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Abstract. For a number of common configurations of points (lines) in the plane, we develop datastructures 

in which insertions and deletions of points (or lines, respectively) can be processed rapidly without 

sacrificing much of the efficiency of query answering of known static structures for these configurations. 

As a main result we establish a fully dynamic maintenance algorithm for convex hulls that can process 

insertions and deletions of single points in only O(log3n) steps or less per transaction, where n is the 

number of points currently in the set. The algorithm has several intriguing applications, including that 

one can "peel" a set of n points in only O(nlog3n) steps and that one can maintain two sets at a costs of 

only O(log3n) or less per insertion and deletion such that it never takes more than O(log2n) steps to 

determine whether the two sets are separable by a straight line. Also efficient algorithms are obtained for 

dynamically maintaining the common intersection of a set of half-spaces and for dynamically maintaining the 

maximal elements of a set of plane points. The results are all derived by means of one master technique, 

which is applied repeatedly and which seems to capture an appropriate notion of "decomposability" for 

configurations. 

i. Introduction. 

Computational geometry (cf. Shamos [ 20,22]) 

concerns itself with the design and analysis of 

algorithms for dealing with sets of points, lines, 

polygons and other objects in 2- and higher 

dimensional space. The sets considered are usually 

static and the datastructures used are nearly 

always inadequate for efficiently accomodating 

both insertions and deletions of objects. In this 

paper we shall attempt to remedy the lack of 

sufficiently fast dynamic maintenance algorithms 

for a variety of common configurations in the 

plane, some of immediate practical interest. 
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The problem to convert static datastructures into 

dynamic ones (henceforth referred to as "dynamiza- 

tion") was recently put forward in very general 

terms by Bentley [3]. He characterized a large 

class of problems (which he termed "decomposable 

searching problems") which are amenable to 

dynamization. Bentley [3] and Saxe and Bentley [19] 

presented several powerful techniques, which can be 

called into action on any decomposable searching 

problem to obtain reasonable update times, without 

the search or query times becoming very large. The 

techniques primarily support insertions, but later 

studies have addressed the problem of supporting 

deletions fast too [15,25,26]. 

While the theory as it stands is applicable to 

a wide variety of point problems, Saxe and Bentley 

[19, appendix] observed already that their 

techniques were insufficient to dynamize entire 

configurations (such as convex hulls) as well. Yet 

many of the geometric configurations commonly 

considered intuitively have a "decomposable flavor/' 
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We shall prove for a number of different types of 

geometric configurations that efficient dynamizations 

can be achieved and identify the sort of decomposa- 

bility which all these configurations seem to share 

(without attempting, at this time, to develop a 

general theory of it). We shall present efficient 

algorithms to dynamically maintain the convex hull 

of a set of points, the common intersection of a 

collection of halfspaces, the contour of maximal 

elements of a set of points and several other config- 

urations in the plane. The results are often of the 

sort that insertions and deletions of objects can 

be performed in only O(log2n) or O(log3n) steps 

each, where n is the current number of objects in 

the set. In several instances no better bounds 

than O(n) or worse were known before, in some the 

problem to support deletions was never even dis- 

cussed before. Many applications will be mentioned, 

of which some are of immediate interest to such 

areas as computational statistics (cf. Shamos [ 21]) 

For example, we shall present a method to maintain 

two sets of points in the plane at a cost of only 

O(log3n) time for each insertion or deletion, such 

that the question of whether the two sets are 

separable by a straight line can be answered in 

only O(log2n) time. 
An interesting feature of the algorithms we 

present is that they all follow (more or less) by 

applying one master technique, which can be taken 

as additional evidence that the configurations we 

consider share a common type of decomposability. 

Some of the searching problems we consider, such as 

containment in the common intersection of a set of 

halfspaces, even are decomposable in Bentley's 

sense. It will appear that the efficiency of 

algorithms derived by applying any of the standard 

dynamizations known to the currently best static 

solutions of these problems does not even come 

near the efficiency attained by the especially 

engineered maintenance algorithms we develop here. 

On the other hand, we have no proof that the bounds 

and methods we use are anywhere near optimality and 

further improvements remain a possibility. 

2. Dynamically maintaining a convex hull (prglude). 

In the past few years many different algorithms 

have been proposed to determine the convex hull of 

a set of n points P i''''' P n in the plane, e.g. 

