Pseudo-line Arrangements: Duality, Algorithms, and Applications *

Pankaj K. Agarwalf

Abstract

A collection L of n z-monotone unbounded Jordan
curves in the plane is called a family of pseudo-lines
if every pair of curves intersect in at most one point,
and the two curves cross each other there. Let P be a
set of m points in R2. We define a duality transform
that maps L to a set L* of points in R2 and P to
a set P* of pseudo-lines in RZ?, so that the incidence
and the “above-below” relationships between the points
and pseudo-lines are preserved. We present an efficient
algorithm for computing the dual arrangement A(P*)
under an appropriate model of computation. We also
propose a dynamic data structure for reporting, in
O(m* + k) time, all k points of P that lie below a query
arc, which is either a circular arc or a portion of the
graph of a polynomial of fixed degree. This result is
needed for computing the dual arrangement for certain
classes of pseudo-lines arising in our applications, but
is also interesting in its own right. We present a few
applications of our dual arrangement algorithm, such
as computing incidences between points and pseudo-
lines and computing a subset of faces in a pseudo-line
arrangement.

Next, we present an efficient algorithm for cutting
a set of circles into arcs so that every pair of arcs inter-
sect in at most one point, i.e., the resulting arcs consti-
tute a collection of pseudo-segments. By combining this
algorithm with our algorithm for computing the dual
arrangement, of pseudo-lines, we obtain efficient algo-
rithms for a number of problems involving arrangements
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of circles or circular arcs, such as detecting, counting,
or reporting incidences between points and circles.

1 Introduction

The arrangement of a finite collection I' of geometric
curves or surfaces in R?, denoted as A(T), is the de-
composition of the space into relatively open connected
cells of dimensions 0,...,d induced by T', where each
cell is a maximal connected set of points lying in the
intersection of a fixed subset of I' and avoiding all other
elements of I'. Besides being interesting in their own
right, due to the rich geometric, combinatorial, alge-
braic, and topological structures that they possess, ar-
rangements also lie at the heart of numerous geometric
problems arising in a wide range of applications, includ-
ing robotics, computer graphics, molecular modeling,
and computer vision. Study of arrangements of lines
and hyperplanes has a long, rich history. A summary of
early work on arrangements can be found in [20, 21]. Al-
though hyperplane arrangements already possess a rich
structure, many applications (e.g., motion-planning in
robotics and molecular modeling) call for a systematic
study of arrangements of arcs in the plane and of sur-
face patches in higher dimensions. There has been much
work in this area in the last two decades; see [8] for a
review of recent results.

A collection L of n unbounded Jordan curves is
called a family of pseudo-lines if every pair of curves
intersects in at most one point, and the two curves cross
each other there. Arrangements of pseudo-lines were
probably first studied by Levi [24]; see [16, 19, 21] for
the known results on pseudo-line arrangements. The
work by Goodman and Pollack on allowable sequences
[16] shows that any arrangement of pseudo-lines can
be transformed into an arrangement of z-monotone
pseudo-lines that is isomorphic to the original one.
Such a transformation, however, is not efficient for the
algorithms that we seek to develop, and we will thus
confine our analysis to z-monotone pseudo-lines. For
such pseudo-lines, the above/below relationship, which
will be used a lot in our analysis, is naturally defined.

Many of the combinatorial results related to ar-
rangements of lines (e.g., complexity of a single face,
complexity of many faces, complexity of a level, etc.)



hold for arrangements of pseudo-lines as well.

It has been shown that various families of arcs
(e.g., circular, parabolic, etc.) can be converted into a
family of pseudo-segments (subarcs, each pair of which
intersect at most once), by cutting the arcs into a
relatively small number of pieces. Chan [11] has shown
that a collection of N pseudo-segments can be cut
further into O(N log N) subarcs, each of which can be
extended into an unbounded z-monotone curve, so that
these curves constitute a family of pseudo-lines. One
can then use the close relationship between line and
pseudo-line arrangements to solve a variety of problems
involving arrangements of arcs; see [2, 7, 9, 11, 30].

