
DYNAMICALLY MAINTAINING CONFIGURATIONS IN THE PLANE

(detailed abstract)

Mark H. Overmars and Jan van Leeuwen

Department of Computer Science, University of Utrecht
P.O.BoX 80.012, 3508 TA Utrecht, the Netherlands

Abstract. For a number of common configurations of points (lines) in the plane, we develop datastructures

in which insertions and deletions of points (or lines, respectively) can be processed rapidly without

sacrificing much of the efficiency of query answering of known static structures for these configurations.

As a main result we establish a fully dynamic maintenance algorithm for convex hulls that can process

insertions and deletions of single points in only O(log3n) steps or less per transaction, where n is the

number of points currently in the set. The algorithm has several intriguing applications, including that

one can "peel" a set of n points in only O(nlog3n) steps and that one can maintain two sets at a costs of

only O(log3n) or less per insertion and deletion such that it never takes more than O(log2n) steps to

determine whether the two sets are separable by a straight line. Also efficient algorithms are obtained for

dynamically maintaining the common intersection of a set of half-spaces and for dynamically maintaining the

maximal elements of a set of plane points. The results are all derived by means of one master technique,

which is applied repeatedly and which seems to capture an appropriate notion of "decomposability" for

configurations.

i. Introduction.

Computational geometry (cf. Shamos [20,22])

concerns itself with the design and analysis of

algorithms for dealing with sets of points, lines,

polygons and other objects in 2- and higher

dimensional space. The sets considered are usually

static and the datastructures used are nearly

always inadequate for efficiently accomodating

both insertions and deletions of objects. In this

paper we shall attempt to remedy the lack of

sufficiently fast dynamic maintenance algorithms

for a variety of common configurations in the

plane, some of immediate practical interest.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1 9 8 0 A C M 0 - 8 9 7 9 1 - 0 1 7 - 6 / 8 0 / 0 4 0 0 / 0 1 3 5 $00.75

The problem to convert static datastructures into

dynamic ones (henceforth referred to as "dynamiza-

tion") was recently put forward in very general

terms by Bentley [3]. He characterized a large

class of problems (which he termed "decomposable

searching problems") which are amenable to

dynamization. Bentley [3] and Saxe and Bentley [19]

presented several powerful techniques, which can be

called into action on any decomposable searching

problem to obtain reasonable update times, without

the search or query times becoming very large. The

techniques primarily support insertions, but later

studies have addressed the problem of supporting

deletions fast too [15,25,26].

While the theory as it stands is applicable to

a wide variety of point problems, Saxe and Bentley

[19, appendix] observed already that their

techniques were insufficient to dynamize entire

configurations (such as convex hulls) as well. Yet

many of the geometric configurations commonly

considered intuitively have a "decomposable flavor/'

135

We shall prove for a number of different types of

geometric configurations that efficient dynamizations

can be achieved and identify the sort of decomposa-

bility which all these configurations seem to share

(without attempting, at this time, to develop a

general theory of it). We shall present efficient

algorithms to dynamically maintain the convex hull

of a set of points, the common intersection of a

collection of halfspaces, the contour of maximal

elements of a set of points and several other config-

urations in the plane. The results are often of the

sort that insertions and deletions of objects can

be performed in only O(log2n) or O(log3n) steps

each, where n is the current number of objects in

the set. In several instances no better bounds

than O(n) or worse were known before, in some the

problem to support deletions was never even dis-

cussed before. Many applications will be mentioned,

of which some are of immediate interest to such

areas as computational statistics (cf. Shamos [21])

For example, we shall present a method to maintain

two sets of points in the plane at a cost of only

O(log3n) time for each insertion or deletion, such

that the question of whether the two sets are

separable by a straight line can be answered in

only O(log2n) time.
An interesting feature of the algorithms we

present is that they all follow (more or less) by

applying one master technique, which can be taken

as additional evidence that the configurations we

consider share a common type of decomposability.

Some of the searching problems we consider, such as

containment in the common intersection of a set of

halfspaces, even are decomposable in Bentley's

sense. It will appear that the efficiency of

algorithms derived by applying any of the standard

dynamizations known to the currently best static

solutions of these problems does not even come

near the efficiency attained by the especially

engineered maintenance algorithms we develop here.

On the other hand, we have no proof that the bounds

and methods we use are anywhere near optimality and

further improvements remain a possibility.

2. Dynamically maintaining a convex hull (prglude).

In the past few years many different algorithms

have been proposed to determine the convex hull of

a set of n points P i''''' P n in the plane, e.g.

[7,8,11,17]. The algorithms usually operate on a

static set and have a worst case running time of

O(n log n) or O(nh), where h is the number of points

appearing on the hull. Nearly all convex hull al-

gorithms known today require that all inputs are

read and stored before any processing can begin.

