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Abstract

Let P be a simple polygon with m edges, which is the disjoint union of k simple poly-
gons, all monotone in a common direction u, and let Q be another simple polygon with
n edges, which is the disjoint union of ℓ simple polygons, all monotone in a common di-
rection v. We show that the combinatorial complexity of the Minkowski sum P ⊕ Q is
O(kℓmnα(min{m,n})). Some structural properties of the case k = ℓ = 1 have been (im-
plicitly) studied in [25]. We rederive these properties using a different proof, apply them to
obtain the above complexity bound for k = ℓ = 1, obtain several additional properties of the
sum for this special case, and then use them to derive the general bound.
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Chapter 1

Introduction

Given two sets P,Q ⊂ R
2, their Minkowski sum, denoted by P ⊕ Q, is defined as the set

P ⊕ Q := {p + q | p ∈ P, q ∈ Q}.

This is a fundamental construct that arises in a wide range of applications, including robot
motion planning [5, 19], assembly planning [11], and computer-aided design and manufac-
turing (CAD/CAM)[7].

Consider for example robot motion planning. This application involves placements and
translational motion of an object in the presence of another object, which acts as a stationary
obstacle. Let Q denote the obstacle, and P the robot, which is only allowed to translate.
Assuming, without loss of generality, that the origin o lies in P , and denoting by −P the
reflection of P with respect to o, it follows by definition that K = (−P )⊕Q is the set of all
vectors v such that translating P by v makes it intersect Q. In the study of motion plan-
ning, this sum is called a configuration space obstacle, or C-obstacle. Hence the complement
Kc of K is a representation of the space of all free placements of P (namely, placements
disjoint from Q). This observation makes Minkowski sums a central tool in the analysis of
translational motion planning (see, e.g., [5, 23]), and we will also use this interpretation in
our analysis.

1.1 The combinational complexity of Minkowski Sums

Motivated by these applications, there has been much work on obtaining sharp bounds on
the size of the Minkowski sums of two sets in two and three dimensions, and on developing
fast algorithms for computing Minkowski sums. Throughout the thesis we only consider
Minkowski sums of two polygons P , Q in the plane. It is well known that if both P and Q
are convex polygons, with m and n vertices respectively, then P ⊕ Q is a convex polygon
with at most m + n vertices, and it can be computed in O(m + n) time [5]

However, if only P is convex and Q is non-convex then P ⊕ Q has Θ(mn) vertices in
the worst case (see Figure 1.1) [5, 18]. The proof relies on special properties of a set of
pseudodiscs. We say that a pair of planar objects o1 and o2 are a pair of pseudodiscs if each
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Figure 1.1: P is a convex polygon with m vertices and Q is a non-convex polygon with n
vertices. The complexity of P ⊕ Q is Θ(mn). (Computed with Eyal Flato Minkowski Sum
package [9].)

Figure 1.2: P and Q are non-convex polygons with m and n vertices respectively. The
complexity of P ⊕ Q is Θ(m2n2). This is the worst case scenario. (Computed with Eyal
Flato Minkowski Sum package [9].)

of the sets o1 \ o2 and o2 \ o1 is connected. Kedem et al. [18] proved that the number of
vertices of the boundary of the union of a collection of n pseudodiscs is at most 6n − 12,
where a vertex is an intersection point of two boundaries. The time needed to construct
P ⊕ Q in that case is O(nm log(nm)).

Finally, if P and Q are non-convex polygons, then P ⊕Q is a portion of the arrangement
of O(mn) segments, where each segment is the Minkowski sum of a vertex of P and an edge
of Q, or vice-versa. Therefore the size of P ⊕ Q is O(m2n2) and this bound is tight in the
worst case. P ⊕ Q can be computed within that time [5, 16] (see Figure 1.2).
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1.2 Related Work

1.2.1 Special cases of Minkowski sums

In the previous section we presented the well known combinatorial bounds on the complexity
of the Minkowski sum of two polygonal sets. In motion planning applications, one is often
interested in computing only a single connected component of the complement of P ⊕ Q
[20]. Har-Peled et al. [14] showed that the complexity of a single face of the complement
of P ⊕ Q is Θ(mnα(n)) in the worst case, where m and n are the number of vertices of P
and Q respectively (without loss of generality n < m), and α(·) is the functional inverse of
Ackermann’s function [24].

The special case where P is a simple polygon and Q is a line segment has been recently
analyzed in [21], it was shown that in that case P ⊕ Q has at most 2n − 1 edges, and this
bound is tight in the worst case.

Ramkumar [22] presents a different approach to construct the outer face of the Minkowski
sum. Existing methods rely on general algorithms for computing a single face in an arrange-
ment of k line segments, which takes O(k(log k)(α(k))) time. Instead, his algorithm exploits
a new insight into the relationship between convolutions and Minkowski sums and, though
asymptotically slower, has practical advantages for realistic polygon data. His method con-
sists of traversing each cycle of the convolution, detecting self-intersections, and snipping
off the loops thus created. In order to detect self-intersections, the algorithm adapts the
geodesic triangulation ray-shooting data structure to answer ray-shooting queries on a dy-
namic polygonal line of size n, in O(log2 n) amortized time. The algorithm constructs the
outer face of the Minkowski sum of two simple polygons of size m and n, respectively, in
time O((k +(m+n)

√
l) log2(m+n)) where k is the size of the convolution (k can be O(mn)

in the worst case) and l is the number of cycles in the convolution.

De Berg and van der Stappen [6] report on results concerning the relation between the
fatness of the Minkowski sum of two sets and the fatness of these sets. The fatness of an
object is determined by the emptiest ball centered inside the object and not fully containing
it in its interior. Using this measure, they show that the fatness of A⊕B is at least as large
as min(fatness(A); fatness(B)), when A and B are connected closed and bounded sets in
R

d .

