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of 
ir
les or 
ir
ular ar
s, su
h as dete
ting, 
ounting,or reporting in
iden
es between points and 
ir
les.1 Introdu
tionThe arrangement of a �nite 
olle
tion � of geometri

urves or surfa
es in Rd , denoted as A(�), is the de-
omposition of the spa
e into relatively open 
onne
ted
ells of dimensions 0; : : : ; d indu
ed by �, where ea
h
ell is a maximal 
onne
ted set of points lying in theinterse
tion of a �xed subset of � and avoiding all otherelements of �. Besides being interesting in their ownright, due to the ri
h geometri
, 
ombinatorial, alge-brai
, and topologi
al stru
tures that they possess, ar-rangements also lie at the heart of numerous geometri
problems arising in a wide range of appli
ations, in
lud-ing roboti
s, 
omputer graphi
s, mole
ular modeling,and 
omputer vision. Study of arrangements of linesand hyperplanes has a long, ri
h history. A summary ofearly work on arrangements 
an be found in [20, 21℄. Al-though hyperplane arrangements already possess a ri
hstru
ture, many appli
ations (e.g., motion-planning inroboti
s and mole
ular modeling) 
all for a systemati
study of arrangements of ar
s in the plane and of sur-fa
e pat
hes in higher dimensions. There has been mu
hwork in this area in the last two de
ades; see [8℄ for areview of re
ent results.A 
olle
tion L of n unbounded Jordan 
urves is
alled a family of pseudo-lines if every pair of 
urvesinterse
ts in at most one point, and the two 
urves 
rossea
h other there. Arrangements of pseudo-lines wereprobably �rst studied by Levi [24℄; see [16, 19, 21℄ forthe known results on pseudo-line arrangements. Thework by Goodman and Polla
k on allowable sequen
es[16℄ shows that any arrangement of pseudo-lines 
anbe transformed into an arrangement of x-monotonepseudo-lines that is isomorphi
 to the original one.Su
h a transformation, however, is not eÆ
ient for thealgorithms that we seek to develop, and we will thus
on�ne our analysis to x-monotone pseudo-lines. Forsu
h pseudo-lines, the above/below relationship, whi
hwill be used a lot in our analysis, is naturally de�ned.Many of the 
ombinatorial results related to ar-rangements of lines (e.g., 
omplexity of a single fa
e,
omplexity of many fa
es, 
omplexity of a level, et
.)1



hold for arrangements of pseudo-lines as well.It has been shown that various families of ar
s(e.g., 
ir
ular, paraboli
, et
.) 
an be 
onverted into afamily of pseudo-segments (subar
s, ea
h pair of whi
hinterse
t at most on
e), by 
utting the ar
s into arelatively small number of pie
es. Chan [11℄ has shownthat a 
olle
tion of N pseudo-segments 
an be 
utfurther into O(N logN) subar
s, ea
h of whi
h 
an beextended into an unbounded x-monotone 
urve, so thatthese 
urves 
onstitute a family of pseudo-lines. One
an then use the 
lose relationship between line andpseudo-line arrangements to solve a variety of problemsinvolving arrangements of ar
s; see [2, 7, 9, 11, 30℄.In this paper, we fo
us on algorithmi
 problems in-volving arrangements of pseudo-lines in the plane, prob-lems that are mu
h less studied than the 
orresponding
ombinatorial problems. Of 
ourse, one has to assumea reasonable representation of the given pseudo-lines, inorder to develop eÆ
ient algorithms for their manipula-tion, so we assume, for example, that the given pseudo-lines are algebrai
 (or semi-algebrai
) 
urves of �xedmaximum degree, and that our model of 
omputationallows us to perform, in 
onstant time, exa
t 
ompu-tations involving any 
onstant number of su
h 
urves.However, even with these assumptions, several algo-rithms for line arrangements do not extend routinely topseudo-line arrangements. A stumbling blo
k in manyof these algorithms, when we try to extend them to the
ase of pseudo-lines, is that they use some kind of aduality transform that maps lines to points and pointsto lines. Typi
ally, one uses the duality that maps aline ` : y = ax + b to a point `� = (a; b) and a pointp = (�; �) to the line p� : y = ��x+� [13℄. Note that `lies above (resp., below, on) p if and only if `� lies above(resp., below, on) p�.Burr et al. [10℄ had raised the question whether asimilar dual transform exists for pseudo-lines. Good-man [15℄, based on his work with Polla
k on allowablesequen
es [17, 18℄, de�ned a dual transform for (notne
essarily x-monotone) pseudo-lines in the proje
tiveplane, that preserves the in
iden
e relationship. Thatis, given a set L of n pseudo-lines and a set P of mpoints in R2 , the transform yields a set L� of pointsand a set P � of pseudo-lines, so that a point p of P lieson a pseudo-line ` 2 L if and only if the dual point `�lies on the dual pseudo-line p�. Goodman's 
onstru
tionhas several disadvantages from an algorithmi
 point ofview. First, his 
onstru
tion is de�ned in the proje
tiveplane, and, 
onsequently, it does not (and 
annot, with-out 
onsiderable modi�
ations) handle the above-belowrelationship. A more signi�
ant problem, from the algo-rithmi
 point of view, is that his 
onstru
tion requiresthat for ea
h pair of the given points there exists an in-