Shamos [22] apparently first noted that in certain

applications one might want to have an efficient

on-line algorithm instead, which will have the con-

vex hull of p~ to Pl complete and ready before

Pi+l is added to the set. Because of the n log n

lowerbound to convex hull construction [20,24,28]

updates due to the addition of a single point will

cost at least ~ (log n) on the average. Preparata

[16] recently showed an algorithm to insert a point

and update the convex hull within O(log n) as a

worst case bound.

None of the previous algorithms are fully dy-

namic, since at best they support insertions only.

Yet there are a number of practical problems

(cf. section 5) in which it is required to have an

efficient algorithm to restore the convex hull

when points are deleted from the set. This creates

a tremendous problem for all existing algorithms,

even Preparata's [16]. They virtually all go by

the principle that points found to be in the inte-

rior of the convex hull can be thrown away, and

some are especially designed to eliminate as many

points from further consideration as they can to

cut down on the ultimate expected running time.

This can no longer be maintained if we allow de-

letions to occur. It is most easily demonstrated

by the fact that, when an extreme point of the

current convex hull is deleted, the hull can "snap

back" and some old points of the interior suddenly

become part of the new convex hull (figure I).

We will show that the set of n points can be struc-

tured and its convex hull maintained at a cost of

only O(log3n) or less for each insertion and

deletion. The time required for insertions can

even be kept within an O(log2n) bound.

3. Dynamically maintaining a convex hull

(r~reSentation).

Given the task to maintain it dynamically, an

immediate problem is how to represent the convex

hull of a set. The usual way to keep points ordered

around a fixed interior point S is no longer fea-

sible, because repeated insertions and deletions

can cause the set to wander off and put S in its

136

exterior. It is avoided by adopting a new repre-

sentation of the convex hull (figure 2), consisting

of its separate left and right faces. Let P be a

set of points in the plane, let ~L = (-~,0) and ~R =

(+~,0).

Definition. The ic- hull of P is the convex hull of

PU {mR} , the rc- hull of P is the convex hull of

PU {mL } .

The ic- and rc- hull of a set are illustrated in

figures 3 and 4, respectively. We will concentrate

on the ic- hull of a set, as its rc- hull is treated

in the same way. Note that the ic- hull is a convex

arc which begins at the rightmost point of highest

y- coordinate and ends at the rightmost point of

lowest y- coordinate and which tightly bounds the

set from the left. Points along the ic- hull appear

in sorted order by y- coordinate. It will be

necessary for later purposes to store the points

along the ic- hull by ordered y- coordinates in a

concatenable queue QL (figure 5). The contour of

the rc- hull is stored likewise in a concatenable

queue QR" We clearly want QL and QR to be balanced

search trees.

Lemma 3.1. Given the ic- and rc- hull of a set of n

points, one can determine whether an arbitrary point

p lies inside, outside or on the convex hull in

O(log n) steps.

Proof. We will only consider the question whether p

lies inside, outside or on the ic- hull. From this

and the response to the same query w. r. t. the rc-

hull the required answer can be immediately derived.

Let p= (~, yD). By means of an O(log n) search

down QL one can determine two consecutive hull-

points Pl and p.] such that YPi ~ yP - < YPj (if ypi =

ypj then also Xpi ~ Xp < xpj).If no two such points

exist, then p lies above or below the ic- hull.

Otherwise we only need to test whether p lies to

the left or to the right of piPj to determine its

location w. r. t. the ic- hull.m

The ic- hull (and likewise the rc- hull) of a

set P is a decomposable configuration in the follow-

ing sense. Split P by a horizontal line into two

parts A and C, as in figure 6. The ic- hull of P is

composed of portions of the ic- hulls of A and C,

and a bridge B connecting the two parts.

Theorem 3.2. Let ~ ,...,p be n arbitrary points in
n

the plane, ordered by y- coordinate. If the repre-

sentations of the ic- hull of p ,..., p and of
I i

pi+1,...,pn are known (any i ~ i < n), then the ic-

hull of the entire set can be built in O(log2n)

steps.

The proof is based on finding B as the common

tangent of A and C's lc- hull, splitting QA and QC

and glueing the pieces above and below the bridge

together (figure 6). Theorem 3.2. suggests an inter-

esting algorithm to construct the ic- and rc- hulls,

hence the entire convex hull, of a static set of n

points in the plane. Assume for simplicity that

2 k n= for some k. First sort the points by y- coor-

dinate in O(n log n) steps. Next, for i from i to k,

repeatedly determine the ic- and rc- hulls of hori-

zontally separated groups of 2 i points from the ic-

hulls of their likewise horizontally separated

halves of 2 i-I points (which were constructed at

the previous iteration). The number of steps needed

to build the hulls amounts to about

n n k ~ log22i=O(n) n + ~ .iog22 + ~ iog24 +... = Z
2 i i=l

The composition of the ic- and rc- hull to obtain

the complete convex hull is trivial.