Monotone Polygons

Another special case where P is monotone, was studied by A.H. Barrera [2], who showed
that the Minkowski sum of a monotone polygon P with n edges and a convex polygon Q
with m edges can be calculated in O(nm) time and space. For two monotone polygons P
and Q (monotone in the same direction), an O(nm log(nm)) time algorithm is presented,
which is almost tight in the worst case, because it is shown that the number of edges in the
sum is Θ(nmα(min(n,m))) in the worst case (For example see Figure 1.3). In case when P
is monotone and Q is simple, an O((nm + k) log(nm)) time algorithm is given, where k in

7



Figure 1.3: P and Q are x-monotone, non-convex polygons with m and n vertices respec-
tively. The complexity of P ⊕ Q is Θ(nmα(min(n,m)) and the resulted polygon is x-
monotone. (Computed with Eyal Flato Minkowski Sum package [9].)

the worst case can be Θ(n2m), and the number of edges in the sum is Θ(n2m). Barrera also
proved that computing the Minkowski sum of two polygons is at least as hard as sorting X
+ Y [3]. The best known time bound for solving this sorting problem is O(n2 log(n)), and
it is an open problem whether this can be improved.

Discrete Approximations

Hartquist et al. [15] suggest a computing strategy for applications that use offsets, sweeps
and Minkowski operations based on the ray-representation method. This method involves
clipping a given input to a grid of rays and applying the mathematical definitions and op-
erators (such as Minkowski sums) on the resulting discrete set. The authors aim to solve
motion planning, process-modeling and visualization problems, and they present a hardware
design for those applications.

Kavraki [17] uses the Fast Fourier Transform (FFT) algorithm on the bitmaps of a robot
and obstacles to find the corresponding configuration-space obstacles for the robot translating
among the obstacles. This method approximates the configuration space obstacles. The
method is inherently parallel and can benefit from existing experience and special hardware
for computing the FFT.

1.2.2 Applications

The translational robot motion planning problem planning is a convenient case study for
Minkowski sum algorithms, and we therefore detail it and use it as an example in the rest
of this thesis. There are many more applications in which the Minkowski sum operation is
a useful tool. Some examples are listed here.

Polygon containment

Given two polygons P and Q in the plane, we wish to determine whether P can be contained
(by translation, or by other geometric transformation) inside Q. This problem is known as
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the polygon containment problem [4]. If we only allow a translation (namely, the orientation
of P is fixed), the problem can be solved as follows: Consider the complement of Q as an
obstacle for the robot P , and try to place P such that it does not penetrate this obstacle.
Practically, let B be the bounding box of Q and let Qc = B \ Q be the complement of Q.
The free placements for P inside Q can be found by computing Qc ⊕ (−P ).

Geographic Information Systems; Cartographic generalization

Geographic Information Systems (GIS) are increasingly being studied in computational ge-
ometry. There are some problems in GIS that are closely related to our work. One of them
was first posed by Marc van Kreveld [26]: Given two simple polygons, P and Q with m
and n edges respectively, find the minimum length translation of one polygon relative to
the other that will make the two polygons interior disjoint. The solution is based on the
fact that P and Q are disjoint if and only if P ⊕ (−Q) does not contain the reference point
of Q. Assuming that in their original placement P and Q intersect and that the reference
point of Q is at the origin o (we can assume this without loss of generality), the shortest
translation of Q relative to P that separates them is given by the point on the boundary of
P ⊕ (−Q) which is closest to the origin o (this point can lie on the boundary of some hole
of the Minkowski sum). The running time of this algorithm is Θ(n2m2) in the worst case,
which is dominated by the complexity of the Minkowski sum algorithm.

Robust and efficient construction of planar Minkowski sums in practice

Flato and Halperin at [8, 10] present several different approaches to calculate the Minkowski
sum of two simple polygons using the CGAL software library and its planar map pack-
age. The algorithms decompose each of the polygons P,Q into convex sub-pieces, form the
Minkowski sums of the separate pieces, and then construct the union of these sub-sums. The
algorithms differ in the implementation of the union step – calculation of the union of the
Minkowski sub-sums.
In a subsequent work [1, 8] Agarwal, Flato and Halperin continue this research, by analyz-
ing different decomposition methods, the first step of the Minkowski sum algorithm, such as
triangulation, convex decomposition with/without Steiner points, approximations and heuris-
tics. The emphasis of their work was to study the effect of the decomposition method on
the efficiency of the overall process.
It is shown in these works that: (i) Triangulations are too costly. (ii) What constitutes a
good decomposition for one of the input polygons depends on the other input polygon. Con-
sequently, they develop a procedure for simultaneously decomposing the two polygons such
that a “mixed” objective function is minimized. (iii) There are optimal decomposition algo-
rithms that significantly expedite the Minkowski sum computation, but the decomposition
itself is expensive to compute. In such cases, simple heuristics that approximate the optimal
decomposition seem to perform very well in practice. They examined several criteria that
affect the running time of the Minkowski sum algorithm. The most effective optimization is
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minimizing the number of convex sub-polygons. Thus, triangulations which are widely used
in the theoretical literature are not practical for the Minkowski sum algorithms.

1.3 Thesis Outline

The thesis presents a general technique for analyzing the complexity of the Minkowski sum
of two simple polygons, using their partition into monotone pieces.

Specifically, let P be a simple polygon with m edges, which is the disjoint union of
k simple polygons, all monotone in a common direction u, and let Q be another simple
polygon with n edges, which is the disjoint union of ℓ simple polygons, all monotone in
a common direction v. In Chapter 2 we show that the combinatorial complexity of the
Minkowski sum P ⊕ Q is O(kℓmnα(min{m,n})). Some structural properties of the case
k = ℓ = 1 have been (implicitly) studied by Toussaint and ElGindy [25]. We re-derive these
properties using a different proof and apply them to obtain the above complexity bound for
k = ℓ = 1. We obtain additional properties of the sum for this special case. Specifically, we
show that the boundary of the Minkowski sum is the concatenation of two u-monotone and
two v-monotone connected polygonal chains which are pairwise openly disjoint, and that the
number of pockets in P ⊕ Q is O(m + n). At the end we use all these properties to derive
the complexity of the sum for the general case. (A pocket is a maximal sub-chain of the
boundary that is monotone in one of the directions u, v and has unique local minimum or
maximum in the other direction.) The bound is worst-case tight for k = ℓ = 1, as follows
from the construction of Barrera [2], and is almost tight in the general case k = Θ(m),
ℓ = Θ(n).

