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Abstract

Let ¥ be a collection of n algebraic surface patches of
constant maximum degree in R®. We show that the
combinatorial complexity of the vertical decomposition
of a single cell in the arrangement A(YX) is O(n>*¢), for
any € > 0, where the constant of proportionality de-
pends on ¢ and on the maximum degree of the surfaces
and of their boundaries. As an application, we obtain
a near-quadratic motion planning algorithm for general
systems with three degrees of freedom.

1 Introduction

Let ¥ = {o1,...,0,} be a collection of n algebraic sur-
face patches in R? of constant maximum degree b, such
that the boundary of each surface consists of a constant
number of algebraic arcs, each of degree at most b as
well. Let A(X) denote the arrangement of ¥. (We as-
sume that the reader is familiar with arrangements—see
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for instance the recent book [17] for details concerning
arrangements of surfaces in higher dimensions.) Let w
be a fixed point, not lying on any surface of ¥. We
denote by C,(X) the 3-dimensional cell of A(X) con-
taining w. The combinatorial complexity of C,(X) is
the number of vertices, edges, and 2-faces of A(X) ap-
pearing on the boundary of that cell. For simplicity,
we will measure this complexity only by the number of
vertices of the cell. It is well known that the number of
all other boundary features of C,(X) is proportional to
the number of vertices (assuming general position—see
below), plus an additive term of O(n?).

Recently, it has been shown that the combinatorial
complexity of C, (%) is O(n?*%), for any € > 0, where
the constant of proportionality depends on ¢ and on
the maximum degree b of the surfaces and of their
boundaries [11]. The corresponding algorithmic prob-
lem, however, of computing C,(¥) in near-quadratic
time, has been open, with the exception of several solu-
tions for special classes of surfaces [4, 5, 12]. The main
motivation for this algorithmic problem comes from mo-
tion planning, and is explained in detail in the papers
just cited, and in the recent survey paper [13].

An algorithm for constructing C,, (¥) can be obtained
using the wvertical decomposition of such a cell [11, 12,
13]. This is a standard decomposition scheme, de-
scribed in detail in several recent works [7, 8, 17], that
partitions cells in arrangements of algebraic surfaces
into subcells of constant description complexity (see be-
low), provided the maximum degree of the surfaces is
also constant.

For the sake of completeness, we also give a brief in-
formal description of the vertical decomposition. We
first assume that each surface patch in X is zy-
monotone. This can always be enforced by splitting
each such patch into O(1) zy-monotone subpatches. In
the first decomposition stage, we erect within C a ver-
tical ‘wall’ up and/or down from each edge of C (both
surface boundary edges and intersection edges of pairs
of surfaces). Each such wall consists of maximal verti-



cal segments contained in (the closure of) C and pass-
ing through the points of the edge. The collection of
these walls partition C into subcells, each having the
property that it has a unique ‘top’ facet and a unique
‘bottom’ facet (one or both of these facets may be un-
defined when the subcell is unbounded; all other facets
of the subcell lie on the vertical walls). However, the
complexity of each subcell may still be arbitrarily large.
Thus, in the second decomposition stage, we take each
subcell C’, project it onto the zy-plane, and apply to
the projection a similar but 2-dimensional vertical de-
composition, erecting a y-vertical segment from each
vertex of the projected subcell and from each point of
local z-extremum on its edges. This yields a collec-
tion of trapezoidal-like subcells, and we then lift each
of them to 3-space, to obtain a decomposition of C' into
prism-like subcells, each having ‘constant description
complexity’, meaning that each of them is a semialge-
braic set defined by a constant number of polynomials
of constant maximum degree (which depends on b). Re-
peating this second stage for all subcells C' produced in
the first stage, we obtain the desired vertical decomposi-
tion of C. More details can be found elsewhere [7, 8, 17].

Using this decomposition scheme, one can then ap-
ply, for instance, a lazy randomized incremental al-
gorithm [6] to construct the vertical decomposition of
C.(¥), by adding the surfaces one after the other in
random order, and by updating the decomposition as
the surfaces are added. The efficiency of this algorithm
crucially depends on the size (number of subcells) of
the decomposition (of the cells C, (X'), for any subset
¥ C ¥). A near-quadratic bound on the size of the
vertical decomposition of a single cell implies that the
(expected) complexity of the above algorithm is also
near-quadratic.

In this paper we show that the complexity of the ver-
tical decomposition of a single cell in a 3-dimensional
arrangement, as above, is indeed O(n?*¢), for any
€ > 0, where the constant of proportionality depends,
as above, on £ and on the maximum degree b of the
surfaces and of their boundaries. The proof technique
borrows ideas from several recent papers [1, 10, 16, 18]
that have analyzed several related problems.

It is instructive to note that if all our surfaces are zy-
monotone without boundaries (in other words, they are
graphs of continuous totally-defined algebraic bivariate
functions), then the near-quadratic bound on the com-
plexity of the vertical decomposition of a single cell is
an immediate consequence of the recent results of Agar-
wal et al. [1], which give a near-quadratic bound for the
complexity of the vertical decomposition of the region
enclosed between the lower envelope of one collection of
such surfaces and the upper envelope of another such
collection; in this special case, our single cell is a por-
tion of such a ‘sandwiched’ region. In the general case,

though, the topological structure of a single cell can be
much more complex, and this makes the analysis con-
siderably harder.

