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1. INTRODUCTIONThe Voronoi diagram of a set � of objects (`sites') in somespace under some metric (or distance function) is a subdi-vision of the space into cells, one cell per site, such that thecell associated with a site O 2 � comprises the points inspace for which O is closer (under the given metric) than allother sites of �.The study of Voronoi diagrams from the combinatorialand algorithmic points of view has a long and rich historyin computational geometry, beginning with the very papersthat launched this �eld in the 1970s [17]. Following theintensive research conducted since, properties of Voronoi di-agrams in the plane are very well understood, with respectto many di�erent distance functions and types of sites (see,e.g., [6, 11] for recent comprehensive surveys of the subject).In higher dimensions, however, some very basic problemsconcerning Voronoi diagrams are still wide open, and havewithstood repeated attacks. One such problem is determin-ing the combinatorial complexity of the Voronoi diagram ofa set of n `simply-shaped' sites in 3-space under a simplemetric, where the prevailing conjecture is that this com-plexity is near-quadratic, as suggested by the best-knownlower bound. However, the best upper bound derived sofar is O(n3+"), for any " > 0 [19], and even this boundis non-trivial to obtain; it is a corollary to the result thatstates that the lower envelope of an arrangement of semi-algebraic functions of constant description complexity inRd+1 has complexity O(nd+"), for any " > 0 [18]. Sincethe Voronoi diagram of semi-algebraic sites under a semi-algebraic metric (all of constant description complexity) ind dimensions can be represented as such an envelope, as ob-served by Edelsbrunner and Seidel [10], this result impliesthat the complexity of such Voronoi diagrams is O(nd+"),for any " > 0, as well.A special case of this conjecture, which is still open, is thecase of the Voronoi diagram of pairwise-disjoint polyhedralsites with a total of n edges in 3-space under the Euclideanmetric. Two results with quite involved proofs lend credenceto it. One result, due to Agarwal and Sharir [3], shows thatthe locus of points in R3 that lie at distance exactly � fromthe closest site has complexity O(n2+"), for any " > 0. Thesecond result, recently obtained by the authors [16], showsthat the Voronoi diagram of n lines in 3-space under theEuclidean metric has complexity O(n2+"), for any " > 0, if



the lines have a constant number of distinct orientations.A di�erent research avenue is to consider Voronoi dia-grams under a `polyhedral distance function' induced by aconvex polytope with a constant number of facets (see Sec-tion 2.1 for details). It is this direction that the currentpaper takes, and we refer to such diagrams as polyhedralVoronoi diagrams. The polyhedral distance functions in-clude the well-known L1 and L1 metrics, and are also inter-esting due to the fact that the Euclidean ball can be approx-imated arbitrarily well by a convex polytope. This impliesthat any Euclidean Voronoi diagram can be approximatedwith an arbitrarily high degree of accuracy by a polyhedralone. The results presented in this paper concerning poly-hedral Voronoi diagrams, as well as some results that wereknown beforehand, are markedly better than the parallelknown results for the Euclidean case.A tight worst-case bound of �(n2) has recently been pre-sented by Icking and Ma [14] for the complexity of a poly-hedral Voronoi diagram of points in R3 . This followed ear-lier works by Tagansky [20], who has derived a bound ofO(n2 log n) for this complexity (and a worst-case bound of�(n2) for the L1-metric), and by Boissonnat et al. [7] whohave showed the �(n2) bound for some special cases, andhave also given a tight worst-case bound of �(ndd=2e) forthe case of points in d dimensions under the L1 metric ora distance function induced by a simplex.Perhaps more signi�cantly, in light of the state of the artin the Euclidean case, an upper bound of O(n2�(n) log n) forthe polyhedral Voronoi diagram of n lines in R3 was provedby Chew et al. [9], together with a lower bound of 
(n2�(n)).This followed an earlier work of Chew [8] who showed abound of O(n2�(n)) for the Voronoi diagram of lines in R3under a distance function induced by a 2-dimensional poly-gon.In conclusion to their paper [9], Chew et al. have put for-ward the problem of obtaining a near-quadratic upper boundfor the complexity of the polyhedral Voronoi diagram of linesegments, and, more generally, of polygons and polyhedrain three dimensions. It has since been restated by Agarwaland Sharir in their survey [2, Open Problem 6(ii)].1In this paper we settle this problem by proving a bound ofO(n2�(n) log n) for the polyhedral Voronoi diagram of n linesegments in 3-space (Section 4), and a bound of O(n2+"),for any " > 0, for the polyhedral Voronoi diagram of a col-lection of disjoint polyhedra in 3-space with n vertices al-together (Section 5). (The constant of proportionality isquartic in the number of facets of the polytope that de�nesthe distance function.) This also signi�cantly generalizes theresult of Aronov and Sharir [4] (see also [5]), who used fairlycomplicated topological arguments to show a near-quadraticbound for the complexity of the locus of points at any �xed(polyhedral) distance � from their nearest site.Our results can be applied to show (see Section 6) thata collection of disjoint polyhedra in 3-space with n ver-tices altogether can be preprocessed into a data structureof size O(n2+"=Æ4), for any " > 0, such that this data struc-ture can answer Æ-approximate Euclidean nearest-neighborqueries amidst the polyhedra in time O(log(n=Æ)), for anarbitrarily small Æ > 0. (That is, the query returns a sitewhose distance to the query point is at most 1 + Æ times1We are aware of a subsequent study by Chew of the case ofsegment sites and a distance function induced by a tetrahe-dron; as far as we know, this work has not been published.