Corollary 3.3. The convex hull of a static set of

n points in the plane can be found in only O(n)

steps, after all points have been sorted by y- coor-

dinate.

We note that the given algorithm for convex hull

determination is similar in many ways to one of

Preparata & Hong [17], although the latter still

requires O(n log n) steps after the initial sorting

to complete.

We have no indication that theorem 3.2. is best

possible and it is conceivable that the O(log2n)

bound can be improved.

Definition. Let J(n) be the time to find the one

common tangent of two horizontally separated ic-

hulls of n points total (represented as concatenable

queues).

We shall assume that J(n)= ~ (log n).

4. D~namicall~ maintaininin ~ a convex hull (struc-

ture and algorithms).

From now on we shall assume that the convex hull

of a set of points in the plane is represented by

the junction of its lc- and rc- hull. It will appear

that the ic- hull of a set (and likewise, its rc-

hull) is easier to maintain dynamically than the

convex hull itself is directly. As we must accom-

modate both insertions and deletions, some infor-

137

mation must be maintained about the arrangement of

the points currently in the interior of the ic- hull.

It seems reasonable to maintain information about

the inner layers of the current set, i.e., about

the ic- hulls of horizontally separated subsets of

the points present.

Let the points of the set be sorted by y- coor-

dinate and let they be stored in a binary search

tree T. We usually assume that no two points have the

same y- coordinate, but it is in no way essential

for the constructions to follow. It is natural to

associate with each node ~ a concatenable queue

Qe representing the ic- hull of the set of points

stored at the leaves of its subtree. By theorem 3.2.

one can obtain Q~ from the structures Qy and Qo

associated with the sons ~ and o of ~. If we want

to build Q~ from Q~ and Qo and retain Qy and Q~ as

they are, then we would have to spend much more

than J(n) time just to copy the segments of Qv and
I

Qo which need to be joined to form Q . Note that

Q~ is obtained by concatenating the proper head

segment of Qy and tail segment of Qo' with the bridge

in between. It is clear that we might as well cut

the required segments off from Qy and Qo and pass

them on to ~ to assemble Q~ by concatenation, leaving

and o with only a fragment of their original

associated structure (figure 7). If we remember at

node ~ where the bridge was when we built Q~, then

we only have to split it at this very spot to obtain

the two "halves" again which must be concatenated to

the left- over pieces at 7 and 6 to fully reconstruct

Qy and Q.

This leads to an intriguing augmented search tree

structure T ~, in which with each interior node

is associated the fragment Q~ of the Ic- hull of

the set of points it covers that was not used in

building the le- hull of its father. The ic- hull of

the entire set will normally be available at the

root. We will show that T ~ can be maintained effi-

ciently. Let the following information be associated

with each internal node e:

(i)

(ii)

(iii)

(iv)

(v)

f(e)= a pointer to the father of ~(if any),

lson(~)= a pointer to the left son of ~,

rson(e) = a pointer to the right son of e,

max(s) = the largest y- value in the subtree

of ison(~),

Q~(~)= the segment of Q~ (head or tail) that

did not contribute to Qf(~,

(vi) B(e)= the number of points on the segment

of Q~ (tail or head) which does belong to

Qf(e).

Clearly (i) to (iv) are needed to let T ~ function as

a search tree, (v) is the "piece" of Q~ left after

sending the other half up to f(~) and (vi) enables

us to reconstruct the position of the bridge used

in building Qf(~)from its "left" and "right" com-

ponents.

Notation. For a concatenable queue Q, let Q[k..l]

denote the concatenable queue consisting of the k th

up to i th elements of Q. For concatenable queues Q[

and Q2 of horizontally separated sets of points, let

Q1U Q2 denote their concatenation as a single queue.

For queues Q QI and Q2 of O(n) elements each,

Q[k..l] and Qi U Q2 (when defined) can be obtained in

only O(log n) steps when properly implemented

(cf. [i]), although the original queues may be de-

stroyed when we build them.

Given T ~, we shall first devise a routine (DOWN)

to reconstruct the full Q8 at an arbitrary node 8.