In this paper, we focus on algorithmic problems in-
volving arrangements of pseudo-lines in the plane, prob-
lems that are much less studied than the corresponding
combinatorial problems. Of course, one has to assume
a reasonable representation of the given pseudo-lines, in
order to develop efficient algorithms for their manipula-
tion, so we assume, for example, that the given pseudo-
lines are algebraic (or semi-algebraic) curves of fixed
maximum degree, and that our model of computation
allows us to perform, in constant time, exact compu-
tations involving any constant number of such curves.
However, even with these assumptions, several algo-
rithms for line arrangements do not extend routinely to
pseudo-line arrangements. A stumbling block in many
of these algorithms, when we try to extend them to the
case of pseudo-lines, is that they use some kind of a
duality transform that maps lines to points and points
to lines. Typically, one uses the duality that maps a
line £ : y = ax + b to a point £* = (a,b) and a point
p = («, B) to the line p* : y = —axz + 3 [13]. Note that £
lies above (resp., below, on) p if and only if £* lies above
(resp., below, on) p*.

Burr et al. [10] had raised the question whether a
similar dual transform exists for pseudo-lines. Good-
man [15], based on his work with Pollack on allowable
sequences [17, 18], defined a dual transform for (not
necessarily z-monotone) pseudo-lines in the projective
plane, that preserves the incidence relationship. That
is, given a set L of n pseudo-lines and a set P of m
points in R?, the transform yields a set L* of points
and a set P* of pseudo-lines, so that a point p of P lies
on a pseudo-line ¢ € L if and only if the dual point ¢*
lies on the dual pseudo-line p*. Goodman’s construction
has several disadvantages from an algorithmic point of
view. First, his construction is defined in the projective
plane, and, consequently, it does not (and cannot, with-
out considerable modifications) handle the above-below
relationship. A more significant problem, from the algo-
rithmic point of view, is that his construction requires
that for each pair of the given points there exists an in-

put pseudo-line passing through this pair. Although the
existence of such a pseudo-line follows from the classical
result of Levi [24], computing such a pseudo-line seems
to be a highly nontrivial task.

We define a different dual transform, which may be
regarded as an extension of Goodman’s construction,
and which overcomes the technical problems mentioned
above. Suppose we have a data structure for storing the
m points of P, which can report, in O(f(m)+k) time, all
k points of P that lie below a query pseudo-line ¢, which
can determine, in O(f(m)) time, whether any point
of P lies below a query pseudo-line ¢, and which can
be updated in O(f(m)) time after inserting or deleting
a point into/from P. Using such a data structure as
a “black box,” we present a sweep-line algorithm for
constructing the dual arrangement A(P*) that runs in
time O((m? + n)f(m)logm). We note that if f(m) is
small, say polylogarithmic in m or of the form O(m?®),
for any € > 0, then this bound is nearly optimal. It
is a bound of this kind that was missing so far in the
algorithmic applications alluded to above.

Next, we describe a data structure for preprocessing
a set P of m points in the plane so that all £ points
of P lying below the graph of a query fixed-degree
polynomial can be reported in O(m® + k) time.! Tt
can also determine, in O(m?) time, whether any point
of P lies below a query curve. A point can be inserted
or deleted into/from P in O(log? m) time. Although
our approach is closely based on Matousek’s algorithm
[25] for reporting points that lie below a query line, a
number of technical difficulties have to be overcome to
extend this algorithm to the case of algebraic curves. A
similar data structure also works for circular arcs.

Using our arrangement algorithm, we show that all
incidences between a set P of m points and a set L of n
pseudo-lines can be reported in time O (m?/3~=n2/3+2= 4
n'*e + m!*e), provided the pseudo-lines in L are ex-
tensions of bounded-degree polynomial arcs or of cir-
cular arcs (or for any other family of arcs for which a
data structure with the above properties can be con-
structed). More precisely, we assume that all our arcs
have the same z-projection, and that they are extended
to pseudo-lines in some simple manner, e.g., by hori-
zontal rays. We also describe an algorithm, with the
same running time, for computing the faces of A(L)
that have a nonempty intersection with a set P of m
“marking points,” none of which lie on any arc of L.
Our algorithm works also for a set of congruent circles,
thereby improving on the best-known algorithm, which
required O(n+/mlogn) randomized expected time [27].

TWe follow the convention that an upper bound of the form

O(g(n,e)) means that for each € > 0 there is a constant ¢ such
that the actual bound is cc.g(n,¢).



Let L be a family of n pseudo-circles in the plane,
which is a collection of closed Jordan curves, each pair
of which intersect at most twice. Recently, there has
been considerable work on the problem of splitting the
curves in such a family L into arcs (pseudo-segments),
so that each pair of arcs intersect in at most one
point. This work started with the paper of Tamaki and
Tokuyama [30], and has continued with recent papers
of Aronov and Sharir [9], Chan [11], and Agarwal et
al. [7]. Since the resulting set of arcs is a collection
of pseudo-segments, one can obtain bounds on the
complexity of various substructures in arrangements of
pseudo-circles by applying the known results for pseudo-
segment arrangements. This approach has recently been
used to obtain, among other results, nontrivial upper
bounds on the complexity of a level in an arrangement
of pseudo-circles [7, 11, 30], on the number of incidences
between points and circles or parabolas [7, 9], and on the
complexity of many faces in an arrangement of circles or
parabolas [2, 7]. However, none of the preceding results
were algorithmic.

