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of irles or irular ars, suh as deteting, ounting,or reporting inidenes between points and irles.1 IntrodutionThe arrangement of a �nite olletion � of geometriurves or surfaes in Rd , denoted as A(�), is the de-omposition of the spae into relatively open onnetedells of dimensions 0; : : : ; d indued by �, where eahell is a maximal onneted set of points lying in theintersetion of a �xed subset of � and avoiding all otherelements of �. Besides being interesting in their ownright, due to the rih geometri, ombinatorial, alge-brai, and topologial strutures that they possess, ar-rangements also lie at the heart of numerous geometriproblems arising in a wide range of appliations, inlud-ing robotis, omputer graphis, moleular modeling,and omputer vision. Study of arrangements of linesand hyperplanes has a long, rih history. A summary ofearly work on arrangements an be found in [20, 21℄. Al-though hyperplane arrangements already possess a rihstruture, many appliations (e.g., motion-planning inrobotis and moleular modeling) all for a systematistudy of arrangements of ars in the plane and of sur-fae pathes in higher dimensions. There has been muhwork in this area in the last two deades; see [8℄ for areview of reent results.A olletion L of n unbounded Jordan urves isalled a family of pseudo-lines if every pair of urvesintersets in at most one point, and the two urves rosseah other there. Arrangements of pseudo-lines wereprobably �rst studied by Levi [24℄; see [16, 19, 21℄ forthe known results on pseudo-line arrangements. Thework by Goodman and Pollak on allowable sequenes[16℄ shows that any arrangement of pseudo-lines anbe transformed into an arrangement of x-monotonepseudo-lines that is isomorphi to the original one.Suh a transformation, however, is not eÆient for thealgorithms that we seek to develop, and we will thuson�ne our analysis to x-monotone pseudo-lines. Forsuh pseudo-lines, the above/below relationship, whihwill be used a lot in our analysis, is naturally de�ned.Many of the ombinatorial results related to ar-rangements of lines (e.g., omplexity of a single fae,omplexity of many faes, omplexity of a level, et.)1



hold for arrangements of pseudo-lines as well.It has been shown that various families of ars(e.g., irular, paraboli, et.) an be onverted into afamily of pseudo-segments (subars, eah pair of whihinterset at most one), by utting the ars into arelatively small number of piees. Chan [11℄ has shownthat a olletion of N pseudo-segments an be utfurther into O(N logN) subars, eah of whih an beextended into an unbounded x-monotone urve, so thatthese urves onstitute a family of pseudo-lines. Onean then use the lose relationship between line andpseudo-line arrangements to solve a variety of problemsinvolving arrangements of ars; see [2, 7, 9, 11, 30℄.In this paper, we fous on algorithmi problems in-volving arrangements of pseudo-lines in the plane, prob-lems that are muh less studied than the orrespondingombinatorial problems. Of ourse, one has to assumea reasonable representation of the given pseudo-lines, inorder to develop eÆient algorithms for their manipula-tion, so we assume, for example, that the given pseudo-lines are algebrai (or semi-algebrai) urves of �xedmaximum degree, and that our model of omputationallows us to perform, in onstant time, exat ompu-tations involving any onstant number of suh urves.However, even with these assumptions, several algo-rithms for line arrangements do not extend routinely topseudo-line arrangements. A stumbling blok in manyof these algorithms, when we try to extend them to thease of pseudo-lines, is that they use some kind of aduality transform that maps lines to points and pointsto lines. Typially, one uses the duality that maps aline ` : y = ax + b to a point `� = (a; b) and a pointp = (�; �) to the line p� : y = ��x+� [13℄. Note that `lies above (resp., below, on) p if and only if `� lies above(resp., below, on) p�.Burr et al. [10℄ had raised the question whether asimilar dual transform exists for pseudo-lines. Good-man [15℄, based on his work with Pollak on allowablesequenes [17, 18℄, de�ned a dual transform for (notneessarily x-monotone) pseudo-lines in the projetiveplane, that preserves the inidene relationship. Thatis, given a set L of n pseudo-lines and a set P of mpoints in R2 , the transform yields a set L� of pointsand a set P � of pseudo-lines, so that a point p of P lieson a pseudo-line ` 2 L if and only if the dual point `�lies on the dual pseudo-line p�. Goodman's onstrutionhas several disadvantages from an algorithmi point ofview. First, his onstrution is de�ned in the projetiveplane, and, onsequently, it does not (and annot, with-out onsiderable modi�ations) handle the above-belowrelationship. A more signi�ant problem, from the algo-rithmi point of view, is that his onstrution requiresthat for eah pair of the given points there exists an in-