As a corollary of our bound, we obtain that a sin-
gle cell in a 3-dimensional arrangement of surfaces,
as above, can be constructed in randomized expected
O(n?*¢) time, for any ¢ > 0. This in turn implies that
motion planning for fairly general systems with three
degrees of freedom can be performed in near quadratic
time. This solves one of the major open problems in
the area. These applications of our bound are briefly
presented in Section 3.

2 Complexity of the Vertical Decompo-
sition of a Single Cell

Let ¥ and w be as in the introduction. For the purpose
of our analysis, we will require the surface patches to
be zy-monotone. This involves no real loss of general-
ity, because, as already mentioned in the introduction,
we can partition each of the surfaces into a constant
number of zy-monotone portions (where the constant
depends on the maximum degree b). We also assume
that the surfaces are in general position, in the stan-
dard sense considered in, for instance, [17]. One can
show that this involves no real loss of generality, but we
omit this discussion in this abstract.

As is well known [17], the complexity of the verti-
cal decomposition of C = C,(X) is proportional (up
to an additive near-quadratic term) to the number of
vertically-visible pairs of edges of C. These are ordered
pairs (e, e’) of edges of C such that there exists a verti-
cal segment g whose bottom endpoint lies on e, whose
top endpoint lies on €', and whose relative interior is
contained in C. More precisely, the relevant quantity
for measuring the complexity of the vertical decompo-
sition is the number of vertical visibility configurations
of the form (e, €', g), where e, ¢’ and g are as above.
However, the assumptions concerning the surfaces of &
are easily seen to imply that, under the general position
assumption, the maximum number of vertical visibility
configurations that correspond to any fixed pair (e,e’)
of vertically-visible edges is at most some constant s
(which depends on the maximum degree b of the sur-
faces and of their boundaries).

If e or €' is a portion of the boundary of a sur-
face of ¥, we call (e, e',g) an outer vertical visibility
configuration; otherwise (e,e’,g) is an inner configu-
ration. We will later show that the overall number
of outer configurations is O(nAsy2(n)), where As(n) is
the maximum length of an (n, s) Davenport-Schinzel se-
quence [2, 14, 17]. Hence, in what follows, we will only
consider inner vertical visibility configurations. For
convenience, we will not mention the qualifier ‘inner’
from now on.



For technical reasons, we extend the notion of verti-
cal visibility configurations as follows. Let e and e’ be
two edges of A(X) such that there exists a vertical seg-
ment g whose bottom endpoint lies on e and whose top
endpoint lies on e¢’. We say that (e, €', g) is a vertical
edge-crossing at level £ if

(i) the subset ' C ¥ of surfaces that intersect the
relative interior of g has cardinality &, and

(ii) ¢ is fully contained in C, (X \ ).

Note that the four surfaces incident to e and e’ cannot
intersect the relative interior of g. Thus, vertical edge-
crossings at level 0 are precisely the vertical visibility
configurations. We denote by Cy(X;w) the number of
vertical edge-crossings (with respect to the cell C, (X))
of level at most q. We also denote by Cy(n) the max-
imum possible value of Cy(X;w), over all collections ¥
of n surfaces as above, and over all points w not lying
on any surface.

The notion of levels is also extended to vertices and
edges of A(X): We say that a vertex v (resp. an edge e)
of A(X) is at level £ (with respect to the cell C,) if there
exists a subset ¥/ of £ surfaces, so that v is a vertex of
(resp. e is contained in an edge of) C, (X \ ¥'), and if
& is the smallest number with that property. Again,
the actual vertices and edges of C,, () are precisely the
vertices and edges at level 0.

Let k be a threshold parameter, whose value will be
specified later on. Our goal is to prove a bound on
Co(n) that has roughly the form

Co(n) < k—120k(n) + O(k*n2+e), (1)

where « is some fixed exponent, from which we can
deduce the near quadratic bound on Cy(n), by using
Clarkson and Shor’s technique [9] to bound Cj(n) by
O(k*Co(n/k)), and by solving the resulting recurrence
for Cy. The exact inequality that we will derive will
be somewhat weaker than (1), but it will still yield the
desired bound on Co(n).

The idea of proving a bound like (1) is to iden-
tify about k?Cp(3;w) distinct edge-crossings at level
at most k in the arrangement A(X). We do (something
close to) this, using a two-stage counting argument, sim-
ilar to that used by Agarwal et al. [1].

Preliminaries. Let e be an edge of A(X) and let V,
be the vertical 2-manifold obtained as the union of all
z-vertical rays whose bottom endpoints lie on e. The
intersection of each surface o € ¥ with V, is a (not nec-
essarily connected) algebraic arc of constant maximum
degree (and with a constant number of connected com-
ponents), so each pair of these arcs intersect in at most
some constant number, s, of points (where s depends
only on the maximum degree b of the given surfaces and

of their boundaries; it is the same parameter s men-
tioned at the beginning of this section). We denote the
set of these arcs by X, and their arrangement on V, by
A(Ze).

Completely analogously, we define the vertical 2-
manifold V¢ obtained as the union of all downward
directed z-vertical rays whose top endpoints lie on e.
(Imagine V¢ as a ‘curtain’ hanging down from e, while
Ve is a curtain standing on e.) We denote the set of
arcs formed by the intersections of the surfaces of ¥
with V¢ by ¢, and their arrangement in V¢ by A(X°).
We define the level of a point p in V, (resp. in V) to
be the number of arcs in ¥, (resp. in £¢) that lie below
(resp. above) p.