put pseudo-line passing through this pair. Although theexisten
e of su
h a pseudo-line follows from the 
lassi
alresult of Levi [24℄, 
omputing su
h a pseudo-line seemsto be a highly nontrivial task.We de�ne a di�erent dual transform, whi
h may beregarded as an extension of Goodman's 
onstru
tion,and whi
h over
omes the te
hni
al problems mentionedabove. Suppose we have a data stru
ture for storing them points of P , whi
h 
an report, in O(f(m)+k) time, allk points of P that lie below a query pseudo-line `, whi
h
an determine, in O(f(m)) time, whether any pointof P lies below a query pseudo-line `, and whi
h 
anbe updated in O(f(m)) time after inserting or deletinga point into/from P . Using su
h a data stru
ture asa \bla
k box," we present a sweep-line algorithm for
onstru
ting the dual arrangement A(P �) that runs intime O((m2 + n)f(m) logm). We note that if f(m) issmall, say polylogarithmi
 in m or of the form O(m"),for any " > 0, then this bound is nearly optimal. Itis a bound of this kind that was missing so far in thealgorithmi
 appli
ations alluded to above.Next, we des
ribe a data stru
ture for prepro
essinga set P of m points in the plane so that all k pointsof P lying below the graph of a query �xed-degreepolynomial 
an be reported in O(m" + k) time.1 It
an also determine, in O(m") time, whether any pointof P lies below a query 
urve. A point 
an be insertedor deleted into/from P in O(log2m) time. Althoughour approa
h is 
losely based on Matou�sek's algorithm[25℄ for reporting points that lie below a query line, anumber of te
hni
al diÆ
ulties have to be over
ome toextend this algorithm to the 
ase of algebrai
 
urves. Asimilar data stru
ture also works for 
ir
ular ar
s.Using our arrangement algorithm, we show that allin
iden
es between a set P of m points and a set L of npseudo-lines 
an be reported in time O(m2=3�"n2=3+2"+n1+" + m1+"), provided the pseudo-lines in L are ex-tensions of bounded-degree polynomial ar
s or of 
ir-
ular ar
s (or for any other family of ar
s for whi
h adata stru
ture with the above properties 
an be 
on-stru
ted). More pre
isely, we assume that all our ar
shave the same x-proje
tion, and that they are extendedto pseudo-lines in some simple manner, e.g., by hori-zontal rays. We also des
ribe an algorithm, with thesame running time, for 
omputing the fa
es of A(L)that have a nonempty interse
tion with a set P of m\marking points," none of whi
h lie on any ar
 of L.Our algorithm works also for a set of 
ongruent 
ir
les,thereby improving on the best-known algorithm, whi
hrequired O(npm logn) randomized expe
ted time [27℄.1We follow the 
onvention that an upper bound of the formO(g(n; ")) means that for ea
h " > 0 there is a 
onstant 
" su
hthat the a
tual bound is 
"g(n; ").



Let L be a family of n pseudo-
ir
les in the plane,whi
h is a 
olle
tion of 
losed Jordan 
urves, ea
h pairof whi
h interse
t at most twi
e. Re
ently, there hasbeen 
onsiderable work on the problem of splitting the
urves in su
h a family L into ar
s (pseudo-segments),so that ea
h pair of ar
s interse
t in at most onepoint. This work started with the paper of Tamaki andTokuyama [30℄, and has 
ontinued with re
ent papersof Aronov and Sharir [9℄, Chan [11℄, and Agarwal etal. [7℄. Sin
e the resulting set of ar
s is a 
olle
tionof pseudo-segments, one 
an obtain bounds on the
omplexity of various substru
tures in arrangements ofpseudo-
ir
les by applying the known results for pseudo-segment arrangements. This approa
h has re
ently beenused to obtain, among other results, nontrivial upperbounds on the 
omplexity of a level in an arrangementof pseudo-
ir
les [7, 11, 30℄, on the number of in
iden
esbetween points and 
ir
les or parabolas [7, 9℄, and on the
omplexity of many fa
es in an arrangement of 
ir
les orparabolas [2, 7℄. However, none of the pre
eding resultswere algorithmi
.In this paper we present an O(n3=2+")-time algo-rithm for splitting a set of n 
ir
les into O(n3=2+")pseudo-segment ar
s. The re
ent algorithms of Solan[29℄ and of Har-Peled [22℄ 
an be used or adapted forthis task, but the running time of the resulting solutionswould be 
lose to O(n7=4). Our algorithm follows thegeneral approa
h of these algorithms, but it uses addi-tional tools and a more re�ned analysis to obtain thebound stated above.Combining this algorithm with our new algorithmsfor handling arrangements of pseudo-lines, we obtainalgorithms that dete
t, 
ount, or report all in
iden
esbetween m points and n 
ir
les, in time that is 
lose tothe best upper bounds known for the number of su
hin
iden
es (as provided in [7, 9℄).Finally, our duality result has re
ently found an-other appli
ation, in [28℄, where another duality, be-tween graphs drawn in the plane and sets of verti
es inpseudo-line arrangements, is obtained.2 Duality for Points and Pseudo-linesLet L be a set of n pseudo-lines and P a set of m pointsin the plane. Let W be a verti
al strip that 
ontainsall points of P and all verti
es of A(L). Let � and �be the left and right boundary lines of W . We 
lipthe pseudo-lines of L to within W , and thus assumethat L is a set of x-monotone ar
s whose left and rightendpoints lie on � and �, respe
tively; see Figure 1 (a).An x-monotone Jordan ar
 that 
rosses W 
ompletelysplits W into two regions. We will refer to ea
h of theseregions as a pseudo-halfplane.We now present a duality transform that maps

L to a set L� of n points and P to a set P � ofm pseudo-lines so that the in
iden
es and the above-below relationships between the points and pseudo-lines are preserved. We �rst des
ribe the duality in amanner that, albeit being 
onstru
tive, is not 
on
ernedwith real algorithmi
 eÆ
ien
y. We then show how toimplement the 
onstru
tion in an eÆ
ient manner. Forsimpli
ity, we assume that no point of P lies on anypseudo-line of L. The 
onstru
tion and the proof 
aneasily be extended to handle this 
ase. Sort the pseudo-lines of L in in
reasing order of their inter
epts with �.Map ea
h pseudo-line ` 2 L to the point `�(i`; 0), wherei` is the rank of the inter
ept ` \ � along �. In otherwords, the dual points all lie on the x-axis, and appearthere in the same order as the y-order of the inter
eptsof the 
orresponding 
urves with �. Note that, sin
ewe are dealing with (x-monotone unbounded) pseudo-lines, the y-
oordinates of the dual points, as well asthe exa
t spa
ings between their x-
oordinates, are notimportant. One 
an always move any dual point upor down (arbitrarily) or left or right (without passingover another dual point), and deform the dual pseudo-lines a

