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for instance the recent book [17] for details concerningarrangements of surfaces in higher dimensions.) Let !be a �xed point, not lying on any surface of �. Wedenote by C!(�) the 3-dimensional cell of A(�) con-taining !. The combinatorial complexity of C!(�) isthe number of vertices, edges, and 2-faces of A(�) ap-pearing on the boundary of that cell. For simplicity,we will measure this complexity only by the number ofvertices of the cell. It is well known that the number ofall other boundary features of C!(�) is proportional tothe number of vertices (assuming general position|seebelow), plus an additive term of O(n2).Recently, it has been shown that the combinatorialcomplexity of C!(�) is O(n2+"), for any " > 0, wherethe constant of proportionality depends on " and onthe maximum degree b of the surfaces and of theirboundaries [11]. The corresponding algorithmic prob-lem, however, of computing C!(�) in near-quadratictime, has been open, with the exception of several solu-tions for special classes of surfaces [4, 5, 12]. The mainmotivation for this algorithmic problem comes from mo-tion planning, and is explained in detail in the papersjust cited, and in the recent survey paper [13].An algorithm for constructing C!(�) can be obtainedusing the vertical decomposition of such a cell [11, 12,13]. This is a standard decomposition scheme, de-scribed in detail in several recent works [7, 8, 17], thatpartitions cells in arrangements of algebraic surfacesinto subcells of constant description complexity (see be-low), provided the maximum degree of the surfaces isalso constant.For the sake of completeness, we also give a brief in-formal description of the vertical decomposition. We�rst assume that each surface patch in � is xy-monotone. This can always be enforced by splittingeach such patch into O(1) xy-monotone subpatches. Inthe �rst decomposition stage, we erect within C a ver-tical `wall' up and/or down from each edge of C (bothsurface boundary edges and intersection edges of pairsof surfaces). Each such wall consists of maximal verti-



cal segments contained in (the closure of) C and pass-ing through the points of the edge. The collection ofthese walls partition C into subcells, each having theproperty that it has a unique `top' facet and a unique`bottom' facet (one or both of these facets may be un-de�ned when the subcell is unbounded; all other facetsof the subcell lie on the vertical walls). However, thecomplexity of each subcell may still be arbitrarily large.Thus, in the second decomposition stage, we take eachsubcell C0, project it onto the xy-plane, and apply tothe projection a similar but 2-dimensional vertical de-composition, erecting a y-vertical segment from eachvertex of the projected subcell and from each point oflocal x-extremum on its edges. This yields a collec-tion of trapezoidal-like subcells, and we then lift eachof them to 3-space, to obtain a decomposition of C0 intoprism-like subcells, each having `constant descriptioncomplexity', meaning that each of them is a semialge-braic set de�ned by a constant number of polynomialsof constant maximum degree (which depends on b). Re-peating this second stage for all subcells C0 produced inthe �rst stage, we obtain the desired vertical decomposi-tion of C. More details can be found elsewhere [7, 8, 17].Using this decomposition scheme, one can then ap-ply, for instance, a lazy randomized incremental al-gorithm [6] to construct the vertical decomposition ofC!(�), by adding the surfaces one after the other inrandom order, and by updating the decomposition asthe surfaces are added. The e�ciency of this algorithmcrucially depends on the size (number of subcells) ofthe decomposition (of the cells C!(�0), for any subset�0 � �). A near-quadratic bound on the size of thevertical decomposition of a single cell implies that the(expected) complexity of the above algorithm is alsonear-quadratic.In this paper we show that the complexity of the ver-tical decomposition of a single cell in a 3-dimensionalarrangement, as above, is indeed O(n2+"), for any" > 0, where the constant of proportionality depends,as above, on " and on the maximum degree b of thesurfaces and of their boundaries. The proof techniqueborrows ideas from several recent papers [1, 10, 16, 18]that have analyzed several related problems.It is instructive to note that if all our surfaces are xy-monotone without boundaries (in other words, they aregraphs of continuous totally-de�ned algebraic bivariatefunctions), then the near-quadratic bound on the com-plexity of the vertical decomposition of a single cell isan immediate consequence of the recent results of Agar-wal et al. [1], which give a near-quadratic bound for thecomplexity of the vertical decomposition of the regionenclosed between the lower envelope of one collection ofsuch surfaces and the upper envelope of another suchcollection; in this special case, our single cell is a por-tion of such a `sandwiched' region. In the general case,