We give concluding remarks and suggest for further research in Section 2.6.
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Chapter 2

Minkowski Sums of Monotone

Polygons

In this chapter we study the coplexity of the Minkowski sum of two simple polygons, and
express it in terms of the number of monotone sub-polygons into which each of them can be
decomposed.

A simple polygon P is said to be monotone in direction u (also referred to as u-monotone)
if every line orthogonal to u intersects P in a connected (possibly empty) interval. We can
decompose any simple polygon P with m edges into simple sub-polygons, all monotone in
some specified direction u, by drawing a vertical segment through each vertex of P which
is a locally u-extremal point of ∂P , and by extending that segment inside P till it hits ∂P
again. These segments decompose P into O(m) pairwise openly disjoint u-monotone simple
polygons, and this bound is tight in the worst case.

Let P be a u-monotone simple polygon with m edges, and let Q be a v-monotone simple
polygon with n edges, for two (possibly different) directions u, v. We show (Theorem 2.2.1)
that the complexity of P ⊕Q in this case is only O(mnα(min{m,n})), which is tight in the
worst case. (The upper bound was obtained by Barrera [2] for the special case u = v. He
also showed that the lower bound can be attained in this case.)

The proof relies on the following separation property, due to Toussaint and ElGindy [25]:
Given disjoint monotone polygons P and Q as above, we can translate P to infinity, without
colliding with Q, in at least one of the four directions u ± π/2, v ± π/2. This property
implies that P ⊕ Q is simply connected, from which the complexity bound follows using
known bounds on the complexity of a single face in an arrangement of line segments; see,
e.g., [24].

We provide, in Theorem 2.1.1, an alternative proof of the result of [25], and then use it
to obtain the asserted complexity bound. Moreover, we derive several additional structural
properties of the sum P ⊕Q of two monotone simple polygons. For example, we show that its
boundary is the concatenation of four connected portions, two of which are u-monotone and
two v-monotone. We also show that the number of pockets along ∂(P ⊕Q) is only O(m+n).
This notion will be defined and analyzed in Section 2.4. This is roughly equivalent to
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asserting that the number of points on ∂(P ⊕ Q) that are locally x-extremal or y-extremal
is O(m + n).

We next use all these properties to prove the main result of the paper, which asserts that,
if P is a simple polygon with m edges which is the disjoint union of k simple u-monotone
sub-polygons, and Q is a simple polygon with n edges which is the disjoint union of ℓ simple
v-monotone sub-polygons, for any (possibly distinct) directions u, v, then the complexity
of P ⊕ Q is O(kℓmnα(min{m,n})). This (almost) properly interpolates between the two
extreme cases k = ℓ = 1 (where the bound is worst case tight), and k = Θ(m), ℓ = Θ(n)
(where we get an extra α(·) factor).

2.1 Separating Two Monotone Chains

Theorem 2.1.1 (slightly reformulated) was already proven in [25]. We present here a different
proof, using a functional representation of monotone polygonal paths.1

Theorem 2.1.1 Let f(x) : [a, b] 7→ IR, g(y) : [c, d] 7→ IR be (graphs of) continuous real
functions defined on the above intervals of the x- and y-axes, respectively, that do not inter-
sect each other. Then f(x) can be translated to infinity along at least one of the four axis
directions without colliding with g(y).

We say that a point p of the plane is directly to the right of another point q if the half-line
starting at q and pointing to the positive x-direction passes through p. The notions of being
directly to the left, directly above, and directly below, are defined in an analogous manner.

Lemma 2.1.2 Suppose that g(y) has a point directly to the right of the right endpoint of
f(x). Then g(y) has no point directly to the left of any point of f(x).

Proof: It is enough to show, by symmetry, that this holds for every y ≥ f(b). If for every
y ≥ f(b) we have g(y) > b, we are done. Otherwise, set x0 := g(f(b)), y0 := f(b), x1 := b.
If there exist y ≥ f(b) with g(y) ≤ b, then denote by y1 the infimum of all such y. Then,
by continuity, g(y1) = x1, and the statement (that g(y) has no point directly to the left of
any point of f(x)) holds on the interval [y0, y1]. If f(x) remains under y1 in every point to
the left of x0, then the statement holds on the whole interval [y0, d]. Otherwise, there is a
largest x2 where (proceeding from right to left) f(x) first attains y1. Similarly, now g(y)
either remains to the right of x2 all the way to the end (d, g(d)), or there exists y2 where
g(y) first reaches x2. See Figure 2.1.

This alternating construction terminates in finitely many steps, for otherwise we would
obtain a bounded sequence (x0, y0), (x1, y0), (x1, y1), (x2, y1), (x2, y2), . . ., monotone in both
coordinates, and its limit would be a common point of f(x) and g(y). It is easily seen that
the termination of the process implies the statement of the lemma over the interval [y0, d],
and a symmetric argument implies it for [c, y0]. 2

1We are grateful to János Pach for suggesting this proof, which has simplified our earlier analysis.
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(x1, y1)

(x0, y0)

x = g(y)

(x1, y0)

(x2, y2)

(x1, y2)

y = f(x)

Figure 2.1: The ‘staircase’ of critical values x0, y0, x1, y1, . . .

Lemma 2.1.3 If any point of g(y) is directly to the right of any point of f(x), then the
largest x0 such that f(x0) is directly to the left of a point of g(y) has the property that g(y)
has no point directly to the left of any point of f([a, x0]).