put pseudo-line passing through this pair. Although theexistene of suh a pseudo-line follows from the lassialresult of Levi [24℄, omputing suh a pseudo-line seemsto be a highly nontrivial task.We de�ne a di�erent dual transform, whih may beregarded as an extension of Goodman's onstrution,and whih overomes the tehnial problems mentionedabove. Suppose we have a data struture for storing them points of P , whih an report, in O(f(m)+k) time, allk points of P that lie below a query pseudo-line `, whihan determine, in O(f(m)) time, whether any pointof P lies below a query pseudo-line `, and whih anbe updated in O(f(m)) time after inserting or deletinga point into/from P . Using suh a data struture asa \blak box," we present a sweep-line algorithm foronstruting the dual arrangement A(P �) that runs intime O((m2 + n)f(m) logm). We note that if f(m) issmall, say polylogarithmi in m or of the form O(m"),for any " > 0, then this bound is nearly optimal. Itis a bound of this kind that was missing so far in thealgorithmi appliations alluded to above.Next, we desribe a data struture for preproessinga set P of m points in the plane so that all k pointsof P lying below the graph of a query �xed-degreepolynomial an be reported in O(m" + k) time.1 Itan also determine, in O(m") time, whether any pointof P lies below a query urve. A point an be insertedor deleted into/from P in O(log2m) time. Althoughour approah is losely based on Matou�sek's algorithm[25℄ for reporting points that lie below a query line, anumber of tehnial diÆulties have to be overome toextend this algorithm to the ase of algebrai urves. Asimilar data struture also works for irular ars.Using our arrangement algorithm, we show that allinidenes between a set P of m points and a set L of npseudo-lines an be reported in time O(m2=3�"n2=3+2"+n1+" + m1+"), provided the pseudo-lines in L are ex-tensions of bounded-degree polynomial ars or of ir-ular ars (or for any other family of ars for whih adata struture with the above properties an be on-struted). More preisely, we assume that all our arshave the same x-projetion, and that they are extendedto pseudo-lines in some simple manner, e.g., by hori-zontal rays. We also desribe an algorithm, with thesame running time, for omputing the faes of A(L)that have a nonempty intersetion with a set P of m\marking points," none of whih lie on any ar of L.Our algorithm works also for a set of ongruent irles,thereby improving on the best-known algorithm, whihrequired O(npm logn) randomized expeted time [27℄.1We follow the onvention that an upper bound of the formO(g(n; ")) means that for eah " > 0 there is a onstant " suhthat the atual bound is "g(n; ").



Let L be a family of n pseudo-irles in the plane,whih is a olletion of losed Jordan urves, eah pairof whih interset at most twie. Reently, there hasbeen onsiderable work on the problem of splitting theurves in suh a family L into ars (pseudo-segments),so that eah pair of ars interset in at most onepoint. This work started with the paper of Tamaki andTokuyama [30℄, and has ontinued with reent papersof Aronov and Sharir [9℄, Chan [11℄, and Agarwal etal. [7℄. Sine the resulting set of ars is a olletionof pseudo-segments, one an obtain bounds on theomplexity of various substrutures in arrangements ofpseudo-irles by applying the known results for pseudo-segment arrangements. This approah has reently beenused to obtain, among other results, nontrivial upperbounds on the omplexity of a level in an arrangementof pseudo-irles [7, 11, 30℄, on the number of inidenesbetween points and irles or parabolas [7, 9℄, and on theomplexity of many faes in an arrangement of irles orparabolas [2, 7℄. However, none of the preeding resultswere algorithmi.In this paper we present an O(n3=2+")-time algo-rithm for splitting a set of n irles into O(n3=2+")pseudo-segment ars. The reent algorithms of Solan[29℄ and of Har-Peled [22℄ an be used or adapted forthis task, but the running time of the resulting solutionswould be lose to O(n7=4). Our algorithm follows thegeneral approah of these algorithms, but it uses addi-tional tools and a more re�ned analysis to obtain thebound stated above.Combining this algorithm with our new algorithmsfor handling arrangements of pseudo-lines, we obtainalgorithms that detet, ount, or report all inidenesbetween m points and n irles, in time that is lose tothe best upper bounds known for the number of suhinidenes (as provided in [7, 9℄).Finally, our duality result has reently found an-other appliation, in [28℄, where another duality, be-tween graphs drawn in the plane and sets of verties inpseudo-line arrangements, is obtained.2 Duality for Points and Pseudo-linesLet L be a set of n pseudo-lines and P a set of m pointsin the plane. Let W be a vertial strip that ontainsall points of P and all verties of A(L). Let � and �be the left and right boundary lines of W . We lipthe pseudo-lines of L to within W , and thus assumethat L is a set of x-monotone ars whose left and rightendpoints lie on � and �, respetively; see Figure 1 (a).An x-monotone Jordan ar that rosses W ompletelysplits W into two regions. We will refer to eah of theseregions as a pseudo-halfplane.We now present a duality transform that maps

L to a set L� of n points and P to a set P � ofm pseudo-lines so that the inidenes and the above-below relationships between the points and pseudo-lines are preserved. We �rst desribe the duality in amanner that, albeit being onstrutive, is not onernedwith real algorithmi eÆieny. We then show how toimplement the onstrution in an eÆient manner. Forsimpliity, we assume that no point of P lies on anypseudo-line of L. The onstrution and the proof aneasily be extended to handle this ase. Sort the pseudo-lines of L in inreasing order of their interepts with �.Map eah pseudo-line ` 2 L to the point `�(i`; 0), wherei` is the rank of the interept ` \ � along �. In otherwords, the dual points all lie on the x-axis, and appearthere in the same order as the y-order of the intereptsof the orresponding urves with �. Note that, sinewe are dealing with (x-monotone unbounded) pseudo-lines, the y-oordinates of the dual points, as well asthe exat spaings between their x-oordinates, are notimportant. One an always move any dual point upor down (arbitrarily) or left or right (without passingover another dual point), and deform the dual pseudo-lines aordingly, so that the inidenes, the above-below relationships, and the pseudo-line property, areall preserved. See Figure 1 for an illustration.`4`3`1� �b `2a b�d��e�a� (b)d e `�1 `�2 `�3 `�4(a)Figure 1: The duality transform: (a) The primal setting. (b)The dual representation; the dashed ovals show the bundlesmaintained by the sweep-line algorithm for onstrutingA(P �).Eah point p 2 P is mapped to an x-monotoneurve p� that is onstruted to obey the following(neessary) rule: For eah pseudo-line ` 2 L, if p liesabove (resp., below, on) `, draw p� to pass above (resp.,below, through) the point `�. This rule does not fullyspeify the urves p�, but, with some are, as we willsee next, this rule yields a drawing of these urves as aolletion of pseudo-lines.We next show how to sort the dual urves p�, forp 2 P , at x = �1. Let us �rst assume that no pairof points of P lie in the same fae of A(L). In thepresent ourse of analysis, we have no way to distinguishbetween any two points that lie in the same fae, andwe simply regard suh a pair as idential.