though, the topological structure of a single cell can bemuch more complex, and this makes the analysis con-siderably harder.As a corollary of our bound, we obtain that a sin-gle cell in a 3-dimensional arrangement of surfaces,as above, can be constructed in randomized expectedO(n2+") time, for any " > 0. This in turn implies thatmotion planning for fairly general systems with threedegrees of freedom can be performed in near quadratictime. This solves one of the major open problems inthe area. These applications of our bound are brie
ypresented in Section 3.2 Complexity of the Vertical Decompo-sition of a Single CellLet � and ! be as in the introduction. For the purposeof our analysis, we will require the surface patches tobe xy-monotone. This involves no real loss of general-ity, because, as already mentioned in the introduction,we can partition each of the surfaces into a constantnumber of xy-monotone portions (where the constantdepends on the maximum degree b). We also assumethat the surfaces are in general position, in the stan-dard sense considered in, for instance, [17]. One canshow that this involves no real loss of generality, but weomit this discussion in this abstract.As is well known [17], the complexity of the verti-cal decomposition of C = C!(�) is proportional (upto an additive near-quadratic term) to the number ofvertically-visible pairs of edges of C. These are orderedpairs (e; e0) of edges of C such that there exists a verti-cal segment g whose bottom endpoint lies on e, whosetop endpoint lies on e0, and whose relative interior iscontained in C. More precisely, the relevant quantityfor measuring the complexity of the vertical decompo-sition is the number of vertical visibility con�gurationsof the form (e; e0; g), where e, e0 and g are as above.However, the assumptions concerning the surfaces of �are easily seen to imply that, under the general positionassumption, the maximum number of vertical visibilitycon�gurations that correspond to any �xed pair (e; e0)of vertically-visible edges is at most some constant s(which depends on the maximum degree b of the sur-faces and of their boundaries).If e or e0 is a portion of the boundary of a sur-face of �, we call (e; e0; g) an outer vertical visibilitycon�guration; otherwise (e; e0; g) is an inner con�gu-ration. We will later show that the overall numberof outer con�gurations is O(n�s+2(n)), where �s(n) isthe maximum length of an (n; s) Davenport-Schinzel se-quence [2, 14, 17]. Hence, in what follows, we will onlyconsider inner vertical visibility con�gurations. Forconvenience, we will not mention the quali�er `inner'from now on.



For technical reasons, we extend the notion of verti-cal visibility con�gurations as follows. Let e and e0 betwo edges of A(�) such that there exists a vertical seg-ment g whose bottom endpoint lies on e and whose topendpoint lies on e0. We say that (e; e0; g) is a verticaledge-crossing at level � if(i) the subset �0 � � of surfaces that intersect therelative interior of g has cardinality �, and(ii) g is fully contained in C!(� n�0).Note that the four surfaces incident to e and e0 cannotintersect the relative interior of g. Thus, vertical edge-crossings at level 0 are precisely the vertical visibilitycon�gurations. We denote by Cq(�;!) the number ofvertical edge-crossings (with respect to the cell C!(�))of level at most q. We also denote by Cq(n) the max-imum possible value of Cq(�;!), over all collections �of n surfaces as above, and over all points ! not lyingon any surface.The notion of levels is also extended to vertices andedges of A(�): We say that a vertex v (resp. an edge e)of A(�) is at level � (with respect to the cell C!) if thereexists a subset �0 of � surfaces, so that v is a vertex of(resp. e is contained in an edge of) C!(� n �0), and if� is the smallest number with that property. Again,the actual vertices and edges of C!(�) are precisely thevertices and edges at level 0.Let k be a threshold parameter, whose value will bespeci�ed later on. Our goal is to prove a bound onC0(n) that has roughly the formC0(n) � 1k2Ck(n) +O(k�n2+"); (1)where � is some �xed exponent, from which we candeduce the near quadratic bound on C0(n), by usingClarkson and Shor's technique [9] to bound Ck(n) byO(k4C0(n=k)), and by solving the resulting recurrencefor C0. The exact inequality that we will derive willbe somewhat weaker than (1), but it will still yield thedesired bound on C0(n).The idea of proving a bound like (1) is to iden-tify about k2C0(�;!) distinct edge-crossings at levelat most k in the arrangement A(�). We do (somethingclose to) this, using a two-stage counting argument, sim-ilar to that used by Agarwal et al. [1].Preliminaries. Let e be an edge of A(�) and let Vebe the vertical 2-manifold obtained as the union of allz-vertical rays whose bottom endpoints lie on e. Theintersection of each surface � 2 � with Ve is a (not nec-essarily connected) algebraic arc of constant maximumdegree (and with a constant number of connected com-ponents), so each pair of these arcs intersect in at mostsome constant number, s, of points (where s dependsonly on the maximum degree b of the given surfaces and

