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Abstract

In the p-piercing problem, we are given a collection of regions, and wish to determine

whether there exists a set of p points that intersects each of the given regions. We give

linear or near-linear algorithms for small values of p in cases where the given regions are

either axis-parallel rectangles or convex c-oriented polygons in the plane (i.e., convex

polygons with sides from a �xed �nite set of directions).

We also investigate the planar rectilinear (and polygonal) p-center problem, in which

we are given a set S of n points in the plane, and wish to �nd p axis-parallel congruent

squares (isothetic copies of some given convex polygon, respectively) of smallest possible

size whose union covers S. We also study several generalizations of these problems.

New results are a linear-time solution for the rectilinear 3-center problem (by showing

that this problem can be formulated as an LP-type problem and by exhibiting a relation

to Helly numbers). We give O(n logn)-time solutions for 4-piercing of translates of a

square, as well as for the rectilinear 4-center problem; this is worst-case optimal. We

give O(n polylogn)-time solutions for 4- and 5-piercing of axis-parallel rectangles, for

more general rectilinear 4-center problems, and for rectilinear 5-center problems. 2-

pierceability of a set of n convex c-oriented polygons can be decided in timeO(c

2

n logn),

and the 2-center problem for a convex c-gon can be solved in O(c

5

n logn) time. The

�rst solution is worst-case optimal when c is �xed.

1 Introduction

The problems. Let R be a set of n regions in the plane, and let p be a positive integer. R

is called p-pierceable if there exists a set of p piercing points which intersects every member

of R. The p-piercing problem is to determine whether R is p-pierceable, and, if so, to

produce a set of p piercing points.
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In the p-center problem we are given a set S of n points in the plane, some compact

convex set C, and a positive integer p. The goal is to �nd p isothetic copies of C of smallest

possible scaling factor, whose union covers S.

This problem arises in the area of facility location in operations research, and many

variants of it have been studied [9, 10, 12, 14, 25, 29, 31, 35, 37, 38, 40]. If C is the unit ball

of some norm k � k

C

, then the p-center problem seeks a set P of p `facility points', so that

the maximum k � k

C

-distance from a point of S to its nearest facility point is minimized. A

natural case is when C is a unit disk, so k � k

C

is the euclidean distance (euclidean p-center

problem). When C is a square, then k � k

C

can be viewed as the `

1

- or `

1

-norm (depending

on the orientation of the square), and we face the rectilinear p-center problem.

A standard reduction from the p-center problem to the p-piercing problem goes as

follows. Let

~

C denote the re
ection of C (with respect to some interior point, which we

assume to be the origin). De�ne R(�) = fs+�

~

C j s 2 Sg, � � 0. Then we seek the smallest

possible � for which R(�) is p-pierceable. The piercing points (for the smallest �) are the

locations of the desired facilities; they serve as centers of isothetic copies of �C whose union

covers S. Often, the p-center problem is solved by techniques like parametric searching [36]

or monotone matrix searching [16, 17, 18], which run some sort of binary search on � to

locate the optimal solution. The related p-piercing problem for R(�), for any �xed �, is

then referred to as the decision problem, or the �xed-size problem, and is used as an `oracle'

to guide the binary search.

Previous results. It is known that the p-piercing and p-center problems are NP-complete

when p is part of the input, even if the regions are translates of a square [38], and that they

can be solved in polynomial time for any �xed p (assuming that C and the sets to be pierced

are simply shaped, see [9, 30]).

The 1-piercing problem is easy for simple regions, and the 1-center problem is well

understood at this point and allows optimal linear-time solutions for many types of regions

| we will not elaborate on this here (see [34, 41]). The euclidean 2-center problem was

recently solved in near-linear time [40] (see also [13]), but no such solution is known for

p � 3. The 2- and 3-piercing problems for a set of axis-parallel rectangles have been solved

in linear time [28, 29].

1

The rectilinear 2-center problem was also known to be optimally solvable in linear time

[10], while the best previous solution for the rectilinear 3-center problem takes O(n logn)

time [10, 29]. Actually, the papers [28, 29] consider a slightly more general version, the

so-called weighted rectilinear p-center problem: Here we are given n axis-parallel squares,

not necessarily of the same size. We ask for the smallest common scaling factor, so that the

scaled squares (where the scaling is about the center of each square) is still p-pierceable. It

is shown in [28] that the weighted rectilinear 2-center problem is solvable in linear time.

2-pierceability of c-oriented convex polygons is closely related to a conjecture of Danzer

and Gr�unbaum [8], which asks for a Helly-type theorem for 2-pierceability of collections of

homothets of a convex polygon, and which was recently refuted in [26]. However, it was

shown in [26] that such a result exists for the case of homothetic triangles.

For p > 3, the best previous bound for the rectilinear p-center problem is O(n

p�2

logn)

1

In fact, the results in [29] are stated only for homothets of squares.
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[30], although it appears [5] that the technique of [24] for solving the euclidean p-center

problem can be extended and applied to the rectilinear case as well, to obtain an n

O(

p

p)

solution.

No near-linear solutions have previously been known for the p-piercing or p-center prob-

lem in the general polygonal case, for p � 2.

New results. We improve the O(n logn) bound for the (weighted) rectilinear 3-center

problem to optimal linear time. For the (unweighted) rectilinear 4-center problem we give

an O(n logn) solution, and for the rectilinear 5-center problem we describe an O(n log

5

n)

solution, thereby improving on the previous bounds of the formO(n

2

logn) and O(n

3

logn),

respectively. The 4-center algorithm is also shown to be worst-case optimal. The new

bounds for the center problems are based on new results for the corresponding piercing

problems: 4-piercing of translates of a square can be decided in O(n logn) time, 4- (and

5-) piercing of general axis-parallel rectangles can be decided in time O(n log

3

n) (and

O(n log

4

n), respectively). These results also lead to O(n polylogn) algorithms for the

weighted rectilinear 4- and 5-center problems.

Our solutions also imply that the rectilinear p-center problem, for any p � 5, can be

solved in time O(n

p�4

log

5

n). However, as noted above, we believe that much better results

can be obtained for larger p's.

The 2-center problem, when C is a convex c-gon (polygonal 2-center problem), can be

solved in O(c

5

n logn) time. This is based on 2-piercing of c-oriented convex polygons

(whose sides draw their directions from a �xed set of c orientations), for which we supply

an O(c

2

n logn) solution, and show that it is worst-case optimal when c is �xed. 2-piercing

of a set of homothetic triangles, and the triangular 2-center problem, can both be solved in

linear time. The same holds for 4-oriented trapezoids.

Independently, Katz and Nielsen [27] have recently obtained several results on the pierc-

ing problems studied in this paper, and also results concerning 2-piercing of boxes, simplices,

and c-oriented polytopes in higher dimensions. They have not addressed the related center

problems. Some other related results have recently been obtained by Assa [5].

Methods. In order to obtain the linear bound for the 3-center problem, we formulate it as

an LP-type problem [33], from which a randomized linear-time algorithm follows, which can

also be derandomized to a deterministic linear-time solution [6]. The proof of the LP-type

properties (and of �nite combinatorial dimension|see below) relies on a Helly-type result

of the following kind [8]: A set of axis-parallel rectangles is 3-pierceable if and only if any 16

(or fewer) of them are 3-pierceable. The connection between Helly-numbers and LP-type

problems has been investigated in [3, 4]. The realization of the rectilinear 3-center problem

as an LP-type problem seems to be particularly interesting, since there is no formulation of

this problem as optimization in a convex domain, which shows that LP-type problems go

beyond convex programming (in natural examples).

The basis for the rectilinear piercing results are a number of simple observations on the

location of piercing points, which have already been used (in one disguise or another) in

previous attacks on the rectilinear problem [10, 28, 29]. We enhance those insights by a

carefully planned iterative process (for 4-piercing of translates of a square), and by multi-
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level orthogonal range-searching data structures (for general rectilinear 4- and 5-piercing).

These observations can also be extended (but become slightly more involved) to the case of

c-oriented polygons, which leads to an O(n logn) solution of the 2-piercing problem for such

polygons. (The case of triangles or of trapezoids can be formulated as an LP-type problem,

where for the case of trapezoids we provide a new Helly-type result, extending the result

of [26] for the case of triangles. There are also simple deterministic linear-time solutions

for both problems.) For both the standard rectilinear and polygonal cases, the reduction

from the center to the piercing problem uses the matrix-searching technique of Frederickson

and Johnson [16, 17, 18], in a manner similar to recent applications in [22]. The weighted

rectilinear and polygonal cases can be handled by employing standard parametric searching

techniques [36].

2 Rectilinear p-Piercing

We are given a set R of n axis-parallel closed rectangles in the plane and some positive

integer p, and we wish to decide whether R is p-pierceable. We start with some basic

observations for general p (see also [10, 28, 29]), and then \specialize" to p = 2; : : : ; 5 to

obtain linear or near-linear solutions.

An axis-parallel line traverses R. Suppose a vertical line ` intersects all rectangles in

R (the case where ` is horizontal is treated similarly), and let P be some set of piercing

points. Consider a 2 P . If we move a on a horizontal segment towards `, then we do not

leave any of the rectangles (we may enter some). That is, if we replace each a 2 P by its

horizontal projection a

0

on `, then the resulting set P

0

is still piercing. Consequently, the

p-piercing problem can be solved by deciding p-pierceability of the set R

0

= f`\ r j r 2 Rg

of intervals on `. This 1-dimensional piercing problem can be solved in O(n log p) time.

2

So if there is a vertical (or horizontal) line intersecting all rectangles, the problem can be

solved in linear time for any �xed p.