ordingly, so that the in
iden
es, the above-below relationships, and the pseudo-line property, areall preserved. See Figure 1 for an illustration.`4`3`1� �b 
`2a b�d�
�e�a� (b)d e `�1 `�2 `�3 `�4(a)Figure 1: The duality transform: (a) The primal setting. (b)The dual representation; the dashed ovals show the bundlesmaintained by the sweep-line algorithm for 
onstru
tingA(P �).Ea
h point p 2 P is mapped to an x-monotone
urve p� that is 
onstru
ted to obey the following(ne
essary) rule: For ea
h pseudo-line ` 2 L, if p liesabove (resp., below, on) `, draw p� to pass above (resp.,below, through) the point `�. This rule does not fullyspe
ify the 
urves p�, but, with some 
are, as we willsee next, this rule yields a drawing of these 
urves as a
olle
tion of pseudo-lines.We next show how to sort the dual 
urves p�, forp 2 P , at x = �1. Let us �rst assume that no pairof points of P lie in the same fa
e of A(L). In thepresent 
ourse of analysis, we have no way to distinguishbetween any two points that lie in the same fa
e, andwe simply regard su
h a pair as identi
al.



initially (ab
de)after `�1 (b
de) � aafter `�2 (bd) � (
e) aafter `�3 b a � d (
e)after `�4 b a 
 � d eTable 1: The evolution of the y-stru
ture during the sweep.The symbol � denotes the lo
ation in the y-stru
ture of thepoint `�j just being swept.We de�ne the following relation on P �: For twopoints p; q 2 P we say that p� � q� if the pseudo-line` 2 L with the lowest �-inter
ept that separates p and qis su
h that p lies below ` and q lies above `. We denotethis relationship by p < ` < q.Lemma 2.1. The relationship � is a total order on P �.Proof. (This simpli�ed proof was suggested by PavelValtr.) For ea
h p 2 P , let �p be the sequen
e ofpseudo-lines of L that lie below p, sorted in in
reasing�-inter
ept order. Order the sequen
es �p lexi
ograph-i
ally, but with the twist that after removing a 
om-mon identi
al pre�x, a nonempty sequen
e pre
edes anempty one. The relationship � is then identi
al withthis lexi
ographi
al order, as is easily 
he
ked. 2We now show how to draw the 
urves of P � so thatthey form an arrangement of pseudo-lines. As noted,for the time being, we are not 
on
erned about theeÆ
ien
y of the pro
edure given below; we only wantto show that the pseudo-line property 
an be enfor
ed.First we sort the 
urves by � and draw them at x = �1in this in
reasing order. In general, we draw the 
urvesfrom left to right as horizontal, parallel 
urves untilwe are about to sweep past some dual point `�. We
ompute the sets A(`�), B(`�), 
onsisting of those pointsthat lie above (resp., below) `. This allows us to �ndall inversions enfor
ed by `�, namely, all pairs (p; q),su
h that p� passed above q� before `�, but at `� wehave that p� passes below `� whereas q� passes abovethat point. We then draw the 
urves past `� so thatexa
tly those inverted pairs 
ross ea
h other. To a
hievethis, we take all the 
urves in A(`�) (that have to passabove `�), and bend them simultaneously, keeping themparallel to ea
h other, so that they do not interse
tamong themselves. We apply a symmetri
 deformationto the 
urves in B(`�). In this way, it is 
lear thatinterse
tions arise exa
tly between the inverted pairs.After sweeping past `�, we bend all 
urves ba
k tohorizontal and 
ontinue like this to the right. If `�
ontains any point of P , then the 
orresponding pseudo-lines pass through `�. See Figure 4. We invite the readerto verify that Figure 1(b) is a (somewhat deformed

but topologi
ally equivalent) realization of this drawingpro
edure, applied to the 
on�guration in Figure 1(a).We prove that this pro
edure does indeed produ
e anarrangement of pseudo-lines. We �rst need the followinglemma.Lemma 2.2. There do not exist three pseudo-lines`1; `2; `3 2 L and two points p; q 2 P su
h that (i) `�1lies to the left of `�2, whi
h lies to the left of `�3, (ii) the
urve p� passes above `�1 and `�3, and below `�2, and (iii)the 
urve q� passes below `�1 and `�3, and above `�2.Proof. Refer to Figure 2. Suppose to the 
ontrary thatthere exists su
h a 
on�guration. Interpreting it in theprimal plane, we have that point p lies above `1 andbelow `2, and point q lies below `1 and above `2. Hen
ethese points lie in di�erent wedges of the double wedgeformed between `1 and `2. Sin
e `1 has smaller �-inter
ept than that of `2, it is easily seen that p hasto lie to the left of q. Repeating the same argument forthe pseudo-lines `2 and `3, we 
on
lude this time that qlies to the left of p, a 
ontradi
tion that establishes thelemma. 2`2`1p� `�3`�2`�1 `2q� pqqp `3
Figure 2: Illustration to the proof of Lemma 2.2.Using the above lemma, we 
an prove the following.Lemma 2.3. There do not exist two pseudo-lines`1; `2 2 L and two points p; q 2 P su
h that (i) `�1 liesto the left of `�2, (ii) the 
urve p� passes below q� atx = �1, (iii) the 
urve p� passes above `�1 and below`�2, and (iv) the 
urve q� passes below `�1 and above `�2.Omitting further details, we obtain the main resultof this se
tion:Theorem 2.1. For a �nite set P of points and a�nite set L of pseudo-lines in the plane, the abovetransformation maps L into a set of points and P into aset of pseudo-lines, so that the in
iden
e and the above-below relationships between P and L are preserved.3 Constru
ting the Dual ArrangementLet L� denote the set of points dual to the pseudo-linesof L, and let P � denote the set of pseudo-lines dualto the points of P , as de�ned in the pre
eding se
tion.We des
ribe an eÆ
ient algorithm for 
omputing thearrangement A(P �). That is, we 
ompute an in
iden
e



