN, which
failed to report a sufficiently large number of pairs for 400 images. Automatic parameter
selection for FLANN gave bad results and we set manually the parameters to get the best
performance. Specifically, we set the index parameter to 4 and search parameter to 64. We
can see that FLANN is considerably slower than all the other algorithms. Our algorithm
is the fastest.

#images | #pts #r-close | ANN FLANN | LSH Ours
pairs

50 12981 1024 998 1012 1013 1001
(0.31) (1.19) (0.46) (0.07)

100 25532 1784 1734 1755 1755 1705
(0.64) (2.3) (0.89) (0.16)

200 53106 4628 4347 4154 4532 4405
(1.61) (5.12) (1.95) (0.46)

400 106336 8538 8040 7295 8319 8416
(4.46) (10.4) (4.16) (1.17)

Figure 2: Comparison of the numbers of reported points and the running times (in seconds) for the
different algorithms.

To appreciate the asymptotic improvement of our algorithm, we also compared it to
ANN and E2LSH on much larger data sets. FLANN is much slower and was not able to
compete with the other algorithms on these instances. Figure 3 shows the running times of
the three algorithms as a function of the size of the data set. The asymptotic supremacy
of our method can clearly be observed. The reported number of pairs is shown in Figure 4.

6.1 Using rotations

The number of pairs of points in a grid cell of size ¢ typically increases rapidly with ¢, so,
as discussed earlier, we want to use very small values of ¢ which, combined with a random
rotation of the coordinate frame, yields a procedure for which we were able to obtain a
much improved theoretical upper pound on its expected performance.

On our real data sets, however, as it turns out, rotations do not yield an advantage. This
is probably due to the fact that the data sets have low doubling dimension, and that the
algorithm that uses rotation does not take advantage of this property, as does the purely
translational algorithm. Decreasing the value of ¢ indeed decreases the number of pairs

29

runtime (seconds)

#reported pairs

Runtime Comparison

140 T T T T
Randomized Grids (ours, 2012) ———

120 + ANN (Arya, Mount, Netanyahu, 1998)

E2LSH (Indyk, Andoni, 2006) -«

100 } _

80 r]

40 + et]

ol e

200000 400000 600000 800000
#points

Figure 3: Running times on inputs of increasing sizes.

Number of reported pairs

120000 - T — . .

Randomized Grids (ours, 2012) ——
ANN (Arya, Mount, Netanyahu, 1998) -
100000 E2LSH (Indyk, Andoni, 2006) -~~~/

Exact number of pairs - - =32
80000 5 _
60000 _
40000 _
20000 _

0 ,-""""#.k.r | | L)

100000 200000 300000 400000 500000
#points

Figure 4: Number of reported neighboring pairs.

30

which we inspect.® But the gain in running time due to this decrease is subsumed by the
loss incurred by the larger number of experiments which we need to perform. Figure 5
shows the running times on our data set produced from 100 images, of the algorithms with
rotations and without rotations for various values of c. In all experiments we reported about
1700 pairs. The best running time is obtained for ¢ = 3.6 without rotation. A peculiar
phenomenon about this data set is that for higher values of ¢ the algorithm with rotation
becomes faster. This phenomenon is somewhat surprising and we do not fully understand
it. It may be related to a special initial alignment of this particular point set. (Points in
this data set seem to tend to be near one of the main diagonals of the unit cube.) For ¢ =7
without rotation we inspect 8528906 pairs out of which 1782 are at distance at most 7.
When we rotate the points we inspect only 1626949 pairs out of which 1713 are at distance
at most r.

N=25532, d=64, real data. r=0.08

12 - : . — .
No rotation
10 L With rotation i
g
o 8 r i
5
N 6 i
&
% 4 B i
2 _k/
O 1 1 1 1 1

Figure 5: Running times with and without rotation on real data as a function of the cell size.