No axis-parallel line traverses R. Let `

L

be the vertical line containing the leftmost

right edge of a rectangle in R, let `

R

be the vertical line containing the rightmost left

edge of a rectangle in R, let `

T

be the horizontal line containing the highest bottom edge

of a rectangle in R, and let `

B

be the horizontal line containing the lowest top edge of

a rectangle in R. Consider the closed left halfplane H

L

bounded by `

L

, the closed right

halfplane H

R

bounded by `

R

, the closed top halfplane H

T

bounded by `

T

, and the closed

bottom halfplane H

B

bounded by `

B

. Let

~

H

X

denote the closure of the complement of

H

X

, for X = L;R; T; B. Note that if no axis-parallel line traverses R, then H

L

is disjoint

fromH

R

, and H

T

is disjoint fromH

B

, and thus R

0

:=

T

X2fL;R;T;Bg

~

H

X

is nonempty (with

nonempty interior). R

0

is called location domain for R, a term justi�ed in the following

simple but crucial observation.

Observation 2.1 (a) Any set of piercing points of R must have a point in each of the

halfplanes H

X

, for X = L;R; T; B.

2

We are not aware of any explicit reference to this bound; this problem appears as an exercise in [23,

p. 193].
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R

0

`

L

`

R

`

B

`

T

Figure 1: A 4-pierceable set of axis-parallel rectangles and its location domain R

0

(b) Assume that R is p-pierceable, but has no axis-parallel traversing line. Then there is a

set of p piercing points in the location domain R

0

. In such a piercing set, each side of the

boundary @R

0

of R

0

must contain one of the piercing points. (Here we consider the sides

as relatively closed, that is, a vertex of @R

0

is contained in its two incident sides.)

See Figure 1. (a) is trivially true, since each halfplaneH

X

fully contains one of the rectangles

in R, for X = L;R; T; B, and so it must contain a piercing point. For (b), consider a

piercing set P and a point a 2 P which is not in

~

H

L

, i.e., it is to the left of `

L

. Similar to a

previous argument, we consider the horizontal projection a

0

of a on `

L

. The set of rectangles

containing a

0

is a superset of the set of rectangles containing a. Hence we can replace a by

a

0

in P without losing its piercing property, and a

0

is contained in

~

H

L

. A similar procedure

can be employed if a piercing point is not in

~

H

R

,

~

H

T

, or

~

H

B

. In this way we can move

every piercing point that lies outside the location domain R

0

to its boundary (up to two

projection steps will do it for each point). After that, the piercing set is contained in R

0

,

but (a) is still valid, and so each side of R

0

must contain a piercing point.

2.1 2- and 3-piercing

If we want to decide whether a set of axis-parallel rectangles is 2-pierceable, we �rst deter-

mine `

L

and `

R

. If `

L

is not to the left of `

R

, then a vertical line (say `

L

or `

R

) intersects

all rectangles and we can invoke the simple 1-dimensional decision procedure. Otherwise,

we apply a symmetric procedure for `

T

and `

B

. What remains is the case that the location

domain R

0

is a nonempty rectangle. Observation 2.1(b) states that if R is 2-pierceable,

then it is pierceable by two points in R

0

, with one point on each side of R

0

, and the only

candidates for such a set are the two diagonal pairs of vertices of @R

0

. We can check these

two possibilities in linear time.

For 3-pierceability, we can either apply the 1-dimensional procedure, or R

0

exists, and
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now, by Observation 2.1(b), a piercing set of 3 points contained in R

0

must contain one

of the vertices of @R

0

. We can take each of those vertices v, and check for 2-pierceability

of the rectangles disjoint from v. If one of the four possibilities is successful, then R is

3-pierceable; otherwise, it is not.

Summing up, we get the following result, which is|at least implicitly| also implied by

[10, 28, 29].

Theorem 2.2 2- and 3-pierceability of a set of n axis-parallel rectangles can be decided in

O(n) time.

Remark. One can make the above algorithms more concise to state and implement by

writing down an explicit list of a constant number of candidate sets of pairs or triples of

piercing points, which depend on the given setR of rectangles, so thatR is 2- or 3-pierceable

if and only if one of these sets is piercing. We will do this below, when we talk about the

corresponding 2- and 3-center problems.

2.2 4-piercing of translates of a square

Let Q be a set of n translates of a square of unit side length, for which we want to decide the

existence of 4 piercing points. Again, we may assume that the location domain R

0

exists.

We can easily decide whether there is a piercing set of four points, one of which is a vertex

of @R

0

: Take each such vertex in turn, and test for 3-pierceability of the squares disjoint

from it, in linear time.

So if all these attempts to �nd a set of four piercing points fail, and Q is 4-pierceable,

then we know, by Observation 2.1(b), that there must be four piercing points, one in the

relative interior of each of the sides of R

0

. Denote those sides (relatively open segments) by

s

X

, for X = L;R; T; B.

We manipulate a subset Q

0

of Q (initially Q

0

= Q), and four subsegments t

X

� s

X

,

for X = L;R; T;B (initially t

X

= s

X

), while maintaining the following invariant: Q is

pierceable by four points, one in each s

X

if and only if Q

0

is pierceable by four points, one

in each t

X

. The invariant is trivially true at the initialization stage.

The operations we perform are the following:

(i) If a square q in Q

0

intersects only one of the segments t

X

, then we replace

3

t

X

by t

X

\ q

and remove q from Q

0

.

(ii) If a square q contains one of the segments t

X

, then we remove q from Q

0

.

Clearly, the invariant is maintained after each operation of type (i) or (ii). Note that we

can apply right at the start four operations of type (i), to the four squares de�ning R

0

(as

in Figure 1). We may end up in one of the following three situations:

(A) At some point a square in Q

0

is disjoint from all segments t

X

. That is, Q

0

is not

pierceable by points on the segments t

X

, and the invariant implies that Q is not pierceable

by points, one on each s

X

. With the previous assumptions, we conclude that Q is not

4-pierceable.

(B) At some point Q

0

is empty. We conclude that Q is 4-pierceable. (Note here that the

segments t

X

can never vanish in the process.)

3

Note that, as soon as a segment t

X

is shortened, it is not relatively open any more.
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(C) Neither (i) nor (ii) can be applied, Q

0

is still nonempty, and no square in Q

0

is disjoint

from all segments t

X

. That is, each square intersects at least two of the segments t

X

, and

no square contains one of those segments. Actually, both conditions combined imply that

every square intersects exactly two segments (because, if a square intersects three of the

sides of R

0

, it must contain one of the sides).

Note that in all we have said so far we never used the fact that we are handling congruent

squares; everything also holds for general axis-parallel rectangles. We now claim that, for

translates of a square, case (C) already implies 4-pierceability. For that purpose, let P

0

be the set of counterclockwise endpoints of the segments t

X

(the �rst endpoint of each

segment that we encounter as we traverse @R

0

in clockwise direction), and let P

00

be the

set of clockwise endpoints. We want to prove that either P

0

or P

00

is a piercing set for Q

0

.

Any square in Q

0

containing the upper right vertex of R

0

must intersect t

T

and t

R

; more

precisely, it must contain the counterclockwise endpoint of t

R

and the clockwise endpoint of

t

T

. In other words, such a square is pierced by both P

0

and P

00

. More generally speaking,

a square containing a vertex of the location domain is pierced by both P

0

and P

00

.

Any square q in Q

0

disjoint from the vertices of R

0

must intersect two opposite sides of

R

0

in order to meet two of the segments t

X

. Note that if q intersects the top and bottom

side of R

0

, but is disjoint from the vertices, then those sides must have length exceeding

one and so no square in Q

0

can intersect both the left and right side of R

0

(because all

squares are translates of a unit square). So, without loss of generality, we may assume that

all squares disjoint from the vertices intersect the top and bottom sides of R

0

.

The segments t

X

have length at most one. Hence it is not possible for a square in Q

0

to intersect t

T

(and t

B

) without containing one of its endpoints. If a square contains the

counterclockwise endpoint of one of the two segments, and the clockwise endpoint of the

other segment, then it is pierced by both P

0

and P

00

.

What is left are squares that only contain the clockwise endpoints of t

T

and t

B

, and

squares that only contain the counterclockwise endpoints of t

T

and t

B

. If only one of

the two situations occurs, then P

00

(or P

0

, respectively) pierces all squares. Simultaneous

occurrence of both situations, however, is impossible: A square q of the �rst type has the

counterclockwise endpoint of t

T

to its left, and the counterclockwise endpoint of t

B

to its

right, and no square of unit side length can contain these two points. We have thus shown

that either P

0

or P

00

is a piercing set in situation (C).

For the time analysis, it su�ces to consider the algorithm for deciding 4-pierceability

for the case that no axis-parallel line intersects all squares, and there is no piercing set

containing a vertex of R

0

{ those decisions can be made in linear time, and handling either

of these situations can be done in linear time, as noted earlier.

Now we simply have to perform operations (i) and (ii) until we end up in one of the

situations (A), (B), or (C), when we can decide 4-pierceability in constant time (and produce

a piercing set in linear time). In order to execute the operations (i) and (ii) e�ciently, we

sort the intersections of the boundaries of the squares in Q with the sides of R

0

along

each such side (there are at most 4n such intersections). Now, whenever we shorten a

segment t

X

, we have to detect those squares which lose contact with t

X

, or start to contain

t

X

. Any such square must have a side that intersects the part removed from t

X

. We

therefore simply traverse this part, and process each intersection point found there in a

straightforward manner that takes O(1) time. The most expensive part of the procedure
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is the sorting along the sides of R

0

; all other steps can be performed in O(n) time. Note

that if the centers of the squares have already been sorted both by their x-coordinates and

by their y-coordinates, then the sorting along the sides of R

0

can be done in O(n) time, by

merging the (already sorted) sequences of left sides and of right sides (or of top sides and of

bottom sides) of the squares. We will use this observation in the 4-center algorithm, given

below. We thus have:

Theorem 2.3 (a) The 4-piercing problem for n translates of a square can be solved in

O(n logn) time.

(b) If the centers of the squares are presorted by their x-coordinates and by their y-coordinates,

then 4-pierceability can be decided in O(n) time.

2.3 4-piercing of rectangles

We are given a collection R = fr

1

; : : : ; r

n

g of n axis-parallel rectangles in the plane, and we

wish to determine whether R can be pierced by four points.