the distance to the nearest site.) To our knowledge, no suchdata structure with comparable performance was availablebefore. For the case of point sites, a near-linear approximatenearest-neighbor data structure has recently been presentedby Har-Peled [13].Some of the basic techniques we employ are inspired byideas introduced by Chew et al. [9]. We extensively uti-lize the probabilistic analysis method developed by Tagan-sky [20], commonly known as the Tagansky technique. Wealso rely on the technique of counting schemes, originally in-troduced by Halperin and Sharir [12, 18], and re�ned in [1,15] (see [19] for more details concerning this technique).
2. PRELIMINARIES

2.1 Definitions and a Reduction to TrianglesLet P be a convex polytope in R3 with a constant numberof vertices, such that P contains the origin in its interior.We will refer to the origin as the center of P. The distancefunction induced by P is denoted by dP , and the distancefrom any point v 2 R3 to a (possibly in�nite) set of pointsS � R3 under dP isdP(v; S) = infft � 0 : (v + tP) \ S 6= ;g:The distance function dP is a metric if P is centrally sym-metric with respect to the origin.The Voronoi diagram V orP(�) of a set � of m disjointsites in 3-space is the subdivision of R3 into m cells, one cellfor each site of �, such that the cell V (), for  2 �, isV () = fv : dP(v; ) � dP(v; 0); 80 6=g:If � is a set of points, segments, or piecewise linear sur-faces, then each V () is a (not necessarily convex) polyhe-dron. The vertices (edges, faces) of all V (), for  2 �, arethe vertices (resp., the edges, the faces) of V orP(�). Thecombinatorial complexity of V orP(�) is the number of facesof all dimensions of V orP(�).Let �0 be a collection of disjoint closed polyhedra in 3-space with n vertices altogether. Throughout this paper,we assume that �0 is in general position with respect to thepolytope P that induces the distance function. That is, notwo vertices in the scene lie on a line that is parallel to one ofthe faces of P, no homothetic copy of P touches more thanfour sites of �0 with its boundary (while otherwise beingdisjoint from these sites), no line parallel to an edge of Pintersects more than two edges of �0, etc.This assumption is essential, as the complexity of V orP(�)can reach 
(n3) when the sites are in a degenerate con�gu-ration [7, Theorem 7.1].By triangulating P and the boundaries of the polyhedralsites, and by applying an in�nitesimal perturbation to P andthe sites, we may assume that all faces of P are triangles,and that the sites consist of O(n) pairwise disjoint trianglesin general position.2It is easy to see that V orP(�) does not contain edges andfacets that are not adjacent to a vertex. The complexityof V orP(�) is thus proportional to the number of its ver-tices, and it is therefore suÆcient to provide a bound onthis quantity.2This replacement of solid sites by their bounding trianglescan increase the complexity of the diagram by partitioningthe points in the interior of a site among the Voronoi cellsof its boundary triangles.
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Figure 1: An illustration of some of the de�nitions.Details are given in Section 2.5.
2.2 Vertices of the DiagramSome of the concepts introduced in the remainder of thissection are illustrated in Figure 1.Placements. Let � be a collection of triangles in generalposition in R3 . Consider a homothetic copy in R3 of P.It has four degrees of freedom, three for the location of itscenter and one for its scale relative to the center. (That is,we represent a homothetic copy x + �P by the quadruple(x; �).) Any set of four parameters that speci�es locationand scale as above is called a placement of P. A placementis said to be free if the corresponding copy of P is disjointfrom all the sites of � in its interior.Uni-contacts. A placement can be such that @P touchesa triangle of �. This can happen in several ways. We saythat a uni-contact (sometimes referred to as just a `contact')occurs if a vertex of P touches the interior of the triangle (aV -contact), or if the relative interior of an edge of P touchesthe relative interior of an edge of the triangle (an E-contact),or if the interior of a face of P touches a vertex of the triangle(an F -contact). Instead of saying that a contact occurs, wewill sometimes say that P makes or maintains this contact.Notice that if we force P to maintain a certain contact, itretains three degrees of freedom. For instance, �xing thelocation of the center of P and forcing P to make a certaincontact uniquely determines the scale of P.Multi-contacts. A bi-contact is said to occur if a vertexof P touches an edge of some triangle of � (a V 2-bi-contact),or if an edge of P touches a vertex of the triangle (an E2-bi-contact). Forcing P to maintain a bi-contact leaves it withonly two degrees of freedom. A tri-contact is said to occur ifa vertex of P touches a vertex of a triangle, and we denotethis tri-contact by V 3. Maintaining such a tri-contact leaves