graph of A(P �) in whi
h there is a node for every fa
e| vertex, edge, and two-dimensional fa
et | of A(P �),and two nodes asso
iated with the fa
es �1 and �2 are
onne
ted by an ar
 if �1 � ��2 and dim(�1) + 1 =dim(�2). Moreover, the output also re
ords, for ea
h`� 2 L�, the vertex, edge, or 2-fa
e of A(P �) that
ontains `�.We 
onstru
t A(P �) by sweeping a verti
al linefrom left to right that stops at every point of L�. ThediÆ
ulty in performing the sweep is that we do notknow how to 
ompare the y-ordering of two dual pseudo-lines at a given verti
al line. For example, supposewe want to 
ompare two dual pseudo-lines p�; q� atx = �1. By de�nition, we need to �nd, in the primalplane, all the pseudo-lines ` that separate p and q, anddetermine the order of p and q using the line with thesmallest �-inter
ept. Computing this set of separatingpseudo-lines is nontrivial and time 
onsuming, and we
annot a�ord to do it expli
itly. We therefore sweep theline without maintaining the total ordering of pseudo-lines in P �, whi
h is only progressively revealed asthe sweep pro
eeds. More pre
isely, let `�1; `�2; : : : ; `�nbe the sequen
e of points in L� sorted by their x-
oordinates. The algorithmmaintains the invariant thatit has 
omputed the following stru
ture after pro
essing`�i :(I.1) A partition �i = hP1; : : : ; Puii of P into subsets,referred to as as bundles. Two points of P lie inthe same bundle of �i if and only if they lie in thesame fa
e of A(Li), where Li = f`1; : : : ; `ig. For anyp 2 Pj and q 2 Pj+1, the pseudo-line p� lies below q�immediately to the right of `�i . That is, the bundles aresorted by the y-ordering along the sweep line, but theverti
al order of the pseudo-lines within ea
h bundle isyet undetermined. See Figure 1 (b) and Table 1.(I.2) Regard all dual pseudo-lines in ea
h bundle Pjas a single \thi
k" pseudo-line 
j (say, 
hoose a repre-sentative dual pseudo-line from ea
h bundle), and let�i = f
j j 1 � j � uig. The algorithm has 
om-puted the portion ofA(�i) up to the verti
al line passingthrough `�i .At the end, after pro
essing `�n, ea
h bundle in �n
onsists of a single dual pseudo-line. (Two points thatremain in the same bundle at the end of the algorithmmust lie in the same fa
e of A(L), and, for our purpose,
an be 
onsidered identi
al.) Therefore �n gives theordering of P � at x = +1 and A(�n) = A(P �).In the ith step, while pro
essing `�i , the algorithm
onstru
ts �i and A(�i) from �i�1 and A(�i�1), re-spe
tively, as follows.Computing �i. For ea
h bundle Pj 2 �i�1, splitPj into two subsets P�j and P+j , where P�j (resp.,P+j ) is the set of points in Pj that lie below (resp.,

above) `i. Let ��i = hP�j j Pj 2 �i�1; P�j 6= ;i and�+i = hP+j j Pj 2 �i�1; P+j 6= ;i. Set �i = ��i Æ �+i ,where Æ denotes 
on
atenation.Computing A(�i). For ea
h Pj 2 �i�1, if both P�jand P+j are nonempty, then p � q for any (p; q) 2P�j � P+j , so we 
an re�ne the ordering of pseudo-linesin P � at x = �1 (this is not done expli
itly | it willbe a byprodu
t of the other steps des
ribed next). Wesplit the 
orresponding thi
k pseudo-line 
j into twopseudo-lines 
�j and 
+j and re�ne A(�i�1), with 
�jlying below 
+j ; 
+j lies above `�i , and 
�j lies below it.Roughly speaking, every edge of A(�i) that lies on 
j isnow repla
ed by a thin \pseudo-re
tangle," as shownin Figure 3. We omit the details from this abstra
t.`�iw�
j v�
k 
+j
l
�j
k v+ w+
l wvFigure 3: Splitting a thi
k pseudo-line; every edge lying on
j be
omes a pseudo-re
tangular fa
e.Next, if we have two nonempty bundles P�j and P+ksu
h that k < j, then 
�j lies above 
+k just to the leftof `�i but below 
+k at `�i , so they indu
e a vertex ofA(�i) to the left of `�i . We 
reate this new vertex andupdate the in
iden
e graph. Note that in general manypairs (P�j ; P+k ) may 
reate su
h a 
rossing before `�i , asshown in Figure 4. We update A(�i) a

ordingly.`�iFigure 4: Several pairs of bundles 
ross before `�i .With some extra 
are, the algorithm 
an also handlepseudo-lines that pass through points of P . Details areomitted in this abstra
t.Lemma 3.1. The above two steps maintain the invari-ant (I.1) and (I.2).On
e we have 
omputed ��i and �+i and de-termined the bundles that have been split into twononempty bundles, the rest of the 
omputation 
an be
arried out in time proportional to the 
hange in the sizeof the in
iden
e graph of the arrangement, whose a

u-mulated 
ost is only O(m2). It thus suÆ
es to des
ribehow to 
ompute ��i and �+i eÆ
iently. We maintain aweight-balan
ed binary tree T whose jth leftmost leaf