of their boundaries; it is the same parameter s men-tioned at the beginning of this section). We denote theset of these arcs by �e, and their arrangement on Ve byA(�e).Completely analogously, we de�ne the vertical 2-manifold V e obtained as the union of all downwarddirected z-vertical rays whose top endpoints lie on e.(Imagine V e as a `curtain' hanging down from e, whileVe is a curtain standing on e.) We denote the set ofarcs formed by the intersections of the surfaces of �with V e by �e, and their arrangement in V e by A(�e).We de�ne the level of a point p in Ve (resp. in V e) tobe the number of arcs in �e (resp. in �e) that lie below(resp. above) p.A simple but crucial observation is:Lemma 2.1 Let e be an edge of A(�) with C locallyabove e. Then (e; e0; g) is an edge-crossing at level �, ifand only if the point of e0\Ve that lies on the z-verticalline through g is a vertex of A(�e) at level �.
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Figure 1: The arrangement A(�e); with a verticalvisibility con�guration and a vertical edge-crossing atlevel 3.See Figure 1 for an illustration. This lemma impliesthat each vertical visibility con�guration with bottomedge e corresponds to a vertex in the lower envelopeof the arcs in �e. (Of course, a similar and symmetricstatement holds for �e0 .)Now that we have introduced this terminology andobservations, we can dispose, as promised, of outer vis-ibility con�gurations:Lemma 2.2 The number of outer vertical visibilitycon�gurations is O(n�s+2(n)).Proof: Let � be an arc bounding some surface in�. By Lemma 2.1 each outer vertical visibility con-�guration having � as its bottom edge is representedby some vertex (breakpoint) of the lower envelope of�� within V� . By the standard Davenport-Schinzel



theory [2, 14, 17], the number of such breakpoints isO(�s+2(n)) (recall that �� consists of O(n) connectedarcs, each pair of which intersect in at most s points).We repeat this analysis for each of the O(n) boundaryarcs of the surfaces of �, and also apply a symmetricanalysis within the \hanging curtains" V �. Thisimplies the assertion of the lemma.It will be convenient for our analysis to assume thatthe arrangements A(�e) and A(�e0 ) do not containany arc endpoints at level � 3k, except on the rela-tive boundaries of Ve and V e0 . We can achieve this bysplitting the edges of A(�) into what we call split edges,as follows.Let 
 be an arc in �e. If 
 has an endpoint w withinthe relative interior of Ve, which lies in the �rst 3k levelsof A(�e), we erect a vertical line through w and splite and Ve at that line into two portions. We repeatthis splitting for all edges e of A(�) and for each 
 2�e, whenever it is applicable. We apply a symmetricprocedure in all the corresponding downward-directedcurtains V e0 . Furthermore, we split all edges e at pointswhere their projection onto the xy-plane has a tangentparallel to the y-axis. This will guarantee that all splitedges are x-monotone.Lemma 2.3 The overall number of such edge-splittingsis O(k2n�s+2(n=k)).Proof: The intersection curve of two surfaces has onlya constant number of points where the projection onthe xy-plane has a tangent parallel to the y-axis, so thetotal numer of such points is O(n2).We bound the number of splits induced by anendpoint at level at most 3k using a similar argumentto that of Lemma 2.2. Let � be an arc bounding somesurface in �. It is easily seen that each edge-splitinduced by � corresponds to a vertex of A(��) in V� ,or to a vertex of A(��) in V �, at level � 3k, and theoverall number of such vertices, over all boundary arcs�, is known to be O(k2n�s+2(n=k)) [9, 15].Let's make one �nal de�nition before we start withthe real proof. For a vertical edge-crossing � = (e; e0; g),we have four distinct surfaces �1; �2; �3; �4 2 �, suchthat e � �1 \ �2 and e0 � �3 \ �4. Let ` be the verticalline through g, and let `0 be a copy of ` shifted in�nites-imally along e in decreasing x-direction. Then �3 \ `0and �4 \ `0 are two distinct points. We put �(�) = �3if �3 \ `0 lies below �4 \ `0, otherwise �(�) = �4.First Stage. In this stage we identify a set R of spe-cial vertical edge-crossings in A(�).Consider �rst a (split) edge e of C with C locallyabove e. We partition it into two subedges as follows:We start from the right endpoint of e (recall that all

split edges are x-monotone) and move along e to theleft until we encounter the (k + 1)-st distinct surfaceof � directly above the point. We denote the portionof e traversed by this process by er, and the remain-ing part of e by el. (It can happen that we encounterthe left endpoint of e before seeing more than k dis-tinct surfaces|in that case er = e and el is empty.) ByLemma 2.1, every edge-crossing at level 0 with bottompoint on er corresponds to a vertex of the lower enve-lope of A(�er ) on Ver . Since there are only k surfacesappearing on the lower envelope over er, its complex-ity is at most O(�s+2(k)) [2, 14]. Since the number ofedges bounding C is O(n2+") [11], and they can be splitinto O(k2n�s+2(n=k)) additional split edges, the over-all number of vertical visibility con�gurations involvingthe right subedge er of any split edge of C is at mostO(�s+2(k)(n2+" + k2n�s+2(n=k))), for any " > 0. Inthe following, we will therefore restrict our attention tothe vertical visibility con�gurations that appear abovethe left subedges el of the edges of C.Consider a pair of surfaces �1; �2 2 �, and considertheir intersection curve �1\�2. This curve consists of aconstant number of x-monotone connected pieces. Let
 be one such piece. Let V
 be the union of all Ve, forall (split) edges e of the arrangement that are containedin 
. Let 
0 be the subset of 
 that consists of the leftsubedges el of all edges e � 
 of C such that C lieslocally above e. Let �(
) be the set of surfaces in �that appear on the lower envelope on V
 restricted over
0, and let t = t
 = j�(
)j. The number of breakpointsof the lower envelope above 
0 is at most a�s+2(t) [2, 14],where a is an appropriate constant (depending on themaximum degree of the surfaces; it arises because, asabove, an intersection � \ V
 may consist of more thanone connected arc).