Proof: Put x0 = sup{x ∈ [a, b] | f(x) ∈ [c, d] and g(f(x)) > x}, and apply Lemma 2.1.2 to
g and to f restricted to [a, x0]. 2

Proof of Theorem 2.1.1: We can assume that g(y) has a point below f(x) and a point
above f(x), otherwise we are done. By Lemma 2.1.3 (and by symmetry), there is a smallest
y− such that (g(y−), y−) is above f(x), and then all points of g(y) above y− are not below
f(x), and there is a largest y+ such that (g(y+), y+) is below f(x), and then the points of
g(y) below y+ are not above f(x). Obviously, we have y− > y+.

By definition of y−, y+, the points of g(y) on the interval (y+, y−) are neither above nor
below f(x), so these g(y) values do not belong to [a, b]. By Bolzano’s theorem, they must
all be smaller than a or all bigger than b. Assume that all g(y) > b on this interval. Then,
by the continuity of g(y), we have g(y−) = b = g(y+). So f(b) ∈ (y+, y−), hence b < g(f(b)).
Thus, we can apply Lemma 2.1.2 to conclude that no point of g(y) is directly to the left of
any point of f(x), so f(x) can be translated to the left. 2

Remarks: (1) Theorem 2.1.1 also holds when the graphs f(x), g(y) touch each other without
crossing at any finite number of points. We omit details of this extension.
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Figure 2.2: P and Q are non-convex polygons with m and n vertices respectively, P is x-
monotone and Q is y-monotone. The complexity of P ⊕ Q is Θ(nmα(min(n,m)) and the
boundary can be presented as the concatenation of two x-monotone and two y-monotone
connected polygonal chains. (Computed with Eyal Flato Minkowski Sum package [9].)

(2) Theorem 2.1.1 also holds when we replace f(x), g(y) by any pair of bounded connected
arcs, each monotone in some direction, and these directions are not required to be orthgonal
to each other (as is the case in the theorem). If u, v are the directions of monotonicity, the
theorem asserts that one arc can be translated to infinity in one of the four directions u±π/2,
v±π/2, without meeting the other arc. Indeed, apply a ‘shearing’ affine transformation which
maps the direction u + π/2 to the positive y-direction, and maps v − π/2 to the positive
x-direction. This transforms the scenario into the one studied above, and an application
of Theorem 2.1.1 in the new scenario, combined with the inverse shearing transformation,
establishes the asserted property.

(3) Theorem 2.1.1 also holds when we replace f(x), g(y) by any pair of simple polygons,
monotone in the x- and y-directions, or, as in (2), in any two directions. This extension
follows easily from the preceding analysis, and is the one proved in [25] (using a different
approach).

2.2 Minkowski Sum of Two Monotone Polygons

Theorem 2.2.1 Let P and Q be two simple monotone polygons in two (possibly different)
directions, having m and n edges, respectively. Then the complexity of the Minkowski sum
P ⊕ Q is O(mnα(min{m,n})), (see Figure 2.2 for example).

Proof: Suppose that P is monotone in direction u and that Q is monotone in direction v.
Arguing as in Remark (2) of the preceding section, we may assume that u is the x-direction

and that v is the y-direction. Let P̃ = −P denote the reflection of P about the origin. Let
t be a vector in the plane such that t /∈ P ⊕ Q. Then, by definition, P̃t = P̃ + t is disjoint
from Q. By Theorem 2.1.1 and Remark (3) following it, we can translate P̃t in one of the
four coordinate directions all the way to infinity, so that it does not intersect Q during the
motion. This implies that there is a ray ρ in one of the four axis directions that emanates
from t and is disjoint from P ⊕ Q. This in turn implies that the complement of P ⊕ Q has
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no bounded components (‘holes’ of P ⊕ Q), and thus P ⊕ Q is simply connected.

In other words, the boundary of P ⊕ Q is connected, and coincides with the boundary
of the unbounded face of its complement. Let Σ denote the set of all line segments of the
form e + v, where e is an edge of P and v is a vertex of Q, or e is an edge of Q and v is a
vertex of P . Σ consists of 2mn segments, and any point on ∂(P ⊕ Q) must be contained in
one of these segments. As is well known (see, e.g., [24]), the complexity of any single face in
an arrangement of 2mn segments is O(mnα(mn)). To obtain the slightly improved asserted
bound, assume, without loss of generality, that m ≤ n. Note that Σ can be represented as
the union of 2m subsets, each consisting of the sums of all edges of Q with a fixed vertex of
P , or of the sums of all vertices of Q with a fixed edge of P . Each subset consists of pairwise
(openly) disjoint segments, so the complexity of the sub arrangement that they form is O(n).
We then apply the Combination Lemma of Har-Peled [13], which implies that the complexity
of a single face in the overlay of 2m arrangements, each of complexity O(n), is O(mnα(m)).
See also [?] for an alternative proof. 2

2.3 The Boundary of the Sum of Two Monotone Poly-

gons

In what follows, we assume that P and Q are monotone in the x- and y-directions, respec-
tively. As noted above, this involves no loss of generality.

Theorem 2.3.1 Let P and Q be two simple polygons monotone in the x- and the y-directions,
respectively. Then the boundary of S = P ⊕ Q is the concatenation of two x-monotone and
two y-monotone connected polygonal chains, which are pairwise openly disjoint.

See Figure 2.3.

We use in the proof the interpretation, already mentioned above, of S = P ⊕ Q as the
space of all “forbidden” translations of P̃ = (−P ) at which it intersects Q, which we regard

as stationary. The boundary of S is the set of all translations where P̃ touches Q, but does
not intersect its interior.

By Theorem 2.1.1, each point v ∈ ∂S can be classified into one (or more) of the four
following types:

Top, if P̃ can be moved from v to infinity in the positive y-direction without penetrating
into Q.

Bottom, if P̃ can be moved from v to infinity in the negative y-direction without penetrating
into Q.

Left, if P̃ can be moved from v to infinity in the negative x-direction without penetrating
into Q.

Right, if P̃ can be moved from v to infinity in the positive x-direction without penetrating
into Q.
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B∗

L∗

R∗

T∗

wtrwtl

wbl

wbr

Figure 2.3: The Minkowski sum of two monotone polygons, and (one possible) partition of
its boundary into x-monotone portions T ∗, B∗, and y-monotone prtions L∗, R∗, delimited by
the points wtr, wtl, wbl, wbr. The portion T ∗ is highlighted.