stores the bundle Pj [26℄. For ea
h node v 2 T, letSv � P denote the set of points stored at the leavesof the subtree rooted at v. At ea
h node v 2 T, wemaintain a data stru
ture Dv = D(Sv) that supportsthe following operations on Sv :Emptyv(
): Is one of the pseudo-halfplanes deter-mined by 
 empty (of points of Sv)? If so, whi
hone?Insertv(p): Insert a point p into Sv .Deletev(p): Delete a point p from Sv .Splitv(
): Let S+v ; S�v be the subset of points of Svthat lie above and below 
, respe
tively. SplitD(Sv) into D(S+v ) and D(S�v ).We will des
ribe in the next se
tion a data stru
turethat supports these operations eÆ
iently. For now,assume that ea
h of these operations 
an be performedin O(f(m)) (amortized) time. Then we 
ompute ��iand �+i , as follows.While pro
essing `i, we visit T in a top-downmanner. Suppose we are at a node v 2 T. We exe
uteEmptyv(`i) onD(Sv). If it returns \yes," then we markv by `+' (resp., by `�') if Sv lies entirely above (resp.,below) `i. If the pro
edure returns \no" and v is aleaf, then we perform Splitv(`i), 
reate two 
hildrenv� and v+ of v, mark v� (resp., v+) by `�' (resp., by`+'), store S�v (resp., S+v ) at v� (resp., at v+), andasso
iate D(S�v ) (resp., D(S+v )) with v� (resp., withv+). Otherwise (if the points of Sv lie on both sidesof `i and v is not a leaf), we re
ursively visit the two
hildren of v. Let V � (resp. V +) denote the nodes ofT marked `�' (resp., `+'). Let A = hui1 ; : : : ; uiai andB = hwj1 ; : : : ; wjbi be the sequen
e of (new) leaves ofT, sorted from left to right, in the subtrees rooted atnodes in V � and V +, respe
tively. Note that we have��i = hSui1 ; : : : ; Suia i and �+i = hSwj1 ; : : : ; Swjb i. We�nish the step by re-arranging the leaves, the interiornodes, and the se
ondary stru
tures of T, so that allleaves of A appear before those of B, i.e., the sequen
eof leaves after re-ordering is (ui1 ; : : : ; uia ; wj1 ; : : : ; wjb ).Suppose uit ; : : : ; uia appear to the right of wj1 . Thenwe delete these leaves from T, and we also deletethe points stored at these leaves from the se
ondarydata stru
tures stored at the an
estors of these nodes.We then re-insert these leaves, and the 
orrespondingpoints, before wj1 in the 
orre
t order. We also updatethe data stru
ures stored at the an
estors of theseleaves.Let �i and �i be, respe
tively, the number ofleaves of T that are split, and the number of verti
esof A(�i) that are 
reated in the ith step. Then

jV �j + jV +j = O((�i + 1) logm). Hen
e, the totaltime spent in traversing T and splitting the leaves isO(�if(m) logm). Sin
e Pni=1 �i � m � 1, the totaltime spent in these steps during the entire sweep isO((n + m)f(m) logm). The total time spent in re-arranging the tree is O((Paj=t jSij j)f(m) logm) be
ausea point is deleted from the se
ondary stru
tures of onlyO(logm) nodes. However,Paj=t jSij j � 2�i, so the totaltime spent in re-arranging T and updating its se
ondarystru
tures is O(�if(m) logm). Sin
ePi �i = O(m2), we
on
lude:Theorem 3.1. Let L be a set of n pseudo-lines andP a set of m points in the plane. Suppose we have adata stru
ture that supports ea
h of the four operationsdes
ribed above in O(f(m)) amortized time. Then we
an 
onstru
t A(P �) (in the sense pres
ribed in thebeginning of this se
tion), in O((m2 + n)f(m) logm)time.We will show in the next se
tion that if L is a set of
ir
ular ar
s or bounded-degree polynomial ar
s (witha 
ommon x-proje
tion), then f(m) = O(m"), so weobtain the following.Corollary 3.1. Let L be a set of n 
ir
ular ar
sor bounded-degree polynomial ar
s with a 
ommon x-proje
tion, ea
h pair of whi
h interse
t at most on
e,and let P be a set of m points in the plane. Then we
an 
onstru
t A(P �) (with respe
t to an extension ofthe ar
s of L into pseudo-lines) in O((m2+n)m") time.Moreover, for ea
h point p 2 P , the above algorithm 
analso return, within the same asymptoti
 time bound, theset of ar
s in L that 
ontain p. If there is no ar
 passingthrough p, then the algorithm 
an return the ar
s thatlie immediately above and below p.4 Pseudo-Halfplane Range ReportingLet W be a verti
al strip, and let � be a 
olle
tion ofx-monotone ar
s whose endpoints lie on the left andright boundaries of W . Ea
h ar
 
 2 � splits W intotwo (
losed) regions. As above, we 
all ea
h of theseregions a pseudo-halfplane bounded by 
. Let S bea set of m points lying inside the strip W . We wishto prepro
ess S into a data stru
ture that supportsthe four operations des
ribed in the previous se
tion{ Empty, Insert, Delete, and Split, with respe
tto ar
s 
 2 �. In addition, we want the data stru
tureto support the following Report (g, k) operation: Letg be one of the pseudo-halfplanes bounded by an ar

 2 �, and let k be an integer. Report (g, k) reportsminfjS\gj; kg points of S\g. Note that Empty (
) 
anbe answered by performing the queries Report (
+, 1)