A simple but crucial observation is:

Lemma 2.1 Let e be an edge of A(X) with C locally
above e. Then (e, €', g) is an edge-crossing at level &, if
and only if the point of e’ NV, that lies on the z-vertical
line through g is a vertex of A(X.) at level €.

Figure 1: The arrangement A(X.); with a vertical
visibility configuration and a vertical edge-crossing at
level 3.

See Figure 1 for an illustration. This lemma implies
that each vertical visibility configuration with bottom
edge e corresponds to a vertex in the lower envelope
of the arcs in X.. (Of course, a similar and symmetric
statement holds for £¢".)

Now that we have introduced this terminology and
observations, we can dispose, as promised, of outer vis-
ibility configurations:

Lemma 2.2 The number of outer wvertical wvisibility
configurations is O(nXs42(n)).

Proof: Let § be an arc bounding some surface in
¥. By Lemma 2.1 each outer vertical visibility con-
figuration having § as its bottom edge is represented
by some vertex (breakpoint) of the lower envelope of
35 within V5. By the standard Davenport-Schinzel



theory [2, 14, 17], the number of such breakpoints is
O(As42(n)) (recall that ¥s consists of O(n) connected
arcs, each pair of which intersect in at most s points).
We repeat this analysis for each of the O(n) boundary
arcs of the surfaces of 3, and also apply a symmetric
analysis within the “hanging curtains” V?°.  This
implies the assertion of the lemma.

It will be convenient for our analysis to assume that
the arrangements A(3.) and A(2¢) do not contain
any arc endpoints at level < 3k, except on the rela-
tive boundaries of V, and V¢. We can achieve this by
splitting the edges of A(X) into what we call split edges,
as follows.

Let v be an arc in Y. If v has an endpoint w within
the relative interior of V,, which lies in the first 3k levels
of A(X.), we erect a vertical line through w and split
e and V, at that line into two portions. We repeat
this splitting for all edges e of A(X) and for each v €
Y., whenever it is applicable. We apply a symmetric
procedure in all the corresponding downward-directed
curtains V¢ . Furthermore, we split all edges e at points
where their projection onto the zy-plane has a tangent
parallel to the y-axis. This will guarantee that all split
edges are z-monotone.

Lemma 2.3 The overall number of such edge-splittings
is O(k*nsi2(n/k)).

Proof: The intersection curve of two surfaces has only
a constant number of points where the projection on
the zy-plane has a tangent parallel to the y-axis, so the
total numer of such points is O(n?).

We bound the number of splits induced by an
endpoint at level at most 3k using a similar argument
to that of Lemma 2.2. Let d be an arc bounding some
surface in ¥. It is easily seen that each edge-split
induced by § corresponds to a vertex of A(Xs) in Vj,
or to a vertex of A(X?%) in V9, at level < 3k, and the
overall number of such vertices, over all boundary arcs
§, is known to be O(k*nXs42(n/k)) [9, 15].

Let’s make one final definition before we start with
the real proof. For a vertical edge-crossing x = (e, €', g),
we have four distinct surfaces o1,03,03,04 € ¥, such
that e C 01 Nos and e’ C g3 No4. Let £ be the vertical
line through g, and let ¢’ be a copy of ¢ shifted infinites-
imally along e in decreasing z-direction. Then o3 N ¢’
and o4 N ¢ are two distinct points. We put o(x) = o3
if o3 N ¢ lies below o4 N ', otherwise o () = 04.

First Stage. In this stage we identify a set R of spe-
cial vertical edge-crossings in A4(X).

Consider first a (split) edge e of C with C locally
above e. We partition it into two subedges as follows:
We start from the right endpoint of e (recall that all

split edges are z-monotone) and move along e to the
left until we encounter the (k + 1)-st distinct surface
of ¥ directly above the point. We denote the portion
of e traversed by this process by e,., and the remain-
ing part of e by ¢;. (It can happen that we encounter
the left endpoint of e before seeing more than &k dis-
tinct surfaces—in that case e, = e and ¢; is empty.) By
Lemma 2.1, every edge-crossing at level 0 with bottom
point on e, corresponds to a vertex of the lower enve-
lope of A(X,,) on V.. Since there are only k surfaces
appearing on the lower envelope over e,, its complex-
ity is at most O(As12(k)) [2, 14]. Since the number of
edges bounding C is O(n**#) [11], and they can be split
into O(k®>n)s;2(n/k)) additional split edges, the over-
all number of vertical visibility configurations involving
the right subedge e, of any split edge of C is at most
O(As+2(k)(n*TF + k*nXs42(n/k))), for any € > 0. In
the following, we will therefore restrict our attention to
the vertical visibility configurations that appear above
the left subedges e; of the edges of C.

Consider a pair of surfaces 01,095 € X, and consider
their intersection curve o1 Nos. This curve consists of a
constant number of z-monotone connected pieces. Let
v be one such piece. Let V, be the union of all V¢, for
all (split) edges e of the arrangement that are contained
in . Let 7' be the subset of v that consists of the left
subedges e; of all edges e C v of C such that C lies
locally above e. Let () be the set of surfaces in ¥
that appear on the lower envelope on V,, restricted over
~', and let t = ¢, = |E(7)|. The number of breakpoints
of the lower envelope above 7' is at most aAs42(t) [2, 14],
where a is an appropriate constant (depending on the
maximum degree of the surfaces; it arises because, as
above, an intersection o NV, may consist of more than
one connected arc).