We can therefore write ∂S as the union of four subsets T,B, L,R, where T (resp., B,L,R)
consists of all top (resp., bottom, left, right) points on ∂S. By definition, all of these sets
are closed. These sets are not necessarily disjoint, but the only points of ∂S that belong
to T ∩ B are the leftmost and rightmost points of S. Similarly, only the topmost and
bottommost points of S can belong to L ∩ R. Any other pair of sets can have a more
substantial intersection.

Proof of Theorem 2.3.1: Let wt, wb, wl, wr denote respectively the highest, lowest,
leftmost, and rightmost points of ∂S. (We assume general position which makes these points
unique). These four points partition ∂S into four connected portions, which we denote as
the northeastern portion NE (lying clockwise from wt to wr), the southeastern portion SE
(lying clockwise from wr to wb), the southwestern portion SW (lying clockwise from wb to
wl), and the northwestern portion NW (lying clockwise from wl to wt). Note that the points
wt, wb, wl, wr need not be distinct, although we always have wt 6= wb and wl 6= wr. See
Figure 2.4.

It is easily seen that

NE ⊆ T ∪ R, SE ⊆ B ∪ R, SW ⊆ B ∪ L, NW ⊆ T ∪ L.

More precisely, except possibly for their endpoints, these chains satisfy

NE ∩ (B ∪ L) = ∅, SE ∩ (T ∪ L) = ∅, SW ∩ (T ∪ R) = ∅, NW ∩ (B ∪ R) = ∅.

Lemma 2.3.2 Let u, v ∈ NE such that v lies clockwise to u. It is impossible that u /∈ T
and v /∈ R. Symmetric statements hold for SE, SW , and NW .
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Figure 2.4: The partition of ∂S into the portions NE,SE, SW , and NW .

Proof: Suppose to the contrary that such a pair of points u, v exists. Clearly, we have
u ∈ R and v ∈ T . Hence the rightward-directed ray ρu emanating from u and the upward-
directed ray ρv emanating from v are both openly disjoint from S. It is easily seen that these
rays must cross each other. Indeed, it is impossible to draw the simple clockwise-directed
connected polygonal chain NE, so that it starts at wt, ends at wr, lies below wt and to the
left of wr, and passes first through u and then through v, so that the rays ρu and ρv are
openly disjoint from NE and from each other. This is because such a drawing would yield
a plane embedding of K3,3, as is illustrated in Figure 2.5.

wt

wr

u

vNE

ρu

ρv

Figure 2.5: If ρu and ρv do not intersect, we obtain an impossible plane embedding of K3,3.
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Hence the two rays intersect, at some point z, as is illustrated in Figure 2.6. Let P̃u =
P̃ + u, P̃v = P̃ + v, denote the placements of P̃ with its reference point placed at u, v,
respectively. Since u, v ∈ ∂S, P̃u and P̃v touch Q, but do not penetrate into it. Move P̃u to
the right until its reference point reaches z, and then move it down until the reference point
reaches v. That is, the reference point traces the chain J := uz ∪ zv, and the area swept
by P̃ during this motion is P ′ := P̃ ⊕ J . By construction, P ′ and Q are openly disjoint.
See Figure 2.7. By construction, J is both (weakly) x- and y-monotone. Thus P ′ is also
x-monotone, since it is the Minkowski sum of two x-monotone polygons (see, e.g., [2]). Since
P ′ and Q are openly disjoint, it follows from Theorem 2.1.1 (and the subsequent Remark
(3)) that we can move P ′ to infinity along one of the four coordinate directions, without

penetrating into Q. However, P ′ contains both P̃u and P̃v, and thus both these polygons
can be moved to infinity in the same direction, or, in other words, both u and v belong to
the same subset of ∂S, which contradicts the facts that u, v /∈ B ∪L, u /∈ T and v /∈ R. The
corresponding statements for SE, SW , and NW are proved in a fully symmetric manner. 2

wt

wr

u

vNE

ρu

ρv

z

Figure 2.6: The configuration in Lemma 2.3.2.

Lemma 2.3.2 implies that we can partition NE into two openly disjoint connected sub-
chains, TNE and RNE, with a common endpoint w, such that TNE connects wt to w and
is contained in T , and RNE connects w to wr and is contained in R. Symmetrically, we
obtain similar partitions SE := RSE ∪ BSE, SW := BSW ∪ LSW , and NW := LNW ∪ TNW .
The point w need not be unique. For example, if NE is monotone in both the x- and
y-directions, any point along it can serve as the delimiter w. See Figure 2.4 where the de-
limiters w are highlighted; for NE, any point between wtr and wrt can serve as a delimiter,
and similarly for the other three chains. We refer to the loci of the delimiters w as the buffer
zones of NE,SE, SW , and NW . Set T ∗ := TNW ∪ TNE ⊆ T , R∗ := RNE ∪ RSE ⊆ R,
B∗ := BSE ∪ BSW ⊆ B, and L∗ := LSW ∪ LNW ⊆ L. Each of these four sets is connected,
and they constitute the desired partition of ∂S, as asserted in Theorem 2.3.1. 2

18



Q

zu

v

J

P̃u

P̃v

P ′

Figure 2.7: The swept polygon P ′, obtained as the area swept by P̃ as it translates from u
to v via z, is disjoint from Q.

2.4 Pockets in the Minkowski Sum of Monotone Poly-

gons

We next bound the number of pockets in S. A top pocket is a maximal connected portion
γ of T ∗ which is the concatenation of two connected portions α and β, such that (when
proceeding in clockwise direction) α is monotone decreasing in y and monotone increasing in
x, and β is monotone increasing in both x and y. Consequently, the common endpoint of α
and β is locally y-minimal in T ∗, and the two other endpoints of α, β are locally y-maximal.
Bottom pockets in B∗, left pockets in L∗, and right pockets in R∗ are defined in an analogous
manner. See Figure 2.8. Note that the pockets are pairwise openly disjoint, and that their
union is ∂S minus the four buffer zones of NE,SE, SW , and NW .