[7,8,11,17]. The algorithms usually operate on a 

static set and have a worst case running time of 

O(n log n) or O(nh), where h is the number of points 

appearing on the hull. Nearly all convex hull al- 

gorithms known today require that all inputs are 

read and stored before any processing can begin. 

Shamos [22] apparently first noted that in certain 

applications one might want to have an efficient 

on-line algorithm instead, which will have the con- 

vex hull of p~ to Pl complete and ready before 

Pi+l is added to the set. Because of the n log n 

lowerbound to convex hull construction [20,24,28] 

updates due to the addition of a single point will 

cost at least ~ (log n) on the average. Preparata 

[ 16] recently showed an algorithm to insert a point 

and update the convex hull within O(log n) as a 

worst case bound. 

None of the previous algorithms are fully dy- 

namic, since at best they support insertions only. 

Yet there are a number of practical problems 

(cf. section 5) in which it is required to have an 

efficient algorithm to restore the convex hull 

when points are deleted from the set. This creates 

a tremendous problem for all existing algorithms, 

even Preparata's [16]. They virtually all go by 

the principle that points found to be in the inte- 

rior of the convex hull can be thrown away, and 

some are especially designed to eliminate as many 

points from further consideration as they can to 

cut down on the ultimate expected running time. 

This can no longer be maintained if we allow de- 

letions to occur. It is most easily demonstrated 

by the fact that, when an extreme point of the 

current convex hull is deleted, the hull can "snap 

back" and some old points of the interior suddenly 

become part of the new convex hull (figure I). 

We will show that the set of n points can be struc- 

tured and its convex hull maintained at a cost of 

only O(log3n) or less for each insertion and 

deletion. The time required for insertions can 

even be kept within an O(log2n) bound. 

3. Dynamically maintaining a convex hull 

(r~reSentation). 

Given the task to maintain it dynamically, an 

immediate problem is how to represent the convex 

hull of a set. The usual way to keep points ordered 

around a fixed interior point S is no longer fea- 

sible, because repeated insertions and deletions 

can cause the set to wander off and put S in its 
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exterior. It is avoided by adopting a new repre- 

sentation of the convex hull (figure 2 ), consisting 

of its separate left and right faces. Let P be a 

set of points in the plane, let ~L = (-~,0) and ~R = 

(+~,0). 

Definition. The ic- hull of P is the convex hull of 

PU {mR} , the rc- hull of P is the convex hull of 

PU {mL } . 

The ic- and rc- hull of a set are illustrated in 

figures 3 and 4, respectively. We will concentrate 

on the ic- hull of a set, as its rc- hull is treated 

in the same way. Note that the ic- hull is a convex 

arc which begins at the rightmost point of highest 

y- coordinate and ends at the rightmost point of 

lowest y- coordinate and which tightly bounds the 

set from the left. Points along the ic- hull appear 

in sorted order by y- coordinate. It will be 

necessary for later purposes to store the points 

along the ic- hull by ordered y- coordinates in a 

concatenable queue QL (figure 5). The contour of 

the rc- hull is stored likewise in a concatenable 

queue QR" We clearly want QL and QR to be balanced 

search trees. 

Lemma 3.1. Given the ic- and rc- hull of a set of n 

points, one can determine whether an arbitrary point 

p lies inside, outside or on the convex hull in 

O(log n) steps. 

Proof. We will only consider the question whether p 

lies inside, outside or on the ic- hull. From this 

and the response to the same query w. r. t. the rc- 

hull the required answer can be immediately derived. 

Let p= (~, yD). By means of an O(log n) search 

down QL one can determine two consecutive hull- 

points Pl and p.] such that YPi ~ yP - < YPj (if ypi = 

ypj then also Xpi ~ Xp < xpj).If no two such points 

exist, then p lies above or below the ic- hull. 

Otherwise we only need to test whether p lies to 

the left or to the right of piPj to determine its 

location w. r. t. the ic- hull.m 

The ic- hull (and likewise the rc- hull) of a 

set P is a decomposable configuration in the follow- 

ing sense. Split P by a horizontal line into two 

parts A and C, as in figure 6. The ic- hull of P is 

composed of portions of the ic- hulls of A and C, 

and a bridge B connecting the two parts. 