Figure 2: The setup in the construction of R

Consider now a surface o € X(v). It appears on
the lower envelope over the left subedge of some (split)
edge e C v with C locally above e, and therefore there
are at least k surfaces ¢’ € ¥ that appear over e to



the right of o. By continuity and by our construction,
either o and such a surface o’ intersect within V, at
least once, or each of them has a point at level > k. We
will now collect k vertices on o NV, as follows: We start
at some point where o appears on the lower envelope
on V. (over the left subedge ¢;), and follow o NV, in
increasing z-direction (recall that all split edges are z-
monotone). We will pass, before we reach the end of
e, at least k vertices v, at which we encounter a new,
distinct surface in X, because we must either encounter
all the k surfaces that appear above e, or reach the k-
level. All these vertices are at level < k, since when we
first reach the k-level, we must have passed all the k
surfaces lying below the point. For every such vertex v,
let x, be the vertical edge-crossing with bottom edge e
corresponding to v by Lemma 2.1. Note that o(x,) =
0. See Figure 2 for an illustration. We let R(y,0)
denote the collection of these edge-crossings x,. Note
that we collect these k vertices starting from only one
occurrence of o along the entire curve v, so |R(v,0)| =
k. This will be used in deriving property (R3) below.
Put R(7) = U,exy) R(7,0), and R = {J, R(7), over
all z-monotone pieces 7 of intersection curves.

As observed before, the number of visibility config-
urations above 7' is at most algy2(t). On the other
hand, we have that

U R(.0)

oeX(y)
- Q(kﬁ -a>\3+2(t)) > ghs - adea(ty),

where B(n) = O(As12(n)/n) is an extremely slowly
growing function of n [2, 14]. Summing (2) over all
z-monotone pieces vy of intersection curves, and observ-
ing that any edge-crossing in R is counted in this sum
exactly once, we obtain:
O . M 2+4¢ 2

0(S) < TR0 2 ()07 +1200 15 (n/B))),

(3)

for any € > 0 (where the second term in the right-hand
side bounds the number of vertical visibility configura-
tions over the portions e, ). We thus obtain the following
lemma.

IR = =kt = (2)

Lemma 2.4 Given a set of surfaces ¥ and a point w
as above, there is a set R of vertical edge-crossings such
that |R| satisfies (3) and such that the following condi-
tions hold.

(R1) Each x € R is at level at most k.

(R2) For each x = (e,e',g) € R, the edge e is an edge
of C such that C lies locally above e.

(R3) For any three surfaces o1,02,03 € X, there are
at most k vertical edge-crossings x = (e, €', g) in R
with e C o1 Noy and o(x) = 03.

(R4) For each x = (e,e’,g9) € R, and for any surface
B that intersects the relative interior of g, there is
an intersection point v of B and o = o(x) on Vg,
so that the portion of BNV, between v and g does
not meet o, and the portion of o NV, between v
and g does not meet the other surface o' incident
to the top endpoint of g. In addition, if ¢’ denotes
the vertical segment connecting e and v, then the
“trapezoidal-like” region A formed within V, by g,
g', the part of e between g and g', and the part of
o NV, between g and g', is intersected by at most
k surfaces of ¥ (see Figure 3).

Figure 3: Condition (R4)

Proof: All that remains to be shown is condition (R4):
Since xy € R and o(x) = o, there exists a 0-level edge-
crossing of the form (e, e*, g*), where e* is incident to
o, such that, if we follow o NV, from the top endpoint
of g* to the top endpoint of g, we encounter at most
k — 1 distinct surfaces of ¥, and do not encounter
o'. Let A* denote the trapezoidal-like region formed
within V. by g, ¢*, the part of e between ¢g and g*,
and the part ¢ of 0 NV, between g and g*. Then A*
can be intersected by at most k surfaces of ¥. To see
this, we note that, as just argued, at most k surfaces
intersect ¢, and that no surface can intersect e (which
is a portion of an edge of A(X)) or g*. We claim that
no boundary arc of any surface of ¥ can cross A*.
Indeed, let u be the leftmost point of intersection of a
boundary arc with A*. Then the number of surfaces
that vertically separate u from e is at most k (any such
surface must cross (), so that, by construction, such
a crossing would have caused e to be split below it.
It now follows that any surface crossing A* must also
cross ¢, and condition (R4) is thus immediate.



Second Stage. We next bound |R]| in terms of C,(n).
Let €’ be a split edge of A(X) at level < k. Let ¢t = .
denote the number of surfaces of ¥ that appear on the
first 2k (top) levels of A(X¢). If t < 4k, then €' con-
tributes at most O(k?) edge-crossings to R. We claim
that there are only O(k'~°n?"¢) split edges e’ of A(X)
at level < k. To see this, charge each such edge €’ to
one of its endpoints, and observe that the endpoint is
either a vertex of A(X) at level at most k or a splitting
point of the edge of A(X) containing e’. By the analysis
in [15, 17], the number of endpoints of the first type is
O(k'=¢n2*=), for any € > 0. The number of endpoints
of the second type is, by Lemma 2.3, O(k*>n)s,2(n/k)),
which is subsumed by the first bound. Hence, the over-
all number of edge-crossings in R within all the curtains
V¢ for which t < 4k, is O(k2-k'~*n2t°) = O(k*n2+te),
for any € > 0. We can thus assume that ¢ > 4k.