P with only one degree of freedom | its center can onlymove along a line (more accurately, a half-line) in R3 .Events. Certain placements of P can make more thanone contact. An event is a placement of P in which it makessuch contacts that together leave it with zero degrees offreedom. That is, any in�nitesimal movement of P in anydirection away from an event necessarily results in losingone of the contacts that are involved in the event. An eventis said to be free if it is a free placement. An event is saidto be a uni-contact event if P only makes uni-contacts inthis placement, and it is said to be a multi-contact eventotherwise.Observation. There is a one-to-one correspondence be-tween vertices of V orP(�) and free events of P among �.Freedom. A contact is said to be clean if the triangle of� that is incident to @P in this contact is disjoint from theinterior of P. Otherwise, the contact is said to be dirty. Anevent is said to be pseudo-free if one or more of the involvedcontacts are dirty, but no triangle that is not involved ina contact intersects P. A 1-level free (resp., pseudo-free)event is an event that would be free (resp., pseudo-free) hadexactly one triangle been removed from �. An event is saidto be a 0-level event if it is either free or pseudo-free.Degrees. Consider a placement of P that is an event.The degree of a vertex v of P in this event is de�ned asthe number of distinct contacts that involve either v or anedge or a face of P that are incident to v. The degree of anedge e of P is de�ned as the number of contacts that involvethe relative interiors of e or of the two faces of P that areincident to e. The degree of a face f of P is de�ned as thenumber of contacts that involve the interior of f .V -, V 2- and V 3-contacts increase the degree of one vertex;E- and E2-contacts increase the degree of an edge and thetwo vertices adjacent to it; F -contacts increase the degreeof a face, along with the degrees of the three edges and thethree vertices adjacent to it. Notice that the general positionassumption implies that the degree of a face is at most 1.The degree of an edge or a vertex can reach 4, which is themaximum possible degree, as is again implied by the generalposition assumption.Incidence. Consider a placement of P that is an event.Two contacts � and � are said to be incident in one vertex(resp., two vertices) in this event if the feature of P that isinvolved in � shares one vertex (resp., two vertices) with thefeature of P that is involved in �.Activeness. Let i be the number of vertices of P. Wesay that features of P that have strictly positive degree insome event are `active' in that event. The general positionassumption implies that not more that four distinct contactscan participate in an event. Since each contact increasesonly the degrees of the vertices that are adjacent to thefeature of P that is involved in this contact, and each feature(face, edge, or vertex) is adjacent to at most three vertices,at most 12 vertices can be active in an event. This impliesthat it suÆces to consider polytopes P with 12 or fewervertices. Indeed, if P has more than 12 vertices then anyevent of P is also an event of a sub-polytope P 0 that has 12or fewer vertices that are adjacent to 4 features of P (clearly,if a placement of P is free, then the corresponding placementof P 0 is also free.)The maximal number of vertices of V orP(�), for a poly-tope P with i vertices, is thus proportional to the maximal



number of vertices of V orQ(�), where Q has 12 or fewervertices. Moreover, the dependence on i in the constantof proportionality is quartic, since it suÆces to consider allsub-polytopes of P that are de�ned by 4 or fewer distinctfeatures of P. The number of sub-polytopes with at most12 vertices that have to be considered is therefore less thani4. Hence, Ni = O(i4N12), for all i > 12, where Ni = Ni(�)denotes the maximum number of vertices of V orP(�), for agiven �, when P has i vertices.Moreover, in order to bound the maximal number of eventsof a certain combinatorial type, it suÆces to consider onlypolytopes P that have a number of vertices that is equal tothe maximum possible number of active vertices in events ofthis type. For example, it is enough to consider tetrahedralP (four vertices) to bound the maximal number of eventsthat involve four V -contacts.
2.3 Sliding Along Three ContactsA basic paradigm that will prove very useful in our anal-ysis is that of `sliding' along three contacts.Consider an E-contact � that involves an edge e of sometriangle of � and an edge e0 of P. Let �� be the plane thatcontains e and is parallel to e0. `Sliding' P along � meanstranslating it in some direction, and possibly also scalingit, such that the contact � is maintained throughout themovement. It is obvious that during such sliding, the edgee0 of P that is involved in � has to move inside the plane��.If � is an F -contact, involving a vertex v of some triangleof � and a face f of P, sliding is de�ned in an analogousway, when the plane �� is the plane that contains v andis parallel to f , and f has to move inside ��. The caseof a V -contact is analogous, and the plane �� is the planecontaining the triangle of � that is involved in the contact.When P is sliding along one contact �, it has three re-maining degrees of freedom, two for moving along the plane��, and one more for scaling. If we require P to maintaintwo contacts, � and �, we leave it with only two degrees offreedom. It is easy to see that the center of P is con�nedto move inside a speci�c plane in R3 , and that this plane isincident to the line �� \��.Sliding � along three uni-contacts, �, �, and Æ, meansmoving it in such way that it maintains all three contactsduring the movement. This movement has only one degreeof freedom, and the center of � is con�ned to moving alonga speci�c line l�;�;Æ that is incident to the point p�;�;Æ =��\�� \�Æ (in general position, this intersection is indeeda single point).This means that if we wish to slide � along three contactsas above, starting from a speci�c placement, we can do soin only two speci�c directions along l�;�;Æ. One of thesedirections brings P towards p�;�;Æ. Since P has to continuetouching the planes ��, ��, and �Æ during the movement,P shrinks to a point if the sliding continues until the centerof P reaches p�;�;Æ. However, at least two of the contactsare necessarily lost prior to this point, since the trianglesof � that de�ne �, �, and Æ are disjoint and only at mostone of them can be incident to p�;�;Æ. This implies that atsome point during the sliding towards p�;�;Æ, P will reachthe boundary of one of the triangles it touches, and will losethe contact de�ned by this triangle completely if it continuessliding. At this moment, a bi-contact event will occur.Because of linearity of trajectories and the preceding dis-