e Ve��
Figure 2: The setup in the construction of RConsider now a surface � 2 �(
). It appears onthe lower envelope over the left subedge of some (split)edge e � 
 with C locally above e, and therefore thereare at least k surfaces �0 2 � that appear over e to



the right of �. By continuity and by our construction,either � and such a surface �0 intersect within Ve atleast once, or each of them has a point at level > k. Wewill now collect k vertices on �\Ve as follows: We startat some point where � appears on the lower envelopeon Ve (over the left subedge el), and follow � \ Ve inincreasing x-direction (recall that all split edges are x-monotone). We will pass, before we reach the end ofe, at least k vertices v, at which we encounter a new,distinct surface in �, because we must either encounterall the k surfaces that appear above er or reach the k-level. All these vertices are at level � k, since when we�rst reach the k-level, we must have passed all the ksurfaces lying below the point. For every such vertex v,let �v be the vertical edge-crossing with bottom edge ecorresponding to v by Lemma 2.1. Note that �(�v) =�. See Figure 2 for an illustration. We let R(
; �)denote the collection of these edge-crossings �v . Notethat we collect these k vertices starting from only oneoccurrence of � along the entire curve 
, so jR(
; �)j =k. This will be used in deriving property (R3) below.Put R(
) = S�2�(
)R(
; �), and R = S
 R(
), overall x-monotone pieces 
 of intersection curves.As observed before, the number of visibility con�g-urations above 
0 is at most a�s+2(t). On the otherhand, we have thatjR(
)j = ���� [�2�(
)R(
; �)���� = kt = (2)= 
�k t�s+2(t) � a�s+2(t)� � k�(n) � a�s+2(t
) ;where �(n) = �(�s+2(n)=n) is an extremely slowlygrowing function of n [2, 14]. Summing (2) over allx-monotone pieces 
 of intersection curves, and observ-ing that any edge-crossing in R is counted in this sumexactly once, we obtain:C0(�;!) � �(n)k jRj+O(�s+2(k)(n2+"+k2n�s+2(n=k)));(3)for any " > 0 (where the second term in the right-handside bounds the number of vertical visibility con�gura-tions over the portions er). We thus obtain the followinglemma.Lemma 2.4 Given a set of surfaces � and a point !as above, there is a set R of vertical edge-crossings suchthat jRj satis�es (3) and such that the following condi-tions hold.(R1) Each � 2 R is at level at most k.(R2) For each � = (e; e0; g) 2 R, the edge e is an edgeof C such that C lies locally above e.(R3) For any three surfaces �1; �2; �3 2 �, there areat most k vertical edge-crossings � = (e; e0; g) in Rwith e � �1 \ �2 and �(�) = �3.

(R4) For each � = (e; e0; g) 2 R, and for any surface� that intersects the relative interior of g, there isan intersection point v of � and � = �(�) on Ve,so that the portion of � \ Ve between v and g doesnot meet �, and the portion of � \ Ve between vand g does not meet the other surface �0 incidentto the top endpoint of g. In addition, if g0 denotesthe vertical segment connecting e and v, then the\trapezoidal-like" region � formed within Ve by g,g0, the part of e between g and g0, and the part of� \ Ve between g and g0, is intersected by at mostk surfaces of � (see Figure 3).
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Figure 3: Condition (R4)Proof: All that remains to be shown is condition (R4):Since � 2 R and �(�) = �, there exists a 0-level edge-crossing of the form (e; e�; g�), where e� is incident to�, such that, if we follow � \ Ve from the top endpointof g� to the top endpoint of g, we encounter at mostk � 1 distinct surfaces of �, and do not encounter�0. Let �� denote the trapezoidal-like region formedwithin Ve by g, g�, the part of e between g and g�,and the part � of � \ Ve between g and g�. Then ��can be intersected by at most k surfaces of �. To seethis, we note that, as just argued, at most k surfacesintersect �, and that no surface can intersect e (whichis a portion of an edge of A(�)) or g�. We claim thatno boundary arc of any surface of � can cross ��.Indeed, let u be the leftmost point of intersection of aboundary arc with ��. Then the number of surfacesthat vertically separate u from e is at most k (any suchsurface must cross �), so that, by construction, sucha crossing would have caused e to be split below it.It now follows that any surface crossing �� must alsocross �, and condition (R4) is thus immediate.