Theorem 3.2. Let ~ ,...,p be n arbitrary points in 
n 

the plane, ordered by y- coordinate. If the repre- 

sentations of the ic- hull of p ,..., p and of 
I i 

pi+1,...,pn are known (any i ~ i < n), then the ic- 

hull of the entire set can be built in O(log2n) 

steps. 

The proof is based on finding B as the common 

tangent of A and C's lc- hull, splitting QA and QC 

and glueing the pieces above and below the bridge 

together (figure 6). Theorem 3.2. suggests an inter- 

esting algorithm to construct the ic- and rc- hulls, 

hence the entire convex hull, of a static set of n 

points in the plane. Assume for simplicity that 

2 k n= for some k. First sort the points by y- coor- 

dinate in O(n log n) steps. Next, for i from i to k, 

repeatedly determine the ic- and rc- hulls of hori- 

zontally separated groups of 2 i points from the ic- 

hulls of their likewise horizontally separated 

halves of 2 i-I points (which were constructed at 

the previous iteration). The number of steps needed 

to build the hulls amounts to about 

n n k ~ log22i=O(n) n + ~ .iog22 + ~ iog24 +... = Z 
2 i i=l 

The composition of the ic- and rc- hull to obtain 

the complete convex hull is trivial. 

Corollary 3.3. The convex hull of a static set of 

n points in the plane can be found in only O(n) 

steps, after all points have been sorted by y- coor- 

dinate. 

We note that the given algorithm for convex hull 

determination is similar in many ways to one of 

Preparata & Hong [17], although the latter still 

requires O(n log n) steps after the initial sorting 

to complete. 

We have no indication that theorem 3.2. is best 

possible and it is conceivable that the O(log2n) 

bound can be improved. 

Definition. Let J(n) be the time to find the one 

common tangent of two horizontally separated ic- 

hulls of n points total (represented as concatenable 

queues). 

We shall assume that J(n)= ~ (log n). 

4. D~namicall~ maintaininin ~ a convex hull (struc- 

ture and algorithms). 

From now on we shall assume that the convex hull 

of a set of points in the plane is represented by 

the junction of its lc- and rc- hull. It will appear 

that the ic- hull of a set (and likewise, its rc- 

hull) is easier to maintain dynamically than the 

convex hull itself is directly. As we must accom- 

modate both insertions and deletions, some infor- 
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mation must be maintained about the arrangement of 

the points currently in the interior of the ic- hull. 

It seems reasonable to maintain information about 

the inner layers of the current set, i.e., about 

the ic- hulls of horizontally separated subsets of 

the points present. 

Let the points of the set be sorted by y- coor- 

dinate and let they be stored in a binary search 

tree T. We usually assume that no two points have the 

same y- coordinate, but it is in no way essential 

for the constructions to follow. It is natural to 

associate with each node ~ a concatenable queue 

Qe representing the ic- hull of the set of points 

stored at the leaves of its subtree. By theorem 3.2. 

one can obtain Q~ from the structures Qy and Qo 

associated with the sons ~ and o of ~. If we want 

to build Q~ from Q~ and Qo and retain Qy and Q~ as 

they are, then we would have to spend much more 

than J(n) time just to copy the segments of Qv and 
I 

Qo which need to be joined to form Q . Note that 

Q~ is obtained by concatenating the proper head 

segment of Qy and tail segment of Qo' with the bridge 

in between. It is clear that we might as well cut 

the required segments off from Qy and Qo and pass 

them on to ~ to assemble Q~ by concatenation, leaving 

and o with only a fragment of their original 

associated structure (figure 7). If we remember at 

node ~ where the bridge was when we built Q~, then 

we only have to split it at this very spot to obtain 

the two "halves" again which must be concatenated to 

the left- over pieces at 7 and 6 to fully reconstruct 

Qy and Q. 

This leads to an intriguing augmented search tree 

structure T ~, in which with each interior node 

is associated the fragment Q~ of the Ic- hull of 

the set of points it covers that was not used in 

building the le- hull of its father. The ic- hull of 

the entire set will normally be available at the 

root. We will show that T ~ can be maintained effi- 

ciently. Let the following information be associated 

with each internal node e: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

f(e)= a pointer to the father of ~(if any), 

lson(~)= a pointer to the left son of ~, 

rson(e) = a pointer to the right son of e, 

max(s) = the largest y- value in the subtree 

of ison(~), 

Q~(~)= the segment of Q~ (head or tail) that 

did not contribute to Qf(~, 

(vi) B(e)= the number of points on the segment 

of Q~ (tail or head) which does belong to 

Qf(e). 