initially (abde)after `�1 (bde) � aafter `�2 (bd) � (e) aafter `�3 b a � d (e)after `�4 b a  � d eTable 1: The evolution of the y-struture during the sweep.The symbol � denotes the loation in the y-struture of thepoint `�j just being swept.We de�ne the following relation on P �: For twopoints p; q 2 P we say that p� � q� if the pseudo-line` 2 L with the lowest �-interept that separates p and qis suh that p lies below ` and q lies above `. We denotethis relationship by p < ` < q.Lemma 2.1. The relationship � is a total order on P �.Proof. (This simpli�ed proof was suggested by PavelValtr.) For eah p 2 P , let �p be the sequene ofpseudo-lines of L that lie below p, sorted in inreasing�-interept order. Order the sequenes �p lexiograph-ially, but with the twist that after removing a om-mon idential pre�x, a nonempty sequene preedes anempty one. The relationship � is then idential withthis lexiographial order, as is easily heked. 2We now show how to draw the urves of P � so thatthey form an arrangement of pseudo-lines. As noted,for the time being, we are not onerned about theeÆieny of the proedure given below; we only wantto show that the pseudo-line property an be enfored.First we sort the urves by � and draw them at x = �1in this inreasing order. In general, we draw the urvesfrom left to right as horizontal, parallel urves untilwe are about to sweep past some dual point `�. Weompute the sets A(`�), B(`�), onsisting of those pointsthat lie above (resp., below) `. This allows us to �ndall inversions enfored by `�, namely, all pairs (p; q),suh that p� passed above q� before `�, but at `� wehave that p� passes below `� whereas q� passes abovethat point. We then draw the urves past `� so thatexatly those inverted pairs ross eah other. To ahievethis, we take all the urves in A(`�) (that have to passabove `�), and bend them simultaneously, keeping themparallel to eah other, so that they do not intersetamong themselves. We apply a symmetri deformationto the urves in B(`�). In this way, it is lear thatintersetions arise exatly between the inverted pairs.After sweeping past `�, we bend all urves bak tohorizontal and ontinue like this to the right. If `�ontains any point of P , then the orresponding pseudo-lines pass through `�. See Figure 4. We invite the readerto verify that Figure 1(b) is a (somewhat deformed

but topologially equivalent) realization of this drawingproedure, applied to the on�guration in Figure 1(a).We prove that this proedure does indeed produe anarrangement of pseudo-lines. We �rst need the followinglemma.Lemma 2.2. There do not exist three pseudo-lines`1; `2; `3 2 L and two points p; q 2 P suh that (i) `�1lies to the left of `�2, whih lies to the left of `�3, (ii) theurve p� passes above `�1 and `�3, and below `�2, and (iii)the urve q� passes below `�1 and `�3, and above `�2.Proof. Refer to Figure 2. Suppose to the ontrary thatthere exists suh a on�guration. Interpreting it in theprimal plane, we have that point p lies above `1 andbelow `2, and point q lies below `1 and above `2. Henethese points lie in di�erent wedges of the double wedgeformed between `1 and `2. Sine `1 has smaller �-interept than that of `2, it is easily seen that p hasto lie to the left of q. Repeating the same argument forthe pseudo-lines `2 and `3, we onlude this time that qlies to the left of p, a ontradition that establishes thelemma. 2`2`1p� `�3`�2`�1 `2q� pqqp `3
Figure 2: Illustration to the proof of Lemma 2.2.Using the above lemma, we an prove the following.Lemma 2.3. There do not exist two pseudo-lines`1; `2 2 L and two points p; q 2 P suh that (i) `�1 liesto the left of `�2, (ii) the urve p� passes below q� atx = �1, (iii) the urve p� passes above `�1 and below`�2, and (iv) the urve q� passes below `�1 and above `�2.Omitting further details, we obtain the main resultof this setion:Theorem 2.1. For a �nite set P of points and a�nite set L of pseudo-lines in the plane, the abovetransformation maps L into a set of points and P into aset of pseudo-lines, so that the inidene and the above-below relationships between P and L are preserved.3 Construting the Dual ArrangementLet L� denote the set of points dual to the pseudo-linesof L, and let P � denote the set of pseudo-lines dualto the points of P , as de�ned in the preeding setion.We desribe an eÆient algorithm for omputing thearrangement A(P �). That is, we ompute an inidene