There will be some additional side benefits from

DOWN as well, as will soon be apparent. The con-

struction begins at the root and descends down the

search path towards8 node after node, meanwhile

disassembling the full Q- structure just reconstruc-

ted at a father and reassembling the complete Q-

structure at its two sons before continuing in a

particular direction. Later 8 will be the father of

a leaf and the search will be guided by the usual

decision criterion in binary search trees.

procedure DOWN (s, 8);

{ ~ is the internal node which was just reached in

the search towards 8. Q~(~) contains the complete

ic- hull of the set of points covered.}

begin

if ~ = 8

then goal reached

else

begin

{We split Q~(~) and reconstruct the Q-

structures at its two sons}

[Cut Q~(~) at the bridge...}

Q1 := Q'(~) [I..S(ison(~))] ;

Q2 := Q'(~) [B(ison(~))+1..,] ;

{... and glue the pieces back into the

queues left at the two sons}

138

Q~(ison(e)) := Q'(is°n(e)) U Q1 ;

Q~(rson(e)) := Q2 U Q~(rson(e));

{continue the search in the right direc-

tion}

if 8 below ison(~)

then DOWN (ison(~), 8)

else DOWN (rson(e), 8)

end

end of DOWN;

Note the precise order in which the pieces of Q~(e)

are glued onto the queues at the sons of e. The rou-

tine is called as DOWN (root,8). Let T ~ currently

have n leaves (i.e. # P=n). One easily shows

Lemma 4.1. DOWN always reaches its goal after

O(log2n) steps.

In addition to Q8 ' the call of DOWN (root,B)

produces the full Q- structure (thus the complete

ic- hull of all points below it) at each node

whose father is on the search path but which isn't

on it itself. DOWN will normally be called because

we want to update the set of points below 8 and thus

the ic- hull Q8 at this node. After having done so

we can climb back up the search tree again node after

node, each time reassembling the (new) ic- hull at a

next higher node by taking pieces from the Q- struc-

ture at its sons in a way which should now be familiar.

The necessary Q- structures are available, at one

son (the one on the search path) because we just built

it and at the other son because DOWN conveniently put

it there (and left it there) on its way to 8.

Because we updated the set below 8, presumably by

inserting or deleting a point, the tree T may have

gotten out of balance. We shall see later that

there is a way to perform local rebalancings in T ~

efficiently. We delegate the task to a routine

BALANCE. The procedure UP given below will be the

counterpart to DOWN. It starts at 8 and gradually

works its way up, restoring both the Q~- structures

and the balance of the tree along the search path.

procedure UP(a);

{~ is the node most recently reached on the way back to

the root. Q~(ison(e)) and Q~(rson(e)) contain the

complete ic-hulls of the sets below ison(e) and

rson(e), respectively.}

begin

determine the bridge connecting Q~(ison(e))and

Q~(rson(e)) and thus the numbers of points B 1

and B 2 which they must each contribute into

Q' (~) ;

{record these numbers}

B(ison(e)) := BI;

B(rson(e)) := B2;

{Cut the necessary pieces off from the

queues...}

Qi: = Q'(ison(e))[i..B I] ;

Q2 := Q'(rson(e))[~-B 2..~] ;

{effectively leaving the remaining parts at the

sons}

{... and put them together to form the ic- hull

of the joint set}

Q'(~) := Q1U Q2;

if out of balance then BALANCE (e);

if ~= root then goal reached else UP(f(e))

end of UP;

Note what pieces from Q~(ison(e)) and Q~(rson(e))

together form Q~(~). After the subtree below 8 has

been updated (and balanced, if necessary), the given

routine is called as UP(f(8)), provided ~wasn't the

root already. One can show

Lemma 4.2. UP always reaches its goal after O(log n.

J(n)+R) steps, where R is the cost of all rebal-

ancings required along the search path during the

particular action.

To get an impression of R, we shall delve into

the necessary actions for rebalancing a single

node ~. We shall restrict ourselves to familiar

types of balanced trees like AVL- trees and BB[e]-

trees (e.g.[l,18]), which can be rebalanced by means

of local rotations. Let us examine the case in which

a single rotation must be carried out at node e

(see figure 8). The case in which a double rotation

must be carried out is very similar and will not be

discussed in detail. When BALANCE is called in the

procedure UP, we have just completed building Qe"

we shall have to undo this step, using one iteration

of DOWN, to obtain the complete Qlson(~) and

Qrson(d) again and prepare for a different construc-

tion of the same Qe"

Lemma 4.3. A rotation can be carried out in O(log n

+ J(n)) steps.

Proof. Referring to figure 8, let the sons of

ison(e) be8 and y. Given Qlson(~)' we can reconstruct

the complete Q8 and Qy in just O(log n) steps by

performing one iteration of DOWN. Let o be the

new "right son" of ~ as a result of the rotation.

139

Observing that the complete Q- structures are present

at B,Y and (the old) rson(~), we can restore the

proper information at the nodes involved and climb

back to ~(where we were) by starting UP again at

node a. Thus a rotation give rise to at most

O(log n + J(n)) extra steps. The analysis for double

rotations proceeds in the same way and yields the

same estimate. []

We now have all ingredients to prove a first ver-

sion of our main result on convex hull maintenance.

Theorem 4.4.a.The convex hull of a set of n points

in the plane can be maintained at a cost of O(log2n +

log n.J(n)) per insertion and deletion.