Second Stage. We next bound jRj in terms of Ck(n).Let e0 be a split edge of A(�) at level � k. Let t = te0denote the number of surfaces of � that appear on the�rst 2k (top) levels of A(�e0 ). If t � 4k, then e0 con-tributes at most O(k2) edge-crossings to R. We claimthat there are only O(k1�"n2+") split edges e0 of A(�)at level � k. To see this, charge each such edge e0 toone of its endpoints, and observe that the endpoint iseither a vertex of A(�) at level at most k or a splittingpoint of the edge of A(�) containing e0. By the analysisin [15, 17], the number of endpoints of the �rst type isO(k1�"n2+"), for any " > 0. The number of endpointsof the second type is, by Lemma 2.3, O(k2n�s+2(n=k)),which is subsumed by the �rst bound. Hence, the over-all number of edge-crossings inR within all the curtainsV e0 for which te0 � 4k, is O(k2 �k1�"n2+") = O(k3n2+"),for any " > 0. We can thus assume that t > 4k.We want to repeat, within V e0 , the analysis of the�rst step. However, we face a complication that thenumber of edge-crossings that are counted in R withinV e0 could be as large as 
(tk), as it is possible thatall vertices of level � k in A(�e0 ) correspond to edge-crossings inR. Our goal in this second stage is to boundjRj by something close to 1kCk(n), but the technique ofthe �rst counting stage will not imply this when V e0is `full' of edge-crossings in R. To overcome this prob-lem, we will �rst bound the number of `excessive' edge-crossings in R within V e0 , using a di�erent approach,and only then bound the number of remaining crossings,using the same approach as in the �rst stage.We �rst identify a class of vertical edge-crossings inR(the `excessive' edge-crossings), whose number we willbe able to bound independently. We de�ne an edge-crossing (e; e0; g) at level at most k to be covered if itsatis�es the following condition.Let �1, �2 2 � be the two surfaces inci-dent to e. There is a surface � 2 � that in-tersects the relative interior of g, and either�1 or �2 (say, for de�niteness, �1) crosses �within V e0 , either to the left or to the right ofg, at some point w. Moreover, if g� denotesthe vertical segment connecting w to e0, thenthe trapezoidal-like portion of V e0 bounded byg, g�, the portion of e0 between g and g�, andthe portion of �1 between g and g�, is crossedby at most 2k surfaces of �.See Figure 4 for an illustration of this de�nition; notethat the de�nition encompasses several di�erent sub-cases, as is illustrated in the �gure.We can now establish the two central lemmas.Lemma 2.5 The number of uncovered edge-crossingsin R within V e0 is O(te0�2(te0)).Proof: In the �rst step of the proof, we partition thearcs of �e0 into `small' subarcs, as follows. Recall that,

by construction, each endpoint of any arc in �e0 musteither lie on the relative boundary of V e0 , or else beat level > 3k. Replace �e0 by the subcollection ��of only those t = te0 arcs that appear within the �rst2k levels of A(�e0 ). The total number of vertices ofA(��) at level � 2k is O(k2�s+2(t=k)) [15, 17], and sothere must exist a level k � k� � 2k that contains onlyO(k�s+2(t=k)) = O(t�(t=k)) vertices. Hence, the por-tion A+(��) of A(��) that lies at level � k� is formedby O(t�(t=k)) connected subarcs. Moreover, since thenumber of vertices in A+(��) is O(kt�(t=k)), we canpartition further each of these subarcs into smaller con-nected pieces, so that each piece is incident to at mostk vertices of A+(��), and so that the overall number ofthese smaller subarcs is still O(t�(t=k)). Let �+ denotethe resulting collection of the new subarcs. Note thatall vertices of A(�e0) at level � k� are also vertices ofA(�+).De�ne the level `(�) of a subarc � 2 �+ to be thesmallest level in A(�+) of any point on �. Note that,by construction, `(�) is always at most k�, and it is alsoequal to the smallest level in A(�e0) of any point on �.We have:Claim: Let (e; e0; g) be an uncovered edge-crossing inR within V e0 , and suppose that the relative interior ofg is crossed by h � k surfaces. Let �1 and �2 be thetwo surfaces incident to e, and let �1, �2 2 �+ be therespective subarcs of �1 \ V e0 , �2 \ V e0 incident to thebottom endpoint v of g. Then `(�1) = `(�2) = h.Proof of Claim: Note that, by de�nition, both `(�1)and `(�2) are at most h. Suppose to the contrary that,say `(�1) < h. Then there is a point v� 2 �1 whoselevel h� is strictly smaller than h; see Figure 5. Thisimplies that one of the surfaces, call it �, that crossesthe relative interior of g cannot cross the relativeinterior of the vertical segment g� that connects v� toe0. But then � must cross �1 at some point w betweenv and v� (� cannot cross e0 and since �1 has no pointof level > k�, there cannot be a boundary point above�1 within V e0). It is now easy to see that (e; e0; g)is a covered edge-crossing. Indeed, let � denote thetrapezoidal-like region formed within V e0 by g, thevertical segment connecting w to e0, the portion of �1between v and w, and e0. Any surface of � intersecting� must either intersect the interior of g or must forma vertex on �1 between v and w. There are at mostk surfaces of the �rst kind, and at most k � 2 of thesecond (recall that �1 has at most k vertices in A(�e0 )),and so � is crossed by less than 2k surfaces. Thiscontradiction completes the proof of the claim.Let �+h denote the set of all subarcs of �+ whose levelis h, for h = 1; : : : ; k, and put th = j�+h j. If (e; e0; g) isas in the Claim, then the corresponding vertex v is avertex of the upper envelope of �+h within V e0 : Indeed,
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Figure 4: Several types of covered edge-crossingse0 V e0�1�2v� vgg� w � �
Figure 5: The proof of the bound on the number ofuncovered edge-crossingsthe Claim implies that v is a vertex of A(�+h ), and nosubarc of �+h can pass above v, because the level of anysuch subarc must be strictly smaller than h. Hence, thenumber of uncovered edge-crossings in R within V e0 iskXh=1�s+2(th) � �s+2 kXh=1 th! == �s+2 (O(t�(t=k))) = O(t�2(t)) :Lemma 2.6 The total number of covered edge-crossings in R, in the entire arrangement, isO(k4n2+"), for any " > 0.Proof: Let R0 be the set of all covered edge-crossingsin R, but with certain multiplicities removed: For ev-ery four surfaces �1; �2; �3; �4 2 �, we choose only oneedge-crossing (e; e0; g) with e � �1\�2 and e0 � �3 \�4for R0, and for every three surfaces �1; �2; �3 2 �,we choose only one edge-crossing � = (e; e0; g) withe � �1 \�2 and �(�) = �3 for R0. Exploiting condition(R3) and the fact that there are at most s edge-crossingsde�ned by the same four surfaces, it is now su�cient toshow that jR0j = O(k3n2+"), for any " > 0.Let � = (e; e0; g) be a covered edge-crossing in R0.Let �1, �2, and � 2 � be as in the de�nition of a coverededge-crossing, and let's assume that �1 crosses � withinV e0 to the left of g at some point w. By condition (R4),there is an intersection point v of � and � on Ve, where