In this paper we present an O(n?/?t¢)-time algo-
rithm for splitting a set of n circles into O(n3/2%¢)
pseudo-segment arcs. The recent algorithms of Solan
[29] and of Har-Peled [22] can be used or adapted for
this task, but the running time of the resulting solutions
would be close to O(n7/*). Our algorithm follows the
general approach of these algorithms, but it uses addi-
tional tools and a more refined analysis to obtain the
bound stated above.

Combining this algorithm with our new algorithms
for handling arrangements of pseudo-lines, we obtain
algorithms that detect, count, or report all incidences
between m points and n circles, in time that is close to
the best upper bounds known for the number of such
incidences (as provided in [7, 9]).

Finally, our duality result has recently found an-
other application, in [28], where another duality, be-
tween graphs drawn in the plane and sets of vertices in
pseudo-line arrangements, is obtained.

2 Duality for Points and Pseudo-lines

Let L be a set of n pseudo-lines and P a set of m points
in the plane. Let W be a vertical strip that contains
all points of P and all vertices of A(L). Let A and p
be the left and right boundary lines of W. We clip
the pseudo-lines of L to within W, and thus assume
that L is a set of z-monotone arcs whose left and right
endpoints lie on A and p, respectively; see Figure 1 (a).
An z-monotone Jordan arc that crosses W completely
splits W into two regions. We will refer to each of these
regions as a pseudo-halfplane.

We now present a duality transform that maps

L to a set L* of n points and P to a set P* of
m pseudo-lines so that the incidences and the above-
below relationships between the points and pseudo-
lines are preserved. We first describe the duality in a
manner that, albeit being constructive, is not concerned
with real algorithmic efficiency. We then show how to
implement the construction in an efficient manner. For
simplicity, we assume that no point of P lies on any
pseudo-line of L. The construction and the proof can
easily be extended to handle this case. Sort the pseudo-
lines of L in increasing order of their intercepts with A.
Map each pseudo-line £ € L to the point £*(ig,0), where
i¢ is the rank of the intercept £ N A along A. In other
words, the dual points all lie on the z-axis, and appear
there in the same order as the y-order of the intercepts
of the corresponding curves with A. Note that, since
we are dealing with (z-monotone unbounded) pseudo-
lines, the y-coordinates of the dual points, as well as
the exact spacings between their z-coordinates, are not
important. One can always move any dual point up
or down (arbitrarily) or left or right (without passing
over another dual point), and deform the dual pseudo-
lines accordingly, so that the incidences, the above-
below relationships, and the pseudo-line property, are
all preserved. See Figure 1 for an illustration.

() (b)

Figure 1: The duality transform: (a) The primal setting. (b)
The dual representation; the dashed ovals show the bundles
maintained by the sweep-line algorithm for constructing
A(P™).

Each point p € P is mapped to an z-monotone
curve p* that is constructed to obey the following
(necessary) rule: For each pseudo-line ¢ € L, if p lies
above (resp., below, on) £, draw p* to pass above (resp.,
below, through) the point £*. This rule does not fully
specify the curves p*, but, with some care, as we will
see next, this rule yields a drawing of these curves as a
collection of pseudo-lines.

We next show how to sort the dual curves p*, for
p € P, at x = —oo. Let us first assume that no pair
of points of P lie in the same face of A(L). In the
present course of analysis, we have no way to distinguish
between any two points that lie in the same face, and
we simply regard such a pair as identical.
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Table 1: The evolution of the y-structure during the sweep.
The symbol e denotes the location in the y-structure of the
point £; just being swept.

We define the following relation on P*: For two
points p,q € P we say that p* < ¢* if the pseudo-line
¢ € L with the lowest A-intercept that separates p and ¢
is such that p lies below £ and ¢ lies above £. We denote
this relationship by p < £ < q.

LeEMMA 2.1. The relationship < is a total order on P*.