Proof.We would proceed as follows to insert or delete

a point p. We shall describe the necessary actions

only for the ic- hull. First we search down T ~ using

p's y- coordinate fo find out in which leaf p is

(or must be) stored. We do so by using the procedure

DOWN, which will restore the complete ic- hulls at

all nodes immediately bordering the search path at

a total cost of only O(log2n).The next step will

depend on whether p must be inserted or deleted. If

we think of T as an AVL- tree or a BB[~]- tree, theD

it amounts to the creation or elimination of a single

leaf and takes just O(i) time. Next we must process

the change at the bottom of the tree using the

standard routines for the type of balanced tree

chosen and we must reconfigure the associated infor-

mation at all nodes on the search path. We do so

by means of the procedure UP. By lemma 4.2, UP

takes O(log n. J(n)) in basic costs and, using lemma

4.3, another O(log n + J(n)) for each rebalancing.

As the number of rebalancings required will never be

larger than O(log n), the total time UP takes will

be bounded by O(log2n + log n. J(n)).a

Using that J(n)= O(iog2n), theorem 4.4.a leads to

the conclusion that the convex hull of a set of n

points in the plane can be maintained at a cost of

only O(log3n) per insertion and deletion. We can

improve the result somewhat, by more carefully

examining the cost spent on UP when processing an

insertion. One can show that in this case the new

bridge required at a node can be computed in only

O(log n) steps, using knowledge about were the old

bridge was.

Theorem 4.4.b. The convex hull of a set of n points

in the plane can be maintained at a cost of O(log2n+

2
log n. J(n)) per deletion and a cost of O(log n+r.

J(n)) per insertion, where r is the number of

rebalancings required in performing the insertion.

Theorem 4.5. The convex hull of a set of n points in

the plane can be maintained at a cost of O(log2n)

per insertion and a cost of O(log3n) per deletion.

Proof. Using that J(n)= O(log2n), the time bound for

deletions follows. Let us choose to represent T as an

AVL- tree. It is wellknown that in processing an

insertion in an AVL- tree at most one rebalancing

will be needed [18,27]. It follows from theorem

4.4.b that in this circumstance insertions will

never take more than O(log2n) steps.D

When it can be shown that J(n)=O(iog n), then

theorem 4.5 can be improved to read that both

insertions and deletions can be processed in O(log2n).

5. Applications of the dynamic convex hull a!gorith ~.

There are numerous problems in computational

geometry which can be solved by using convex hull

determination as a tool (cf. Shamos [20]). The

algorithm we devised for dynamically maintaining a

convex hull will allow us to tackle a number of

inherently dynamic problems, for which good bounds

were lacking until now.

In statistics considerable attention has been

given to finding estimators which identify the

center of a population. In 2 dimensions it leads to

the concept of "peeling" a convex hull, usually to

remove a fixed percentage of outlying points of the

set (Huber [I0]). Each time a point is removed, the

convex hull must be updated accordingly. Shamos [22]

reported an O(n 2) algorithm for peeling a set of n

points in the plane, based on an iteration of

Jarvis' convex hull algorithm([II]). Green and

Silverman [9] gave an algorithm based on Eddy's

algorithm ([7]), which isn't better in worst case.

Shames [22] gave it as an open problem to do better

than O(n2). We can apply theorem 4.5 to show

Theorem 5.1 One can peel a set of n points in the

plane in only O(n log3n) steps.

A closely related problem concerns finding the

convex layers of a plane set of points. The statis-

tical significance was recognized by Barnett [2] ,

who defined the c- order of a point as being the

rank- number of the convex layer to which it belongs.

From theorem 4.5 we may derive

Theorem 5.2 One can determine the joint convex

layers of a set of n points in the plane (and hence

140

Barnett's c- order groups) in only O(n log3n) steps.

Given the convex layers of a set, one may traverse

points in clockwise order layer after layer, each

time using a "forward" tangent to step over to the

next inner layer. The resulting path (a "spiral")

connects all points in the set, does not intersect

itself and has the property that all corners in

traversal order are convex. See figure 9.

Theorem 5.3 Given a set of n points in the plane, one

can determine a spiral connecting the points in only

O(n log3n) steps.
Returning to convex hulls, we can now also answer

a question posed in Saxe and Bentley [19]. It concerns

the dynamization of the simplest type of convex hull

searching ("is x within the convex hull of set F"),

to which their methods did not apply.

Theorem 5.4 One can maintain a set F of n Doints in

the plane at a cost of O(log2n) per insertion and

O(log3n) per deletion, such that queries can still

be answered in O(log n) steps.

A last and intriguing application concerns the

concept of separability (Shamos [20]). Two sets in

the plane are said to be separable if one can draw a

line such that one set is entirely to its left, the

other one entirely to its right. Two sets are

separable if and only if their convex hulls are

disjoint (Shamos [20]). Unfortunately the best

previously known algorithms for deciding whether two

convex n-gons are disjoint do not sufficiently take

advantage of any preprocessing and run in O(n) steps.