Theorem 2.4.1 The number of pockets in P ⊕ Q is O(m + n).

Proof: Let γ = α‖β be a top pocket with lowest vertex v, incident to both α and β. In the

interpretation of placing P̃ around Q, v is a translation of P̃ into a free placement at which
one of the following situations arise:

Single contact: A vertex p of P̃ that is locally y-maximal on (the bottom portion of) ∂P̃
touches the unique y-maximal vertex of Q. See Figure 2.9(a).

Double contact: Two points p, p′ of the bottom portion of ∂P̃ touch two corresponding
points q, q′ of ∂Q that are locally top boundary points. Moreover, if we move P̃ slightly
to the left then it penetrates into Q in the vicinity of one of these contacts, and if we

19



left pocket

bottom
pocket

top pocket

right pocket

Figure 2.8: Pockets of ∂S.

move P̃ slightly to the right then it penetrates into Q in the vicinity of the other
contact. (It is easily checked that these penetrations cannot both occur in the vicinity
of the same contact, because this would contradict the monotonicity of either P or Q.)
See Figure 2.9(b,c).

A top pocket whose lowest point is generated by a single contact can be uniquely charged
to the corresponding vertex p of P̃ , for a total of O(m) such pockets. The same bound holds
for bottom pockets of this kind, and the number of left and right pockets of this kind is
O(n). (The constants of proportionality in these bounds are smaller than 1.)

Consider next a top pocket whose lowest point v is generated by a double contact of two
points p, p′ on the bottom boundary of P̃ with two corresponding points q, q′ of ∂Q that are
locally top boundary points. Assume, without loss of generality, that p lies to the left of p′.
Since v is the lowest point of a pocket, we cannot move P̃ to the left or to the right without
immediately penetrating into Q. As noted above, one of the following two cases must arise:

Case A: As we move P̃ slightly to the left, p penetrates into Q, and as we move it slightly
to the right, p′ penetrates into Q. See Figure 2.9(b).

Case B: As we move P̃ slightly to the left, p′ penetrates into Q, and as we move it slightly
to the right, p penetrates into Q. See Figure 2.9(c).

We first claim that case A is impossible. Indeed, consider the portion of the bottom
boundary of P̃ at the placement v as the graph of a continuous function y = f(x). Let q̄
(resp., q̄′) be a point in the interior of Q which coincides with p (resp., with p′) as we move

P̃ slightly to the left (resp., to the right). Connect q̄ and q̄′ by a y-monotone polygonal chain
within Q, which we regard as the graph of a continuous function x = g(y). By construction,
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Q

Q

q

q′

P̃
(a)

P̃

p

p

p′

p

w

p′

q∗

p∗
(p′)∗

Figure 2.9: Three kinds of placements that correspond to the lowest point of a top pocket.
(a) A single contact. (b) An impossible double contact. (c) A double contact, and the

(pocket) vertex w of P̃ being charged.

g(y) has a point directly to the right of p′ (namely, q̄′), and a point directly to the left of p
(namely, q̄), which contradicts Lemma 2.1.2, thus showing that case A is impossible.

In case B, the local penetrations of P̃ into Q in the vicinities of the two pairs of coincident
points p = q and p′ = q′ (at the placement v of P̃ ) imply that the following property holds:

Separate P̃ and Q locally near p = q by a line ℓ, and locally near p′ = q′ by a line ℓ′. Then
ℓ has a positive slope, P̃ lies locally to its left and above it, and Q lies locally to its right
and below it. Symmetrically, ℓ′ has a negative slope, P̃ lies locally to its right and above
it, and Q lies locally to its left and below it. This implies, arguing as in Section 2.1, that
the top vertex q∗ of Q lies above p and p′ and below the portion γ of the graph y = f(x)
that connects p and p′ (as defined in case A). Let p∗ (resp., (p′)∗) denote the closest point
on γ that lies directly to the left (resp., to the right) of q∗; the preceding analysis implies
that both points exist. It follows that the global maximum of y = f(x) between p∗ and

(p′)∗ must occur at an interior point w, which is the highest point of a bottom pocket of P̃
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(alternatively, the lowest point of a top pocket of P ). See Figure 2.9(c).

We charge the top pocket of v to w, and claim that this charging is unique. Indeed,
suppose to the contrary that another top pocket is also charged to w. Let v1 denote its
lowest point, and let the corresponding double contact be determined by points p1, p

′

1 of P̃
with corresponding points q1, q

′

1 of Q.

It is more convenient for this stage of the analysis to regard P̃ as the stationary and Q as
the translating polygon. We thus have two placements of Q, which for simplicity we denote
as Q and Q1. The stationary bottom boundary of P̃ contains the five points p, p1, w, p′, p′1,
so that p and p1 lie to the left of w, p′ and p′1 lie to the right of w, and w lies above the

four other points. The polygon Q touches P̃ at the two points p, p′, which coincide with the
respective points q, q′ ∈ Q, and the polygon Q1 touches P̃ at the two points p1, p

′

1, which
coincide with the respective points q1, q

′

1 ∈ Q1. Let t be the translation vector that satisfies
Q1 = Q + t. Since the situation is symmetric in Q and Q1 we may assume, withot loss of
generality, that t has a positive x-component, and consider two cases, depending on the sign
of the y-component of t. (The general position assumption allows us to assume that t is not
horizontal.)

Suppose first that t has a positive y-component. Refer to Figure 2.10. Since case B
applies to both Q and Q1, there exists a point q̃ ∈ Q directly to the left and arbitrarily close
to p′. Hence, q̃1 = q̃ + t ∈ Q1 lies to the right and above p′. This implies that the highest
point q∗1 of Q1 lies above and to the right of p′. Indeed, it clearly lies above p′. Suppose to
the contrary that it lied to the left of p′. By the preceding arguments, q∗1 lies below the graph
of y = f(x) and has a point on that graph directly to its right. By continuity, the closest
such point must lie to the left of p′. This, combined with the fact that q̃1 = q̃ + t ∈ Q1 lies
to the right and above p′, is easily seen to contradict Lemma 2.1.2, thus showing that q∗1 lies
to the right of p′.