Again, as in the preceding subsection, we may restrict ourselves to the situation that all

four piercing points lie on the boundary of the location domain, each lying in the relative

interior of a distinct side.

This case is handled as follows. Let s denote the top side of R

0

, and let t denote the

intersection of s with the rectangle whose bottom side lies on the line `

T

. Let I

j

= t \ r

j

,

for j = 1; : : : ; n. The endpoints of the intervals I

j

partition t into at most 2n� 1 `atomic'

intervals. We iterate through these intervals from left to right, and attempt to place the

top piercing point p

T

in each of them. For an atomic interval J , the set R

J

of rectangles

of R that do not contain p

T

remains unchanged as p

T

varies within J . When we pass from

J to the next interval J

0

, the set R

J

0
di�ers from R

J

by a single rectangle being added or

removed. For each interval J we check whether R

J

is 3-pierceable. If this is true for at

least one interval J , then R is 4-pierceable; otherwise R is not 4-pierceable.

We next describe a dynamic data structure on the rectangles in R

J

, using which we can

determine whether R

J

is 3-pierceable in O(log

3

n) time; the structure can also be updated

in O(log

3

n) time when a rectangle is added to or is removed from R

J

. Recalling the

algorithm for testing for 3-pierceability, we see that the data structure has to support an

e�cient implementation of two main operations:

(a) For a given pre-stored (`canonical') subset of rectangles of R, �nd the corresponding

lines `

L

, `

R

, `

T

, `

B

.

(b) For a given pre-stored subset R

0

of rectangles of R and for a query point v, �nd the

set R

0

v

of rectangles of R

0

that do not contain v.

In a single step of the algorithm, both operations will be performed on a polylogarith-

mic number of canonical subsets, organized in a three-level structure (described in detail

shortly), whose union is equal to a speci�c subset R

�

. It is important to observe that both

operations (a) and (b) are decomposable, in the sense that the output for R

�

can be eas-

ily obtained from the outputs for the canonical subsets of R

�

, in time proportional to the

number of subsets: For (a), one simply has to take the leftmost of all the lines `

L

produced
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for each canonical subset, and symmetrically for the other three lines. The output of (b)

for R

�

is simply the union of the outputs for the canonical subsets of R

�

. (This may cause

a canonical subset to appear more than once in the output for R

�

, but this does not a�ect

the way further steps of the algorithm are performed, as follows easily from the description

given below.)

To perform both (a) and (b) on a canonical set R

0

, we prepare four balanced binary

search trees, storing, respectively, the left, right, top, and bottom edges of the rectangles of

R

0

, sorted by their x-coordinates (for the �rst two trees) or by their y-coordinates (for the

last two trees). Each node u of each of these trees represents a canonical subset R

0

u

of R

0

,

consisting of all rectangles stored at the leaves of the subtree rooted at u. Unless we are at

the bottommost (third) level of the structure, we construct, in the next deeper level of the

structure, a similar structure for each of the sets R

0

u

.

Performing an operation of type (a) is easy: simply pick up the �rst or last leaf of each

tree, as appropriate, and use the corresponding rectangle sides to construct the desired lines.

Performing an operation of type (b) is also easy. Suppose the query point v has coordinates

(v

x

; v

y

). Search with v

x

in the �rst two trees, and with v

y

in the last two trees. In the

�rst tree, obtain all rectangles whose left side lies in the halfplane x > v

x

, as the disjoint

union of O(logn) subtrees. Apply symmetric procedures to the three other trees. In total,

we obtain the output to (b) as the (not necessarily disjoint) union of O(logn) canonical

subsets (that is, subtrees of the four trees).

In order to facilitate simple and e�cient updating of the structure, we use a slightly

modi�ed variant, in the spirit of the structure in [39]. First we construct the above three-

level structure for the entire set R, using minimum-height binary trees at each level. Let

R

0

be the current set to be maintained. We treat R

0

as the set of all n rectangles, except

that some of them `exist' and some are `missing'. Each leaf is labeled as `existing' or

`missing', and each internal node is labeled as `existing' whenever at least one of the leaves

in its subtree is `existing'. Finding the leftmost (or rightmost) existing leaf is easy to do

in O(logn) time. It is also easy to perform an operation of type (b) in O(logn) time, and

obtain its output as a collection of O(logn) (`existing', i.e., nonempty) subtrees. Inserting

or deleting a rectangle (into a single tree of the structure) is now easy to do, in O(logn)

time, by going to the leaf storing the rectangle, switch its status from `missing' to `existing'

or vice versa, and updating the status of nodes along the path from the leaf to the root, in

constant time per node, in a straightforward bottom-up manner. Since the structure has

several levels, we also need to update the deeper-level structures of the nodes that were

updated in the current level. Each such updating is done recursively in the same manner.

Since the structure has three levels, each update takes O(log

3

n) time.

We can now describe the full algorithm:

(i) Construct the rectangle R

0

and obtain the partition of the top interval t, as de�ned

above, into up to 2n � 1 atomic intervals.

(ii) Iterate over these intervals from left to right. For each interval J , maintain the set

R

J

of rectangles of R not containing J . Initialize the data structure with the set of

rectangles not containing the left endpoint of t.

(iii) Let R

0

(J) denote the location domain for R

J

. It is easily seen that the lines incident

to the left, right and bottom sides of R

0

(J) are the same lines `

L

, `

R

, `

B

de�ning R

0

,

9



and only the top side of R

0

(J) changes (assuming general position, it is now lower

than `

T

). Find the new top side (an operation of type (a)). (Note that this side can

get as low as `

B

; in this case `

B

traverses R

J

. Testing for 3-pierceability of R

J

in

this case can also proceed along the steps outlined below, appropriately customized

to this special case.)

(iv) It is easily seen from our assumptions on the location of the piercing points that one

of the three piercing points of R

J

, if they exist, can be assumed to be one of the two

top vertices of R

0

(J). We attempt to place the second piercing point at each of these

vertices. Let v be that vertex, and, without loss of generality, assume it is the top-left

vertex of R

0

(J).

(v) We compute the set R

(J;v)

of all rectangles in R

J

that do not contain v; this is an

operation of type (b), and its output consists of O(logn) canonical subsets, whose

union is R

(J;v)

. We need to test whether R

J;v

is 2-pierceable. Again, our assumptions

on the piercing points are easily seen to imply that the two piercing points can be

assumed to be the top-right vertex and the bottom-left vertex of the corresponding

location domain R

0

(J; v). It is also easily veri�ed that the bottom and right edges of

R

0

(J; v) lie on the same lines `

B

, `

R

as the corresponding sides of the original R

0

.

(vi) We �nd the left side of R

0

(J; v). This is done by computing the leftmost right edge of

each of the canonical subsets produced in step (v) above, accessing the corresponding

trees in the second level of our data structure, and by �nding the leftmost of those

output edges. In the same manner we �nd the top side of R

0

(J; v). The total cost of

this step is O(log

2

n). Let w and z denote, respectively, the top-right vertex and the

bottom-left vertex of R

0

(J; v).

(vii) We thus need to determine whether R

(J;v)

is 2-pierceable by the points w and z. To do

this, we construct the subset R

(J;v;w)

of those rectangles of R

(J;v)

that do not contain

w, and then �nally test whether R

(J;v;w)

is pierceable by z. To construct R

(J;v;w)

, we

access the second-level trees of each of the canonical subsets produced in step (v), and

perform a type (b) operation (with w as a query point) on each of them. The union

of all resulting canonical subsets is the desired R

(J;v;w)

. We next determine whether

each of these subsets is pierced by z. To do so, we access the third-level structure

of each subset, and determine whether z lies to the right of all the left edges of the

rectangles in the subset, to the left of all the right edges, above all the bottom edges

and below all the top edges. If all this holds, for each canonical subset, then R

(J;v;w)

is pierceable by z; otherwise, it is not pierceable by z. The total cost of this step is

easily seen to be O(log

3

n).

(viii) IfR

J

has been determined not to be 3-pierceable, we move to the next atomic interval

J

0

of t. We update our data structure with the insertion or deletion of the rectangle

by which R

J

and R

J

0

di�er, and repeat the above steps to J

0

. As mentioned above,

the cost of the update is O(log

3

n).

(ix) If none of the R

J

's is found to be 3-pierceable, we conclude that R is not 4-pierceable.

The overall running time of the algorithm is easily seen to be O(n log

3

n). Hence we

have:

10



Theorem 2.4 The 4-piercing problem for n axis-parallel rectangles can be solved in O(n log

3

n)

time.

2.4 5-piercing

Let R be a collection of n axis-parallel rectangles, as above. We want to determine whether

R can be pierced by �ve points. Let R

0

denote the location domain of R as de�ned above.

Arguing as in the preceding subsections, we may assume that one of the following situations

occurs:

(i) One of the piercing points lies at a vertex of R

0

.

(ii) The �ve piercing points all lie on the boundary of R

0

, but none of them lies at a vertex.

Each side of R

0

contains at least one point (and one side contains two points).

(iii) Four of the piercing points lie on the boundary of R

0

, with one point lying in the

relative interior of each side, and the �fth point lies in the interior of R

0

.

Testing for case (i) is easy: We try each of the four vertices of R

0

as the �rst piercing

point, �nd the set of rectangles not containing that vertex, and test whether this set is

4-pierceable, using the preceding algorithm. This takes O(n log

3

n) time.

To test for case (ii), we guess a side s of R

0

that contains just one piercing point, say

it is the top side, and apply a procedure similar to that given for the 4-piercing problem.

That is, we construct the interval t and its partition into atomic subintervals, as above, and

iterate over these subintervals from left to right, maintaining the set R

J

of rectangles not

containing the current interval J . It is easy to check that one of the four remaining piercing

points must lie at one of the two top vertices of R

0

(J), the location domain for the set

R

J

. We compute R

0

(J) and attempt to place the second piercing point at either of its top

vertices, call it v. We �nd the set R

(J;v)

of those rectangles of R

J

that do not contain v,

and test whether this set is 3-pierceable, following the procedure described in the preceding

section. The data structure that we need here is almost identical to that used above, except

that now it has four levels instead of three. Omitting the easy missing details, we obtain a

procedure that runs in O(n log

4

n) time.