Theorem 5.5. One can determine whether two (preproces-

sed) convex n-gons in the plane are disjoint or not

in only O(log2n) steps.

Proof (sketch). Let the convex n-gons be A and B.

Take two points a I and a 2 on A such that the arcs
~ n

ala 2 and a2a I have ~ points each. Draw the line

ala 2 and determine its intersection with B. If the

n-gons have been properly preprocessed, the points

a I and a 2 and the points of intersection b I and b 2

can be found in log n steps. If the intervals [ala2]

and [blb2] on the line are not disjoint, then neither

are A and B. If the intervals are disjoint (see figure

10), then we proceed as follows. Let b 2 and a I be

adjacent. Draw a tangent 1 A of A through a I and a

tangent 1 B of B through b 2. If 1 A and 1 B meet above

the line, then A and B cannot intersect below it, we

can throw away the lower half of A (splitting its

preprocessed form in log n time) and repeat the

procedure. Other cases are treated likewise. If

iA// iB (or A has been reduced to i or 2 points),

then A and B are disjoint. At each step (costing a

total of log n) we either reach a decision or can

eliminate another half of A. Hence the O(log2n)

bound. Afterwards the splitting of A must be undone

again, by reverting the process.D

Fortunately the dynamic convex hull algorithm

keeps convex hulls in a form suitable for theorem

5.5. Thus we have

Theorem 5.6. One can maintain two sets A and B in

the plane such that insertions take O(log2n) and

deletions take O(log3n) each (where n is the current

size of a set) and, whenever needed, separability

can be decided in O(log2n).

6. Dynamically maintaining the common intersection

of a set of halfspaces.

A halfspace is a part of the plane entirely to

the left or to the right of a line. The common

intersection of a set of n halfspaces is a convex

polygon (possibly open or empty) with at most n

edges. Shamos and Hoey [23] have shown that such

a common intersection can be found in O(n log n),

but their technique is off- line and works for

static sets only. The dynamization is harder to

obtain than for convex hulls, but we will show

that a same approach will work.

Again we separately maintain two sets, the

i- intersection of halfspaces which are "open to

the left" (see figure 11) and the r-intersection

of halfspaces which are turned the other way. Each

such intersection is a "convex arc" with its two

arms extending to infinity. Each arc will have its

edges stored at the leaves of some concatenable

queue again, ordered by angle. By a tedious argument

one can show (thus improving on Brown [6])

Theorem 6.1. One can determine the common inter-

section of 1-intersection and r-intersection (hence

the common intersection of the set) in only

O(log2n) steps.
Glueing the parts together is not as easy as it

was for the left and right sides of a convex hull,

but the upperbound isn't bad. Let us concentrate

on maintaining the 1-intersection. Note that half-

spaces contribute to the 1-intersection (if they

do...) in the order of their direction~ Thus we

shall keep halfspaces sorted by angle and observe

the following decomposition property (compare 3.2)

141

Theorem 6.2 Let hl,...,h n be n arbitrary halfspaces

in the plane, sorted by angle. Given the represen-

tation of the 1-intersections of hl,...,h i and of

hi+l,...,h n (any i~ i< n), the representation of the

1-intersection of hl,...,h n can be constructed in

only O(log2n) steps.

An augmented balanced tree can now be built in very

much the same way as we did for convex hulls. By very

similar maintenance procedures we can show

Theorem 6.3. One can dynamically maintain the cormaon

intersection of a set of n halfspaces in the plane

(as a convex polygon) at a cost of only O(log3n) per

insertion and deletion.

As a bonus we obtain an algorithm to construct

the common intersection of a set which, after the

initial sorting of all halfspaces by direction in

O(n log n) steps, takes only O(n) additional steps.

A first application concerns the simplest type of

intersection searching "does x belong to the common

intersection of a set of n halfspaces F". It is a

particularly interesting problem, because it is an

example of a decomposable searching problem in the
T

sense of Bentley [3] (see also Saxe and Bentley [19]),

to which previously only general dynamization methods

were believed to be applicable.

Theorem 6.4. One can dynamically maintain the common

intersection of a set of n halfspaces in the plane,

such that insertions and deletions can be processed

in O(log3n) steps each and queries of the form "does

x belong to the current common intersection" can

still be answered in O(log n).

Overmars and van Leeuwen [15] (see also van

Leeuwen and Maurer [25]) have recently developed some

new dynamization techniques, which specifically apply

to structures from which objects can be deleted

cheaply and which can be rebuilt fast by exploiting

that objects left have remained in sorted order. It

leads to a result better than 6.4 on the average for

updates, but slightly worse for querying.