Clearly (i) to (iv) are needed to let T ~ function as 

a search tree, (v) is the "piece" of Q~ left after 

sending the other half up to f(~) and (vi) enables 

us to reconstruct the position of the bridge used 

in building Qf(~)from its "left" and "right" com- 

ponents. 

Notation. For a concatenable queue Q, let Q[k..l ] 

denote the concatenable queue consisting of the k th 

up to i th elements of Q. For concatenable queues Q[ 

and Q2 of horizontally separated sets of points, let 

Q1U Q2 denote their concatenation as a single queue. 

For queues Q QI and Q2 of O(n) elements each, 

Q[k..l] and Qi U Q2 (when defined) can be obtained in 

only O(log n) steps when properly implemented 

(cf. [ i]), although the original queues may be de- 

stroyed when we build them. 

Given T ~, we shall first devise a routine (DOWN) 

to reconstruct the full Q8 at an arbitrary node 8. 

There will be some additional side benefits from 

DOWN as well, as will soon be apparent. The con- 

struction begins at the root and descends down the 

search path towards8 node after node, meanwhile 

disassembling the full Q- structure just reconstruc- 

ted at a father and reassembling the complete Q- 

structure at its two sons before continuing in a 

particular direction. Later 8 will be the father of 

a leaf and the search will be guided by the usual 

decision criterion in binary search trees. 

procedure DOWN (s, 8); 

{ ~ is the internal node which was just reached in 

the search towards 8. Q~(~) contains the complete 

ic- hull of the set of points covered.} 

begin 

if ~ = 8 

then goal reached 

else 

begin 

{We split Q~(~) and reconstruct the Q- 

structures at its two sons} 

[Cut Q~(~) at the bridge...} 

Q1 := Q'(~) [ I..S(ison(~) )] ; 

Q2 := Q'(~) [B(ison(~))+1.., ] ; 

{... and glue the pieces back into the 

queues left at the two sons} 
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Q~(ison(e)) := Q'(is°n(e)) U Q1 ; 

Q~(rson(e)) := Q2 U Q~(rson(e)); 

{continue the search in the right direc- 

tion} 

if 8 below ison(~) 

then DOWN (ison(~), 8) 

else DOWN (rson(e), 8) 

end 

end of DOWN; 

Note the precise order in which the pieces of Q~(e) 

are glued onto the queues at the sons of e. The rou- 

tine is called as DOWN (root,8). Let T ~ currently 

have n leaves (i.e. # P=n). One easily shows 

Lemma 4.1. DOWN always reaches its goal after 

O(log2n) steps. 

In addition to Q8 ' the call of DOWN (root,B) 

produces the full Q- structure (thus the complete 

ic- hull of all points below it) at each node 

whose father is on the search path but which isn't 

on it itself. DOWN will normally be called because 

we want to update the set of points below 8 and thus 

the ic- hull Q8 at this node. After having done so 

we can climb back up the search tree again node after 

node, each time reassembling the (new) ic- hull at a 

next higher node by taking pieces from the Q- struc- 

ture at its sons in a way which should now be familiar. 

The necessary Q- structures are available, at one 

son (the one on the search path) because we just built 

it and at the other son because DOWN conveniently put 

it there (and left it there) on its way to 8. 

Because we updated the set below 8, presumably by 

inserting or deleting a point, the tree T may have 

gotten out of balance. We shall see later that 

there is a way to perform local rebalancings in T ~ 

efficiently. We delegate the task to a routine 

BALANCE. The procedure UP given below will be the 

counterpart to DOWN. It starts at 8 and gradually 

works its way up, restoring both the Q~- structures 

and the balance of the tree along the search path. 

procedure UP(a); 

{~ is the node most recently reached on the way back to 

the root. Q~(ison(e)) and Q~(rson(e)) contain the 

complete ic-hulls of the sets below ison(e) and 

rson(e), respectively.} 

begin 

determine the bridge connecting Q~(ison(e))and 

Q~(rson(e)) and thus the numbers of points B 1 

and B 2 which they must each contribute into 

Q' (~) ; 

{record these numbers} 

B(ison(e)) := BI; 

B(rson(e)) := B2; 