To test for case (iii), let q be the piercing point lying inside R

0

. Either at least one of the

piercing points on the left and right sides of R

0

lies above q or at least one of these points

lies below q. See Figure 2. Suppose that one of them lies above q. We then `guess' the

piercing point lying on the top side of R

0

, using the interval t and its partition into atomic

subintervals, as above. For each atomic interval J , we maintain the set R

J

of rectangles

not containing J , and observe that, in the assumed con�guration, one of the four piercing

points of R

J

, if they exist, must be a (top) vertex of R

0

(J). This is because R

0

(J) di�ers

from R

0

only by its top side, which is lower, and must pass through one of the two piercing

points lying on the left and right sides of R

0

, because the highest of these two points lies

above q, by assumption. It therefore su�ces to test whether R

J

is 4-pierceable, with one

piercing point lying at a vertex of R

0

(J). This can be tested as in case (ii) above, implying

that the testing for case (iii) can also be done in O(n log

4

n) time. Hence we obtain:

Theorem 2.5 The 5-piercing problem for a set of n axis-parallel rectangles can be solved

in O(n log

4

n) time.
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(i) (ii) (iii)

Figure 2: Guessing the bottom piercing point (in cases (i,ii)) or the top piercing point (in

cases (ii,iii)) causes one of the 4 remaining piercing points to lie at a vertex of the location

domain R

0

(J).

Remark. The above approach fails for the 6-piercing problem. One reason is that two of

the piercing points might lie inside R

0

in such a way that, no matter which of the four border

piercing points we eliminate, the resulting 5-piercing subproblem need not have a piercing

point at a vertex of the associated location domain. In this case we do not know how to test

for this 5-pierceability in polylogarithmic time. The best algorithm for 6-pierceability that

we can design takes near quadratic time (it guesses simultaneously two piercing points on

the boundary of R

0

). We do not know whether this problem can be solved in subquadratic

time.

Remark. Extending the last observation, one can easily show that the general rectilinear

p-piercing problem, for p � 5, can be solved in time O(n

p�4

log

5

n). However, as already

remarked in the introduction, we expect that much faster algorithms can be obtained.

3 Rectilinear p-Center Problems

We choose the following set-up of the problem: Let R be a set of n compact convex regions

with nonempty interior, where every region r 2 R is assigned a scaling point c

r

in its

interior. For r 2 R and a real number � � 0, let r(�) be the homothetic copy of r obtained

by scaling r by the factor � about c

r

(i.e., r(�) = fc

r

+ �(a � c

r

) j a 2 rg). Finally,

R(�) = fr(�) j r 2 Rg.

The p-center problem for R asks for

�

R

:= minf� j R(�) is p�pierceableg :

If R is a set of translates of a square and the scaling points are the respective centers,

then we talk about the (standard) rectilinear p-center problem. If the squares are still axis-

parallel but of possibly di�erent sizes (and again the scaling points are the centers), then

we have the weighted rectilinear p-center problem, and if R is a set of arbitrary axis-parallel

rectangles (and the scaling points are also arbitrary), then we face the general rectilinear

p-center problem.
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3.1 General rectilinear 2- and 3-center problems

Given a set R of axis-parallel rectangles with scaling points, we want to determine �

00

R

(and

�

000

R

), the smallest � for which R(�) is 2-pierceable (3-pierceable, respectively). We will

use two tools for establishing a linear time bound, the LP-type framework and Helly-type

results, which we review �rst.

LP-type problems. An LP-type problem is a pair (H;w) where H is a �nite set (whose

elements are called constraints), and w is a mapping from 2

H

into some totally ordered set,

so that the following conditions are satis�ed:

(Monotonicity) For any F;G with F � G � H , we have w(F ) � w(G).

(Locality) For any F � G � H with w(F ) = w(G) and any h 2 H ,

w(G) < w(G [ fhg) implies that also w(F ) < w(F [ fhg).

A basis B is a set of constraints with w(B

0

) < w(B) for all proper subsets B

0

of B. B is a

basis of G, for G � H , if B � G is a basis and w(B) = w(G).

LP-type problems serve as a framework to solve certain optimization problems. Solving

an LP-type problem (H;w) means to compute a basis of H , using the following basic

operations.

(Violation test) For a constraint h and a basis B, test whether h is violated by

B, i.e., whether w(B) < w(B [ fhg).

(Basis computation) For a constraint h and a basisB, compute a basis ofB[fhg.

For the e�ciency of algorithms solving LP-type problems, the following parameter is

crucial: The maximum cardinality of any basis is called the combinatorial dimension of

(H;w).

Lemma 3.1 ([33]) An LP-type problem of combinatorial dimension d with n > d con-

straints can be solved by a randomized algorithm with an expected number of at most

2

d+3

(n� d) basic operations.

Remark. Combining the algorithm with other randomized algorithms by Clarkson [7] and

G�artner [20], and applying a more careful analysis, the expected running time (in terms of

basic operations) of the algorithm can be reduced to O(dn+ e

O(

p

d logd)

); see, e.g., [21].

Helly-type results for rectilinear p-piercing. For p � 1, let h

p;d

be the smallest

integer such that a �nite set of axis-parallel boxes in d dimensions is p-pierceable, if and

only if any h

p;d

(or fewer) of the boxes are p-pierceable.

Lemma 3.2 [8] (cf [11], Theorem 5.5) (a) h

p;1

= p+ 1, for any p � 1.

(b) h

1;2

= 2, h

2;2

= 5, h

3;2

= 16, and h

p;2

is unde�ned for p � 4.

(c) For d � 3, one has h

1;d

= 2, h

2;d

= 3d if d is even and h

2;d

= 3d � 1 if d is odd, and

h

p;d

is unde�ned for p � 3.
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In two dimensions, the result stays the same if we restrict ourselves to translates of a square

instead of arbitrary axis-parallel rectangles. For our purpose, this yields the following

corollary.

Corollary 3.3 If R is a set of axis-parallel rectangles with scaling points, then there exists

a subset G

2

of at most 5 rectangles such that �

00

R

= �

00

G

2

and there is a subset G

3

of at most

16 rectangles such that �

000

R

= �

000

G

3

.

For a proof, note that for any � < �

00

R

, R(�) is not 2-pierceable, and so there must be some

set of at most 5 rectangles in R(�) which is not 2-pierceable. Hence, there must be a set

G of at most 5 rectangles in R, such that G(�) is not 2-pierceable for any � < �

00

R

and so

�

00

G

= �

00

R

. An analogous argument holds for 3-piercing.

The relation between �nite Helly numbers and LP-type problems of constant combina-

torial dimension has been worked out in some generality in [3, 4]. Roughly speaking, as

shown there, constant combinatorial dimension implies a �nite Helly number property, but

not vice versa! We will give below details concerning this relation in the special case of the

rectilinear 2- and 3-center problems.

The p-center problem in one dimension as an LP-type problem. Before consid-

ering the 2-dimensional case, let us comment on the 1-dimensional p-center problem. A

fairly involved technique of Frederickson [15] gives a linear-time solution, provided that the

points are already sorted along the real line (this result actually works for arbitrary trees,

where sorting comes for free). The actual running time of Frederickson's algorithm is O(n).

However, it follows from Lemma 3.2(a), combined with the machinery of [3, 4], that the

1-dimensional p-center problem is an LP-type problem, for any p (see below for a similar

analysis in two dimensions), and thus can be solved in randomized expected O(n) time, for

any �xed p. In this bound, though, the combinatorial dimension is O(p), so the constant

of proportionality depends `subexponentially' on p (see [33]), so Frederickson's solution

(including the presorting stage) is far better unless p is very small.

The 2-center problem as an LP-type problem. (Recall that the 2-center problem

already has a linear-time solution [10]. It is treated here both to highlight the use of the

LP-type machinery to solve this problem, and to serve as a basis for the solution of the

3-center problem.) If we simply de�ne w(G) := �

00

G

for G � R, then the system (R; w) is not

LP-type because locality may be violated. To see this, consider the case where R consists

of unit squares with scaling points at their centers, and represent each subset of R by the

set of the centers of its squares. Now consider the sets F = f(1; 0); (0; 1); (�1; 0); (0;�1)g

and G = F [ f(0:5; 0:5)g, and let h = (�0:5; 0:5). We have w(G) = w(F ) = 1: either

set is 2-pierceable as is (i.e., with scaling factor 1), but neither is 2-pierceable with a

smaller scaling factor. However, as is easily checked, w(G [ fhg) = 1:5 > w(G), while

w(F [ fhg) = 1 = w(F ), so locality is indeed violated.

To overcome this di�culty, we will de�ne a unique canonical 2-piercing set of a set of

rectangles, provided it is 2-pierceable, and use this canonical set as part of the value of w.

Recall the de�nition, given in the beginning of Section 2, of the lines `

X

, for X = L;R; T; B,

for a nonempty set R of axis-parallel rectangles. De�ne the vertex v

XY

as the intersection

of `

X

and `

Y

for X = L;R and Y = B; T .
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Given a set R of axis-parallel rectangles, we de�ne six 2-piercing candidate sets by

C

(0)

= ;; C

(1)

= fv

RT

g; C

(2)

= fv

LT

; v

RT

g;

C

(3)

= fv

RB

; v

RT

g; C

(4)

= fv

LB

; v

RT

g; C

(5)

= fv

LT

; v

RB

g :

Suppose that R is 2-pierceable. If R is empty then C

(0)

pierces R. If R is 1-pierceable,

then C

(1)

pierces R. If there is a horizontal line intersecting all rectangles, then C

(2)

pierces

R, and if a vertical line intersects all rectangles, then C

(3)

pierces R. If no axis-parallel line

intersects all rectangles, then the location domain exists, and C

(4)

or C

(5)

is piercing. We

summarize in a lemma.

Lemma 3.4 R is 2-pierceable if and only if one of the 2-piercing candidate sets pierces R.