Theorem 6.5. One can dynamically maintain the common

intersection of a set of halfspaces in the plane,

such that over any sequence of n transactions on an

initially empty set insertions cost an average of

O(log n) and deletions an average of O(log3n) steps,

while queries of the form "does x belong to the

current common intersection" can be answered in

O(log2n).

The common intersection of a set of halfspaces

also plays a role in finding the kernel of a simple

polygon.Briefly, the kernel of a polygon is the set

of points in its interior from which all sides of

the polygon are fully visible. Shamos and Hoey [23]

first reported an O(n log n) algorithm for kernel-

determination. Lee and Preparata [13] later showed

that knowledge of the ordered contour of the n-gon

can be exploited to obtain an O(n) algorithm. We can

efficiently maintain the kernel of a dynamically

changing polygon, assuming changes merely involve the

insertion or deletion of edges which keep the poly-

gon simple.

Theorem 6.6. One can dynamically maintain the kernel

of a (simple) n-gon at a cost of only O(log3n) per

insertion and deletion of an edge.

A last, but certainly important application in-

volves maintaining the feasible region of a linear

program (in the sense of linear programming).

Theorem 6.7. One can dynamically maintain the fea-

sible region of a linear program in two variables

at a cost of only O(log3n) for each insertion or

deletion of an inequality.

7. Dynamically maintaining the maximal elements of

a set.

Let points in the plane be ordered in the usual,

coordinate-wise manner. A point x is called maximal

in a set S when x 6 S and no ~ E S exists with y>x.

The maximal elements of a set form a one-sided con-

tour not unlike a side of a "convex hull" (see fig-

ure 12). Kung, Luccio and Preparata [12] have shown

that the maximal elements of a static set of n ele-

ments in the plane can be determined in O(n log n)

steps, Bentley and Shamos [4] proved it again as an

application of their algorithm for ECDF searching.

The algorithms are off-line and are, essentially,

based on a divide- and- conquer strategy. We will

show that the maximal elements of a set can be

maintained efficiently as points are added to it one

at a time, a result very similar in spirit to

Preparata's "real-time" algorithm [16] for convex

hull construction.

Theorem 7.1. One can dynamically maintain the maxi-

mal elements of a set "real-time", i.e., in only

o(log n) steps for each new point from a collection

of n that is added.

To obtain a fully dynamic algorithm, we have to

use our earlier technique again. Let us keep points

sorted by x- coordinate and let the contour of

142

current maximal elements be stored in a concatenable

queue. The following decomposition property can be

shown (compare 3.2. and 6.2.)

Theorem 7.2. Let pl,...,pn be n arbitrary points in

the plane, sorted by x- coordinate. Given the repre-

sentation of the contours of maximal elements of

pl,...,pi and of Pi+l' 'Pn (anY I~ i< n), the

representation of the contour of maximal elements of

pl,...,pn can be constructed in O(log n) steps.

Thus, the "composition" of separated contours can

now be constructed a factor log n faster than in

previous cases. The composite contour again takes

very regular pieces off the contours of both halves

and a dynamic structure can be devised which oper-

ates in very much the same way as it did for convex

hull maintenance.

Theorem 7.3. One can dynamically maintain the maxi-

mal elements of a set of n points in the plane, at

a cost of only O(log2n) steps per insertion and

deletion.

As a bonus we obtain a new algorithm for construc-

ting the maximal elements of a static set which,

after the initial sorting of all points by x- coor-

dinate, takes only O(n) steps to complete. From

theorem 7.3. one may derive that the (decomp.) search-

ing problem "is x a maximal element of the set" can

be processed in O(log2n) steps. Applying the general

dynamization method of Overmars and van Leeuwen [15]

to it, enables one to reduce the maintenance costs

to O(log n) for insertions and O(log2n) for deletions

on the average at the expense of a query time of

O(log2n). The (decomposable) searching problem "is x

dominated by an element of the set" can be solved

and maintained dynamically at a cost of only O(log2n)

per transaction too. Finally, let us say that a set

of points A is dominated by another set B when for

each x q B there is a y E B such that x < y.

Theorem 7.4. One can maintain two sets A and B in

the plane such that insertions and deletions take

at most O(log2n) each (where n is the total number

of current elements) and the information of whether

one dominates the other is kept up-to-date at no

extra charge.

8. References.

[I] Aho, A.V., J. Hopcroft and J.D. Ullman, The

design and analysis of computer algorithms,

Addison- Wesley, Reading, Mass (1974).

[2] Barnett, V., The ordering of multivariate

data (with discussion), J. Roy. Stat. Soc

(A), 139 (1976) 318-354.

[3] Bentley, J.L., Decomposable searching problems,

Inf. Proc. Lett. 8 (1979) 244-251.

[4] Bentley, J.L. and M.I. Shamos, Divide and

conquer for linear expected time, Inf. Proc.