{Cut the necessary pieces off from the 

queues...} 

Qi: = Q'(ison(e))[ i..B I] ; 

Q2 := Q'(rson(e))[ ~-B 2..~] ; 

{effectively leaving the remaining parts at the 

sons} 

{... and put them together to form the ic- hull 

of the joint set} 

Q'(~) := Q1U Q2; 

if out of balance then BALANCE (e); 

if ~= root then goal reached else UP(f(e)) 

end of UP; 

Note what pieces from Q~(ison(e)) and Q~(rson(e)) 

together form Q~(~). After the subtree below 8 has 

been updated (and balanced, if necessary), the given 

routine is called as UP(f(8)), provided ~wasn't the 

root already. One can show 

Lemma 4.2. UP always reaches its goal after O(log n. 

J(n)+R) steps, where R is the cost of all rebal- 

ancings required along the search path during the 

particular action. 

To get an impression of R, we shall delve into 

the necessary actions for rebalancing a single 

node ~. We shall restrict ourselves to familiar 

types of balanced trees like AVL- trees and BB[e]- 

trees (e.g.[l,18]), which can be rebalanced by means 

of local rotations. Let us examine the case in which 

a single rotation must be carried out at node e 

(see figure 8). The case in which a double rotation 

must be carried out is very similar and will not be 

discussed in detail. When BALANCE is called in the 

procedure UP, we have just completed building Qe" 

we shall have to undo this step, using one iteration 

of DOWN, to obtain the complete Qlson(~) and 

Qrson(d) again and prepare for a different construc- 

tion of the same Qe" 

Lemma 4.3. A rotation can be carried out in O(log n 

+ J(n)) steps. 

Proof. Referring to figure 8, let the sons of 

ison(e) be8 and y. Given Qlson(~)' we can reconstruct 

the complete Q8 and Qy in just O(log n) steps by 

performing one iteration of DOWN. Let o be the 

new "right son" of ~ as a result of the rotation. 
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Observing that the complete Q- structures are present 

at B,Y and (the old) rson(~), we can restore the 

proper information at the nodes involved and climb 

back to ~(where we were) by starting UP again at 

node a. Thus a rotation give rise to at most 

O(log n + J(n)) extra steps. The analysis for double 

rotations proceeds in the same way and yields the 

same estimate. [] 

We now have all ingredients to prove a first ver- 

sion of our main result on convex hull maintenance. 

Theorem 4.4.a.The convex hull of a set of n points 

in the plane can be maintained at a cost of O(log2n + 

log n.J(n)) per insertion and deletion. 

Proof.We would proceed as follows to insert or delete 

a point p. We shall describe the necessary actions 

only for the ic- hull. First we search down T ~ using 

p's y- coordinate fo find out in which leaf p is 

(or must be) stored. We do so by using the procedure 

DOWN, which will restore the complete ic- hulls at 

all nodes immediately bordering the search path at 

a total cost of only O(log2n).The next step will 

depend on whether p must be inserted or deleted. If 

we think of T as an AVL- tree or a BB[~]- tree, theD 

it amounts to the creation or elimination of a single 

leaf and takes just O(i) time. Next we must process 

the change at the bottom of the tree using the 

standard routines for the type of balanced tree 

chosen and we must reconfigure the associated infor- 

mation at all nodes on the search path. We do so 

by means of the procedure UP. By lemma 4.2, UP 

takes O(log n. J(n)) in basic costs and, using lemma 

4.3, another O(log n + J(n)) for each rebalancing. 

As the number of rebalancings required will never be 

larger than O(log n), the total time UP takes will 

be bounded by O(log2n + log n. J(n)).a 

Using that J(n)= O(iog2n), theorem 4.4.a leads to 

the conclusion that the convex hull of a set of n 

points in the plane can be maintained at a cost of 

only O(log3n) per insertion and deletion. We can 

improve the result somewhat, by more carefully 

examining the cost spent on UP when processing an 

insertion. One can show that in this case the new 

bridge required at a node can be computed in only 

O(log n) steps, using knowledge about were the old 

bridge was. 

Theorem 4.4.b. The convex hull of a set of n points 

in the plane can be maintained at a cost of O(log2n+ 

2 
log n. J(n)) per deletion and a cost of O(log n+r. 

J(n)) per insertion, where r is the number of 

rebalancings required in performing the insertion. 