It follows that the two closest points p∗1, (p
′

1)
∗ on y = f(x) that lie directly to the left and

to the right of q∗1 both lie to the right of p′. But then the pocket associated with Q1 should

have charged a vertex of P̃ that lies between p∗1 and (p′1)
∗, and thus lies to the right of p′, so

it could not have charged w.

The case where t has a negative y-component is argued in a fully symmetric fashion.
Using the point p1 instead of p′, we show that the highest point q∗ of Q is ‘trapped’ in
a pocket of P̃ that lies fully to the right of p1, and thus the pocket associated with the
placement Q cannot charge w. This shows that w can be charged at most once, as asserted.

To sum up, we have shown that the top pockets of S that are generated by double contacts
can be uniquely charged to top pockets of P . Symmetrically, bottom pockets of S of this
kind can be uniquely charged to bottom pockets of P . Yet another symmetric argument, in
which the roles of P and Q are interchanged, shows that left (resp., right) double-contact
pockets of S can be uniquely charged to left (resp., right) pockets of Q. Adding the bound
on the number of single-contact pockets, we conclude that the total number of pockets of S
is O(m + n). 2
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Figure 2.10: Illustrating the proof that two top pockets of S of type B cannot both charge
the same pocket of P .

2.5 Minkowski Sum of Non-monotone Simple Polygons

The preceding machinery allows us to derive the main result of this paper:

Theorem 2.5.1 Let P be a simple polygon with m edges, which can be decomposed into k
simple subpolygons, all monotone in the x-direction, and let Q be a simple polygon with n
edges, which can be decomposed into ℓ simple subpolygons, all monotone in the y-direction.
Then the complexity of P ⊕ Q is O(kℓmnα(min{m,n})). The same holds if the x- and
y-directions are replaced by two arbitrary directions.

Proof: Let P1, . . . , Pk be the k subpolygons in the decomposition of P , and let Q1, . . . , Qℓ

be the ℓ subpolygons in the decomposition of Q. Let mi denote the number of edges of Pi,
for i = 1, . . . , k, and let ni denote the number of edges of Qi, for i = 1, . . . , ℓ. We have∑k

i=1
mi = O(m) and

∑ℓ

i=1
ni = O(n).

Put Sij := Pi ⊕ Qj, for i = 1, . . . , k and j = 1, . . . , ℓ. Clearly, S = P ⊕ Q =
⋃

i,j Sij. By
Theorem 2.2.1, the complexity of Sij is O(minjα(min{mi, nj})). Hence, the total number of
edges of all the sums Sij is

O

((
k∑

i=1

ℓ∑

j=1

minj

)
α(min{m,n})

)
= O(mnα(min{m,n})).

For each i and j, let T ∗

ij, B∗

ij, L∗

ij and R∗

ij denote the four connected portions of ∂Sij, as
provided by Theorem 2.3.1. Let X denote the collection of all the chains T ∗

ij and B∗

ij, and let
Y denote the collection of all the chains L∗

ij and R∗

ij. X is a set of 2kℓ x-monotone polygonal
chains. The number of intersections of any pair of such chains is proportional to the number
of their edges, which is easily seen to imply that the complexity of the arrangement A(X) is
O(kℓmnα(min{m,n})). Similarly, the complexity of A(Y ) is also O(kℓmnα(min{m,n})).

23



The complement of S is the union of some faces of the arrangement A(X ∪ Y ). Let H
denote the collection of these faces. H contains one (the unique) unbounded face, and the
rest are bounded faces (‘holes’ of S). By the Combination Lemma for planar arrangements
(see [24]), the overall complexity of all the faces of H (that is, the complexity of S) is
proportional to the complexity of A(X) plus the complexity of A(Y ) plus |H|. Hence,
Theorem 2.5.1 is an immediate consequence of the following lemma.

Lemma 2.5.2 The number of holes of P ⊕ Q is O(kℓmnα(min{m,n})).

Proof: Let f be a bounded hole in H. If ∂f contains a vertex of either A(X) or A(Y ), we
charge f to that vertex, and thus conclude that the number of such holes is O(kℓmnα(min{m,n})).
Otherwise, f is a convex polygon, whose boundary consists of a sequence of edges, alternating
between edges of A(X) and edges of A(Y ). Clearly, f has an even number of edges.

Let v be the lowest vertex of f , and suppose that it is incident to an edge e of A(X) and
to an edge e′ of A(Y ). Suppose, without loss of generality, that e bounds f to the left of v
and that e′ bounds f to the right of v; see Figure 2.11. In this case e is (a portion of) an
edge of some T ∗

ij and e′ is (a portion of) an edge of some L∗

i′j′ . Clearly, f is a portion of a
face f0 of the arrangement A(T ∗

ij ∪ L∗

i′j′), and v is a local y-minimum of f0. (Note that the
case i = i′, j = j′ is impossible, because T ∗

ij cannot meet L∗

ij in such a way.)

v
e

e′

Figure 2.11: A convex hole in H.

A simple application of Morse theory to f0 shows that, if f0 is not y-monotone, then
the number of local y-minima of f0 is proportional to the number of points of ∂f0 which
are local y-extrema of the complement of f0 (i.e., reflex locally y-extremal vertices of ∂f0).
See, e.g., [12, Lemma 2.4] for a similar argument. Any such point u is a local y-extremal
vertex of either T ∗

ij or L∗

i′j′ . The latter chain has only two such vertices, and the number of
such vertices on the former chain T ∗

ij is 1 plus the number of top pockets of Sij. Hence, this
number is O(mi), by Theorem 2.4.1. We repeat this argument to all the faces of A(T ∗

ij∪L∗

i′j′)
which are not y-monotone, to all other combinations of sub-boundaries of Sij and Si′j′ , and
to all combinations of i, j, i′, j′, to conclude that the overall number of holes f that satisfy
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all the above conditions is

O

(
∑

i,j,i′,j′

(mi + mi′)

)
= O(mkℓ2) = O(kℓmn).