The canonical 2-piercing set P

R

of R is the 2-piercing candidate of smallest index that

pierces R, and the index of this candidate is called the characteristic 2-piercing index �

R

of

R. If R is not 2-pierceable, then we set �

R

= 6 and P

R

=?, with ? representing a nominal

unde�ned value.

Now letR be a set of axis-parallel rectangles with scaling points assigned. For G � R, we

de�ne w(G) as the tuple (�

00

G

;�x

L

; x

R

;�y

B

; y

T

; �

G(�

00

G

)

), where x

L

, x

R

are the x-coordinates

of `

L

, `

R

, and y

B

, y

T

are the y-coordinates of `

B

, `

T

, as de�ned for the scaled set G(�

00

G

).

Note that w(G) describes a unique candidate piercing set, including the exact coordinates

of the piercing point(s). The ordering on such tuples is lexicographic, with the �rst entry

most signi�cant.

We have to show monotonicity of w. As for the �rst component, it is clear that �

00

F

� �

00

G

for F � G � R. The following lemma clari�es that adding a rectangle to a set G cannot

decrease its characteristic 2-piercing index.

Lemma 3.5 Let R be a 2-pierceable set of axis-parallel rectangles.

(0) �

R

= 0 i� R is empty.

(1) �

R

= 1 i� R is nonempty and 1-pierceable.

(2) �

R

= 2 i� R is not 1-pierceable, and there is a horizontal line intersecting all rectangles.

(3) �

R

= 3 i� R is not 1-pierceable, and there is a vertical line intersecting all rectangles.

(4) �

R

= 4 i� there is no axis-parallel line intersecting all rectangles, and C

(4)

is piercing.

(5) �

R

= 5 i� there is no axis-parallel line intersecting all rectangles, and C

(4)

is not

piercing.

The conditions for (2) and (3) are disjoint because, if there is both a vertical and a horizontal

line intersecting all rectangles, then the set is 1-pierceable.

A short scan through the items in the lemma shows that adding a rectangle cannot

decrease the characteristic 2-piercing index, with the step from (5) to (4) being the only

non-trivial case. To see also this case, assume that we add a rectangle to R with �

R

= 5,

and the resulting set

^

R is pierceable by its fourth candidate

^

C

(4)

= fv̂

LB

; v̂

RT

g. Compare

the points with the fourth candidate C

(4)

= fv

LB

; v

RT

g of R. v̂

LB

must lie in the third

quadrant anchored at v

LB

, and thus moving from v̂

LB

to v

LB

we cannot exit a rectangle in

R. Similarly, v

RT

pierces all rectangles in R which are pierced by v̂

RT

. So if

^

C

(4)

is piercing

^

R (and thus R), then C

(4)

is piercing R, contradicting the assumption that �

R

= 5.
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So the �rst component in the w-value of a set cannot decrease if a new rectangle is

added. The same holds for all the other components, as is easily veri�ed for the next

four components, and as follows from the lemma for the last component. We have thus

established monotonicity of w.

As for locality, consider F � G � R with w(F) = w(G) = (�;�x

1

; x

2

;�y

1

; y

2

; �)

and a rectangle r with a scaling point. Note that w(G) < w(G [ frg), i� r(�) is disjoint

from the piercing candidate set described by w(G), which is equivalent to the condition

w(F) < w(F [ frg). This proves locality.

We are left with the task of proving that the combinatorial dimension of (R; w) is

bounded by a �xed constant. That is, we need to bound the number of rectangles in a set

G � R that determine w(G). At most �ve rectangles determine �

00

(G). At most four other

rectangles may be needed to �x the lines `

X

, for X = L;R; T;B (and thus �x the points

v

XY

, for X = L;R and Y = B; T ). If �

G

= i, then we may need up to i � 1 additional

rectangles to enforce that index (for each 1 � j < i we need a rectangle r 2 G, so that r(�

00

G

)

is disjoint from C

(j)

). We obtain an upper bound of 5 + 4 + 4 = 13 on the maximal size

of a basis (remember that �

G(�

00

G

)

< 6). The actual bound is smaller, since we can `recycle'

some of the rectangles in the argument.

The two types of basic operations are easy to implement in constant time. Lemma 3.1

implies:

Theorem 3.6 The general rectilinear 2-center problem for n rectangles with scaling points

can be solved in expected O(n) time by a randomized algorithm.

The 3-center problem as an LP-type problem. Given a nonempty 3-pierceable set

R of axis-parallel rectangles, let v

R

be the �rst point v in the sequence (v

RT

; v

RB

; v

LT

; v

LB

)

such that the set of rectangles in R disjoint from v, denoted by R	 v, is 2-pierceable (v

R

exists; see Subsection 2.1). We put �

R

= i, if v

R

's occurrence in this sequence is in position

i, for 1 � i � 4. We extend this notion to �

;

= 0, v

;

=?, and for R not 3-pierceable,

�

R

= 5, v

R

=?.

Let R be a set of axis-parallel rectangles with scaling points. For G � R, we de�ne

u(G) = (�

000

G

;�x

L

; x

R

;�y

B

; y

T

; �

G

000

; ~w(G

000

	 v

G

000

));

where G

000

= G(�

000

G

), where x

L

, x

R

, y

B

, and y

T

are as de�ned above, for the scaled set G

000

,

and where ~w is the tuple w without its �rst component (here there is no need to specify

another scaling factor). As before, one can show that u(G) describes a unique candidate

piercing set.

Ordering on tuples (�;�x

1

; x

2

;�y

1

; y

2

; �; ~w) is again lexicographic from left to right.

Monotonicity follows easily, as in the 2-center case. Locality follows again, because u(G)

encodes an explicit piercing set which determines whether u(G [ frg) > u(G) for some r

(this happens i� r(�

000

G

) is not pierced by that set).

For the combinatorial dimension, we have to �nd a bound on the number of rectangles

in a set G necessary for determining u(G): 16 rectangles enforce �

000

G

; 4 rectangles �x the

lines `

X

; for each � = 2; 3; 4, we need up to 5 rectangles for each preceding vertex v

XY

, to

show that the rectangles disjoint from v

XY

are not 2-pierceable, thus enforcing the value
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of �. Finally, we need 4+4 more rectangles to enforce the value of ~w (see the previous

analysis). This gives a bound of 16 + 4 + 3 � 5 + 8 = 43 (which, again, can be improved

by a more careful analysis). It requires an actual implementation to decide whether the

randomized algorithm derived from the LP-type framework provides a practical method for

the problem. At this point we have the following theoretical result.

Theorem 3.7 The general rectilinear 3-center problem for n rectangles with scaling points

can be solved in expected O(n) time by a randomized algorithm.

The algorithms in Theorems 3.6 and 3.7 can be derandomized at the cost of an increase in

the constant of proportionality only; this is done using the technique of [6]. (Note that this

technique also works in an abstract setting, which requires some extra condition beyond the

LP-type axioms: For each basis B, let G

B

be the set of all constraints not violated by B.

Then we require that the set system fG

B

g

B

have �nite VC-dimension. It is easily veri�ed

that this condition holds for the above center problems.)

Remark. One can apply Lemma 3.2(c), using a machinery similar to that above, to

obtain a linear-time randomized algorithm for the general rectilinear 2-center problem in

any dimension d. See also a related piercing result in [27].

3.2 Rectilinear 4- and 5-center problems

Let S be a set of n points in the plane. We want to �nd the smallest �, so that S can be

covered by the union of four (or �ve) axis-parallel squares of side length �. We solve this

problem by providing a general scheme for transforming a p-piercing algorithm for translates

of squares to a rectilinear p-center algorithm. It is based on the matrix-searching technique

of Frederickson and Johnson [16, 17, 18] (a previous recent and similar application of that

technique can be found in [22]).

Speci�cally, we observe that if S can be covered by the union of p squares of size �, then

it can also be covered by the union of p squares of size smaller than �, unless � is equal to

the di�erence between either the x-coordinates or the y-coordinates of a pair of points in

S.

We therefore consider two n� n matrices X and Y , de�ned as follows. Let (x

1

; : : : ; x

n

)

be the sequence of x-coordinates of the points of S, sorted in increasing order. Then

X

ij

= x

j

�x

i

if j > i and X

ij

= 0 otherwise. The matrix Y is de�ned symmetrically by the

sorted y-coordinates of the points of S. We note that both matrices are monotone, in the

sense that each row (resp. each column) is a monotone nondecreasing (resp. nonincreasing)

sequence, and that the optimal �

�

is an entry of one of these matrices. Moreover, comparing

�

�

with another � can be done by applying a p-piercing algorithm to the setQ(�) = fs+�Q j

s 2 Sg, where Q is an axis-parallel square of size 1, centered at the origin. That is, Q(�) is

p-pierceable if and only if � � �

�

. We can therefore apply the matrix searching technique

of Frederickson and Johnson, as described in [16, 17, 18]. It �nds the optimal �

�

by making

only O(logn) calls to the p-piercing decision procedure. That is, we have shown:

Theorem 3.8 If the p-piercing problem for n translates of a square can be solved in time

t

p

(n), then the rectilinear p-center problem can be solved in O(t

p

(n) logn) time.

Based on Theorems 2.3(b) and 2.5, we get:
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A

B

D

C

Figure 3: TransformingMax-Gap to the rectilinear 4-center problem

Corollary 3.9 The rectilinear 4-center problem can be solved in time O(n logn), which is

worst-case optimal, and the rectilinear 5-center problem can be solved in time O(n log

5

n).

The proof of the lower bound for the 4-center problem goes as follows. We reduce the

Max-Gap problem to the rectilinear 4-center problem. In the Max-Gap problem we are

given real numbers 0 � x

1

; x

2

; : : : ; x

n

� 1, and want to compute the maximum gap between

two successive numbers in the sorted sequence. As is well known [32], the Max-Gap

problem has an 
(n logn) lower bound in the algebraic computation tree model.