graph of A(P �) in whih there is a node for every fae| vertex, edge, and two-dimensional faet | of A(P �),and two nodes assoiated with the faes �1 and �2 areonneted by an ar if �1 � ��2 and dim(�1) + 1 =dim(�2). Moreover, the output also reords, for eah`� 2 L�, the vertex, edge, or 2-fae of A(P �) thatontains `�.We onstrut A(P �) by sweeping a vertial linefrom left to right that stops at every point of L�. ThediÆulty in performing the sweep is that we do notknow how to ompare the y-ordering of two dual pseudo-lines at a given vertial line. For example, supposewe want to ompare two dual pseudo-lines p�; q� atx = �1. By de�nition, we need to �nd, in the primalplane, all the pseudo-lines ` that separate p and q, anddetermine the order of p and q using the line with thesmallest �-interept. Computing this set of separatingpseudo-lines is nontrivial and time onsuming, and weannot a�ord to do it expliitly. We therefore sweep theline without maintaining the total ordering of pseudo-lines in P �, whih is only progressively revealed asthe sweep proeeds. More preisely, let `�1; `�2; : : : ; `�nbe the sequene of points in L� sorted by their x-oordinates. The algorithmmaintains the invariant thatit has omputed the following struture after proessing`�i :(I.1) A partition �i = hP1; : : : ; Puii of P into subsets,referred to as as bundles. Two points of P lie inthe same bundle of �i if and only if they lie in thesame fae of A(Li), where Li = f`1; : : : ; `ig. For anyp 2 Pj and q 2 Pj+1, the pseudo-line p� lies below q�immediately to the right of `�i . That is, the bundles aresorted by the y-ordering along the sweep line, but thevertial order of the pseudo-lines within eah bundle isyet undetermined. See Figure 1 (b) and Table 1.(I.2) Regard all dual pseudo-lines in eah bundle Pjas a single \thik" pseudo-line j (say, hoose a repre-sentative dual pseudo-line from eah bundle), and let�i = fj j 1 � j � uig. The algorithm has om-puted the portion ofA(�i) up to the vertial line passingthrough `�i .At the end, after proessing `�n, eah bundle in �nonsists of a single dual pseudo-line. (Two points thatremain in the same bundle at the end of the algorithmmust lie in the same fae of A(L), and, for our purpose,an be onsidered idential.) Therefore �n gives theordering of P � at x = +1 and A(�n) = A(P �).In the ith step, while proessing `�i , the algorithmonstruts �i and A(�i) from �i�1 and A(�i�1), re-spetively, as follows.Computing �i. For eah bundle Pj 2 �i�1, splitPj into two subsets P�j and P+j , where P�j (resp.,P+j ) is the set of points in Pj that lie below (resp.,

above) `i. Let ��i = hP�j j Pj 2 �i�1; P�j 6= ;i and�+i = hP+j j Pj 2 �i�1; P+j 6= ;i. Set �i = ��i Æ �+i ,where Æ denotes onatenation.Computing A(�i). For eah Pj 2 �i�1, if both P�jand P+j are nonempty, then p � q for any (p; q) 2P�j � P+j , so we an re�ne the ordering of pseudo-linesin P � at x = �1 (this is not done expliitly | it willbe a byprodut of the other steps desribed next). Wesplit the orresponding thik pseudo-line j into twopseudo-lines �j and +j and re�ne A(�i�1), with �jlying below +j ; +j lies above `�i , and �j lies below it.Roughly speaking, every edge of A(�i) that lies on j isnow replaed by a thin \pseudo-retangle," as shownin Figure 3. We omit the details from this abstrat.`�iw�j v�k +jl�jk v+ w+l wvFigure 3: Splitting a thik pseudo-line; every edge lying onj beomes a pseudo-retangular fae.Next, if we have two nonempty bundles P�j and P+ksuh that k < j, then �j lies above +k just to the leftof `�i but below +k at `�i , so they indue a vertex ofA(�i) to the left of `�i . We reate this new vertex andupdate the inidene graph. Note that in general manypairs (P�j ; P+k ) may reate suh a rossing before `�i , asshown in Figure 4. We update A(�i) aordingly.`�iFigure 4: Several pairs of bundles ross before `�i .With some extra are, the algorithm an also handlepseudo-lines that pass through points of P . Details areomitted in this abstrat.Lemma 3.1. The above two steps maintain the invari-ant (I.1) and (I.2).One we have omputed ��i and �+i and de-termined the bundles that have been split into twononempty bundles, the rest of the omputation an bearried out in time proportional to the hange in the sizeof the inidene graph of the arrangement, whose au-mulated ost is only O(m2). It thus suÆes to desribehow to ompute ��i and �+i eÆiently. We maintain aweight-balaned binary tree T whose jth leftmost leaf