and Report (
�, 1), where 
�; 
+ are the two pseudo-halfplanes bounded by 
. The following lemma is easyto prove.Lemma 4.1. If a data stru
ture supports the operationsInsert, Delete in O(f(m)) amortized time and Re-port (g, k) in O(f(m) + k) time, then Split 
an beperformed in O(f(m) logm) amortized time.Proof. Let 
 2 � be the query ar
, and let 
+; 
� bethe two pseudo-halfplanes bounded by 
. By invokingReport (
�, 2i) and Report (
+, 2i) repeatedly andalternately, with i = 1; 2; 3; : : :, we 
an determine whi
hof 
�; 
+ 
ontains fewer points, up to a fa
tor of 2.Suppose jS \ 
�j = � � 2jS \ 
+j. Then the abovepro
edure reports all points of S\
� in O(f(m) logm+�) time. We delete the points of S \ 
� from thedata stru
ture and re
onstru
t a new data stru
ture onS \ 
�. A standard analysis shows that ea
h point isdeleted at most O(logm) times. The amortized 
ost ofea
h split operation is thus O(f(m) logm). 2Hen
e, it suÆ
es to des
ribe a data stru
ture thatsupports the Insert, Delete, and Report operationseÆ
iently. We present su
h a data stru
ture for twospe
ial 
ases: (i) � is a set of 
ir
ular ar
s, and (ii) �is a set of (portions of the) graphs of polynomials ofbounded degree.4.1 Querying with 
ir
ular ar
sLet � be the set of 
ir
ular ar
s whose endpoints lieon the left and right boundaries of W . We 
onstru
t aweight-balan
ed binary tree T on the y-
oordinates ofthe points in S [26℄. For a node v 2 T, let Sv � S bethe set of points whose y-
oordinates are stored at theleaves of the subtree rooted at v, and put mv = jSvj.We map ea
h point p = (xp; yp) 2 Sv to the point�p = (xp; yp; x2p + y2p) in R3 . Let �Sv = f�p j p 2 Svg. Weprepro
ess �Sv into a dynami
 data stru
ture, proposedby Agarwal and Matou�sek [6℄, for reporting, in timeO(m"v+k), all k points of �Sv that lie in a query halfspa
eh in R3 . This data stru
ture 
an easily be modi�ed, sothat queries of the following form 
an also be answeredeÆ
iently: given a parameter �, report minfj �Sv \hj; �gpoints of Sv lying in the query halfspa
e. A query takesO(m"v + �) time, and a point 
an be inserted into ordeleted in O(log2m) time.Let g be the region lying below an ar
 
 2 �.Suppose 
 lies in the upper semi
ir
le of the 
ir
le C
 ;let a denote the y-
oordinate of the 
enter of C
 , and letD
 denote the disk bounded by C
 . A Report (g, k)query is answered as follows. We �rst identify O(logm)nodes v1; : : : vs of T so that Si Svi is the set of pointsin S whose y-
oordinates are at most a. Sin
e ea
h

Svi � g, by visiting the vi's one by one, we 
anreport, in O(�) time, � = minfjSi Svi j; kg points of Swhose y-
oordinates are at most a. If we have reportedfewer than k points, then we identify O(logm) nodesw1; : : : ; wr of T so that Si Swi is the set of points whosey-
oordinates are at least a. A point p 2 Swi lies inthe halfplane g if and only if p 2 D
 . We map C
 toa plane �C
 in R3 , using the standard lifting transform,so that p 2 D
 if and only if �p lies below the plane �C
 .We visit the wi's one by one, and at ea
h node wi we dothe following: Suppose we have reported � points so far.We then report minfk��; jSwi\C
 jg points of Swi\C
using the se
ondary stru
ture stored at wi. If we havereported a total of k points, we stop. Otherwise, weupdate the value of � and visit wi+1. The total timespent in this pro
edure is O(m" + k).Using the standard partial-rebuilding te
h-nique [26℄, a point 
an be inserted or deleted into/fromthe overall stru
ture in O(log3m) time. Hen
e, weobtain the following:Theorem 4.1. Let � and S be as above. Then ea
hof the operations Empty, Insert, Delete, and Split
an be performed in O(m") amortized time.Remark. The above data stru
ture 
an be extended tothe 
ase in whi
h the endpoints of the query 
ir
ular ar
do not lie on the boundary of W . Details are omitted.4.2 Querying with polynomial ar
sNext let � be the set of all ar
s that are interse
tionswith a �xed strip W of graphs of polynomials of degreeat most d. We des
ribe a dynami
 data stru
ture thatreports all points of S lying above an ar
 in �. A similardata stru
ture 
an be 
onstru
ted for reporting pointsthat lie below an ar
.We 
all an ar
 
 2 � k-shallow if at most k pointsof S lie above 
. We 
all a simply 
onne
ted 
ell with atmost four edges a pseudo-trapezoid if its top and bottomedges are portions of ar
s in � and its left and right edgesare verti
al segments. An elementary partition of S is afamily � = f(S1;41); : : : ; (Su;4u)g, where S1; : : : ; Suform a partition of S, 4i is a pseudo-trapezoid, andSi � 4i. The following lemma, whose proof is omitted,is obtained by extending the results of Matou�sek [25℄and of Agarwal and Matou�sek [5℄.Lemma 4.2. Let S and � be as de�ned above, and letr be a parameter. Then there exists an elementarypartition � = f(S1;41); : : : ; (Su;4u)g of S so thatm=r � jSij � 2m=r, for ea
h i, and any (m=r)-shallowar
 of � 
rosses O(logm) pseudo trapezoids of �. If ris a 
onstant, then � 
an be 
omputed in O(m) time.As in [25℄, using the above lemma, we 
an 
onstru
t,in O(m logm) time, a partition tree of size O(m) for



answering Report (g, k) queries in time O(m" + k). Apoint 
an be inserted or deleted in O(log2m) amortizedtime. Hen
e, we 
on
lude the following.Theorem 4.2. Let � and S be as above. Then ea
hof the operations Empty, Insert, Delete, and Split
an be performed in O(m") amortized time.5 In
iden
es in Pseudo-line ArrangementsLet P be a set of m points and L a set of n pseudo-lines that are extensions of 
ir
ular or polynomial ar
s,and let I(P;L) denote the set of pairs (p; `) 2 P � Lsu
h that p lies on `. We wish to report I(P;L),
ompute jI(P;L)j, or just determine whether I(P;L)is nonempty. For simpli
ity, we fo
us on the �rstsubproblem. Corollary 3.1 implies that I(P;L) 
an be
omputed in O((m2 + n)m") time. By partitioning Pinto dm=pne subsets P1; : : : ; Ps, ea
h of size at mostpn, and 
omputing I(Pi; L) for ea
h subset separately,I(P;L) 
an be 
omputed in O(mn1=2+" + n1+") time,whi
h is near optimal for m � pn. We now des
ribean algorithm that is eÆ
ient for all values of m andn. For a parameter r � n, a (1=r)-
utting of Lis a de
omposition of R2 into pseudo-trapezoids withdisjoint interiors so that ea
h pseudo-trapezoid 
rossesat most n=r pseudo-lines of L. Chazelle's algorithm [12℄for 
omputing a (1=r)-
utting of hyperplanes 
an bemodi�ed to 
ompute a (1=r)-
utting of pseudo-lines ofsize O(r2) in O(nr) time, under an appropriate modelof 
omputation.We 
hoose a parameter r < n and 
onstru
t a (1=r)-
utting � of L of size O(r2). For a 
ell � 2 �, let L� � Lbe the set of pseudo-lines that interse
t the interior of� . We 
an 
ompute the in
iden
es between L and thosepoints of P that lie at the verti
es of � in O(nr) time.For a 
ell � 2 �, let P� � P be the set of points thateither lie in the interior of � or that lie on an edge of � .Set n� = jL� j and m� = jP� j. Then P� m� � 2m andn� � n=r. At most one pseudo-line `e of L 
an 
ontainan edge e of �. If there is su
h a pseudo-line, we reportall in
iden
es between e and the points that lie on e,over all edges e, in a total time of O(r2 +m). Finally,we 
ompute I(P� ; L� ) in time O(m�n1=2+"� +n1+"� ) usingthe algorithm outlined above. Choosing the value of rappropriately, we obtain the following.Theorem 5.1. The in
iden
es between m points and npseudo-lines that are extendions of 
ir
ular or polyno-mial ar
s of bounded degree 
an be dete
ted, 
ounted, orreported in time O(m2=3�"n2=3+2" +m1+" + n1+").6 Many Fa
es in Pseudo-line ArrangementsFor a set L of pseudo-lines as above and for a setP of points in the plane, none lying on any pseudo-