Proof. (This simplified proof was suggested by Pavel
Valtr.) For each p € P, let o, be the sequence of
pseudo-lines of L that lie below p, sorted in increasing
A-intercept order. Order the sequences o, lexicograph-
ically, but with the twist that after removing a com-
mon identical prefix, a nonempty sequence precedes an
empty one. The relationship < is then identical with
this lexicographical order, as is easily checked. O

We now show how to draw the curves of P* so that
they form an arrangement of pseudo-lines. As noted,
for the time being, we are not concerned about the
efficiency of the procedure given below; we only want
to show that the pseudo-line property can be enforced.
First we sort the curves by < and draw them at z = —o0
in this increasing order. In general, we draw the curves
from left to right as horizontal, parallel curves until
we are about to sweep past some dual point £*. We
compute the sets A(£*), B(£*), consisting of those points
that lie above (resp., below) ¢. This allows us to find
all inversions enforced by £*, namely, all pairs (p,q),
such that p* passed above ¢* before £*, but at £* we
have that p* passes below ¢* whereas ¢* passes above
that point. We then draw the curves past £* so that
exactly those inverted pairs cross each other. To achieve
this, we take all the curves in A(¢*) (that have to pass
above £*), and bend them simultaneously, keeping them
parallel to each other, so that they do not intersect
among themselves. We apply a symmetric deformation
to the curves in B(£*). In this way, it is clear that
intersections arise exactly between the inverted pairs.
After sweeping past £*, we bend all curves back to
horizontal and continue like this to the right. If £*
contains any point of P, then the corresponding pseudo-
lines pass through £*. See Figure 4. We invite the reader
to verify that Figure 1(b) is a (somewhat deformed

but topologically equivalent) realization of this drawing
procedure, applied to the configuration in Figure 1(a).
We prove that this procedure does indeed produce an
arrangement of pseudo-lines. We first need the following
lemma.

LEMMA 2.2. There do mnot exist three pseudo-lines
Uy, 02,03 € L and two points p,q € P such that (i) (3
lies to the left of €%, which lies to the left of (3, (ii) the
curve p* passes above {5 and (%, and below 03, and (iii)
the curve q* passes below €7 and 03, and above (3.

Proof. Refer to Figure 2. Suppose to the contrary that
there exists such a configuration. Interpreting it in the
primal plane, we have that point p lies above /; and
below /5, and point ¢ lies below ¢; and above £5. Hence
these points lie in different wedges of the double wedge
formed between ¢; and ¢». Since ¢; has smaller \-
intercept than that of /s, it is easily seen that p has
to lie to the left of q. Repeating the same argument for
the pseudo-lines /> and /3, we conclude this time that ¢
lies to the left of p, a contradiction that establishes the
lemma. |

{3

Figure 2: Illustration to the proof of Lemma 2.2.

Using the above lemma, we can prove the following.

LEMMA 2.3. There do not exist two pseudo-lines
ly,€y € L and two points p,q € P such that (i) (] lies
to the left of €5, (ii) the curve p* passes below ¢* at
x = —o0, (i) the curve p* passes above (i and below
05, and (iv) the curve ¢* passes below £ and above 03.

Omitting further details, we obtain the main result
of this section:

THEOREM 2.1. For a finite set P of points and a
finite set L of pseudo-lines in the plane, the above
transformation maps L into a set of points and P into a
set of pseudo-lines, so that the incidence and the above-
below relationships between P and L are preserved.

3 Constructing the Dual Arrangement

Let L* denote the set of points dual to the pseudo-lines
of L, and let P* denote the set of pseudo-lines dual
to the points of P, as defined in the preceding section.
We describe an efficient algorithm for computing the
arrangement A(P*). That is, we compute an incidence



graph of A(P*) in which there is a node for every face
— vertex, edge, and two-dimensional facet — of A(P*),
and two nodes associated with the faces ¢ and ¢- are
connected by an arc if ¢; C 9¢2 and dim(¢1) + 1 =
dim(¢=). Moreover, the output also records, for each
* € L*, the vertex, edge, or 2-face of A(P*) that
contains £*.

We construct A(P*) by sweeping a vertical line
from left to right that stops at every point of L*. The
difficulty in performing the sweep is that we do not
know how to compare the y-ordering of two dual pseudo-
lines at a given vertical line. For example, suppose
we want to compare two dual pseudo-lines p*,q* at
x = —oo. By definition, we need to find, in the primal
plane, all the pseudo-lines ¢ that separate p and ¢, and
determine the order of p and ¢ using the line with the
smallest A-intercept. Computing this set of separating
pseudo-lines is nontrivial and time consuming, and we
cannot afford to do it explicitly. We therefore sweep the
line without maintaining the total ordering of pseudo-
lines in P*, which is only progressively revealed as
the sweep proceeds. More precisely, let ¢7,05,...,0"
be the sequence of points in L* sorted by their z-
coordinates. The algorithm maintains the invariant that
it has computed the following structure after processing
l;:

(I.1) A partition II; = (P,...,P,,) of P into subsets,
referred to as as bundles. Two points of P lie in
the same bundle of II; if and only if they lie in the
same face of A(L;), where L; = {{1,...,¢;}. For any
p € P; and ¢ € Pj14, the pseudo-line p* lies below ¢*
immediately to the right of £;. That is, the bundles are
sorted by the y-ordering along the sweep line, but the
vertical order of the pseudo-lines within each bundle is
yet undetermined. See Figure 1 (b) and Table 1.