For other data sets containing points which are distributed differently, random rotations
can give a substantial advantage. To demonstrate this we experimented with a random
data set of 100000 points in the unit cube of dimension 16 (which do not have low doubling
dimension). We set r = 0.5 for this data set. There are 3600 pairs at distance at most r in
the data set of which we reported about 3500 in all our experiments. Here the number of
inspected pairs increases more drastically with c.5. As a result it pays off to use rotations
with a smaller value of ¢ and a larger number of experiments. Figure 6 shows the running
times for the algorithms with rotations and without rotations for different values of ¢. We
see in this plot that the best running time is obtained for ¢ = 1.3 with rotations. Recall that
this is obtained despite the overhead of O(d?n) time which we invest in each experiment to

SFor our data set produced from 100 images we inspect about 40, 240, 4700, and 90000 pairs for ¢ equals
to 0.8, 1, 2, and 3.6, respectively.

5We inspect about 80000 pairs for ¢ = 0.8, 500000 pairs for ¢ = 1.0, and 120000000 pairs for ¢ = 2.0. For
¢ = 3.6 the number of pairs is too large for the computation to finish in a reasonable amount of time.

31

N=100000, r=0.5, d=16, uniform distribution

20 T T T T N
No rotation
18 With rotation i

16 ¢
14

runtime (seconds)
[—y
[\®)

Figure 6: Running times with and without rotation on random data as a function of the cell size.

randomly rotate the points.

Acknowledgements. The authors would like to thank Shiri Artstein-Avidan for helpful
discussions concerning Minkowski sums, and Sariel Har-Peled and Amir Rothschild for
helpful discussions about the problem and its existing literature.

References

1]

C. C. Aggarwal, A. Hinneburg, and D. A. Keim, On the surprising behavior of distance
metrics in high dimensional spaces, in Proc. 8th Internat. Conf. Database Theory, 2001,
420-434.

A. Andoni, Implementation of LSH: E2LSH, http://www.mit.edu/~andoni/LSH/

A. Andoni and P. Indyk, Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions, in Proc. 47th Annu. IEEE Sympos. Found. Comput. Sci.,
2006, 459-468.

A. Andoni and P. Indyk, Efficient algorithms for substring near neighbor problem, in
Proc. 17th Annu. ACM-SIAM Sympos. Discrete Algorithms, 2006, 1203-1212.

A. Andoni and P. Indyk, Near-optimal hashing algorithms for approximate nearest
neighbors in high dimensions, Commun. ACM 51(1) (2008), 117-122.

S. Arya, T. Malamatos, and D. M. Mount, Space-time tradeoffs for approximate nearest
neighbor searching, J. ACM, 57(1) (2009), 1:1-1:54.

32

[7]

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions, J. ACM
45(6) (1998), 891-923.

P. Assouad, Plongements Lipschitziens dans R, Bull. Soc. Math. France, 111(4) (1983),
429-448.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, SURF: Speeded Up Robust Features,
Computer Vision and Image Understanding 110(3) (2008), 346-359.

S. N. Bespamyatnikh, Dynamic algorithms for approximate neighbor searching, in Proc.
8th Canad. Conf. Comput. Geom., 1996, 252-257.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When is “Nearest Neighbor”
meaningful?, in Proc. Internat. Conf. Database Theory, 1999, 217-235.

K. Boroczky, Finite Packing and Covering, Cambridge Tracts in Mathematics, Vol.
154, Cambridge University Press, Cambridge 2004.

T. M. Chan, On enumerating and selecting distances, Internat. J. Comput. Geom.
Appls. 11(3) (2001), 291-304.

T. M. Chan, Closest-point problems simplified on the RAM, in Proc. 13th Annu. ACM-
SIAM Sympos. Discrete Algorithms, 2002, 472—-473.

T. M. Chan, A minimalist’s implementation of an approximate nearest neighbor algo-
rithm in fixed dimensions. Manuscript. www.cs.vwaterloo.ca/tmchan/sss.ps.

M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. A. Plotkin, Approximating a finite
metric by a small number of tree metrics, in Proc. 39th Annu. Sympos. Found. Comput.
Sci., 1998, 379-388.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, Locality-sensitive hashing
scheme based on p-stable distributions, in Proc. 20th Annu. Sympos. Comput. Geom.,
2004, 253-262. Also Chapter 3 in [28], pp. 61-72.