line of L, let F(P;L) be the set of fa
es in A(L) that
ontain at least one point of P . We 
ompute F(P;L) byfollowing an approa
h similar to the one for 
omputingI(P;L). We �rst des
ribe an O((m2 + n)n") algorithmfor 
omputing F(P;L): We 
ompute the arrangementA(P �) of pseudo-lines dual to P , and then 
omputeits verti
al de
omposition Ajj(P �). For ea
h fa
e ' 2Ajj(P �), we 
ompute the subset L' � L of pseudo-lines whose dual points lie inside '. This step takesO((m2 + n)n") time. Next, we 
ompute an Euleriantour � of the planar graph dual to Ajj(P �) so that ea
hfa
e of Ajj(P �) is visited O(1) times; see [3℄. Ea
h nodeof � 
orresponds to a fa
e of Ajj(P �). If an edge eof � 
rosses two adja
ent fa
es of A(P �), we set �(e)to be the point of P whose dual pseudo-line separatesthese two fa
es. Otherwise, i.e., e 
onne
ts two fa
es ofAjj(P �) separated by a verti
al line, we set �(e) = ;.Next, we 
onstru
t a minimum-height binary tree T on�. Ea
h leaf of T is asso
iated with a node of �, andthus with a fa
e of Ajj(P �), and ea
h node v of T isasso
iated with a subpath �v of �. For ea
h node vof T , we set Lv = S' L', where the union is takenover all fa
es of Ajj(P �) asso
iated with the nodes in�v . Similaly, we de�ne Pv � P to be the set of pointsasso
iated with the edges in �v. Set mv = jPv j andnv = jLvj. At any level of T , Pvmv = O(m2) andPv nv = O(n). By 
onstru
tion, any point in P n Pvlies either above all pseudo-lines in Lv or below all ofthem. We therefore add two points, one at y = +1 andanother y = �1, to ea
h Pv , and 
ompute F(Pv ; Lv)at ea
h node v of T , in a bottom-up manner. Let �vbe the 
omplexity of F(Pv ; Lv). For ea
h leaf w 2 T ,we 
ompute the lower and upper envelopes of Lw inO(nw lognw) time. For ea
h internal node v 2 T , with
hildren w and z, we 
ompute F(Pv ; Lv) from F(Pw; Lw)and F(Pz ; Lz) in O((�v + �w + �z + mv + nv) logn)time, using the \red-blue-merge" algorithm proposedby Edelsbrunner et al. [14℄. It 
an be shown that thetotal time spent in 
omputing F(Pv ; Lv) at all nodes ofT is O((m2 + n) log2 n). Next, we use (1=r)-
uttingsto obtain an algorithm for 
omputing F(P;L), whi
h iseÆ
ient for all ranges of m and n, as in [1℄, and in thegeneral spirit of the pre
eding se
tion. Omitting furtherdetails, we 
on
lude the following.Theorem 6.1. Let L be a set of n pseudo-lines thatare extensions of 
ir
ular or polynomial ar
s of boundeddegree in the plane, and let P be a set of m points, nonelying on any pseudo-line. One 
an 
ompute F(P;L) intime O(m2=3�"n2=3+2" +m1+" + n1+").Let C be a set of n 
ongruent 
ir
les and P a setof points. We wish to 
ompute F(P;C). We partition