(I.2) Regard all dual pseudo-lines in each bundle P;
as a single “thick” pseudo-line v; (say, choose a repre-
sentative dual pseudo-line from each bundle), and let
I = {y; | 1 <j < u;}. The algorithm has com-
puted the portion of A(T';) up to the vertical line passing
through ;.

At the end, after processing £}, each bundle in II,,
consists of a single dual pseudo-line. (Two points that
remain in the same bundle at the end of the algorithm
must lie in the same face of A(L), and, for our purpose,
can be considered identical.) Therefore II,, gives the
ordering of P* at x = +o0 and A(T,) = A(P*).

In the ith step, while processing /7, the algorithm
constructs II; and A(T;) from II;_; and A(T;_;), re-
spectively, as follows.

Computing II;. For each bundle P; € II;_;, split
P; into two subsets P; and Pj", where P, (resp.,

Pj*) is the set of points in P; that lie below (resp.,

above) £;. Let Il = (P, | P; € I;_1,P; # 0) and
7 = (P | P; € ; 1, P;" #0). Set I; = II; oIIf,
where o denotes concatenation.

Computing A(T;). For each P; € II;_1, if both P;-
and Pf are nonempty, then p < ¢ for any (p,q) €
P x Pj"', so we can refine the ordering of pseudo-lines
in P* at x = —oo (this is not done explicitly — it will
be a byproduct of the other steps described next). We
split the corresponding thick pseudo-line v; into two
pseudo-lines 7; and v;r and refine A(T;_1), with v
lying below 'yj+; v;r lies above (7, and v; lies below it.
Roughly speaking, every edge of A(I';) that lies on v; is
now replaced by a thin “pseudo-rectangle,” as shown
in Figure 3. We omit the details from this abstract.

R Y +
+
v ol;
0
Tk

Tk
Figure 3: Splitting a thick pseudo-line; every edge lying on
v; becomes a pseudo-rectangular face.

Next, if we have two nonempty bundles P;” and Pt
such that k < j, then v; lies above 7,? just to the left
of £f but below 7,? at €7, so they induce a vertex of
A(T;) to the left of £7. We create this new vertex and
update the incidence graph. Note that in general many
pairs (Pj_, P,j ) may create such a crossing before £, as
shown in Figure 4. We update A(T';) accordingly.

Figure 4: Several pairs of bundles cross before £;.

With some extra care, the algorithm can also handle
pseudo-lines that pass through points of P. Details are
omitted in this abstract.

LEMMA 3.1. The above two steps maintain the invari-
ant (I.1) and (1.2).

Once we have computed II; and TI] and de-
termined the bundles that have been split into two
nonempty bundles, the rest of the computation can be
carried out in time proportional to the change in the size
of the incidence graph of the arrangement, whose accu-
mulated cost is only O(m?). Tt thus suffices to describe
how to compute II; and H?‘ efficiently. We maintain a
weight-balanced binary tree T whose jth leftmost leaf



stores the bundle P; [26]. For each node v € T, let
Sy C P denote the set of points stored at the leaves
of the subtree rooted at v. At each node v € 7, we
maintain a data structure D, = D(S,) that supports
the following operations on S,:

EMPTY,(v): Is one of the pseudo-halfplanes deter-
mined by v empty (of points of S,)? If so, which
one?

INSERT, (p): Insert a point p into S,.
DELETE, (p): Delete a point p from S,.

SPLIT,(7): Let S, S, be the subset of points of S,
that lie above and below =, respectively. Split
D(S,) into D(S;) and D(S, ).

We will describe in the next section a data structure
that supports these operations efficiently. For now,
assume that each of these operations can be performed
in O(f(m)) (amortized) time. Then we compute II;
and Hj, as follows.