L. Devroye and T. J. Wagner, Nearest neighbor methods in discrimination, in Handbook
of Statistics, volume 2, P. R. Krishnaiah and L. N. Kanal, editors, North-Holland,
Amsterdam 1982, 193-197.

C. A. Duncan, M. T. Goodrich, and S. Kobourov, Balanced aspect ratio trees: Com-
bining the advantages of k-d trees and octrees, J. Algorithms 38 (2001), 303—333.

R. J. Gardner, Geometric Tomography, 2nd edition, Encyclopedia of Mathematics and
its Applications, Vol 58, Cambridge University Press, New York, 2006.

A. Genz, Methods for generating random orthogonal matrices, in Monte Carlo and
Quasi Monte Carlo Methods 1998, H. Niederreite and J. Spanier (Eds.), Springer-
Verlag, Berlin (1999), pp. 199-213.

A. Gersho and R. M. Gray, Vector Quantization and Data Compression, Kluwer Aca-
demic Press, Boston, 1991.

33

[23]

[24]

[25]

[26]

[27]

[37]

[38]

[39]

J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Computational
Geometry, Second Edition, CRC Press LLC, Boca Raton, FL, 2004.

S. Har-Peled, Geometric Approximation Algorithms, Mathematical Surveys and Mono-
graphs, volume 173, AMS Press, Providence, RI, 2011.

S. Har-Peled, A replacement for Voronoi diagrams of near linear size, in Proc. 42nd
Annu. IEEE Sympos. Found. Comput. Sci., 2001, 94-103.

S. Har-Peled and M. Mendel, Fast construction of nets in low-dimensional metrics and
their applications, STAM J. Comput. 35(5) (2006), 1148-1184.

A. Hinneburg, C. C. Aggarwal, and D. A. Keim, What is the nearest neighbor in
high dimensional spaces?, in Proc. 26th Internat. Conf. Very Large Data Bases, 2000,
506-515.

G. Shakhnarovish, T. Darrell, and P. Indyk, Eds., Nearest-Neighbor Methods in Learn-
ing and Vision, MIT Press, Cambridge MA, 2006.

P. Indyk and J. Matousek, Low-distortion embeddings of finite metric spaces, in [23,
pp. 177-196].

P. Indyk and R. Motwani, Approximate nearest neighbors: Towards removing the curse
of dimensionality, in Proc. 30th Annu. ACM Sypos. Theory Comput., 1998, 604-613.

R. Krauthgamer and J. R. Lee, Navigating nets: Simple algorithms for proximity
search, in Proc. 15th Annu. ACM-SIAM Sympos. Discrete Algorithms, 2004, 798-807.

H.-P. Lenhof and M. Smid, Sequential and parallel algorithms for the k& closest pairs
problem, Internat. J. Comput. Geom. Appls. 5 (1995), 273-288.

M. Muja and D. G. Lowe, Fast approximate nearest neighbors with automatic algorithm
configuration, in Internat. Conf. Computer Vision Theory Appls. (VISAPP’09), 2009,
331-340

M. Muja and D. G. Lowe, The FLANN implementation, http://people.cs.ubc.ca/
~mariusm/index.php/FLANN/FLANN

M. E. Muller, A note on a method for generating points uniformly on n-dimensional
spheres, Commun. ACM 2(4) (1959), 19-20.

J. S. Salowe, Enumerating interdistances in space, Internat. J. Comput. Geom. Appls.
2 (1992), 49-59.

R. Schneider, Convex Bodies: The Brunn—Minkowski Theory, Cambridge University
Press, Cambridge, 1993.

D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions, Dover, New
York, 1958.

G. T. Toussaint, Geometric proximity graphs for improving nearest neighbor methods
in instance-based learning and data mining, Internat. J. Comput. Geom. Appls. 15 (2)
(2005), 101-150.

34