Theorem 4.5. The convex hull of a set of n points in 

the plane can be maintained at a cost of O(log2n) 

per insertion and a cost of O(log3n) per deletion. 

Proof. Using that J(n)= O(log2n), the time bound for 

deletions follows. Let us choose to represent T as an 

AVL- tree. It is wellknown that in processing an 

insertion in an AVL- tree at most one rebalancing 

will be needed [18,27]. It follows from theorem 

4.4.b that in this circumstance insertions will 

never take more than O(log2n) steps.D 

When it can be shown that J(n)=O(iog n), then 

theorem 4.5 can be improved to read that both 

insertions and deletions can be processed in O(log2n). 

5. Applications . . . . .  of the dynamic convex hull a!gorith ~. 

There are numerous problems in computational 

geometry which can be solved by using convex hull 

determination as a tool (cf. Shamos [20]). The 

algorithm we devised for dynamically maintaining a 

convex hull will allow us to tackle a number of 

inherently dynamic problems, for which good bounds 

were lacking until now. 

In statistics considerable attention has been 

given to finding estimators which identify the 

center of a population. In 2 dimensions it leads to 

the concept of "peeling" a convex hull, usually to 

remove a fixed percentage of outlying points of the 

set (Huber [I0]). Each time a point is removed, the 

convex hull must be updated accordingly. Shamos [22] 

reported an O(n 2) algorithm for peeling a set of n 

points in the plane, based on an iteration of 

Jarvis' convex hull algorithm([ II]). Green and 

Silverman [9] gave an algorithm based on Eddy's 

algorithm ([ 7]), which isn't better in worst case. 

Shames [ 22] gave it as an open problem to do better 

than O(n2). We can apply theorem 4.5 to show 

Theorem 5.1 One can peel a set of n points in the 

plane in only O(n log3n) steps. 

A closely related problem concerns finding the 

convex layers of a plane set of points. The statis- 

tical significance was recognized by Barnett [ 2] , 

who defined the c- order of a point as being the 

rank- number of the convex layer to which it belongs. 

From theorem 4.5 we may derive 

Theorem 5.2 One can determine the joint convex 

layers of a set of n points in the plane ( and hence 
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Barnett's c- order groups) in only O(n log3n) steps. 

Given the convex layers of a set, one may traverse 

points in clockwise order layer after layer, each 

time using a "forward" tangent to step over to the 

next inner layer. The resulting path ( a "spiral") 

connects all points in the set, does not intersect 

itself and has the property that all corners in 

traversal order are convex. See figure 9. 

Theorem 5.3 Given a set of n points in the plane, one 

can determine a spiral connecting the points in only 

O(n log3n) steps. 
Returning to convex hulls, we can now also answer 

a question posed in Saxe and Bentley [19]. It concerns 

the dynamization of the simplest type of convex hull 

searching ("is x within the convex hull of set F"), 

to which their methods did not apply. 

Theorem 5.4 One can maintain a set F of n Doints in 

the plane at a cost of O(log2n) per insertion and 

O(log3n) per deletion, such that queries can still 

be answered in O(log n) steps. 

A last and intriguing application concerns the 

concept of separability (Shamos [20]). Two sets in 

the plane are said to be separable if one can draw a 

line such that one set is entirely to its left, the 

other one entirely to its right. Two sets are 

separable if and only if their convex hulls are 

disjoint (Shamos [ 20]). Unfortunately the best 

previously known algorithms for deciding whether two 

convex n-gons are disjoint do not sufficiently take 

advantage of any preprocessing and run in O(n) steps. 

Theorem 5.5. One can determine whether two (preproces- 

sed) convex n-gons in the plane are disjoint or not 

in only O(log2n) steps. 

Proof (sketch). Let the convex n-gons be A and B. 