While processing ¢;, we visit T in a top-down
manner. Suppose we are at a node v € T. We execute
EMPTY, (¢;) on D(S,). Ifit returns “yes,” then we mark
v by ‘+’ (resp., by ‘=) if S, lies entirely above (resp.,
below) ¢;. If the procedure returns “no” and v is a
leaf, then we perform SPLIT,(¢;), create two children
v~ and vT of v, mark v~ (resp., vT) by ‘~’ (resp., by
‘+7), store S, (resp., S;) at v~ (resp., at v™), and
associate D(S,) (resp., D(S;)) with v~ (resp., with
vT). Otherwise (if the points of S, lie on both sides
of £; and v is not a leaf), we recursively visit the two
children of v. Let V= (resp. V1) denote the nodes of
T marked ‘=’ (resp., ‘4+’). Let A = (ujy,...,u;,) and
B = (wj,,...,w;,) be the sequence of (new) leaves of
T, sorted from left to right, in the subtrees rooted at
nodes in V'~ and VT, respectively. Note that we have
I; = (Su;s--+sSu,) and I = (Swj,s-rSw;, ). We
finish the step by re-arranging the leaves, the interior
nodes, and the secondary structures of T, so that all
leaves of A appear before those of B, i.e., the sequence
of leaves after re-ordering is (wi,, ..., U;,, Wj,,..., Wj).
Suppose u;,,...,u;, appear to the right of w;,. Then
we delete these leaves from T, and we also delete
the points stored at these leaves from the secondary
data structures stored at the ancestors of these nodes.
We then re-insert these leaves, and the corresponding
points, before w;, in the correct order. We also update
the data strucures stored at the ancestors of these
leaves.

Let u; and v; be, respectively, the number of
leaves of T that are split, and the number of vertices
of A(T;) that are created in the ith step. Then

V=] + [VT] = O((pi + 1)logm). Hence, the total
time spent in traversing T and splitting the leaves is
O(u; f(m)logm). Since Y p; < m — 1, the total
time spent in these steps during the entire sweep is
O((n + m)f(m)logm). The total time spent in re-
arranging the tree is O((E;:t |Si;|) f(m) log m) because
a point is deleted from the secondary structures of only
O(log m) nodes. However, Z;zt |Si; | < 2w, so the total
time spent in re-arranging 7 and updating its secondary
structures is O(v; f(m) logm). Since Y-, v; = O(m?), we
conclude:

THEOREM 3.1. Let L be a set of n pseudo-lines and
P a set of m points in the plane. Suppose we have a
data structure that supports each of the four operations
described above in O(f(m)) amortized time. Then we
can construct A(P*) (in the sense prescribed in the
beginning of this section), in O((m? + n)f(m)logm)
time.

We will show in the next section that if L is a set of
circular arcs or bounded-degree polynomial arcs (with
a common z-projection), then f(m) = O(m*®), so we
obtain the following.

COROLLARY 3.1. Let L be a set of n circular arcs
or bounded-degree polynomial arcs with a common x-
projection, each pair of which intersect at most once,
and let P be a set of m points in the plane. Then we
can construct A(P*) (with respect to an extension of
the arcs of L into pseudo-lines) in O((m? +n)m?) time.
Moreover, for each point p € P, the above algorithm can
also return, within the same asymptotic time bound, the
set of arcs in L that contain p. If there is no arc passing
through p, then the algorithm can return the arcs that
lie immediately above and below p.

4 Pseudo-Halfplane Range Reporting

Let W be a vertical strip, and let " be a collection of
z-monotone arcs whose endpoints lie on the left and
right boundaries of W. Each arc v € I splits W into
two (closed) regions. As above, we call each of these
regions a pseudo-halfplane bounded by 7. Let S be
a set of m points lying inside the strip W. We wish
to preprocess S into a data structure that supports
the four operations described in the previous section
— EMPTY, INSERT, DELETE, and SPLIT, with respect
to arcs v € I'. In addition, we want the data structure
to support the following REPORT (g, k) operation: Let
g be one of the pseudo-halfplanes bounded by an arc
~v € T, and let k be an integer. REPORT (g, k) reports
min{|SNg|, k} points of SNg. Note that EMPTY (v) can
be answered by performing the queries REPORT (¢, 1)



and REPORT (y~, 1), where y~,v" are the two pseudo-
halfplanes bounded by . The following lemma, is easy
to prove.

LeMMA 4.1. If a data structure supports the operations
INSERT, DELETE in O(f(m)) amortized time and RE-
PORT (g, k) in O(f(m) + k) time, then SPLIT can be
performed in O(f(m)logm) amortized time.