cussion, the volume of � increases (resp., decreases) when Pslides away from (resp., towards) p�;�;Æ. (In general, P doesnot shrink `into itself' as it approaches p�;�;Æ, but sweepsnew portions of space while shrinking.)Consider the situation where we slide P along three con-tacts starting from an eventX de�ned by four contacts. Thegeneral position assumption implies that the fourth contactmade by P in the event will be lost immediately after thebeginning of the sliding. Moreover, because of the linear-ity of trajectories, in one of the directions of the sliding thisfourth contact will penetrate P, while in the other direction,the placement of P will initially be free.Suppose P makes the contacts �, �, and Æ at some place-ment. Consider a face f of P, such that one of the openhalf-spaces de�ned by the plane incident to f (at this place-ment) contains p�;�;Æ, but does not contain any point ofP. De�ne P+ � @P as the collection of such faces f , to-gether with the edges and vertices of P incident to thesefaces. (These are the features of P that p�;�;Æ `sees' at thisplacement of P.) Consider now a face g of P, such that oneof the open half-spaces de�ned by the plane incident to gcontains neither p�;�;Æ nor any point of P. De�ne P� � @Pas the collection of such faces g, together with the edges andvertices of P incident to these faces. (These are the features`hidden' from p�;�;Æ.)Observe that if p�;�;Æ lies on a plane that is incident to aface h of P, h belongs neither to P+ nor to P�. If p�;�;Æ lieson a line that is incident to an edge e of P, the same holdsfor e. If the point p�;�;Æ is incident to a vertex v of P, thisalso holds for v. Moreover, if p�;�;Æ is incident to a vertex vof P, then P+ � ;.Observation.� P+ and P� are the same for any placement of P thatmakes the contacts �, �, and Æ.� If a new clean uni-contact is made by P while P slidestowards p�;�;Æ as above, such that the new contactinvolves a feature t of P and a triangle  of � thatwas disjoint from P immediately before the contactwas made, then t necessarily belongs to P+. If suchsituation occurs while P slides away from p�;�;Æ, thent belongs to P�.We say that each face of P that belongs to P+ is a frontierface, and that P+ as a whole is the frontier, when we slidetowards p�;�;Æ as above. Symmetrically, each face of P thatbelongs to P� is a frontier face and P� is the frontier whenwe slide along �, �, and Æ in the opposite direction.Shrinking P into itself. Consider a free placement ofP that makes three uni-contacts �, �, and Æ, all incident toa vertex v of P. It is easy to see that in this case p�;�;Æ = v,and consequently P+ � ;. (A 2-dimensional equivalent ofthis situation is illustrated in Figure 1(f).) This implies thatif we slide P towards p�;�;Æ, along �, �, and Æ, P will notencounter new uni-contacts and no uni-contact event willoccur to P. (Informally, P shrinks `into itself'.) However,as observed above, P will at some point reach a bi-contactevent. This implies that we can uniquely charge a free uni-contact event that has a vertex of degree 3 to a free bi-contact event.



2.4 NotationWe will distinguish between several types of events, basedon the type of contacts that are involved in the event. Eachtype will be denoted mnemonically by listing the types ofthe involved contacts. For instance, an FFEV event is anevent with two F -contacts, an E-contact, and a V -contact.Note that it can equivalently be called an EFV F event, say.Every such type of events can have many combinatoriallydi�erent sub-types. For instance, one EEEE event mayhave 4 active vertices (the minimum possible number), whileanother may have 8 (the maximum possible number). Suchcombinatorially di�erent sub-types of events will often getdi�erent treatment in our analysis, and it is thus essential tobe able to distinguish between them in the text. However,for the sake of clarity in the exposition, we will not introducea text-based notation to distinguish between them, but in-stead provide a symbolic illustration of each sub-type whoseanalysis is non-trivial (see, e.g., Figure 2), and refer to therelevant illustration when discussing a certain sub-type.Each combinatorial type of events is represented for thepurpose of illustration as a multi-hypergraph, whose ver-tices correspond to the vertices of P that are active in theevent. This hypergraph may have edges that connect 1,2, or 3 vertices, and such edges correspond respectively toV -, E- and F -contacts. The degree of a vertex in the hy-pergraph is thus the same as the degree of the correspond-ing vertex of P in an event of the illustrated combinatorialtype. The illustrations show planar realizations of the abovemulti-hypergraphs, showing edges of degree 3 (F -contacts)as �lled triangles, edges of degree 2 (E-contacts) as straightor curved segments, and edges of degree 1 (V -contacts) assmall circles. For a concrete example, refer to Figure 3 thatshows a speci�c combinatorial type of FEV V events. Inthis type, the F -contact is incident to the E-contact, andthe two V -contacts are incident to the F -contact and theE-contact, respectively.3
2.5 IllustrationFigure 1 provides an illustration in a 2-dimensional settingof some of the concepts introduced above. In the �gure, thepolygon P is shown with its center marked by a thick dot.Notice that in 2-D, a uni-contact event has only 3 contacts,and that P has one degree of freedom if it has to maintain2 uni-contacts or one bi-contact. A free uni-contact eventis shown in (a), while pseudo-free and 1-level free eventsare shown in (b) and (c), respectively. Although P has 6vertices, only 4 are active in these events. In (d), P makesthe contacts a and b, and can maintain these two contactswhile sliding its center along the line la;b. The thickenededge is the only part of @P in P+, and if P slides towardsthe point pa;b and encounters a uni-contact event, the newthird contact can only involve this edge. In (e), a bi-contacta is shown, together with the line la that P can slide itscenter along while maintaining this contact. In (f), P makestwo contacts a and b that are incident to a vertex that hasdegree 2. In this case, P+ is empty, and P cannot encounternew uni-contact events when sliding towards pa;b; the �rstevent encountered during such sliding is necessarily a multi-contact event. (Informally, when sliding towards pa;b, Pshrinks `into itself'.)3Due to lack of space, we omit the treatment of trianglesites; hence the main �gures do not depict V -contacts.