stores the bundle Pj [26℄. For eah node v 2 T, letSv � P denote the set of points stored at the leavesof the subtree rooted at v. At eah node v 2 T, wemaintain a data struture Dv = D(Sv) that supportsthe following operations on Sv :Emptyv(): Is one of the pseudo-halfplanes deter-mined by  empty (of points of Sv)? If so, whihone?Insertv(p): Insert a point p into Sv .Deletev(p): Delete a point p from Sv .Splitv(): Let S+v ; S�v be the subset of points of Svthat lie above and below , respetively. SplitD(Sv) into D(S+v ) and D(S�v ).We will desribe in the next setion a data struturethat supports these operations eÆiently. For now,assume that eah of these operations an be performedin O(f(m)) (amortized) time. Then we ompute ��iand �+i , as follows.While proessing `i, we visit T in a top-downmanner. Suppose we are at a node v 2 T. We exeuteEmptyv(`i) onD(Sv). If it returns \yes," then we markv by `+' (resp., by `�') if Sv lies entirely above (resp.,below) `i. If the proedure returns \no" and v is aleaf, then we perform Splitv(`i), reate two hildrenv� and v+ of v, mark v� (resp., v+) by `�' (resp., by`+'), store S�v (resp., S+v ) at v� (resp., at v+), andassoiate D(S�v ) (resp., D(S+v )) with v� (resp., withv+). Otherwise (if the points of Sv lie on both sidesof `i and v is not a leaf), we reursively visit the twohildren of v. Let V � (resp. V +) denote the nodes ofT marked `�' (resp., `+'). Let A = hui1 ; : : : ; uiai andB = hwj1 ; : : : ; wjbi be the sequene of (new) leaves ofT, sorted from left to right, in the subtrees rooted atnodes in V � and V +, respetively. Note that we have��i = hSui1 ; : : : ; Suia i and �+i = hSwj1 ; : : : ; Swjb i. We�nish the step by re-arranging the leaves, the interiornodes, and the seondary strutures of T, so that allleaves of A appear before those of B, i.e., the sequeneof leaves after re-ordering is (ui1 ; : : : ; uia ; wj1 ; : : : ; wjb ).Suppose uit ; : : : ; uia appear to the right of wj1 . Thenwe delete these leaves from T, and we also deletethe points stored at these leaves from the seondarydata strutures stored at the anestors of these nodes.We then re-insert these leaves, and the orrespondingpoints, before wj1 in the orret order. We also updatethe data struures stored at the anestors of theseleaves.Let �i and �i be, respetively, the number ofleaves of T that are split, and the number of vertiesof A(�i) that are reated in the ith step. Then

jV �j + jV +j = O((�i + 1) logm). Hene, the totaltime spent in traversing T and splitting the leaves isO(�if(m) logm). Sine Pni=1 �i � m � 1, the totaltime spent in these steps during the entire sweep isO((n + m)f(m) logm). The total time spent in re-arranging the tree is O((Paj=t jSij j)f(m) logm) beausea point is deleted from the seondary strutures of onlyO(logm) nodes. However,Paj=t jSij j � 2�i, so the totaltime spent in re-arranging T and updating its seondarystrutures is O(�if(m) logm). SinePi �i = O(m2), weonlude:Theorem 3.1. Let L be a set of n pseudo-lines andP a set of m points in the plane. Suppose we have adata struture that supports eah of the four operationsdesribed above in O(f(m)) amortized time. Then wean onstrut A(P �) (in the sense presribed in thebeginning of this setion), in O((m2 + n)f(m) logm)time.We will show in the next setion that if L is a set ofirular ars or bounded-degree polynomial ars (witha ommon x-projetion), then f(m) = O(m"), so weobtain the following.Corollary 3.1. Let L be a set of n irular arsor bounded-degree polynomial ars with a ommon x-projetion, eah pair of whih interset at most one,and let P be a set of m points in the plane. Then wean onstrut A(P �) (with respet to an extension ofthe ars of L into pseudo-lines) in O((m2+n)m") time.Moreover, for eah point p 2 P , the above algorithm analso return, within the same asymptoti time bound, theset of ars in L that ontain p. If there is no ar passingthrough p, then the algorithm an return the ars thatlie immediately above and below p.4 Pseudo-Halfplane Range ReportingLet W be a vertial strip, and let � be a olletion ofx-monotone ars whose endpoints lie on the left andright boundaries of W . Eah ar  2 � splits W intotwo (losed) regions. As above, we all eah of theseregions a pseudo-halfplane bounded by . Let S bea set of m points lying inside the strip W . We wishto preproess S into a data struture that supportsthe four operations desribed in the previous setion{ Empty, Insert, Delete, and Split, with respetto ars  2 �. In addition, we want the data strutureto support the following Report (g, k) operation: Letg be one of the pseudo-halfplanes bounded by an ar 2 �, and let k be an integer. Report (g, k) reportsminfjS\gj; kg points of S\g. Note that Empty () anbe answered by performing the queries Report (+, 1)



and Report (�, 1), where �; + are the two pseudo-halfplanes bounded by . The following lemma is easyto prove.Lemma 4.1. If a data struture supports the operationsInsert, Delete in O(f(m)) amortized time and Re-port (g, k) in O(f(m) + k) time, then Split an beperformed in O(f(m) logm) amortized time.Proof. Let  2 � be the query ar, and let +; � bethe two pseudo-halfplanes bounded by . By invokingReport (�, 2i) and Report (+, 2i) repeatedly andalternately, with i = 1; 2; 3; : : :, we an determine whihof �; + ontains fewer points, up to a fator of 2.Suppose jS \ �j = � � 2jS \ +j. Then the aboveproedure reports all points of S\� in O(f(m) logm+�) time. We delete the points of S \ � from thedata struture and reonstrut a new data struture onS \ �. A standard analysis shows that eah point isdeleted at most O(logm) times. The amortized ost ofeah split operation is thus O(f(m) logm). 2Hene, it suÆes to desribe a data struture thatsupports the Insert, Delete, and Report operationseÆiently. We present suh a data struture for twospeial ases: (i) � is a set of irular ars, and (ii) �is a set of (portions of the) graphs of polynomials ofbounded degree.4.1 Querying with irular arsLet � be the set of irular ars whose endpoints lieon the left and right boundaries of W . We onstrut aweight-balaned binary tree T on the y-oordinates ofthe points in S [26℄. For a node v 2 T, let Sv � S bethe set of points whose y-oordinates are stored at theleaves of the subtree rooted at v, and put mv = jSvj.We map eah point p = (xp; yp) 2 Sv to the point�p = (xp; yp; x2p + y2p) in R3 . Let �Sv = f�p j p 2 Svg. Wepreproess �Sv into a dynami data struture, proposedby Agarwal and Matou�sek [6℄, for reporting, in timeO(m"v+k), all k points of �Sv that lie in a query halfspaeh in R3 . This data struture an easily be modi�ed, sothat queries of the following form an also be answeredeÆiently: given a parameter �, report minfj �Sv \hj; �gpoints of Sv lying in the query halfspae. A query takesO(m"v + �) time, and a point an be inserted into ordeleted in O(log2m) time.Let g be the region lying below an ar  2 �.Suppose  lies in the upper semiirle of the irle C ;let a denote the y-oordinate of the enter of C , and letD denote the disk bounded by C . A Report (g, k)query is answered as follows. We �rst identify O(logm)nodes v1; : : : vs of T so that Si Svi is the set of pointsin S whose y-oordinates are at most a. Sine eah