Lett. 7 (1978) 87-91.

[5] Bentley, J.L. and M.I.Shamos, A problem in

multivariate statistics: algorithm, data

structure and applications, Techn. Rep.

CMU-CS-78-110, Carnegie Mellon University

(1978).

[6] Brown, K.Q., Fast intersection of half spaces,

Techn. Rep. CMU-CS-78-129, Carnegie Mellon

University (1978).

[7] Eddy, W.F., A new convex hull algorithm for

planar sets, ACM Trans. Math. Software

3(1977) 398-403, 411-412.

[8] Graham, R.L., An efficient algorithm for

determining the convex hull of a finite

planar set, Inf. Proc. Lett. i (1972)

132-133.

[9] Green, P.J. and B.W. Silverman, Constructing

the convex hull of a set of points in the

plane, Computer J. 22 (1979) 262-266.

[i0] Huber, P.J., Robust Statistics: a review,

Annals Math. Statistics 43 (1972), 1041-

1067.

[ii] Jarvis, R.A., On the identification of the

convex hull of a finite set of points in

the plane, Inf. Proc. Lett. 2 (1973) 18-21.

[12] Kung, H.T., F. Luccio and F.P. Preparata, On

finding the maxima of a set of vectors,

J. ACM 22 (1975) 469-476.

[13] Lee, D.T. and F.P. Preparata, An optimal

algorithm for finding the kernel of a

polygon, J. ACM 26 (1979) 415-421.

[14] Overmars, M.H. and J. van Leeuwen, Maintenance

of configurations in the plane, Tech. Rep.

RUU- CS- 79-9 (in press), Dept. of Comput-

er Science, University of Utrecht, 1979.

[15] Overmars, M.H. and J. van Leeuwen, Two general

methods for dynamizing decomposable search-

ing problems, Techn. Rep. RUU-CS-79-10,

Dept. of Computer Science, University of

Utrecht, 1979.

[16] Preparata, F.P., An optimal real-time algorithm

143

for planar convex hulls, C. ACM. 22 (1979)

402-405.

[17] Preparata, F.P. and S.J. Hong, Convex hulls of

finite sets of points in two and three dimen-

sions, C. ACM. 20 (1977) 87-93.

[18] Reingold, E.M., J. Nievergelt and N. Deo, Combi-

natorial algorithms: theory and practice,

Prentice-Hall, Englewood Cliffs, NJ (1977).

[19] Saxe, J.B. and J.L. Bentley, Transforming static

data structures to dynamic structures, Conf.

Rec. 20th Annual IEEE Symp. on Foundations

of Computer Science, San Juan, Puerto Rico,

Oct. 1979, pp 148-168.

[20] Shamos, M.I., Geometric complexity, Proc. 7th

Annual ACM Symp. on Theory of Computing,

Albuquerque, May 1975, pp. 224-233.

[21] Shamos, M.I., Geometry and statistics: problems

at the interface, in: J.F. Traub(ed), Recent

results and new directions in algorithms and

complexity, Acad. Press, New York (1976),

pp 251-280.

[22] Shamos, M.I., Computational geometry, Ph.D.

Thesis, Yale University, 1978 (to be published).

[23] Shamos, M.I. and D. Hoey, Geometric intersection

problems, Conf. Rec. 17th Annual IEEE Symp.

on Foundations of Computer Science, Houston,

Oct. 1976, pp. 208-215.

[24] 'van Emde Boas, P., On the n log n lowerbound

for convex hull and maximal vector deter-

mination, Rep. 79-13, Dept. of Math.,

University of Amsterdam (1979).

[25] van Leeuwen, J. and H.A. Maurer, Dynamic systems

of static datastructures, Bericht 42,

Institut f. Informationsverarbeitung, TU

Graz, 1980.

[26] van Leeuwen, J. and D. Wood, Dynamization of

decomposable searching problems, Techn. Rep.

RUU-CS-79-5, Dept. of Computer Sci., University

of Utrecht, 1979 (to appear in Inf. Proc. Lett).

[27] Wirth, N, Algorithms + data structures = programs,

Prentice Hall, Englewood Cliffs, NJ(1976).

[28] Yao, A.C-C., A lower bound to finding convex

hulls, STAN-CS-79-733, Computer Science Dept,

Stanford University, 1979.

o I /

/I //

figure i

left face \ ° /
\&Y

figure 2

right face

ic-hull

/
0

o

figure 3

o~

o

o

figure 4

rc-hull

144

Y

figure 5

~o C o

figure 6

figure 7

lson (c0~ rson (c0 8~ y ~ ~ rOso

figure 8

o

figure 9

, !

I ~ a2 \
I '~I /

b / / ~ /

/ 1
I 1 A

B

figure i0

1-intersection
|

~-. %<.

figure Ii

o

o

I_
o

figure 12

°I
i

145