Proof. Let v € T be the query arc, and let v©,y~ be
the two pseudo-halfplanes bounded by . By invoking
REPORT (77, 2¢) and REPORT (yT, 2%) repeatedly and
alternately, with i = 1,2,3, ..., we can determine which
of ¥7,7" contains fewer points, up to a factor of 2.
Suppose |[SN~y | = p < 2[SN~vT|. Then the above
procedure reports all points of SNy~ in O(f(m) log m+
1) time. We delete the points of S Ny~ from the
data structure and reconstruct a new data structure on
S N~~. A standard analysis shows that each point is
deleted at most O(logm) times. The amortized cost of
each split operation is thus O(f(m)logm). i

Hence, it suffices to describe a data structure that
supports the INSERT, DELETE, and REPORT operations
efficiently. We present such a data structure for two
special cases: (i) T' is a set of circular arcs, and (ii) T
is a set of (portions of the) graphs of polynomials of
bounded degree.

4.1 Querying with circular arcs

Let I be the set of circular arcs whose endpoints lie
on the left and right boundaries of W. We construct a
weight-balanced binary tree 7 on the y-coordinates of
the points in S [26]. For a node v € T, let S, C S be
the set of points whose y-coordinates are stored at the
leaves of the subtree rooted at v, and put m, = |S,|.
We map each point p = (zp,y,) € S, to the point
P = (Tp,yp, 25 +y2) in R%. Let S, = {p|pe Sy} We
preprocess S, into a dynamic data structure, proposed
by Agarwal and Matousek [6], for reporting, in time
O(m& +k), all k points of S, that lie in a query halfspace
h in R3. This data structure can easily be modified, so
that queries of the following form can also be answered
efficiently: given a parameter u, report min{|S, Nh|, u}
points of S, lying in the query halfspace. A query takes
O(m$ + p) time, and a point can be inserted into or
deleted in O(log® m) time.

Let g be the region lying below an arc v € T.
Suppose + lies in the upper semicircle of the circle C\;
let a denote the y-coordinate of the center of C.,, and let
D.,, denote the disk bounded by C,. A REPORT (g, k)
query is answered as follows. We first identify O(logm)
nodes vy,...v; of T so that [J; Sy, is the set of points
in S whose y-coordinates are at most a. Since each

Sy; C g, by visiting the v;’s one by one, we can
report, in O(p) time, p = min{||J, Sy;|, k} points of S
whose y-coordinates are at most a. If we have reported
fewer than k points, then we identify O(logm) nodes
wy,...,w, of Tsothat [ J; S, is the set of points whose
y-coordinates are at least a. A point p € S, lies in
the halfplane g if and only if p € D,. We map C, to
a plane C,, in R®, using the standard lifting transform,
so that p € D,, if and only if p lies below the plane C.,.
We visit the w;’s one by one, and at each node w; we do
the following: Suppose we have reported p points so far.
We then report min{k — p, |Sy, NC,|} points of Sy, NC
using the secondary structure stored at w;. If we have
reported a total of k points, we stop. Otherwise, we
update the value of p and visit w;y;. The total time
spent in this procedure is O(m* + k).

Using the standard partial-rebuilding tech-
nique [26], a point can be inserted or deleted into/from

the overall structure in O(log®m) time. Hence, we
obtain the following;:
THEOREM 4.1. Let T' and S be as above. Then each

of the operations EMPTY, INSERT, DELETE, and SPLIT
can be performed in O(m®) amortized time.

Remark. The above data structure can be extended to
the case in which the endpoints of the query circular arc
do not lie on the boundary of W. Details are omitted.

4.2 Querying with polynomial arcs

Next let I' be the set of all arcs that are intersections
with a fixed strip W of graphs of polynomials of degree
at most d. We describe a dynamic data structure that
reports all points of S lying above an arc in I'. A similar
data structure can be constructed for reporting points
that lie below an arc.

We call an arc v € T' k-shallow if at most k points
of S lie above y. We call a simply connected cell with at
most four edges a pseudo-trapezoid if its top and bottom
edges are portions of arcs in I" and its left and right edges
are vertical segments. An elementary partition of S is a
family = = {(S1,A1),...,(Su, Ay)}, where Sy,..., Sy,
form a partition of S, A; is a pseudo-trapezoid, and
S; C A\;. The following lemma, whose proof is omitted,
is obtained by extending the results of Matousek [25]
and of Agarwal and Matousek [5].

LeEMMA 4.2. Let S and T be as defined above, and let
r be a parameter. Then there exists an elementary
partition = = {(S1,D1),...,(Su, D)} of S so that
m/r < |Si| < 2m/r, for each i, and any (m/r)-shallow
arc of T crosses O(logm) pseudo trapezoids of =. If r
is a constant, then = can be computed in O(m) time.