3. TECHNIQUESIn this section we outline the techniques and arguments wewill be employing repeatedly throughout the analysis. Let� be a set of n pairwise disjoint triangles in R3 , in generalposition.
3.1 Multi-contact eventsThe proofs of the following two lemmas are similar toparts of the analysis of Chew et al. [9], and are omitted dueto space limitations.Lemma 3.1. The number of free and pseudo-free eventsthat involve a V 3-contact is O(n).Lemma 3.2. The number of free and pseudo-free eventsthat involve a V 2- or an E2-contact is O(n2�(n)).We will only consider uni-contact events in the remainderof this section.
3.2 Popular VerticesA vertex v of P is said to be popular in a certain event ofP if its degree in this event is at least 3. A 2-dimensionalequivalent of a popular vertex is shown in Figure 1(f). Theproof of the following lemma is based on ideas introducedby Chew et al. [9].Lemma 3.3. The number of free and pseudo-free eventsthat are such that one of the vertices of P is popular isO(n2�(n)).Proof. Consider a free event X, in which a vertex v ofP is popular. Shrink P into itself towards v, and uniquelycharge X to a free bi-contact event Y , as described at theend of Section 2.3. The lemma follows from the fact thatthe number of such events Y is O(n2�(n)), as stated inLemma 3.2. Pseudo-free events are handled similarly.
3.3 Popular FacesA face f of P is said to be popular if each edge adja-cent to it is either involved in an E-contact, or is incidentto a face other than f that is involved in an F -contact. A2-dimensional equivalent of a popular face is shown in Fig-ure 1(d).Lemma 3.4. The number of free events that are such thatone of the faces of P is popular is O(n2�(n)).Proof. Consider a free event X, in which a face f of P ispopular. If one of the vertices incident to f is popular, thenthe lemma follows from Lemma 3.2. We thus assume belowthat the three vertices adjacent to f all have degree at most2. The popularity of the face f implies that their degreeshave to equal 2. This implies that exactly three contactsinvolve edges of f and faces adjacent to these edges. Let �,�, and Æ be these three contacts. Consider sliding along �,�, and Æ, as described in Section 2.3. It is easy to see thatin one of the two possible directions of the sliding, f is thesole frontier face. Slide in this direction and consider the�rst event Y encountered during the sliding. We charge Xto Y . As in the proof of Lemma 3.3, the charging is unique.Y is either a bi-contact event, or it is an event that involves�, �, Æ, and a fourth contact that involves f or one of theedges or vertices of f . In the latter case, Y necessarily hasa popular vertex. The lemma thus follows from the boundsstated in Lemmas 3.2 and 3.3.



3.4 Reduction to Point SitesLemma 3.5. The number of free and pseudo-free FFFFevents of a polyhedron P with a constant number of verticesis O(n2).Proof. Consider the set of vertices of the polygons in �.It is a set of O(n) points in 3-space. It is easy to see thateach free FFFF event uniquely corresponds to a vertex inthe Voronoi diagram of this set of points, under the distancefunction induced by P. A pseudo-free FFFF event similarlycorresponds to a vertex in this diagram whose level is at most8. The complexity of this diagram is O(n2) [14], and this isalso a bound for the number of free and pseudo-free FFFFevents.
3.5 InductionLet Ni = Ni(�) denote the maximum number of verticesof V orP(�), over all polytopes P with P has i vertices. Itwas observed in Section 2.2 (paragraph `Activeness') that itsuÆces to consider i up to 12. The discussion in that sectionalso implies that the number of events in which only j < ivertices of P are active is O(Nj ), even if P has i vertices.Our basic approach to deriving a bound on N12 is to useinduction. We �rst prove a near-quadratic bound on N4,for which it suÆces to consider tetrahedral P. We thenbound Ni in terms of Ni�1, for 5 � i � 12. One of theways to achieve this will be to charge events with i activevertices to events with at most i�1 active vertices (see, e.g.,Lemmas 3.6 and 3.8).
3.6 The SFC Technique, or

Sliding away from a Face ContactConsider a free uni-contact event X in which a face fof P is involved in an F -contact. Let �, �, and Æ be theother three contacts involved in X. Consider sliding along�, �, and Æ. By de�nition, only one of the parts P+ and P�includes f . If this part is P+, we slide away from p�;�;Æ, andif this part is P�, we slide towards p�;�;Æ. It is easy to seethat P is in a free placement immediately after the beginningof the sliding. We charge X to the �rst event Y encounteredduring the sliding. Y is necessarily free. Observe that duringthis sliding, the face f cannot become involved in new F -contacts, as observed in Section 2.3. Therefore, the fourthcontact in Y does not involve the face f .The SFC technique is useful when we want to charge anevent that involves a particular F -contact to an event thatdoes not involve an F -contact with the same face. Consider,for example, the following situation.We say that an F -contact is `isolated' if it is incidentto no other contact. Suppose X involves an isolated F -contact, and denote the face of P involved in this contactby f . Use the SFC technique to slide away from this contactand charge X to an event Y . We claim that Y has feweractive vertices than X. Indeed, any contact that does notinvolve the face f cannot increase the degree of all the threevertices of f . Since the degree of these three vertices was 1in X, at least one of these vertices has degree 0 in Y . Thisimplies the following lemma.Lemma 3.6. The number of free events of P that have anisolated F -contact is at most O(Ni�1), where i is the numberof vertices in P.