Given an instance 0 � x

1

; x

2

; : : : ; x

n

� 1 of the Max-Gap problem, we map each x

i

to

the four points

a

i

= (x

i

; 1� x

i

); b

i

= (1� x

i

;�x

i

); c

i

= (�x

i

;�1 + x

i

); d

i

= (�1 + x

i

; x

i

) :

Let A = fa

i

g

n

i=1

, B = fb

i

g

n

i=1

, C = fc

i

g

n

i=1

, and D = fd

i

g

n

i=1

, and put S = A [B [ C [D.

All the points of S lie on the edges of a square K; see Figure 3. Add the four vertices of K

to S, to obtain a new set S

0

of 4n+4 points. Note that we can cover S

0

by four axis-parallel

squares of size (edge length) 1. Moreover, if there is an index i such that two of the points

a

i

; b

i

; c

i

; d

i

belong to the same covering axis-parallel square, then its size must be at least

1. Hence, in looking for a smaller solution, we may assume that, for each i, each square

contains exactly one of the points a

i

; b

i

; c

i

; d

i

. Also, each such smaller square must contain a

unique vertex of K. Let us sort each of the sets A, B in decreasing y order, and each of the

sets C, D in increasing y order. It follows that one of the covering squares contains a su�x

of D and a pre�x of A, another square contains a su�x of A and a pre�x of B, another

square contains a su�x of B and a pre�x of C, and the last square contains a su�x of C
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and a pre�x of D. Moreover, all four pre�xes are images of the same subset of the points

x

i

, and thus so are all four su�xes. Suppose, with no loss of generality, that the numbers

x

1

; : : : ; x

n

are sorted in this order, that the pre�xes are images of the numbers x

1

; : : : ; x

i

,

and that the su�xes are images of x

i+1

; : : : ; x

n

. It follows that the smallest possible size

of these squares is 1 � (x

i+1

� x

i

). Hence, to �nd the smallest size of four axis-parallel

squares that cover S

0

, we have to compute the maximum gap in the sequence x

1

; : : : ; x

n

.

This implies the asserted lower bound.

We can also derive an 
(n logn) bound for the 4-piercing problem of axis-parallel

squares. We use a similar reduction to that given above, except that for each point p 2 S

0

we draw an axis-parallel square of size � < 1 and centered at p. Using the same arguments

as above, we see that this set is 4-pierceable if and only if the maximum gap in the sequence

x

1

; : : : ; x

n

is at least 1��. Since this latterGap-Existence problem also has an 
(n logn)

lower bound in the algebraic decision tree model [32]

4

, the claim follows.

Remark. The Frederickson-Johnson technique fails in the weighted case, where we need to

apply full-
edged parametric searching [36] (see also [1, 2]). This results in O(n polylogn)

solutions for both the weighted (or general) rectilinear 4- and 5-center problems. This

technique requires an e�cient parallel implementation of a generic simulation of the 4-

piercing algorithm provided in Theorem 2.4, or of the 5-piercing algorithm provided in

Theorem 2.5. Both implementations are not straightforward, since both algorithms employ

a sequential iteration over the corresponding sequence of atomic intervals. Nevertheless,

this iteration can be parallelized, using persistent range trees and related techniques. The

other steps of the algorithms are fairly easy to parallelize. For the sake of brevity, we do

not provide any further details, and leave them to the interested reader.

4 Polygonal 2-Piercing and 2-Center Problems

In this section we consider the 2-piercing and 2-center problems for convex polygons. In

the 2-center problem, we are given a set S of n points in the plane, and a convex c-gon P ,

and we want to cover S with two homothetic copies of P whose maximum size is as small

as possible. An equivalent formulation of the problem is as follows. Let

~

P be the re
ected

image of P through the origin. We want to �nd the smallest scaling factor � for which the

collection P(�) = fs+ �

~

P j s 2 Sg of isothetic polygons is 2-pierceable.

As a matter of fact, we consider the following more general 2-piercing problem: A

collection Q of convex polygons is called c-oriented if the orientations of the edges of each

Q 2 Q belong to a �xed set of c orientations. (We will also allow degenerate cases, in which

some members of Q may have fewer than c edges; we treat these cases by regarding each

member of Q as a convex c-gon, where some of its sides have zero length.)

4

Actually, an 
(n log n) lower bound is established in [32] for the Uniform-Gap problem: Given n real

numbers x

1

; : : : ; x

n

and a real � > 0, determine whether the gap between any pair of consecutive elements

in the sorted sequence of the x

i

's is exactly �. It is easy to reduce the Uniform-Gap problem to the

Gap-Existence problem, which thus also has the same lower bound in the algebraic decision tree model.
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4.1 Polygonal 2-piercing

Let Q = fQ

1

; : : : ; Q

n

g be a collection of c-oriented convex polygons. We want to determine

whether Q is 2-pierceable. Unlike the case where the given orientations come from the

sides of a square (which is the rectilinear 2-piercing problem treated earlier), there is no

general Helly-type result for 2-piercing of Q (such a result was conjectured by Danzer and

Gr�unbaum [8] and recently refuted by Katchalski and Nashtir [26]). (It is also shown in [26]

that there is a constant u such that, for any convex c-gon Q and corresponding collectionQ,

if any cu (or fewer) polygons in Q are 2-pierceable then Q is 3-pierceable. Unfortunately,

this result does not lead to any LP-type formulation of the corresponding 2-center problem.)

Nevertheless, such a Helly-type result was established in [26] for the case where Q is

a set of homothetic triangles: If any 9 (or fewer) triangles in Q are 2-pierceable then Q

is 2-pierceable. This result implies that the 2-center problem for homothets of a given

triangle can be solved in expected linear time, using the machinery of LP-type problems,

in a manner similar to that employed in Section 3.1. However, our analysis will also imply

a simpler (and deterministic) linear-time solution for triangles.

For each edge orientation �, let L

�

be the directed line at orientation � that satis�es the

following properties:

� L

�

passes through an edge e of some polygon Q

�

2 Q (including degenerate edges, as

above), so that Q

�

lies to the left of L

�

.

� No edge at orientation � of any polygon in Q is contained in the open halfplane to

the left of L

�

.

For simplicity of presentation, we assume, as above, that the polygons in Q are in general

position, meaning that no two distinct edges of the polygons lie on the same line. Again,

it is easily seen that the analysis given below continues to hold for collections Q not in

general position. Let L be the resulting collection of c lines, and let A(L) denote their

arrangement. See Figure 4. Note that if Q can be pierced by two points a, b, then the

closed left halfplane bounded by each of the lines L

�

must contain either a or b (or else the

corresponding polygon Q

�

will not be pierced).

Lemma 4.1 (a) If Q can be pierced by two points, then it can be pierced by a pair of points

lying on the lines of L.

(b) For Q a 2-pierceable collection of homothetic triangles or 4-oriented trapezoids, we may

further assume that one of the piercing points lies at a vertex of A(L).

Proof: (a) Let a and b be two points that pierce Q. We will show that a can be moved to

an appropriate edge g of A(L), on the boundary of the face containing a, so that, during

this motion, we do not exit any polygon in Q. A similar property also holds for b, and

this clearly implies the assertion of the lemma. The following claim is immediate from the

de�nitions:

Claim: (i) Suppose that a lies in the left halfplane of some line L

�

. If a moves arbitrarily

within this halfplane, it cannot exit any polygon of Q through an edge at orientation �.

(ii) Suppose that a lies in the right halfplane of some line L

�

. If amoves within this halfplane
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Figure 4: The arrangement A(L) for a 2-pierceable set of 4-oriented (actually isothetic)

quadrilaterals

so that its distance from L

�

decreases, it cannot exit any polygon of Q through an edge at

orientation �.

Partition the set of the c given orientations into f�

1

; : : : ; �

i

g and f�

0

1

; : : : ; �

0

j

g (with

i+ j = c), so that a lies in the closed left halfplanes of L

�

1

; : : : ; L

�

i

, and in the open right

halfplanes of L

�

0

1

; : : : ; L

�

0

j

. Let f be the face of A(L) containing a. The intersection of the

closed left halfplanes bounded by L

�

0

1

; : : : ; L

�

0

j

cannot be empty, because it must contain the

point b (recall that each such halfplane contains either a or b, and none of them contains

a). It follows that the intersection K of the corresponding open right halfplanes (which

contains f) must be unbounded. Let � be a ray contained in K. Then it follows that, if we

move from a in the direction opposite to �, we do not move away from any line L

�

0

t

. Hence,

by the above claim, we reach the boundary of f without exiting any polygon in Q.

(b) Before beginning the proof of the second part, we �rst note that there are situations

in which one cannot enforce any piercing point to lie at a vertex of A(L), already for c = 4.

Such a situation is shown in Figure 5. In this �gure, it is easily checked that there is no pair

of piercing points, one of which is a vertex of A(L). Each of the two piercing points shown

in the �gure lies on an edge of A(L), and if we attempt to move it towards any endpoint of

that edge, it leaves some quadrilateral of Q.

Nevertheless, the property that one can enforce one piercing point to lie at a vertex of

A(L) does hold for c = 3 (the case of homothetic triangles), and for 4-oriented trapezoids.

This is easy to show for the case of triangles, using the same analysis as above. The proof

for the case of 4-oriented trapezoids goes as follows.
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Figure 5: A con�guration of a 2-pierceable collection of 4-oriented quadrilaterals where no

piercing point can lie at a vertex of A(L)

Suppose, with no loss of generality, that the bases of the given trapezoids are horizontal.

The set L consists of four lines, two of which are horizontal and denoted by `

1

and `

2

, and

the other two are denoted by `

3

and `

4

. Each line ` 2 L has an associated halfplane `

+

that

contains the trapezoid with a side lying on `. As above, each halfplane `

+

must contain at

least one piercing point.

We use the following rule, which is a reformulation of the preceding analysis: Let p be a

point in the plane. If we move p arbitrarily, so that its distance from `

+

does not increase,

for every ` 2 L, then p does not exit any trapezoid of Q.

Suppose that fp; qg is a piercing set of Q, so that each of these points lies on a line in L.