Suppose then that f0 is y-monotone. Then f0 has a unique y-minimal point (namely, v).
If ∂f0 contains a vertex of either Sij or of Si′j′ then we charge v (uniquely) to such a vertex.
Summing over all such faces f0 and over all i, j, i′, j′, we conclude that the number of holes
f that fall into this subcase is

O

(
∑

i,j,i′,j′

(minj + mi′nj′)α(min{m,n})
)

= O(kℓmnα(min{m,n})).

We may thus assume that f0 is convex and bounded, and that the edges of its boundary
alternate between (portions of) edges of T ∗

ij and (portions of) edges of L∗

i′j′ . No edge of the
top boundary of f0 can belong to T ∗

ij, and thus the top boundary of f0 consists of a single
edge of L∗

i′j′ . Similarly, the left boundary of f0 consists of a single edge of T ∗

ij. We distinguish
between two cases:

T

T

L

L

e2e1

v

T

Lf0

g0

Figure 2.12: A convex hole f0 of T ∗

ij ∪ L∗

i′j′ with more than four edges, and the pair (e1, e2)
of edges to which f0 is charged.

Case A: f0 has more than four edges. See Figure 2.12. Note that the unique left edge e1 of
f0 spans the entire y-range of the hole. We can therefore connect e1 to the highest right edge
e2 of f0 (excluding the top edge of f0) by a horizontal segment g0, as shown in Figure 2.12.
Note that e2 is also (a portion of) an edge of T ∗

ij. Let ē1 and ē2 denote the edges of T ∗

ij that
contain, respectively, e1 and e2. We draw in the plane a graph G whose vertices are the edges
of T ∗

ij, which are drawn as they are. The edges of G are all the pairs (ē1, ē2) obtained from
the faces f0 that fall into this subcase, and are drawn in the plane as the above horizontal
connecting segments g0. Clearly, G is planar.

We claim that G is simple. Indeed, suppose to the contrary that there exist two faces f0, f1

that cause the same pair of edges ē1, ē2 of T ∗

ij to be connected by two respective horizontal
segments g0, g1. Suppose, without loss of generailty, that g0 lies higher than g1, and refer to
Figure 2.13. Note that f0 has at least one additional right edge e3 that is contained in an
edge ē3 of T ∗

ij. The x-monotonicity of T ∗

ij implies that the entire edge ē3 must be contained
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T

T

e2e1

T

e3

g0

g1

f0

Figure 2.13: Illustrating the proof that G is simple.

in the upper wedge defined by the lines containing ē1 and ē2. Therefore, ē3 appears along
T ∗

ij between ē1 and ē2. Moreover, ē3 lies above g1, and the right endpoint of ē1 lies below
g1. It follows that the portion of T ∗

ij between ē1 and ē3 must cross g1, which is impossible.
This contradiction shows that G is simple. Hence the number of edges of G, and thus the
number of faces f0 of the type under consideration, is proportional to the number of edges
of T ∗

ij. Summing this bound over all i, j, i′, j′, we conclude that the overall number of holes
f that give rise to faces f0 of type (A) is O(kℓmnα(min{m,n})).

T

L

L

T

v1

v2

v3
v4

H

V

E

u

w

Figure 2.14: A convex quadrangular hole f0 of T ∗

ij ∪ L∗

i′j′ , and the pair of pockets to which
f0 is charged.

Case B: f0 is a quadrilateral. See Figure 2.14. Let v1, v2, v3, v4 denote the vertices of f0 in
counterclockwise order, starting from the bottom vertex v = v1. Let V denote the vertical
strip between v1 and v2, and let H denote the horizontal strip between v2 and v3. It follows
that the rectangle E = V ∩H is fully contained in f0. See Figure 2.14. Since the left edge of

26



f0 has negative slope, and the right edge (which belongs to T ∗

ij) has positive slope, it follows
that the portion of T ∗

ij between these edges must contain at least one pocket, and that its
lowest vertex u lies in V . Similarly, the portion of L∗

i′j′ between the bottom and the top
edges of f0 must contain at least one pocket, and its rightmost vertex w lies in H. Hence,
the vertical line through u and the horizontal line through w meet inside E, and thus inside
f0. We can therefore charge f0 to the pair of pockets of T ∗

ij and of L∗

i′j′ that are associated
with u and w, respectively, and conclude that any such pair of pockets is charged at most
once. Hence, by Theorem 2.4.1, the number of faces f0 of type (B) is O(minj′). Summing
this bound over all i, j, i′, j′, we conclude that the overall number of holes f that give rise to
faces f0 of type (B) is O(kℓmn).

Thus the number of holes of P ⊕ Q is O(kℓmnα(min{m,n})). This completes the proof
of Lemma 2.5.2, and thus also the proof of Theorem 2.5.1. 2

Remarks: (1) As already remarked, the bound in Theorem 2.5.1 is slightly suboptimal
when k = Θ(m) and ℓ = Θ(n), which is the case of arbitrary simple polygons P and Q. In
this case the worst case tight bound is O(m2n2) = O(kℓmn) [5]. It would be interesting to
finetune our analysis so as to make our bound equal to this bound in the general case.

(2) The subpolygons P1, . . . , Pk in the decomposition of P need not be pairwise openly
disjoint, and the theorem continues to hold provided that the overall number of their edges
is still O(m). A similar extension applies to the decomposition of Q.

2.6 Conclusion

We have presented a general technique for analyzing the complexity of the Minkowski sum
of two simple polygons, expressed in terms of their partition into monotone pieces. We have
derived some interesting properties of the Minkowski sum of two polygons, each monotone in
a different direction. Our bound nicely interpolates between the special case of two monotone
polygons and the general case of two arbitrary simple polygons. It is worst case tight in the
former case, and nearly so in the latter case.
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