3.7 The SEC Technique, or
Sliding away from an Edge ContactConsider a free event X in which a face f of P is involvedin an F -contact �, and an edge e of f is involved in an E-contact. The degree of e is thus at least 2. Let � and Æbe the other two contacts involved in X. The point p�;�;Ælies on the plane �� that is incident to the face f (at thisplacement). Thus, the edge e that lies inside this planebelongs to only one of the parts P+ and P� (this holds forthe other two edges of f as well). Sliding along �, �, andÆ, as in the previous subsection, we can uniquely charge Xto a free event Y that involves the contacts �, �, Æ, anda fourth contact that is not an E-contact with the edge e.It is also easy to see that this fourth contact cannot be anF -contact with the second face incident to e. The ability toperform such charging will prove useful in several steps ofour analysis.

3.8 Pseudo-free EventsLet i be the number of vertices in P. Let Mi denote themaximum number of pseudo-free events of P among �, overall P with i vertices. The proof of the following lemma isomitted due to space limitations.Lemma 3.7. Mi = O(Ni).
3.9 The LEM Technique, or

Lower Envelopes MergingLet i be the number of vertices in P. Consider four (notnecessarily distinct) features (each being a vertex, an edge,or a 2-dimensional face) of P, such that two of these features,a; b, are incident to each other, and the other two, c; d, areeach incident to a vertex of degree 1 (that is, no other featureis incident to this vertex). Consider a uni-contact event inwhich each of these features is involved in a distinct contact.Such events are said to be LEM events.Lemma 3.8. The number of free and pseudo-free LEMevents of P is O(Ni�1).The proof of the lemma is based on the proof of [9, Lemma3.5]. Informally, �xing the contacts a; b leaves P with 2 de-grees of freedom, so its corresponding placements can be rep-resented within a 2-dimensional frame, in which the eventsunder consideration can be shown to be vertices of the lowerenvelope of all the c-contacts and the d-contacts. We thenuse the fact that the complexity of such an envelope is pro-portional to the sum of the complexities of the two sub-envelopes of the c-contacts and of the d-contacts.
3.10 The Tagansky TechniqueConsider four (not necessarily distinct) features a, b, c,and d (each being a vertex, an edge, or a 2-dimensional face)of P. Consider all the uni-contact events in which each ofthese features is involved in a distinct contact. Denote thecollection of such free events by 
a;b;c;d, and the collectionof such 1-level events by 
1a;b;c;d. Let � be another collectionof events, such that j�j = O(n2�(n) logc n), for some non-negative integer constant c.Assume that, given an event of 
a;b;c;d, we can either (i)charge it to i > 0 events of 
1a;b;c;d, such that the numberof times that each event of 
1a;b;c;d is charged in this fash-ion is at most j, or (ii) charge it to an event of �, such



that the number of times that each event of � is chargedin this fashion is bounded by a constant. The charging istypically done by sliding on three of the contacts and lettingthe fourth contact penetrate P. The following lemma is di-rectly implied by the work of Tagansky [20], and its proof isomitted due to space limitations.Lemma 3.9. Under the assumptions described above:� If i=j = 2, then j
a;b;c;dj = O(n2�(n) logc+1 n).� If i=j > 2, then j
a;b;c;dj = O(n2�(n) logc n).
4. SEGMENT SITESTheorem 4.1. The complexity of the Voronoi diagramof a set � of n segments in 3-space, under a convex dis-tance function induced by a polytope P with q facets, isO(q4n2�(n) log n), provided that the segments are in gen-eral position with respect to P, as de�ned in Section 2.1.Proof. Let i be the number of vertices of P. As de-scribed in Section 3.5, the proof of Theorem 4.1 proceeds byinduction on i, through a series of lemmas. Recall that itsuÆces to con�ne ourselves to i � 12. We begin by obtain-ing a bound for N2 (Lemma 4.2), and then work our way upto N12 (Lemma 4.9). Notice that the only uni-contacts thatoccur are F - and E-contacts. Recall that it is suÆcient tobound the number of free events.A free or pseudo-free event (or a 1-level free or pseudo-freeevent) is said to be good if it is a multi-contact event or anFFFF event, or if it contains a popular vertex or an isolatedF -contact. A free event (or a 1-level free event) that containsa popular face is also said to be good. Events with isolatedF -contacts are easily handled using Lemma 3.6, and thevarious results shown in Section 3 imply that the number offree and pseudo-free good events without isolated F -contactsis O(n2�(n)). We thus do not treat good events explicitlybelow.Lemma 4.2. The complexity of the Voronoi diagram of aset of segments in 3-space is O(n2) under a distance functioninduced by a segment, and is O(n2�(n)) under a distancefunction induced by a triangle4. In other words, N2 = O(n2)and N3 = O(n2�(n)).Proof. It is easy to see that if P is a triangle (3 vertices),all the events of P among � either have a popular vertex or amulti-contact. A bound of O(n2�(n)) on the complexity ofV orP(�) in these cases is thus implied by Lemmas 3.3, 3.1and 3.2. If P is a segment (2 vertices), it is easy to seethat, assuming general position, the only type of events isV 2V 2, and each event can be uniquely charged to a pair ofsegments of �. This easily implies a bound of O(n2).Lemma 4.3. The complexity of the Voronoi diagram of aset of segments in 3-space is O(n2�(n) log n) under a dis-tance function induced by a tetrahedron. In other words,N4 = O(n2�(n) log n).4Strictly speaking, these are not well-de�ned distance func-tions. What the lemma actually analyzes is the numberof free events of the underlying segment or triangle, and itshould be interpreted only in this context.

(i) 6, LEM

(b) 4, Tag. (c) 8, Tag.

(d) 7, LEM (e) 6, LEM (f) 5, LEM

(g) 5, LEM (h) 6, LEM

(a) 4, Tag.