We want to repeat, within Vel, the analysis of the
first step. However, we face a complication that the
number of edge-crossings that are counted in R within
V¢ could be as large as Q(tk), as it is possible that
all vertices of level < k in A(X¢) correspond to edge-
crossings in R. Our goal in this second stage is to bound
|R| by something close to %Ck (n), but the technique of
the first counting stage will not imply this when ve
is ‘full’ of edge-crossings in R. To overcome this prob-
lem, we will first bound the number of ‘excessive’ edge-
crossings in R within Ve’, using a different approach,
and only then bound the number of remaining crossings,
using the same approach as in the first stage.

We first identify a class of vertical edge-crossings in R
(the ‘excessive’ edge-crossings), whose number we will
be able to bound independently. We define an edge-
crossing (e, e, g) at level at most k to be covered if it
satisfies the following condition.

Let 01, 05 € ¥ be the two surfaces inci-
dent to e. There is a surface § € ¥ that in-
tersects the relative interior of g, and either
o1 or oy (say, for definiteness, o1) crosses 3
within V¢, either to the left or to the right of
g, at some point w. Moreover, if ¢* denotes
the vertical segment connecting w to €', then
the trapezoidal-like portion of V¢ bounded by
g, g%, the portion of ¢’ between g and ¢g*, and
the portion of o1 between g and g*, is crossed
by at most 2k surfaces of X.

See Figure 4 for an illustration of this definition; note
that the definition encompasses several different sub-
cases, as is illustrated in the figure.

We can now establish the two central lemmas.

Lemma 2.5 The number of uncovered edge-crossings
in R within V¢ is O(ty 32 (te)).

Proof: In the first step of the proof, we partition the
arcs of ¢ into ‘small’ subarcs, as follows. Recall that,

by construction, each endpoint of any arc in ¢ must
either lie on the relative boundary of Vel, or else be
at level > 3k. Replace ©¢ by the subcollection ¥*
of only those ¢t = t., arcs that appear within the first
2k levels of A(X®). The total number of vertices of
A(Z*) at level < 2k is O(k*As42(t/k)) [15, 17], and so
there must exist a level k < k* < 2k that contains only
O(kAst2(t/k)) = O(tB(t/k)) vertices. Hence, the por-
tion AT (X*) of A(X*) that lies at level < k* is formed
by O(t3(t/k)) connected subarcs. Moreover, since the
number of vertices in A*(Z*) is O(kt3(t/k)), we can
partition further each of these subarcs into smaller con-
nected pieces, so that each piece is incident to at most
k vertices of AT (X*), and so that the overall number of
these smaller subarcs is still O(t3(t/k)). Let ¥ denote
the resulting collection of the new subarcs. Note that
all vertices of A(X®) at level < k* are also vertices of
A(ZT).

Define the level ((§) of a subarc § € ¥T to be the
smallest level in A(X) of any point on §. Note that,
by construction, £(¢) is always at most k*, and it is also
equal to the smallest level in A(Ee’) of any point on §.
We have:

Claim: Let (e,€e’,g) be an uncovered edge-crossing in
R within Ve’, and suppose that the relative interior of
g is crossed by h < k surfaces. Let o; and oy be the
two surfaces incident to e, and let d;, 5 € 1 be the
respective subarcs of o N Ve’, o2 N Ve incident to the
bottom endpoint v of g. Then £(§;) = £(d2) = h.

Proof of Claim: Note that, by definition, both £(d;)
and ¢(d2) are at most h. Suppose to the contrary that,
say £(01) < h. Then there is a point v* € §; whose
level h* is strictly smaller than h; see Figure 5. This
implies that one of the surfaces, call it 3, that crosses
the relative interior of g cannot cross the relative
interior of the vertical segment ¢g* that connects v* to
e'. But then 8 must cross §; at some point w between
v and v* (B cannot cross €’ and since ¢; has no point
of level > k*, there cannot be a boundary point above
6y within V¢). Tt is now easy to see that (e,e’,g)
is a covered edge-crossing. Indeed, let A denote the
trapezoidal-like region formed within Ve by g, the
vertical segment connecting w to €', the portion of §;
between v and w, and e’. Any surface of ¥ intersecting
A must either intersect the interior of g or must form
a vertex on 0; between v and w. There are at most
k surfaces of the first kind, and at most & — 2 of the
second (recall that d; has at most k vertices in A(X*)),
and so A is crossed by less than 2k surfaces. This
contradiction completes the proof of the claim.

Let EZ denote the set of all subarcs of ¥ whose level
is h, for h =1,...,k, and put t, = |EZ| If (e, e, g) is
as in the Claim, then the corresponding vertex v is a
vertex of the upper envelope of E; within V¢ Indeed,
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Figure 4: Several types of covered edge-crossings

Figure 5: The proof of the bound on the number of
uncovered edge-crossings

the Claim implies that v is a vertex of A(X}), and no
subarc of E?L' can pass above v, because the level of any
such subarc must be strictly smaller than h. Hence, the
number of uncovered edge-crossings in R within Ve s

k k
ZAH—Q th < >\s+2 (Z )
h=1 h=
= X2 (O(tB(t/K))) = O(t3* (1)) -

Lemma 2.6 The total number of covered edge-
crossings in R, in the entire arrangement, is
O(k*n**2), for any e > 0.