� = �(�) is one of the two surfaces de�ning e0, theportion of � \ Ve between v and g does not meet �,and the portion of � \ Ve between v and g does notmeet the other surface �0 incident to the top endpointof g. Let � be the trapezoidal-like region within Ve, asde�ned in condition (R4), and let �0 be the trapezoidal-like region within V e0 , as in the de�nition of coverededge-crossings. By the preceding arguments, at most3k surfaces cross either � or �0. See Figure 6 for anillustration.Let K be a random sample of n=k surfaces of �. Asargued in [9], the probability that K contains the �vesurfaces �1, �2, �, � and �0, and does not contain anyof the other surfaces crossing � [ �0, is at least c=k5,for some absolute constant c > 0. Let R0K be the set ofedge-crossings � 2 R0 that appear in A(K), in the sensethat the above choice of surfaces in K materializes.Since the expected size of R0K is at least c=k5 times thesize of R0, it su�ces to prove that jR0K j = O(n2+"=k2),for any " > 0.So let C(K) = C!(K) denote the cell in A(K)that contains !, and consider an edge-crossing � =(e; e0; g) 2 R0K . Clearly, the segment g crosses in A(K)only the surface �, and its portion below � is fully con-tained in C(K). For technical reasons, we distinguishbetween the two (top and bottom) sides of each surfacein �; we appeal to the intuition of the reader, and re-fer to [3, 4, 11] for a formal de�nition. An importantproperty that this distinction has is that a curve drawnon the top side of a surface is not considered to cross acurve drawn on the bottom side.We will construct, for every � 2 R0K , a path � = �(�)on @C(K) as the concatenation of the following threesubpaths:� �1(�): the subarc of � \ Ve connecting v to u =g \ �;� �2(�): a subarc of �\V e0 extending from u towardsw, stopping as soon as it hits either �1 or �2 in apoint w0 (w0 may or may not be equal to w, see thetwo cases in Figure 6);� �3(�): this subpath extends from w0 along �1\V e0
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Figure 6: Two cases of covered edge-crossings � = (e; e0; g) 2 R, and the corresponding paths �(�) (shown in fat)or �2 \ V e0 (depending on which surface containsw0) towards g, and stops as soon as it hits the othersurface de�ning e (this can happen either at g orearlier, see Figure 6).The �rst two portions �1(�) and �2(�) are drawn on thebottom side of �, and the last portion �3(�) is drawnon the top side of �1.We draw a path �(�) for each edge-crossing � 2 R0K ,in all curtains V e0 .Claim: Two distinct paths �(�), �(��) are disjoint.Proof of Claim: Suppose to the contrary that �(�)and �(��) contain a common point, for two distinctedge-crossings � = (e; e0; g) and �� = (e�; (e0)�; g�) inR0K . There are several cases.�1(�) intersects �1(��): By our construction, thepath �1(�) lies above an edge of A(K) (the one con-taining e), starts at an edge of A(K) and stops as soonas it passes directly below another edge (the edge e0);a similar property holds for �1(��). It follows that if�1(�) and �1(��) have a common point (including thesharing of an endpoint), then e0 = (e0)�, e = e�, and thetwo paths must coincide completely. This implies that� and �� are de�ned by the same four surfaces, whichis a contradiction to the de�nition of R0.�2(�) intersects �2(��): The path �2(�) passes di-rectly below an edge of A(K) (the one containing e0),ends on an edge of A(K), and starts directly abovean edge of A(K) (the one containing e). It may passabove other edges �e of A(K), but then �e is de�ned bythe same two surfaces as e. It follows that if �2(�) and�2(��) have a common point, then e0 = (e0)�, and hence�(�) = �(��). Furthermore, e and e� must be de�nedby the same two surfaces of �. Again, this is impossibleby our de�nition of R0.�3(�) intersects �3(��): The path �3(�) lies belowan edge of A(K) (the one containing e0), and exactlyone surface of K (namely, �) passes between the pathand the edge. Hence, if �3(�) and �3(��) have a com-mon point, then e0 = (e0)�, and �3(�) = �3(��) (sincethey both lie in V e0 and extend in both directions until