Figure 2: Di�erent combinatorial types of EEEEevents, not including good events. For each type,the number of active vertices and the name of thetechnique employed in the analysis are stated.Proof. Let P be a tetrahedron. Notice that all eventsof P that have at least one F -contact, have at least onepopular vertex. Indeed, observe that an E-contact raisesthe degree of two vertices of P by 1, while an F -contactsimilarly raises the degree of three vertices. Thus, the sumof the degrees of the four vertices of P in an event with oneF -contact and three other contacts that are either E or F isat least 3 + 2 + 2 + 2 = 9. However, this necessarily meansthat one of the four vertices of P has degree at least 3, andis therefore popular. Thus, the O(n2�(n)) bound on thenumber of events that have at least one F -contact followsfrom Lemma 3.3. This bound also applies to the number ofEEEE events that have a popular vertex.We now bound the number of EEEE events that are notgood, and therefore have no popular vertices or faces. Fig-ure 2 illustrates all the combinatorially distinct types of suchevents when P is a polyhedron with an arbitrary number ofvertices. Only two of them, the ones shown in Figures 2(a)and 2(b), can occur when P is a tetrahedron, since all theother types have at least 5 active vertices. We treat thesetwo types of events using the Tagansky technique (see Sec-tion 3.10). Due to lack of space, we merely state that theanalysis shows that the number of events of the Figure 2(a)and Figure 2(b) types is O(n2�(n) log n). (A similar analy-sis was carried out by Chew et al. [9], but only for the caseof line sites.)Lemma 4.4. N5 = O(n2�(n) log n).Proof. Let P be a convex polyhedron with 5 vertices.Events of P with 5 active vertices are either good, or be-long to the types illustrated in Figures 2(f), 2(g), 4(m),4(n), 4(o), 5(y) and 5(z). Events of the types shown inFigures 2(f) and 2(g) are LEM events, and their number isthus O(N4) = O(n2�(n) log n) (Lemmas 3.8 and 4.3).Let X be a free event of a type illustrated in Figure 4(n)or 4(o). Let f be the face of P that is involved in theF -contact in X. Use the SFC technique (Section 3.6) toslide away from this F -contact. Charge X to the �rst eventY encountered during the sliding. Y is a free event, since



the placement of P immediately upon the beginning of thesliding is free. The SFC technique implies that either Y is amulti-contact event, or it has the same triple of E-contactsas X, together with a fourth contact that is not an F -contactwith f . It is easy to see that either (i) Y has 4 activevertices, or (ii) Y is a good event, or (iii) Y is a LEM event.Since the number of such events Y is O(n2�(n) log n), andany event Y can be charged as above only a constant numberof times, this implies that the number of events of the typesillustrated in Figures 4(n) and 4(o) is O(n2�(n) log n).LetX be a free event of the type illustrated in Figure 4(m).Let a denote the edge of P that is involved in the E-contactthat is incident with two vertices to the F -contact. Usethe SEC technique (Section 3.7) to slide away from this E-contact and charge a free event Y , as above. The SEC tech-nique implies that Y cannot have an E-contact that involvesa, or a second F -contact that involves a face incident to a.This implies that either (i) Y is a good event, or (ii) Y isan event of the type shown in Figure 4(o). The number ofevents of the Figure 4(m) type is therefore O(n2�(n) log n),as above.Let X be a free event of one of the type illustrated inFigures 5(y) and 5(z). Use the SFC technique (Section 3.6)to slide away from one of the two F -contacts in X. ChargeX to the �rst event Y encountered during the sliding. Asabove, Y is a free event, and does not involve an F -contactwith the same face. Thus, either (i) Y is a good event, or(ii) Y is an event of one of the types shown in Figures 4(m),4(n) and 4(o). The number of events of the types illustratedin Figures 5(y) and 5(z) is thus O(n2�(n) log n).Lemma 4.5. N6 = O(n2�(n) log n).Proof. Let P be a convex polyhedron with 6 vertices.Events of P with 6 active vertices are either good, or belongto the types illustrated in Figures 2(e), 2(h), 2(i), 4(b), 4(d),4(f), 4(g), 4(i), 4(j), 4(k), 5(g), 5(h), 5(l), 5(s), 5(u), 5(v),5(A), 5(B), 5(C), 6(q), and 6(r).Free events of the types shown in Figures 2(e), 2(h), 2(i),4(b), 4(d), 4(f), 4(g), 4(i), 4(j), 4(k), 5(g), 5(h), 5(l), 5(s),5(u), and 5(v) are LEM events, and their number is thusO(N5) = O(n2�(n) log n) (Lemmas 3.8 and 4.4).Let X be a free event of a type illustrated in Figure 5(A),5(B), or 5(C). Use the SFC technique to slide away fromany one of the two F -contacts of X and charge X to a freeevent Y , as in the proof of Lemma 4.4. Either (i) Y is good,or (ii) Y is a LEM event, or (iii) Y has at most 5 activevertices. The number of events of the types illustrated inFigures 5(A), 5(B), and 5(C) is therefore O(n2�(n) log n).Let X be a free event of a type illustrated in Figure 6(q)or 6(r). Use the SFC technique to slide away from the(unique) F -contact that involves a face that is incident toa vertex of degree 1. Charge X to the �rst event Y en-countered during the sliding. In complete analogy to theabove, the number of these events is O(n2�(n) log n). Thiscompletes the proof of the lemma.Lemma 4.6. N7 = O(n2�(n) log n).Proof. Let P be a convex polyhedron with 7 vertices.Events of P with 7 active vertices are either good, or belongto the types illustrated in Figures 2(d), 4(a), 4(e), 4(h), 4(l),