Svi � g, by visiting the vi's one by one, we anreport, in O(�) time, � = minfjSi Svi j; kg points of Swhose y-oordinates are at most a. If we have reportedfewer than k points, then we identify O(logm) nodesw1; : : : ; wr of T so that Si Swi is the set of points whosey-oordinates are at least a. A point p 2 Swi lies inthe halfplane g if and only if p 2 D . We map C toa plane �C in R3 , using the standard lifting transform,so that p 2 D if and only if �p lies below the plane �C .We visit the wi's one by one, and at eah node wi we dothe following: Suppose we have reported � points so far.We then report minfk��; jSwi\C jg points of Swi\Cusing the seondary struture stored at wi. If we havereported a total of k points, we stop. Otherwise, weupdate the value of � and visit wi+1. The total timespent in this proedure is O(m" + k).Using the standard partial-rebuilding teh-nique [26℄, a point an be inserted or deleted into/fromthe overall struture in O(log3m) time. Hene, weobtain the following:Theorem 4.1. Let � and S be as above. Then eahof the operations Empty, Insert, Delete, and Splitan be performed in O(m") amortized time.Remark. The above data struture an be extended tothe ase in whih the endpoints of the query irular ardo not lie on the boundary of W . Details are omitted.4.2 Querying with polynomial arsNext let � be the set of all ars that are intersetionswith a �xed strip W of graphs of polynomials of degreeat most d. We desribe a dynami data struture thatreports all points of S lying above an ar in �. A similardata struture an be onstruted for reporting pointsthat lie below an ar.We all an ar  2 � k-shallow if at most k pointsof S lie above . We all a simply onneted ell with atmost four edges a pseudo-trapezoid if its top and bottomedges are portions of ars in � and its left and right edgesare vertial segments. An elementary partition of S is afamily � = f(S1;41); : : : ; (Su;4u)g, where S1; : : : ; Suform a partition of S, 4i is a pseudo-trapezoid, andSi � 4i. The following lemma, whose proof is omitted,is obtained by extending the results of Matou�sek [25℄and of Agarwal and Matou�sek [5℄.Lemma 4.2. Let S and � be as de�ned above, and letr be a parameter. Then there exists an elementarypartition � = f(S1;41); : : : ; (Su;4u)g of S so thatm=r � jSij � 2m=r, for eah i, and any (m=r)-shallowar of � rosses O(logm) pseudo trapezoids of �. If ris a onstant, then � an be omputed in O(m) time.As in [25℄, using the above lemma, we an onstrut,in O(m logm) time, a partition tree of size O(m) for



answering Report (g, k) queries in time O(m" + k). Apoint an be inserted or deleted in O(log2m) amortizedtime. Hene, we onlude the following.Theorem 4.2. Let � and S be as above. Then eahof the operations Empty, Insert, Delete, and Splitan be performed in O(m") amortized time.5 Inidenes in Pseudo-line ArrangementsLet P be a set of m points and L a set of n pseudo-lines that are extensions of irular or polynomial ars,and let I(P;L) denote the set of pairs (p; `) 2 P � Lsuh that p lies on `. We wish to report I(P;L),ompute jI(P;L)j, or just determine whether I(P;L)is nonempty. For simpliity, we fous on the �rstsubproblem. Corollary 3.1 implies that I(P;L) an beomputed in O((m2 + n)m") time. By partitioning Pinto dm=pne subsets P1; : : : ; Ps, eah of size at mostpn, and omputing I(Pi; L) for eah subset separately,I(P;L) an be omputed in O(mn1=2+" + n1+") time,whih is near optimal for m � pn. We now desribean algorithm that is eÆient for all values of m andn. For a parameter r � n, a (1=r)-utting of Lis a deomposition of R2 into pseudo-trapezoids withdisjoint interiors so that eah pseudo-trapezoid rossesat most n=r pseudo-lines of L. Chazelle's algorithm [12℄for omputing a (1=r)-utting of hyperplanes an bemodi�ed to ompute a (1=r)-utting of pseudo-lines ofsize O(r2) in O(nr) time, under an appropriate modelof omputation.We hoose a parameter r < n and onstrut a (1=r)-utting � of L of size O(r2). For a ell � 2 �, let L� � Lbe the set of pseudo-lines that interset the interior of� . We an ompute the inidenes between L and thosepoints of P that lie at the verties of � in O(nr) time.For a ell � 2 �, let P� � P be the set of points thateither lie in the interior of � or that lie on an edge of � .Set n� = jL� j and m� = jP� j. Then P� m� � 2m andn� � n=r. At most one pseudo-line `e of L an ontainan edge e of �. If there is suh a pseudo-line, we reportall inidenes between e and the points that lie on e,over all edges e, in a total time of O(r2 +m). Finally,we ompute I(P� ; L� ) in time O(m�n1=2+"� +n1+"� ) usingthe algorithm outlined above. Choosing the value of rappropriately, we obtain the following.Theorem 5.1. The inidenes between m points and npseudo-lines that are extendions of irular or polyno-mial ars of bounded degree an be deteted, ounted, orreported in time O(m2=3�"n2=3+2" +m1+" + n1+").6 Many Faes in Pseudo-line ArrangementsFor a set L of pseudo-lines as above and for a setP of points in the plane, none lying on any pseudo-