they hit an edge of A(K)). This implies that � and ��are again de�ned by the same four surfaces, which isimpossible.Finally, �1(�) intersects �2(��) (or, symmetrically,�1(��) intersects �2(�)): A point p 2 �2(��) has tolie below an edge of A(K). The only point with thisproperty on �1(�) is its endpoint u. On the other hand,u lies directly above an edge of A(K). The only suchpoint on �2(��) is its endpoint, and hence e = e� ande0 = (e0)�, a contradiction.This completes the proof of the Claim.We continue with the proof of the lemma. We nowhave a systemG of pairwise openly-disjoint paths drawnon @C!(K), and our next goal is to bound their num-ber, using Euler's formula for planar graphs, in a man-ner similar to, though somewhat more complex than,the technique used by Tagansky [18]. This is done asfollows.Fix a face f of @C!(K) (which lies on either the topside or the bottom side of some surface), and clip allpaths that cross f to within f (note that either all theseclippings retain the �rst two portions of each such path,if f lies on the bottom side of a surface, or they all retainthe third portions of these paths, if f lies on the topside). Let Gf denote the resulting collection of clippedpaths. We regard Gf as a plane drawing of a graph,whose nodes are the edges of f and whose arcs are theclipped paths. Since f is (homeomorphic to) a planarregion, we do indeed obtain a plane drawing of a planargraph, and we can apply Euler's formula to concludethat the number of arcs in Gf is at most three times thenumber of edges of f , plus the number of faces of Gf ofdegree 2. Applying this analysis to each (sided) face ofC!(K), and summing up these bounds, we conclude thatthe overall number of clipped subpaths is proportionalto the complexity of C!(K), which is O((n=k)2+"), forany " > 0 [11], plus the overall number of graph-facesof degree 2.To get a better handle on those degree-2 faces, we go



over all faces f of C!(K), take each `run' of adjacentdegree-2 faces within f , and delete all their incidentsubpaths, except for the �rst and the last one. Clearly,the number of remaining subpaths is O((n=k)2+"), forany " > 0.Now take a full path �(�). If either of its twoclipped subpaths has survived after the above trimming,we charge �(�) to that subpath. Since this chargingis unique, the number of paths �(�) of this kind isO((n=k)2+"), for any " > 0. Suppose then that bothclipped subpaths of �(�) have been trimmed. This iseasily seen to imply that there is a sequence of `paral-lel' paths, all of which connect between the same pair ofedges of C!(K), such that �(�) is a middle element ofthe sequence. Recall that, in the notations used above,one of the terminal edges of �(�) is incident to the twosurfaces �1, �2 that meet also at the bottom endpointof g (recall that the endpoint of �(�) needs not coincidewith the endpoint of g), and the other terminal edge isincident to � and to �(�). It follows that there are atleast three di�erent paths �(�0) in the above sequence,such that the corresponding edge-crossings �0 share thethree surfaces �1, �2, and � = �(�0). By our de�nitionof R0, this is impossible, and therefore every path �(�)is uniquely charged to one of its subpaths.All these arguments readily imply that the totalnumber of paths �(�) that are drawn on @C!(K)is O((n=k)2+"), for any " > 0. This implies thatjR0K j = O(n2+"=k2), and by our conclusions above,this completes the proof of the lemma.We now show how these bounds imply our main re-sult. Put t� =Pe0 te0 , where the sum extends over allsplit edges e0 at level at most k, for which te0 > 4k.Lemmas 2.5 and 2.6 imply thatjRj = O(k4n2+") +Xe0 O(te0�2(te0 )) == O(k4n2+") +O(t��2(n)) :On the other hand, for each edge e0 as above, the num-ber of vertices appearing in the �rst 3k levels of A(�e0 )is 
(te0k). Indeed, the number of surfaces whose inter-section arcs are fully contained within the �rst 3k levelsof A(�e0 ) is at most 3k, because, for every such surface�, the endpoints of the curve � \ V e0 must be amongthe �rst 3k curves below each endpoint of e0 (the curvecannot have an endpoint in the interior of V e0 , becausesuch an endpoint would have caused e0 to be furthersplit). Since te0 > 4k, at least te0 � 3k > 14 te0 of thesecurves have a point at level > 3k, and thus each ofthem must contain at least k vertices of A(�e0 ) at level� 3k (because, by de�nition, it also shows up amongthe top 2k levels). Since each such vertex induces anedge-crossing at level at most 3k (with respect to our