5(a), 5(c), 5(d), 5(e), 5(j), 5(k), 5(m), 5(n), 5(p), 5(r), 5(t),5(x), 6(c), 6(h), 6(j), 6(k), 6(l), 6(n), and 6(o). All of theseevents are LEM events, and the number of free such eventsis thus O(N6) = O(n2�(n) log n) (Lemmas 3.8 and 4.5).Lemma 4.7. N8 = O(n2�(n) log n).Proof. Let P be a convex polyhedron with 8 vertices.Events of P with 8 active vertices are either good, or be-long to the types illustrated in Figures 2(c), 4(c), 5(b),5(f), 5(o), 5(q), 5(w), 6(a), 6(b), 6(e), 6(g), 6(i), 6(m),and 6(p). All of these events except the Figure 2(c) typeare LEM events, and the number of free such events isO(N7) = O(n2�(n) log n) (Lemmas 3.8 and 4.6).We treat events of the type illustrated in Figure 2(c) usingthe Tagansky technique (see Section 3.10). Due to lack ofspace, we omit all details of this analysis, that shows that thenumber of events of the Figure 2(c) type isO(n2�(n) log n).Lemma 4.8. N9 = O(n2�(n) log n).Proof. Let P be a convex polyhedron with 9 vertices.Events of P with 9 active vertices are either good, or be-long to the types illustrated in Figures 5(i), 6(d), and 6(f).All of these events are LEM events, and the number offree such events is O(N8) = O(n2�(n) log n) (Lemmas 3.8and 4.5).Lemma 4.9. Nd = O(n2�(n) log n), for 10 � d � 12.Proof. A free event of P with 10 or more active verticesnecessarily has at least one isolated F -contact. The numberof such events is therefore easily bounded by induction, usingLemma 3.6. Since N9 = O(n2�(n) log n) (Lemma 4.8), thisimplies the lemma.This completes the proof of Theorem 4.1. 2
5. POLYHEDRAL SITESTheorem 5.1. The complexity of the Voronoi diagram ofa collection of pairwise disjoint polyhedral sites in 3-spacethat have n vertices overall, under a convex distance functioninduced by a polytope P with q facets, is O(q4n2+"), for any" > 0, provided that the sites are in general position withrespect to P, as de�ned in Section 2.1.Unfortunately, all details of the proof of Theorem 5.1 haveto be omitted in this version due to space limitations. Theproof proceeds by induction on the number of vertices of P,as in Section 4, starting with P being a segment or a triangle,and concluding with the case of P having 12 vertices.The proof is complicated by the fact that V -contacts,which cannot occur when the sites are segments, can nowappear. This raises the number of combinatorially distincttypes of events that have to be handled, and drastically in-creases the number of such types that cannot be handled`easily' with the LEM, the SFC, and the SEC techniques.The hardest stages of the proof are bounding N4 andN5. For N4, we resort to the analysis technique of countingschemes, introduced by Halperin and Sharir [12, 18], and



re�ned in several subsequent papers (see, e.g., [1, 15]). In-formally, in the re�ned version, we charge each 0-level eventto about k2 events at level at most k (i.e., at most k sitesintersect the interior of P at such events), or to other eventswhose number can be bounded independently. This leadsto a recurrence whose solution is O(n2+"), for any " > 0.(Actually, only one combinatorial type, shown in Figure 3,requires, so far, the use of a counting scheme.)For N5, we apply an intricate geometric analysis thatstrongly relies on the properties of the pentahedron|theonly combinatorial form that a convex polytope with 5 ver-tices can assume. The Tagansky technique is employed re-peatedly, sometimes in a fairly involved fashion, throughoutthe proof. ����Figure 3: The `hard' combinatorial type of eventswhose analysis involves a counting scheme.
6. APPROXIMATE NEAREST-NEIGHBOR

SEARCHINGTheorem 5.1 can be applied to obtain the following result.Theorem 6.1. We can preprocess a collection of disjointpolyhedra in 3-space with n vertices altogether into a datastructure of size O(n2+"=Æ4), for any " > 0, such that thisdata structure can answer Æ-approximate Euclidean nearest-neighbor queries amidst the polyhedra in time O(log(n=Æ)),for an arbitrarily small Æ > 0.The data structure described in the theorem is essentiallya point-location data structure on a polyhedral Voronoi di-agram of the collection of polyhedra (`sites'). We use thefact that the Euclidean ball in R3 can be Æ-approximatedby a convex polytope with O(1=Æ) vertices. The polyhedralVoronoi diagram of the sites under the distance functioninduced by this polytope is a Æ-approximation of the Eu-clidean Voronoi diagram of these sites. Æ-approximate Eu-clidean nearest-neighbor queries amidst the sites can there-fore be answered using point location queries in this polyhe-dral Voronoi diagram. Theorem 5.1 states that the complex-ity of this diagram is O(n2+"=Æ4), and standard machinerycan be used to preprocess it into a point location data struc-ture with the desired performance. All further details areomitted.Remark 1. We also have another solution, with a datastructure of size only O(n2+"=Æ). However, the query timebecomes O((log n)=Æ).
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Figure 4: Di�erent combinatorial types of FEEE events, not including good events. For each type, thenumber of active vertices and the name of the technique employed in the analysis are stated.���� ������������ ������������� ����������� �������� ����� ������������������(a) 7, LEM (b) 8, LEM
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Figure 6: FFFE events.