Proof: Let R' be the set of all covered edge-crossings
in R, but with certain multiplicities removed: For ev-
ery four surfaces o1,05,03,04 € ., we choose only one
edge-crossing (e, e, g) with e C oy Noy and ¢’ C o3Noy
for R, and for every three surfaces 01,023,053 € X,
we choose only one edge-crossing x = (e,e’,g) with
e C o1 Nos and o(x) = o3 for R'. Exploiting condition
(R3) and the fact that there are at most s edge-crossings
defined by the same four surfaces, it is now sufficient to
show that |R'| = O(k3n?*¢), for any ¢ > 0.

Let x = (e,e’,g) be a covered edge-crossing in R'.
Let 01, 09, and 8 € X be as in the definition of a covered
edge-crossing, and let’s assume that oy crosses 8 within
V¢ to the left of g at some point w. By condition (R4),
there is an intersection point v of 3 and o on V,, where

o = o(x) is one of the two surfaces defining €', the
portion of 8 NV, between v and g does not meet o,
and the portion of o NV, between v and g does not
meet the other surface ¢’ incident to the top endpoint
of g. Let A be the trapezoidal-like region within V;, as
defined in condition (R4), and let A’ be the trapezoidal-
like region within V¢, as in the definition of covered
edge-crossings. By the preceding arguments, at most
3k surfaces cross either A or A’. See Figure 6 for an
illustration.

Let K be a random sample of n/k surfaces of ¥. As
argued in [9], the probability that K contains the five
surfaces o1, 02, 3, 0 and o', and does not contain any
of the other surfaces crossing A U A’] is at least ¢/k°,
for some absolute constant ¢ > 0. Let R’ be the set of
edge-crossings x € R' that appear in A(K), in the sense
that the above choice of surfaces in K materializes.
Since the expected size of R’ is at least ¢/k®> times the
size of R/, it suffices to prove that |R% | = O(n*T¢ /k?),
for any € > 0.

So let C(K) = Cu(K) denote the cell in A(K)
that contains w, and consider an edge-crossing y =
(e,€',g) € RY. Clearly, the segment ¢ crosses in A(K)
only the surface 3, and its portion below 3 is fully con-
tained in C(K). For technical reasons, we distinguish
between the two (top and bottom) sides of each surface
in ¥; we appeal to the intuition of the reader, and re-
fer to [3, 4, 11] for a formal definition. An important
property that this distinction has is that a curve drawn
on the top side of a surface is not considered to cross a
curve drawn on the bottom side.

We will construct, for every x € R, a path 7 = 7(x)
on JC(K) as the concatenation of the following three
subpaths:

e m(x): the subarc of 3NV, connecting v to u =
gnp;

o m(x): asubarcof BNV extending from u towards
w, stopping as soon as it hits either o1 or o2 in a
point w' (w' may or may not be equal to w, see the
two cases in Figure 6);

e m3(x): this subpath extends from w' along oy NV



Figure 6: Two cases of covered edge-crossings y = (e, ¢’,g) € R, and the corresponding paths 7(x) (shown in fat)

or oy NV (depending on which surface contains
w') towards g, and stops as soon as it hits the other
surface defining e (this can happen either at g or
earlier, see Figure 6).

The first two portions m () and w2 (x) are drawn on the
bottom side of 3, and the last portion 73(x) is drawn
on the top side of 7.

We draw a path m(x) for each edge-crossing x € R,
in all curtains V¢
Claim: Two distinct paths m(x), 7(x*) are disjoint.
Proof of Claim: Suppose to the contrary that m(x)
and m(x*) contain a common point, for two distinct
edge-crossings x = (e, €', ¢) and x* = (e*, (¢')*,¢*) in
R'x. There are several cases.

m1(x) intersects m(x*): By our construction, the
path 71 (x) lies above an edge of A(K) (the one con-
taining e), starts at an edge of A(K) and stops as soon
as it passes directly below another edge (the edge €');
a similar property holds for 7y (x*). It follows that if
71 (x) and 7 (x*) have a common point (including the
sharing of an endpoint), then ¢’ = (¢')*, e = *, and the
two paths must coincide completely. This implies that
x and x* are defined by the same four surfaces, which
is a contradiction to the definition of R'.

m2(x) intersects mo(x*): The path m(x) passes di-
rectly below an edge of A(K) (the one containing e’),
ends on an edge of A(K), and starts directly above
an edge of A(K) (the one containing e). It may pass
above other edges € of A(K), but then € is defined by
the same two surfaces as e. It follows that if m5(x) and
m2(x*) have a common point, then ¢’ = (e’)*, and hence
o(x) = o(x*). Furthermore, e and e* must be defined
by the same two surfaces of 3. Again, this is impossible
by our definition of R'.

m3(x) intersects ws3(x*): The path m3(x) lies below
an edge of A(K) (the one containing ¢'), and exactly
one surface of K (namely, §) passes between the path
and the edge. Hence, if 73(x) and 73(x*) have a com-
mon point, then e’ = (e')*, and m3(x) = m3(x*) (since
they both lie in V¢ and extend in both directions until

they hit an edge of A(K)). This implies that y and x*
are again defined by the same four surfaces, which is
impossible.

Finally, m (x) intersects m2(x*) (or, symmetrically,
m1(x*) intersects mo(x)): A point p € m(x*) has to
lie below an edge of A(K). The only point with this
property on m () is its endpoint u. On the other hand,
u lies directly above an edge of A(K). The only such
point on mo(x*) is its endpoint, and hence e = e* and
e' = (e')*, a contradiction.