line of L, let F(P;L) be the set of faes in A(L) thatontain at least one point of P . We ompute F(P;L) byfollowing an approah similar to the one for omputingI(P;L). We �rst desribe an O((m2 + n)n") algorithmfor omputing F(P;L): We ompute the arrangementA(P �) of pseudo-lines dual to P , and then omputeits vertial deomposition Ajj(P �). For eah fae ' 2Ajj(P �), we ompute the subset L' � L of pseudo-lines whose dual points lie inside '. This step takesO((m2 + n)n") time. Next, we ompute an Euleriantour � of the planar graph dual to Ajj(P �) so that eahfae of Ajj(P �) is visited O(1) times; see [3℄. Eah nodeof � orresponds to a fae of Ajj(P �). If an edge eof � rosses two adjaent faes of A(P �), we set �(e)to be the point of P whose dual pseudo-line separatesthese two faes. Otherwise, i.e., e onnets two faes ofAjj(P �) separated by a vertial line, we set �(e) = ;.Next, we onstrut a minimum-height binary tree T on�. Eah leaf of T is assoiated with a node of �, andthus with a fae of Ajj(P �), and eah node v of T isassoiated with a subpath �v of �. For eah node vof T , we set Lv = S' L', where the union is takenover all faes of Ajj(P �) assoiated with the nodes in�v . Similaly, we de�ne Pv � P to be the set of pointsassoiated with the edges in �v. Set mv = jPv j andnv = jLvj. At any level of T , Pvmv = O(m2) andPv nv = O(n). By onstrution, any point in P n Pvlies either above all pseudo-lines in Lv or below all ofthem. We therefore add two points, one at y = +1 andanother y = �1, to eah Pv , and ompute F(Pv ; Lv)at eah node v of T , in a bottom-up manner. Let �vbe the omplexity of F(Pv ; Lv). For eah leaf w 2 T ,we ompute the lower and upper envelopes of Lw inO(nw lognw) time. For eah internal node v 2 T , withhildren w and z, we ompute F(Pv ; Lv) from F(Pw; Lw)and F(Pz ; Lz) in O((�v + �w + �z + mv + nv) logn)time, using the \red-blue-merge" algorithm proposedby Edelsbrunner et al. [14℄. It an be shown that thetotal time spent in omputing F(Pv ; Lv) at all nodes ofT is O((m2 + n) log2 n). Next, we use (1=r)-uttingsto obtain an algorithm for omputing F(P;L), whih iseÆient for all ranges of m and n, as in [1℄, and in thegeneral spirit of the preeding setion. Omitting furtherdetails, we onlude the following.Theorem 6.1. Let L be a set of n pseudo-lines thatare extensions of irular or polynomial ars of boundeddegree in the plane, and let P be a set of m points, nonelying on any pseudo-line. One an ompute F(P;L) intime O(m2=3�"n2=3+2" +m1+" + n1+").Let C be a set of n ongruent irles and P a setof points. We wish to ompute F(P;C). We partition



eah irle in C into two semiirles by splitting it atits leftmost and rightmost points. Let U and L denotethe sets of resulting upper and lower semiirles, respe-tively. Eah pair of ars within U (or L) intersets in atmost one point. Although U and L do not onform tothe framework desribed in the beginning of Setion 2,we an nevertheless use Theorem 6.1 to ompute F(P;L)and F(P;U) in time O(m2=3�"n2=3+2" +m1+" + n1+").We an then ompute F(P;C) = F(P;U [ L) fromF(P;L) and F(P;U) in time O(� logn) by using the red-blue-merge algorithm of [14℄, where � is the total num-ber of verties in F(P;L);F(P;U), and F(P;C). Henewe obtain the following.Theorem 6.2. Let P be a set of m points and C a setof n ongruent irles in the plane. We an omputeF(P;C) in time O(m2=3�"n2=3+2" +m1+" + n1+").7 Cutting LensesOne of our main motivations for studying arrangementsof pseudo-lines was the problem of omputing inidenes(and many faes) between points and irles. The reentanalysis of Aronov and Sharir [9℄ shows that a olle-tion of n irles an be ut into O(n3=2+") ars that arepseudo-segments, meaning that any pair of ars inter-set at most one. One an then apply known boundsfor inidenes between points and pseudo-segments, toobtain a bound that is roughly O(m2=3n2=3 + n3=2) onthe number of inidenes between m points and n ir-les. (This bound an then be further re�ned, for smallvalues of m; see [9℄ for details.) Our goal is to makethis ombinatorial analysis onstrutive, so as to obtaina omparably-eÆient algorithm for deteting, ount-ing, or reporting these inidenes. The �rst task thatwe fae is to �nd, in time O(n3=2+"), a set of O(n3=2+")points that ut the given irles into pseudo-segments.If two irles ; 0 2 C interset, then the boundaries ofthe three bounded faes of A(f; 0g) are alled lenses.Our goal is thus to ut the irles in C so that all lenseswill be ut, i.e., a ut is made on at least one of the twoedges of eah lens.The algorithm proeeds in two stages. In the �rststage, we use standard range-searhing tehniques [4℄,to deompose the intersetion graph of the irles in Cinto a union of omplete bipartite subgraphs fAi�Bigiso that the following ondition holds (see also [9℄).(7.1) Xi (jAij+ jBij)3=2 = O(n3=2+"):In the seond stage, we ut irles in eah bipartitesubgraph independently. Let A be a set of \red" irlesand B a set of \blue" irles, so that every red irleintersets every blue irle, and let m = jAj + jBj. We