If one of these points, say p, belongs to all four halfplanes `

+

, then p pierces all trapezoids,

and we can easily move it, within this intersection, to a vertex of A(L), which still pierces

Q. If one of these points, say p, belongs to three halfplanes `

+

(but not to all four), then

let v denote the vertex of the face containing p in A(L), such that v is nearest to the fourth

line `. We can then move p to v, so that its distance from ` does not increase, which, by

the above rule, allows us to replace p by v in the piercing set.

In the remaining case, each of p and q lies in exactly two halfplanes `

+

. It is impossible

that one of these points lies in `

+

1

\ `

+

2

, because the other point would also have to lie in

one of these halfplanes (in this case, the union `

+

1

[ `

+

2

is the entire plane). We may thus

assume, with no loss of generality, that p 2 `

+

1

\ `

+

3

and that q 2 `

+

2

\ `

+

4

. If one of the

points, say p, lies on one of the horizontal lines, then we can move it along this line towards

`

4

, and this motion is easily seen to be `safe', in the sense that it will not cause p to exit

any trapezoid, and it will eventually reach a vertex of A(L).

We may therefore assume that p 2 `

3

and q 2 `

4

. Let w be the point of intersection of

`

3

and `

4

, and suppose that the vertical distance between p and w is larger than the vertical

distance between q and w. We claim that moving p along `

3

towards w is safe in the above

sense. Indeed, if this were not the case, then p would be moving away from `

2

, in which

22



case q, which lies in `

+

2

, would have to lie vertically further from w, contrary to assumption.

This motion of p would eventually move it to a vertex of A(L), completing the proof of the

second part of the lemma. 2

Lemma 4.1(b) leads to the following new Helly-type result, which extends a similar

result of [26], established for homothetic triangles.

Lemma 4.2 Let Q be a collection of 4-oriented trapezoids. If every subcollection of 22 (or

fewer) trapezoids of Q is 2-pierceable, then Q is 2-pierceable.

Proof: Suppose to the contrary that this property holds but Q is not 2-pierceable. Let

Q

1

; Q

2

; Q

3

; Q

4

be the four trapezoids that de�ne the lines of L. The arrangement A(L) has

six vertices. For each vertex v, let Q

v

denote the subset of trapezoids of Q that do not

contain v. By Lemma 4.1(b),Q

v

is not 1-pierceable, that is, its intersection is empty. By the

standard Helly theorem, Q

v

contains three trapezoids whose intersection is empty. Collect

six such triples of trapezoids, one for each vertex v of A(L), and add the four trapezoids

Q

1

; : : : ; Q

4

, to obtain a subcollection Q

�

of 22 trapezoids. By the above construction, and

by Lemma 4.1(b), it follows that Q

�

is not 2-pierceable, contrary to assumption. 2

Renarks. (a) The number 22 in the above lemma can probably be made smaller|we have

made no attempt to minimize its value.

(b) We leave it as an open problem to extend the results of Lemmas 4.1(b) and 4.2 to other

families of c-oriented polygons.

Lemma 4.1(a) reduces the search for the two piercing points to a constant number of

1-dimensional searches (along the lines of L). This leads to the following simple algorithm

for �nding the piercing points (when they exist):

(1) Fix a line L

�

2 L, and intersect each polygon in Q with L

�

, to obtain a system of

intervals (some of which might be empty) along L

�

.

(2) Sort the endpoints of these intervals along L

�

, and obtain a partitioning of L

�

into

atomic intervals, each delimited by two adjacent endpoints.

(3) Iterate through these atomic intervals, maintaining the set of polygonsQ

I

not containing

the current interval I . To decide whether one of the piercing points a can be placed in I , we

need to determine whether the polygons in Q

I

have nonempty intersection. To determine

this e�ciently, we maintain, for each edge orientation �, a priority queue H

�

of the edges

at orientation � of the polygons in Q

I

, in the order of the intercepts of the lines containing

them. More precisely, e

0

precedes e

00

in H

�

if the halfplane bounded by the line passing

through e

0

and containing its polygon is contained in the corresponding halfplane for e

00

.

We refer to these halfplanes as inner halfplanes. We pick the smallest element of each of

these queues, and consider the c inner halfplanes bounded by the lines passing through

these c edges. Clearly, the intersection of Q

I

is nonempty if and only if these c halfplanes

have a nonempty intersection, which can be tested in constant time.

(4) Since Q

I

changes from one atomic interval to the other only by the insertion or deletion

of a polygon (assuming general position), the priority queues can be updated in O(c logn)

time for each atomic interval.

We have thus shown the upper bound of part (a) of the following
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Theorem 4.3 (a) Given a set Q of n convex c-oriented polygons, one can determine, in

O(c

2

n logn) time, whether Q is 2-pierceable. For c �xed, this is worst-case optimal, in the

algebraic decision tree model.

(b) Let S be a set of n points in the plane, and let Q be a convex c-gon. Assume that the

points of S are presorted in each of the directions orthogonal to the c orientations of the edges

of Q. Then, for any given � > 0, we can decide 2-pierceability of the set fs + �Q j s 2 Sg

in linear time.

(c) If Q is a set of n homothetic triangles, or of n 4-oriented trapezoids, then 2-pierceability

of Q can be decided in O(n) time.

Proof: Part (c) easily follows from the fact that we can place one piercing point at a vertex

of A(L), as argued in Lemma 4.1(b).

The lower bound in part (a) is proved as follows. We show that the problem of determin-

ing whether a collection of 4-oriented quadrilaterals is 2-pierceable requires 
(n logn) time

in the algebraic decision tree model. The quadrilaterals in Q are constructed such that the

set L is as shown in Figure 5, and such that the two piercing points must lie in the relative

interiors of the edges e, e

0

of A(L), as in Figure 5. Moreover, we also assume that, for any

choice of segments g � e, g

0

� e

0

, there exists a quadrilateral Q with the four given side

orientations, such that Q\ e = g and Q\ e

0

= g

0

. It is indeed easy to construct a collection

of O(1) quadrilaterals for which the above properties hold, and the actual collection Q will

be formed by introducing additional quadrilaterals that intersect both e and e

0

.

Hence the problem, under these additional assumptions, is equivalent to the following

one: Given two sequences of intervals, (I

1

; : : : ; I

n

) and (J

1

; : : : ; J

n

), on two respective lines,

determine whether there exists a pair p, q of points, one on each line, such that for each

k = 1; : : : ; n, either p 2 I

k

or q 2 J

k

. We present a reduction from the Gap-Existence

problem, already considered in Subsection 3.2: Given reals x

1

; : : : ; x

n

, and � > 0, determine

whether the maximum gap in their sorted sequence is at least �. As noted above, this

problem has an 
(n logn) lower bound in the algebraic decision tree model.

Given an instance of the Gap-Existence problem, we �rst shift and scale it, so that

min

i

x

i

= 0 and max

i

x

i

= 1. Put � = (1� �)=2 (we may of course assume that � < 1), and

de�ne, for each k = 1; : : : ; n,

I

2k�1

= [x

k

� �; x

k

+ �] ; I

2k

= [x

k

� 1� �; x

k

� 1 + �] ; J

2k�1

= I

2k

; J

2k

= I

2k�1

:

Let p be a point on the line containing the I-intervals. It pierces those intervals I

2k�1

for

which x

k

2 [p � �; p + �], and intervals I

2k

for which x

k

2 [1 + p � �; 1 + p + �]. See

Figure 6. Note that the gap between these two intervals is �. Hence, if the maximum gap in

the sorted sequence of the x

i

's is � �, we can �nd a point p such that for each k = 1; : : : ; n,

either x

k

� p + � or x

k

� 1 + p� �, and such that each of these inequalities is satis�ed at

least once. It follows that in this case p� � � 0 and 1 + p+ � � 1, which implies that for

each k = 1; : : : ; n, either I

2k�1

or I

2k

is pierced by p (but not both). Hence, if we choose

the same point p on the other line too, we pierce one interval out of each pair (I

`

; J

`

), for

` = 1; : : : ; 2n. It is easy to see that the converse also holds: If there exists a solution p; q to

the above instance of the 2-piercing problem, then each x

k

lies in the union of [p��; p+�]

and [1 + p� �; 1 + p+ �]. Moreover, since the length of each of these intervals is 1� �, no

interval can contain all points x

k

. This implies that the maximum gap in the sequence x

k

is at least �. This completes the proof of the asserted lower bound in (a).
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p� � p+ � 1 + p� � 1 + p+ �
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Figure 6: The intervals related to a piercing point

We next prove part (b). We pick a line L 2 L, and intersect each Q 2 Q with L, to

obtain a system of intervals. We classify the endpoints of these intervals into c subsets,

according to the orientations of the polygon edges that are incident to these points. For

each subset, the order of its points along L can be obtained in linear time from the presorted

order of all the polygon edges with the corresponding orientation. By merging the resulting

c ordered sequences, in linear time, we obtain the sorted sequence of the endpoints of all

the atomic intervals along L. Let us denote this sequence symbolically by (1; 2; : : : ; 2n)

(without loss of generality, we assume that these points are distinct, and that every Q 2 Q

intersects L).

Next consider the maintenance of the priority queues. Let H

�

be one of these queues.

Consider all the polygon edges that have orientation �. By assumption, their order in the

direction orthogonal to � is given in advance, and let us denote them symbolically, in this

order, as 1; 2; : : : ; n.

We can formulate the maintenance of H

�

by the algorithm given in (a) as follows. We

are given a system of n horizontal segments I

k

= [(a

k

; k); (b

k

; k)], for k = 1; : : : ; n, where

a

k

< b

k

are integers in f1; : : : ; 2ng. The goal is to compute their lower envelope (pointwise

minimum). Indeed, the x-axis in this setup represents the line L, and the intervals (j; j+1),

for j = 1; : : : ; 2n�1, are the atomic intervals. For each k, the interval I

k

represents the k-th

polygon edge at orientation �, where a

k

and b

k

represent the points at which the boundary

of the polygon containing that edge intersects L. See Figure 7 for an illustration. Note that

in this formulation, we regard the problem as an o�-line problem, where the sequence of

operations is given in advance, which is indeed the case.