This completes the proof of the Claim.

We continue with the proof of the lemma. We now
have a system G of pairwise openly-disjoint paths drawn
on 0C,(K), and our next goal is to bound their num-
ber, using Euler’s formula for planar graphs, in a man-
ner similar to, though somewhat more complex than,
the technique used by Tagansky [18]. This is done as
follows.

Fix a face f of 0C,(K) (which lies on either the top
side or the bottom side of some surface), and clip all
paths that cross f to within f (note that either all these
clippings retain the first two portions of each such path,
if f lies on the bottom side of a surface, or they all retain
the third portions of these paths, if f lies on the top
side). Let Gy denote the resulting collection of clipped
paths. We regard Gy as a plane drawing of a graph,
whose nodes are the edges of f and whose arcs are the
clipped paths. Since f is (homeomorphic to) a planar
region, we do indeed obtain a plane drawing of a planar
graph, and we can apply Euler’s formula to conclude
that the number of arcs in G'¢ is at most three times the
number of edges of f, plus the number of faces of Gy of
degree 2. Applying this analysis to each (sided) face of
C,(K), and summing up these bounds, we conclude that
the overall number of clipped subpaths is proportional
to the complexity of C,(K), which is O((n/k)**¢), for
any € > 0 [11], plus the overall number of graph-faces
of degree 2.

To get a better handle on those degree-2 faces, we go



over all faces f of C,(K), take each ‘run’ of adjacent
degree-2 faces within f, and delete all their incident
subpaths, except for the first and the last one. Clearly,
the number of remaining subpaths is O((n/k)***), for
any € > 0.

Now take a full path w(x). If either of its two
clipped subpaths has survived after the above trimming,
we charge m(y) to that subpath. Since this charging
is unique, the number of paths 7(x) of this kind is
O((n/k)*>*#), for any € > 0. Suppose then that both
clipped subpaths of 7(x) have been trimmed. This is
easily seen to imply that there is a sequence of ‘paral-
lel’ paths, all of which connect between the same pair of
edges of C,(K), such that m(x) is a middle element of
the sequence. Recall that, in the notations used above,
one of the terminal edges of m() is incident to the two
surfaces o1, o2 that meet also at the bottom endpoint
of g (recall that the endpoint of 7(x) needs not coincide
with the endpoint of g), and the other terminal edge is
incident to 8 and to o(x). It follows that there are at
least three different paths 7(x') in the above sequence,
such that the corresponding edge-crossings x’ share the
three surfaces o1, 02, and 0 = o(x'). By our definition
of R/, this is impossible, and therefore every path 7 (y)
is uniquely charged to one of its subpaths.

All these arguments readily imply that the total
number of paths m(x) that are drawn on 9C,(K)
is O((n/k)?>*¢), for any & > 0. This implies that

IR%| = O(n*T¢/k?), and by our conclusions above,
this completes the proof of the lemma.

We now show how these bounds imply our main re-
sult. Put t* = )", t.r, where the sum extends over all
split edges e’ at level at most k, for which t., > 4k.
Lemmas 2.5 and 2.6 imply that

IR = O(k*n>™) + 3 O(te B(ter)) =
= O(k*n>*%) + O(t*3%(n)) .

On the other hand, for each edge e’ as above, the num-
ber of vertices appearing in the first 3k levels of A(X¢)
is Q(ter k). Indeed, the number of surfaces whose inter-
section arcs are fully contained within the first 3k levels
of A(X¢) is at most 3k, because, for every such surface
o, the endpoints of the curve o N Ve must be among
the first 3k curves below each endpoint of e’ (the curve
cannot, have an endpoint in the interior of Vel, because
such an endpoint would have caused e’ to be further
split). Since tor > 4k, at least te — 3k > Lt of these
curves have a point at level > 3k, and thus each of
them must contain at least k vertices of A(X¢) at level
< 3k (because, by definition, it also shows up among
the top 2k levels). Since each such vertex induces an
edge-crossing at level at most 3k (with respect to our

cell C), it follows that

Car(Diw) = kY ter) = k) .

Hence, we have

IR| = O(k'n>+) + 0 ( ): (4)

- O (n )

= O(k'n*+) +0 (5

Next, we estimate Csi(n), by using the probabilistic
technique of Clarkson and Shor [9] (see also [15]). Since
each edge-crossing (e, €', g) is defined by four surfaces
(two surfaces incident to e and two incident to e’), the
Clarkson-Shor technique is easily seen to imply that
C3x(n) = O(k*Cy(n/k)). Combining (3), (4), and the
Clarkson-Shor bound, we readily obtain

O((kB(k) + k*B(n))n*** +

+ k3 B(k)nXssa (n/k)) +

+ Z Ok Co(n/k))

= O(K*B(n)n’*°) + O(k* B (n)) - Co(n/k)

Co(n) =

The solution of this recurrence is O(n?*9), for any
6 > e. This is shown by induction on n, choosing
k = B'13/9(n) and using the fact that $(n) is an ex-
tremely slowly growing function of n (see also [1]).

In conclusion, we have thus obtained the main result
of the paper:

Theorem 2.7 The complexity of the vertical decompo-
sition of a single cell in an arrangement of n algebraic
surface patches in R®, such that the degrees of the sur-
faces and of their boundary curves are all bounded by
some constant b, is O(n>*=), for any € > 0, where the
constant of proportionality depends on € and on b.