ut irles in A and B into irular ars so that allbihromati lenses, i.e., lenses formed by a red irle anda blue irle, are ut. We desribe a reursive algorithmfor making these uts. At eah step, we have a pseudo-trapezoid � and two sets of irular ars � and �0 lippedto within � . The ars in � and �0 lie on the irles in Aand B, respetively. Initially, � (resp. �0) is the set ofupper and lower semiirles in A (resp. B), and � is theentire plane. We omit the proof of the following lemma;see [23℄ for a similar result.Lemma 7.1. If the endpoints of all ars in � and �0 lieon �� , then we an determine, in O((j�j+ j�0j) log3m)time, whether � and �0 indue at least one bihromatilens that lies entirely in the interior of � .If the endpoints of all ars in � [ �0 lie on �� and� and �0 do not form a bihromati lens that is fullyontained inside � , then we stop. Otherwise (i.e., anendpoint lies inside � , or there is a bihromati lens lyinginside �), we hoose a suÆiently large onstant r, andompute a (1=r)-utting � of �[�0, of size O(r2) within� . For every ar  2 �[�0 and for every ell � 2 � thatis rossed by , we ut  at its intersetion points with��. The total number uts made is O(mr) = O(m).After this step all lenses that lie in more than one ellof � have been ut, so we reursively solve the problemwithin eah ell � of �, with the sets �� and �0�, whihare the sets of ars in � and �0, respetively, lipped towithin �, that interset the interior of �.It is lear that the algorithm uts all bihromatilenses inside � . (Initially, � is the whole plane.) Inorder to analyze the running time of the algorithm, weneed the following observations. (See also [7℄ for a proofof a similar result.)Lemma 7.2. Let � be a lens in A(C). Then � ontains(in the losure of its interior) a lens �0 (possibly �0 = �)suh that any irle that rosses �0 intersets both of itsars (either one or twie).We all a lens � elementary if the lens that satis�esLemma 7.2 is � itself. Returning to the subprobleminside the trapezoid � , if � ontains a lens in its interior,then it also ontains an elementary lens. Let m =j�j + j�0j, let k be the number of endpoints of ars in� [ �0 that lie in the interior of � plus the number ofelementary bihromati lenses that lie in the interior of� , and let T (m; k) denote the maximum running time ofthe above algorithm, for sets �;�0 that have parametersm and k. Then the above observation gives the followingreurrene for T (m; k).T (m; k) =X�2�T (m=r; k�) +O(m log3m);



where k� is the number of endpoints of � [ �0 plusthe number of elementary lenses that lie in the interiorof the ell � of �, so P� k� � k. We also haveT (m; 0) = O(m log3m). Hene, the same analysis asin [23, 29℄ implies that T (m; k) = O(m1+"pk). Thefollowing lemma is a re-statement of a reent resultin [7℄.Lemma 7.3. The number of elementary bihromatilenses formed by � and �0 is O(m).Hene, k = O(m), so the total time spent in uttingthe bihromati lenses formed by A and B is O(m3=2+").Repeating this proedure to all bipartite graphs Ai�Bi,and adding up the resulting omplexity bounds using(7.1), we obtain the following:Theorem 7.1. A olletion of n irles an be ut intoO(n3=2+") pseudo-segments, in time O(n3=2+").8 Cirular ArrangementsCombining Theorem 7.1 with Theorem 5.1, we anonlude that the inidenes between m points and nirles an be deteted, ounted or reported in timeO(m2=3�"n2=3+2" + m1+" + n3=2+"). This bound isnearly worst-ase optimal for m larger than roughlyn5=4. Aronov and Sharir [9℄ show how to improvesuh a bound for the number of inidenes when mis smaller. The extra step that they use, onstrutinga dual partitioning for the set of irles, representedas points in R3 , is in fat onstrutive. Putting itall together, and omitting any further details in thisabstrat, we obtain:Theorem 8.1. The inidenes between m points andn irles an be deteted, ounted or reported in timeO(m2=3�"n2=3+2" +m6=11+3"n9=11�" +m1+" + n1+").The following result on range searhing an also beobtained by modifying our inidene algorithm.Theorem 8.2. Given a set C of n irles and a set P ofm points in the plane, we an ount the number of pointslying inside eah irle in time O(m2=3�"n2=3+2" +m6=11+3"n9=11�" +m1+" + n1+").Referenes[1℄ P. K. Agarwal, Partitioning arrangements of lines: II.Appliations, Disrete Comput. Geom., 5 (1990), 533{573.[2℄ P. K. Agarwal, B. Aronov and M. Sharir, On theomplexity of many faes in arrangements of pseudo-segments and of irles, to appear in Pro. 42nd AnnualSympos. Foundations of Computer Siene, 2001.
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