This abstract problem can be solved in linear time, using the disjoint set union algorithm

of Gabow and Tarjan [19]. Speci�cally, let s

j

= (j; j+1), for j = 1; : : : ; 2n�1. We maintain

a partition of fs

1

; : : : ; s

2n�1

g into disjoint sets. Initially, the sets are the singletons fs

j

g, for

j = 1; : : : ; 2n� 1. The data structure that we use supports operations of the form �nd(i),

which returns the set containing the atomic interval s

i

, and union(i; i+ 1), which merges

the sets �nd(i) and �nd(i + 1) into a new common set. In addition, each set A has a

pointer to the rightmost atomic interval that it contains, and a 
ag that indicates whether

A is a singleton set. Each singleton set stores an additional pointer to the interval I

k

that

attains the lower envelope over it. Initially, these pointers are all null.

We process the intervals I

k

in increasing y order. To process I

k

= [(a

k

; k); (b

k

; k)], we

compute � = �nd(a

k

). Suppose that the rightmost atomic interval of � is s

q

. If I

k

also

covers s

q+1

(that is, if b

k

> q + 1), we perform union(q; q + 1), �nd the rightmost interval
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Figure 7: The maintenance of a priority queue H

�

as an abstract disjoint set union problem

that this new set contains, and keep iterating in this manner until all of I

k

is exhausted.

If any of the sets encountered in this process is a singleton, we record in it that the lower

envelope over it is attained by I

k

. When we �nish processing all the I

k

's, each atomic

interval s

j

stores the interval I

k

attaining the lower envelope over it (or, if s

j

still stores the

initial null value, no interval I

k

covers s

j

).

Using the data structure of [19], this processing can be done in O(n) time. This com-

pletes the proof of part (b).

We remark that the model of computation used in (b) is di�erent from the algebraic

decision tree model, since the algorithm of [19] uses the bits of the input data to access

various look-up tables. Still, since the input data consists only of integers not larger than

2n, there is no real explicit dependence on the bits of the original input data. 2

Remark: Lemma 4.1(a) can be extended to higher dimensions. A family Q of convex

polytopes in IR

d

is called c-oriented if the normal directions of the facets of these polytopes

belong to a �xed set of c directions. Let Q be a family of n c-oriented convex polytopes.

For each of the c facet normal directions u, let h

u

be the hyperplane orthogonal to u that

contains a facet of some polytope Q 2 Q, so that no facet with the same normal direction

of another polytope lies in the halfspace bounded by h

u

and containing Q. Let H be the

resulting collection of c hyperplanes. If Q is 2-pierceable, then, arguing as in the proof

of Lemma 4.1(a), Q can be pierced by two points, each lying on a hyperplane of H. We

can therefore reduce the 2-piercing problem to the following problem: We �x a hyperplane

h 2 H, and form the collection Q

h

= fQ \ h j Q 2 Qg. We then want to determine

whether there exists a 2 h such that the collection Q

h;a

of polytopes not containing a is

1-pierceable. This problem can be solved in timeO(n

d�1

), by constructing the arrangement

A(Q

h

) within h, and then by traversing its cells, passing from each cell to an adjacent cell,

updating the set of polytopes not containing the current cell (by inserting or deleting a

single polytope), and testing whether these polytopes have a nonempty intersection, in a

manner similar to that used in the 2-dimensional case. We leave it to the reader to �ll in the
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easy details. We do not know if there is a faster algorithm for this problem. For example,

can the problem be solved in subquadratic time for d = 3 dimensions? Related algorithms

for 2-piercing in higher dimensions are given in [27]. Our algorithm is faster than those in

[27] when c � 2d� 2.

4.2 Polygonal 2-center problems

We next consider the 2-center problem, as formulated at the beginning of this section.

The case of triangles is easy, and can be solved by a deterministic linear-time algorithm

(replacing the LP-type technique mentioned above). This follows from (a) Lemma 4.1(b),

which says that we can place one piercing point at a vertex of A(L), and (b) the fact that

each line L

�

2 L is determined by a �xed point, which does not change as the scaling factor

� varies. A similar technique applies to the case of trapezoids.

For the general polygonal case, we use the Frederickson-Johnson's matrix searching

technique, as in subsection 3.2. This is done as follows. Let S be the given set of n points,

and let P(�) = fs + �

~

P j s 2 Sg, for any � > 0, be the corresponding set of isothetic

polygons, as de�ned in the beginning of this section. First observe, as in the preceding

paragraph, that for each edge orientation � of

~

P , the line L

�

for P(�) passes through a side

at orientation � of a polygon s

�

+ �

~

P , for a �xed point s

�

2 S that does not depend on �.

Next, examining the 2-piercing algorithm for P(�), as given above, it can be shown that

the 2-pierceability of P(�) can change only at values of � for which three polygon sides

become concurrent, with at least one of these sides lying on one of the lines in L. Indeed,

the above remark implies that the order of polygon edges at a �xed orientation � in the

direction orthogonal to � remains unchanged as � increases, so, as long as no concurrence

of this kind occurs, the algorithm performs exactly the same sequence of operations. This

implies that the optimal value of � must correspond to such a concurrence.

Consider therefore such a concurrence of three sides having three respective orientations

�, �

0

, �

00

.

Lemma 4.4 Let s, s

0

, s

00

be three distinct points in S. Let �

0

be such that the edges of

the three polygons s+ �

0

~

P , s

0

+ �

0

~

P , s

00

+ �

0

~

P , at the respective orientations �, �

0

, �

00

, are

concurrent. Then one can write �

0

= �

1

(s; s

0

) + �

2

(s; s

00

) (so that the �rst term does not

depend on s

00

and the second term does not depend on s

0

).

Proof: Let w be the point common to these three edges. The copy w+�

0

P of the original

polygon P has three sides, whose orientations are the re
ections of �, �

0

, �

00

, which pass

through the points s, s

0

, s

00

, respectively. Let L, L

0

, L

00

be the lines containing these sides,

and let u = L\L

0

, v = L\L

00

. Then uv is proportional to �, and we can write uv = us+sv

(it is easy to see that s lies in uv); see Figure 8. Clearly, us depends only on s and s

0

(and

the orientations �, �

0

), and sv depends only on s and s

00

(and the orientations �, �

00

), which

readily implies the lemma. 2

We next �x three edge orientations �, �

0

, �

00

, �x the point s

�

as de�ned above (there

are c choices for this point), and construct a matrix M , whose rows correspond to the

points s

0

2 S, sorted in increasing order of �

1

(s

�

; s

0

), as de�ned above, and whose columns

correspond to the points s

00

2 S, sorted in increasing order of �

2

(s

�

; s

00

). We put M

ij

=

�

1

(s

�

; s

0

i

) + �

2

(s

�

; s

00

j

), where s

0

i

is the point corresponding to the i-th row of M , and s

00

j

is
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Figure 8: The proof of Lemma 4.4

the point corresponding to the j-th column. If one piercing point lies on L

�

at the optimal

�, and � corresponds to a concurrency as in Lemma 4.4, then the Frederickson-Johnson

technique will �nd �, making only O(logn) `oracle calls', each of which costs only O(n)

time, after an appropriate preprocessing, as in Theorem 4.3(b). Repeating this for each

triple of edge orientations, we obtain:

Theorem 4.5 The polygonal 2-center problem for a set of n points in the plane and a

convex c-gon can be solved in O(c

5

n logn) time. The triangular and trapezoidal 2-center

problems can be solved in (deterministic) linear time.

We remark that more general polygonal 2-center problems can be solved in O(n polylogn)

time, using the parametric searching technique [36], as was also done in Section 3.2, for the

general rectilinear 4- and 5-center problems. Here too we omit the details, and leave it to

the interested reader to work them out.

5 Discussion

In this paper we have considered several rectilinear and polygonal piercing and center prob-

lems in the plane, and have given optimal algorithms for some of those. We have given

optimal solutions for the rectilinear p-piercing and p-center problems, for p � 4. The 3-

center problem has been solved by representing it as an LP-type problem, and it might be

useful to obtain a more direct solution. For p = 5, we have near-linear algorithms for the

rectilinear 5-piercing and 5-center problems, and it might be interesting to improve their

running time by some polylogarithmic factors. For p � 6, the exponential dependence on p

of the running time of a solution to either of these problems begins to `show up', and more

signi�cant improvements might be possible. For example, can the rectilinear 6-piercing or

6-center problems be solved in subquadratic time? in near-linear time? When p becomes

much larger, the interest is in designing algorithms with improved (albeit exponential) de-

pendence of their running time on p, like the current work in [5] mentioned above. Another

direction for further research is to obtain e�cient approximation algorithms, that either

approximate the number of centers up to some small constant factors, or approximate the

optimal size of the covering squares, again up to some small constant factor, or both.
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Another direction for further research is to design linear-time solutions of the rectilinear

3-center or of the triangular 2-center problems, that would be e�cient in practice. Here one

could either show that the actual combinatorial dimensions of these problems are actually

much smaller than the upper bounds given in this paper, or alternatively �nd more direct

and faster approaches to these problems.

The polygonal p-piercing and p-center problems have been studied here only for the

case p = 2, so one faces many more open problems here. For example, can the polygonal

3-piercing problem be solved in near-linear time? An O(n logn)-time solution for the trian-

gular 3-piercing problem has recently been noted by Assa, and independently by Katz and

Nielsen.

Another collection of open problems is to extend our study to higher dimensions. Some

extensions of this sort, to 2-piercing of various objects in higher dimensions, have been ob-

tained by Katz and Nielsen [27]. Assa, and independently Katz and Nielsen, have recently

obtained an O(n logn)-time solution for 3-piercing of axis-parallel boxes. Analogous prob-

lems exist for c-oriented polyhedra. For example, can 2-piercing of c-oriented polyhedra in

3-space be decided in subquadratic time (cf. the quadratic-time solution given above).

Acknowledgments. We wish to thank Jirka Matou�sek, Otfried Schwarzkopf, G�unter
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