cell C), it follows thatC3k(�;!) = 
(kXe0 te0) = 
(t�k) :Hence, we havejRj = O(k4n2+") +O ��2(n)k � kt�� = (4)= O(k4n2+") +O ��2(n)k � C3k(n)� :Next, we estimate C3k(n), by using the probabilistictechnique of Clarkson and Shor [9] (see also [15]). Sinceeach edge-crossing (e; e0; g) is de�ned by four surfaces(two surfaces incident to e and two incident to e0), theClarkson-Shor technique is easily seen to imply thatC3k(n) = O(k4C0(n=k)). Combining (3), (4), and theClarkson-Shor bound, we readily obtainC0(n) = O((k�(k) + k3�(n))n2+" ++ k3�(k)n�s+2(n=k)) ++ �3(n)k2 �O(k4C0(n=k))= O(k3�(n)n2+") +O(k2�3(n)) � C0(n=k) :The solution of this recurrence is O(n2+�), for any� > ". This is shown by induction on n, choosingk = �1+3=�(n) and using the fact that �(n) is an ex-tremely slowly growing function of n (see also [1]).In conclusion, we have thus obtained the main resultof the paper:Theorem 2.7 The complexity of the vertical decompo-sition of a single cell in an arrangement of n algebraicsurface patches in IR3, such that the degrees of the sur-faces and of their boundary curves are all bounded bysome constant b, is O(n2+"), for any " > 0, where theconstant of proportionality depends on " and on b.3 Applications3.1 Constructing a Single CellTheorem 3.1 Given an arrangement of n algebraicsurface patches in IR3, such that the degrees of the sur-faces and of their boundary curves are all bounded bysome constant b, one can construct, in an appropri-ate model of computation, the cell of the arrangementcontaining a given point, in randomized expected timeO(n2+"), for any " > 0, where the constant of propor-tionality depends on " and on b.Proof: As noted in the introduction, this can beaccomplished, in a rather routine manner, by applyingthe lazy randomized algorithm of de Berg et al. [6].We omit the details in this version.



3.2 Motion Planning for Systems with ThreeDegrees of FreedomAs noted in the introduction, the main application ofTheorems 2.7 and 3.1 is to motion planning for arbitrarysystems with three degrees of freedom. This applicationis described in detail in the survey paper [13]. Theresults of our paper imply the following:Theorem 3.2 Let B be a robot system with three de-grees of freedom, such that the free con�guration spaceof B can be described as a Boolean combination of npolynomial equalities and inequalities, of constant max-imum degree b, in the three parameters that de�ne thedegrees of freedom of B. Then, given any two free place-ments Z1, Z2 of B, one can determine, in randomizedexpected time O(n2+"), for any " > 0, whether thereexists a collision-free motion of B from Z1 to Z2, and,if so, produce such a motion. (The constant of propor-tionality in this bound depends on " and on b.)AcknowledgmentsWe wish to thank Danny Halperin for useful discussionsconcerning the problems studied in this paper. Partof the work on the paper has been carried out in theMathematical Research Institute of Tel Aviv University,which the �rst author has visited in the spring of 1995.References[1] P.K. Agarwal, O. Schwarzkopf and M. Sharir, Theoverlay of lower envelopes in three dimensionsand its applications, Discrete Comput. Geom. 15(1996), 1{13.[2] P.K. Agarwal, M. Sharir and P. Shor, Sharp upperand lower bounds for the length of general Daven-port Schinzel sequences, J. Combin. Theory, Ser.A. 52 (1989), 228{274.[3] B. Aronov and M. Sharir, Triangles in space, or:Building (and analyzing) castles in the air, Com-binatorica 10 (2) (1990), 137{173.[4] B. Aronov and M. Sharir, Castles in the air revis-ited, Discrete Comput. Geom. 12 (1994), 119{150.[5] B. Aronov and M. Sharir, On translational mo-tion planning in three dimensions, Proc. 10th ACMSymp. on Computational Geometry, 1994, pp. 21{30.[6] M. de Berg, K. Dobrindt and O. Schwarzkopf,On lazy randomized incremental construction, Dis-crete Comput. Geom. 14 (1995), 261{286.
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