ea
h 
ir
le in C into two semi
ir
les by splitting it atits leftmost and rightmost points. Let U and L denotethe sets of resulting upper and lower semi
ir
les, respe
-tively. Ea
h pair of ar
s within U (or L) interse
ts in atmost one point. Although U and L do not 
onform tothe framework des
ribed in the beginning of Se
tion 2,we 
an nevertheless use Theorem 6.1 to 
ompute F(P;L)and F(P;U) in time O(m2=3�"n2=3+2" +m1+" + n1+").We 
an then 
ompute F(P;C) = F(P;U [ L) fromF(P;L) and F(P;U) in time O(� logn) by using the red-blue-merge algorithm of [14℄, where � is the total num-ber of verti
es in F(P;L);F(P;U), and F(P;C). Hen
ewe obtain the following.Theorem 6.2. Let P be a set of m points and C a setof n 
ongruent 
ir
les in the plane. We 
an 
omputeF(P;C) in time O(m2=3�"n2=3+2" +m1+" + n1+").7 Cutting LensesOne of our main motivations for studying arrangementsof pseudo-lines was the problem of 
omputing in
iden
es(and many fa
es) between points and 
ir
les. The re
entanalysis of Aronov and Sharir [9℄ shows that a 
olle
-tion of n 
ir
les 
an be 
ut into O(n3=2+") ar
s that arepseudo-segments, meaning that any pair of ar
s inter-se
t at most on
e. One 
an then apply known boundsfor in
iden
es between points and pseudo-segments, toobtain a bound that is roughly O(m2=3n2=3 + n3=2) onthe number of in
iden
es between m points and n 
ir-
les. (This bound 
an then be further re�ned, for smallvalues of m; see [9℄ for details.) Our goal is to makethis 
ombinatorial analysis 
onstru
tive, so as to obtaina 
omparably-eÆ
ient algorithm for dete
ting, 
ount-ing, or reporting these in
iden
es. The �rst task thatwe fa
e is to �nd, in time O(n3=2+"), a set of O(n3=2+")points that 
ut the given 
ir
les into pseudo-segments.If two 
ir
les 
; 
0 2 C interse
t, then the boundaries ofthe three bounded fa
es of A(f
; 
0g) are 
alled lenses.Our goal is thus to 
ut the 
ir
les in C so that all lenseswill be 
ut, i.e., a 
ut is made on at least one of the twoedges of ea
h lens.The algorithm pro
eeds in two stages. In the �rststage, we use standard range-sear
hing te
hniques [4℄,to de
ompose the interse
tion graph of the 
ir
les in Cinto a union of 
omplete bipartite subgraphs fAi�Bigiso that the following 
ondition holds (see also [9℄).(7.1) Xi (jAij+ jBij)3=2 = O(n3=2+"):In the se
ond stage, we 
ut 
ir
les in ea
h bipartitesubgraph independently. Let A be a set of \red" 
ir
lesand B a set of \blue" 
ir
les, so that every red 
ir
leinterse
ts every blue 
ir
le, and let m = jAj + jBj. We


ut 
ir
les in A and B into 
ir
ular ar
s so that allbi
hromati
 lenses, i.e., lenses formed by a red 
ir
le anda blue 
ir
le, are 
ut. We des
ribe a re
ursive algorithmfor making these 
uts. At ea
h step, we have a pseudo-trapezoid � and two sets of 
ir
ular ar
s � and �0 
lippedto within � . The ar
s in � and �0 lie on the 
ir
les in Aand B, respe
tively. Initially, � (resp. �0) is the set ofupper and lower semi
ir
les in A (resp. B), and � is theentire plane. We omit the proof of the following lemma;see [23℄ for a similar result.Lemma 7.1. If the endpoints of all ar
s in � and �0 lieon �� , then we 
an determine, in O((j�j+ j�0j) log3m)time, whether � and �0 indu
e at least one bi
hromati
lens that lies entirely in the interior of � .If the endpoints of all ar
s in � [ �0 lie on �� and� and �0 do not form a bi
hromati
 lens that is fully
ontained inside � , then we stop. Otherwise (i.e., anendpoint lies inside � , or there is a bi
hromati
 lens lyinginside �), we 
hoose a suÆ
iently large 
onstant r, and
ompute a (1=r)-
utting � of �[�0, of size O(r2) within� . For every ar
 
 2 �[�0 and for every 
ell � 2 � thatis 
rossed by 
, we 
ut 
 at its interse
tion points with��. The total number 
uts made is O(mr) = O(m).After this step all lenses that lie in more than one 
ellof � have been 
ut, so we re
ursively solve the problemwithin ea
h 
ell � of �, with the sets �� and �0�, whi
hare the sets of ar
s in � and �0, respe
tively, 
lipped towithin �, that interse
t the interior of �.It is 
lear that the algorithm 
uts all bi
hromati
lenses inside � . (Initially, � is the whole plane.) Inorder to analyze the running time of the algorithm, weneed the following observations. (See also [7℄ for a proofof a similar result.)Lemma 7.2. Let � be a lens in A(C). Then � 
ontains(in the 
losure of its interior) a lens �0 (possibly �0 = �)su
h that any 
ir
le that 
rosses �0 interse
ts both of itsar
s (either on
e or twi
e).We 
all a lens � elementary if the lens that satis�esLemma 7.2 is � itself. Returning to the subprobleminside the trapezoid � , if � 
ontains a lens in its interior,then it also 
ontains an elementary lens. Let m =j�j + j�0j, let k be the number of endpoints of ar
s in� [ �0 that lie in the interior of � plus the number ofelementary bi
hromati
 lenses that lie in the interior of� , and let T (m; k) denote the maximum running time ofthe above algorithm, for sets �;�0 that have parametersm and k. Then the above observation gives the followingre
urren
e for T (m; k).T (m; k) =X�2�T (m=r; k�) +O(m log3m);



where k� is the number of endpoints of � [ �0 plusthe number of elementary lenses that lie in the interiorof the 
ell � of �, so P� k� � k. We also haveT (m; 0) = O(m log3m). Hen
e, the same analysis asin [23, 29℄ implies that T (m; k) = O(m1+"pk). Thefollowing lemma is a re-statement of a re
ent resultin [7℄.Lemma 7.3. The number of elementary bi
hromati
lenses formed by � and �0 is O(m).Hen
e, k = O(m), so the total time spent in 
uttingthe bi
hromati
 lenses formed by A and B is O(m3=2+").Repeating this pro
edure to all bipartite graphs Ai�Bi,and adding up the resulting 
omplexity bounds using(7.1), we obtain the following:Theorem 7.1. A 
olle
tion of n 
ir
les 
an be 
ut intoO(n3=2+") pseudo-segments, in time O(n3=2+").8 Cir
ular ArrangementsCombining Theorem 7.1 with Theorem 5.1, we 
an
on
lude that the in
iden
es between m points and n
ir
les 
an be dete
ted, 
ounted or reported in timeO(m2=3�"n2=3+2" + m1+" + n3=2+"). This bound isnearly worst-
ase optimal for m larger than roughlyn5=4. Aronov and Sharir [9℄ show how to improvesu
h a bound for the number of in
iden
es when mis smaller. The extra step that they use, 
onstru
tinga dual partitioning for the set of 
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