Take two points a I and a 2 on A such that the arcs 
~ n 

ala 2 and a2a I have ~ points each. Draw the line 

ala 2 and determine its intersection with B. If the 

n-gons have been properly preprocessed, the points 

a I and a 2 and the points of intersection b I and b 2 

can be found in log n steps. If the intervals [ala2] 

and [blb2] on the line are not disjoint, then neither 

are A and B. If the intervals are disjoint (see figure 

10), then we proceed as follows. Let b 2 and a I be 

adjacent. Draw a tangent 1 A of A through a I and a 

tangent 1 B of B through b 2. If 1 A and 1 B meet above 

the line, then A and B cannot intersect below it, we 

can throw away the lower half of A (splitting its 

preprocessed form in log n time) and repeat the 

procedure. Other cases are treated likewise. If 

iA// iB (or A has been reduced to i or 2 points), 

then A and B are disjoint. At each step (costing a 

total of log n) we either reach a decision or can 

eliminate another half of A. Hence the O(log2n) 

bound. Afterwards the splitting of A must be undone 

again, by reverting the process.D 

Fortunately the dynamic convex hull algorithm 

keeps convex hulls in a form suitable for theorem 

5.5. Thus we have 

Theorem 5.6. One can maintain two sets A and B in 

the plane such that insertions take O(log2n) and 

deletions take O(log3n) each (where n is the current 

size of a set) and, whenever needed, separability 

can be decided in O(log2n). 

6. Dynamically maintaining the common intersection 

of a set of halfspaces. 

A halfspace is a part of the plane entirely to 

the left or to the right of a line. The common 

intersection of a set of n halfspaces is a convex 

polygon (possibly open or empty) with at most n 

edges. Shamos and Hoey [23] have shown that such 

a common intersection can be found in O(n log n), 

but their technique is off- line and works for 

static sets only. The dynamization is harder to 

obtain than for convex hulls, but we will show 

that a same approach will work. 

Again we separately maintain two sets, the 

i- intersection of halfspaces which are "open to 

the left" (see figure 11) and the r-intersection 

of halfspaces which are turned the other way. Each 

such intersection is a "convex arc" with its two 

arms extending to infinity. Each arc will have its 

edges stored at the leaves of some concatenable 

queue again, ordered by angle. By a tedious argument 

one can show (thus improving on Brown [6]) 

Theorem 6.1. One can determine the common inter- 

section of 1-intersection and r-intersection (hence 

the common intersection of the set) in only 

O(log2n) steps. 
Glueing the parts together is not as easy as it 

was for the left and right sides of a convex hull, 

but the upperbound isn't bad. Let us concentrate 

on maintaining the 1-intersection. Note that half- 

spaces contribute to the 1-intersection (if they 

do...) in the order of their direction~ Thus we 

shall keep halfspaces sorted by angle and observe 

the following decomposition property (compare 3.2) 
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Theorem 6.2 Let hl,...,h n be n arbitrary halfspaces 

in the plane, sorted by angle. Given the represen- 

tation of the 1-intersections of hl,...,h i and of 

hi+l,...,h n (any i~ i< n), the representation of the 

1-intersection of hl,...,h n can be constructed in 

only O(log2n) steps. 

An augmented balanced tree can now be built in very 

much the same way as we did for convex hulls. By very 

similar maintenance procedures we can show 

Theorem 6.3. One can dynamically maintain the cormaon 

intersection of a set of n halfspaces in the plane 

(as a convex polygon) at a cost of only O(log3n) per 

insertion and deletion. 

As a bonus we obtain an algorithm to construct 

the common intersection of a set which, after the 

initial sorting of all halfspaces by direction in 

O(n log n) steps, takes only O(n) additional steps. 

A first application concerns the simplest type of 

intersection searching "does x belong to the common 

intersection of a set of n halfspaces F". It is a 

particularly interesting problem, because it is an 

example of a decomposable searching problem in the 
T 

sense of Bentley [3] (see also Saxe and Bentley [19]), 

to which previously only general dynamization methods 

were believed to be applicable. 

Theorem 6.4. One can dynamically maintain the common 

intersection of a set of n halfspaces in the plane, 

such that insertions and deletions can be processed 

in O(log3n) steps each and queries of the form "does 

x belong to the current common intersection" can 

still be answered in O(log n). 

Overmars and van Leeuwen [ 15] (see also van 

Leeuwen and Maurer [25]) have recently developed some 

new dynamization techniques, which specifically apply 

to structures from which objects can be deleted 

cheaply and which can be rebuilt fast by exploiting 

that objects left have remained in sorted order. It 

leads to a result better than 6.4 on the average for 

updates, but slightly worse for querying. 

Theorem 6.5. One can dynamically maintain the common 

intersection of a set of halfspaces in the plane, 

such that over any sequence of n transactions on an 

initially empty set insertions cost an average of 

O(log n) and deletions an average of O(log3n) steps, 

while queries of the form "does x belong to the 

current common intersection" can be answered in 

O(log2n). 