3 Applications

3.1 Constructing a Single Cell

Theorem 3.1 Given an arrangement of n algebraic
surface patches in R®, such that the degrees of the sur-
faces and of their boundary curves are all bounded by
some constant b, one can construct, in an appropri-
ate model of computation, the cell of the arrangement
containing a given point, in randomized expected time
O(n**t¢), for any € > 0, where the constant of propor-
tionality depends on € and on b.

Proof: As noted in the introduction, this can be
accomplished, in a rather routine manner, by applying
the lazy randomized algorithm of de Berg et al. [6].
We omit the details in this version.



3.2 Motion Planning for Systems with Three
Degrees of Freedom

As noted in the introduction, the main application of
Theorems 2.7 and 3.1 is to motion planning for arbitrary
systems with three degrees of freedom. This application
is described in detail in the survey paper [13]. The
results of our paper imply the following;:

Theorem 3.2 Let B be a robot system with three de-
grees of freedom, such that the free configuration space
of B can be described as a Boolean combination of n
polynomial equalities and inequalities, of constant maz-
imum degree b, in the three parameters that define the
degrees of freedom of B. Then, given any two free place-
ments Z1, Z> of B, one can determine, in randomized
expected time O(n>*e), for any ¢ > 0, whether there
exists a collision-free motion of B from Zy to Zs, and,
if so, produce such a motion. (The constant of propor-
tionality in this bound depends on € and on b.)

Acknowledgments

We wish to thank Danny Halperin for useful discussions
concerning the problems studied in this paper. Part
of the work on the paper has been carried out in the
Mathematical Research Institute of Tel Aviv University,
which the first author has visited in the spring of 1995.

References

[1] P.K. Agarwal, O. Schwarzkopf and M. Sharir, The
overlay of lower envelopes in three dimensions
and its applications, Discrete Comput. Geom. 15
(1996), 1-13.

[2] P.K. Agarwal, M. Sharir and P. Shor, Sharp upper
and lower bounds for the length of general Daven-

port Schinzel sequences, J. Combin. Theory, Ser.
A. 52 (1989), 228-274.

[3] B. Aronov and M. Sharir, Triangles in space, or:
Building (and analyzing) castles in the air, Com-
binatorica 10 (2) (1990), 137-173.

[4] B. Aronov and M. Sharir, Castles in the air revis-
ited, Discrete Comput. Geom. 12 (1994), 119-150.

[5] B. Aronov and M. Sharir, On translational mo-
tion planning in three dimensions, Proc. 10th ACM
Symp. on Computational Geometry, 1994, pp. 21—
30.

[6] M. de Berg, K. Dobrindt and O. Schwarzkopf,
On lazy randomized incremental construction, Dis-
crete Comput. Geom. 14 (1995), 261-286.

[7] B. Chazelle, H. Edelsbrunner, L. Guibas and M.
Sharir, A singly exponential stratification scheme
for real semi-algebraic varieties and its applica-
tions, Proc. 16th Int. Colloq. on Automata, Lan-
guages and Programming, 1989, pp. 179-193. (Also
in Theoretical Computer Science 84 (1991), 77—
105.)

[8] K. Clarkson, H. Edelsbrunner, L. Guibas, M.
Sharir and E. Welzl, Combinatorial complexity
bounds for arrangements of curves and spheres,
Discrete Comput. Geom. 5 (1990), 99-160.

[9] K. Clarkson and P. Shor, Applications of random
sampling in computational geometry, 11, Discrete
Comput. Geom. 4 (1989), 387-421.

[10] D. Halperin and M. Sharir, New bounds for lower
envelopes in three dimensions, with applications
to visibility in terrains, Discrete Comput. Geom.
12 (1994), 313-326.

[11] D. Halperin and M. Sharir, Almost tight up-
per bounds for the single cell and zone problems

in three dimensions, Discrete Comput. Geom. 14
(1995), 385-410.

[12] D. Halperin and M. Sharir, Near-quadratic bounds
for the motion planning problem for a polygon in a
polygonal environment, Proc. 34th IEEE Symp. on
Foundations of Computer Science, 1993, pp. 382—
391. (Also to appear in Discrete Comput. Geom.)

[13] D. Halperin and M. Sharir, Arrangements and
their applications in robotics: Recent develop-
ments, in The Algorithmic Foundations of Robotics
(K. Goldberg, D. Halperin, J.C. Latombe and
R. Wilson, Eds.), A.K. Peters, Boston MA, 1995,
pp- 495-511.

[14] S. Hart and M. Sharir, Nonlinearity of Davenport-
Schinzel sequences and of generalized path com-

pression schemes, Combinatorica 6 (1986), 151
177.

[15] M. Sharir, On k-sets in arrangements of curves and
surfaces, Discrete Comput. Geom. 6 (1991), 593
613.

[16] M. Sharir, Almost tight upper bounds for lower
envelopes in higher dimensions, Discrete Comput.
Geom. 12 (1994), 327-345.

[17] M. Sharir and P. Agarwal, Davenport-Schinzel Se-
quences and Their Geometric Applications, Cam-
bridge University Press, New York, 1995.

[18] B. Tagansky, A new technique for analyzing
substructures in arrangements, Proc. 11th ACM
Symp. on Computational Geometry, 1995, pp. 200—
210.