The common intersection of a set of halfspaces 

also plays a role in finding the kernel of a simple 

polygon.Briefly, the kernel of a polygon is the set 

of points in its interior from which all sides of 

the polygon are fully visible. Shamos and Hoey [ 23] 

first reported an O(n log n) algorithm for kernel- 

determination. Lee and Preparata [13] later showed 

that knowledge of the ordered contour of the n-gon 

can be exploited to obtain an O(n) algorithm. We can 

efficiently maintain the kernel of a dynamically 

changing polygon, assuming changes merely involve the 

insertion or deletion of edges which keep the poly- 

gon simple. 

Theorem 6.6. One can dynamically maintain the kernel 

of a (simple) n-gon at a cost of only O(log3n) per 

insertion and deletion of an edge. 

A last, but certainly important application in- 

volves maintaining the feasible region of a linear 

program (in the sense of linear programming). 

Theorem 6.7. One can dynamically maintain the fea- 

sible region of a linear program in two variables 

at a cost of only O(log3n) for each insertion or 

deletion of an inequality. 

7. Dynamically maintaining the maximal elements of 

a set. 

Let points in the plane be ordered in the usual, 

coordinate-wise manner. A point x is called maximal 

in a set S when x 6 S and no ~ E S exists with y>x. 

The maximal elements of a set form a one-sided con- 

tour not unlike a side of a "convex hull" (see fig- 

ure 12). Kung, Luccio and Preparata [ 12] have shown 

that the maximal elements of a static set of n ele- 

ments in the plane can be determined in O(n log n) 

steps, Bentley and Shamos [4] proved it again as an 

application of their algorithm for ECDF searching. 

The algorithms are off-line and are, essentially, 

based on a divide- and- conquer strategy. We will 

show that the maximal elements of a set can be 

maintained efficiently as points are added to it one 

at a time, a result very similar in spirit to 

Preparata's "real-time" algorithm [16] for convex 

hull construction. 

Theorem 7.1. One can dynamically maintain the maxi- 

mal elements of a set "real-time", i.e., in only 

o(log n) steps for each new point from a collection 

of n that is added. 

To obtain a fully dynamic algorithm, we have to 

use our earlier technique again. Let us keep points 

sorted by x- coordinate and let the contour of 
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current maximal elements be stored in a concatenable 

queue. The following decomposition property can be 

shown (compare 3.2. and 6.2.) 

Theorem 7.2. Let pl,...,pn be n arbitrary points in 

the plane, sorted by x- coordinate. Given the repre- 

sentation of the contours of maximal elements of 

pl,...,pi and of Pi+l' .... 'Pn (anY I~ i< n), the 

representation of the contour of maximal elements of 

pl,...,pn can be constructed in O(log n) steps. 

Thus, the "composition" of separated contours can 

now be constructed a factor log n faster than in 

previous cases. The composite contour again takes 

very regular pieces off the contours of both halves 

and a dynamic structure can be devised which oper- 

ates in very much the same way as it did for convex 

hull maintenance. 

Theorem 7.3. One can dynamically maintain the maxi- 

mal elements of a set of n points in the plane, at 

a cost of only O(log2n) steps per insertion and 

deletion. 

As a bonus we obtain a new algorithm for construc- 

ting the maximal elements of a static set which, 

after the initial sorting of all points by x- coor- 

dinate, takes only O(n) steps to complete. From 

theorem 7.3. one may derive that the (decomp.) search- 

ing problem "is x a maximal element of the set" can 

be processed in O(log2n) steps. Applying the general 

dynamization method of Overmars and van Leeuwen [ 15] 

to it, enables one to reduce the maintenance costs 

to O(log n) for insertions and O(log2n) for deletions 

on the average at the expense of a query time of 

O(log2n). The (decomposable) searching problem "is x 

dominated by an element of the set" can be solved 

and maintained dynamically at a cost of only O(log2n) 

per transaction too. Finally, let us say that a set 

of points A is dominated by another set B when for 

each x q B there is a y E B such that x < y. 

Theorem 7.4. One can maintain two sets A and B in 

the plane such that insertions and deletions take 

at most O(log2n) each (where n is the total number 

of current elements) and the information of whether 

one dominates the other is kept up-to-date at no 

extra charge. 
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