As in [25], using the above lemma, we can construct,
in O(mlogm) time, a partition tree of size O(m) for



answering REPORT (g, k) queries in time O(m® + k). A
point can be inserted or deleted in O(log? m) amortized
time. Hence, we conclude the following.

THEOREM 4.2. Let I' and S be as above. Then each
of the operations EMPTY, INSERT, DELETE, and SPLIT
can be performed in O(m?) amortized time.

5 Incidences in Pseudo-line Arrangements

Let P be a set of m points and L a set of n pseudo-
lines that are extensions of circular or polynomial arcs,
and let J(P,L) denote the set of pairs (p,f) € P x L
such that p lies on £. We wish to report J(P, L),
compute |J(P,L)|, or just determine whether J(P, L)
is nonempty. For simplicity, we focus on the first
subproblem. Corollary 3.1 implies that J(P, L) can be
computed in O((m? + n)m?) time. By partitioning P
into [m//n] subsets Pi,...,Ps, each of size at most
\v/n, and computing J(P;, L) for each subset separately,
J(P,L) can be computed in O(mn'/?** 4+ n'*+) time,
which is near optimal for m < /n. We now describe
an algorithm that is efficient for all values of m and
n. For a parameter r < n, a (1/r)-cutting of L
is a decomposition of R? into pseudo-trapezoids with
disjoint interiors so that each pseudo-trapezoid crosses
at most n/r pseudo-lines of L. Chazelle’s algorithm [12]
for computing a (1/r)-cutting of hyperplanes can be
modified to compute a (1/r)-cutting of pseudo-lines of
size O(r?) in O(nr) time, under an appropriate model
of computation.

We choose a parameter r < n and construct a (1/r)-
cutting = of L of size O(r?). ForacellT € Z,1let L, C L
be the set of pseudo-lines that intersect the interior of
7. We can compute the incidences between L and those
points of P that lie at the vertices of = in O(nr) time.
For a cell 7 € =, let P. C P be the set of points that
either lie in the interior of 7 or that lie on an edge of 7.
Set n, = |L;| and m, = |P;|. Then ) _m, < 2m and
n, < n/r. At most one pseudo-line ¢, of L can contain
an edge e of =. If there is such a pseudo-line, we report
all incidences between e and the points that lie on e,
over all edges e, in a total time of O(r? +m). Finally,
we compute J(Pr, L;) in time O(mrniﬂﬁ-{-nlﬁ) using
the algorithm outlined above. Choosing the value of r
appropriately, we obtain the following.

THEOREM 5.1. The incidences between m points and n
pseudo-lines that are extendions of circular or polyno-
mial arcs of bounded degree can be detected, counted, or
reported in time O(m?>/3~=n2/3+2 L plte 4 plte),

6 Many Faces in Pseudo-line Arrangements

For a set L of pseudo-lines as above and for a set
P of points in the plane, none lying on any pseudo-

line of L, let F(P, L) be the set of faces in A(L) that
contain at least one point of P. We compute F(P, L) by
following an approach similar to the one for computing
J(P,L). We first describe an O((m? + n)n®) algorithm
for computing F(P,L): We compute the arrangement
A(P*) of pseudo-lines dual to P, and then compute
its vertical decomposition A (P*). For each face ¢ €
AH(P*), we compute the subset L, C L of pseudo-
lines whose dual points lie inside . This step takes
O((m? + n)n®) time. Next, we compute an Eulerian
tour IT of the planar graph dual to A" (P*) so that each
face of A" (P*) is visited O(1) times; see [3]. Each node

of II corresponds to a face of AH(P*). If an edge e
of II crosses two adjacent faces of A(P*), we set m(e)
to be the point of P whose dual pseudo-line separates
these two faces. Otherwise, i.e., e connects two faces of
A" (P*) separated by a vertical line, we set w(e) = 0.
Next, we construct a minimum-height binary tree T' on
I1. Each leaf of T is associated with a node of II, and
thus with a face of A”(P*), and each node v of T is
associated with a subpath II, of II. For each node v
of T, we set L, = Uw L, where the union is taken

over all faces of A" (P*) associated with the nodes in
IT,. Similaly, we define P, C P to be the set of points
associated with the edges in II,. Set m, = |P,| and
ny = |Ly|. At any level of T, }, m, = O(m?) and
Y., = O(n). By construction, any point in P\ P,
lies either above all pseudo-lines in L, or below all of
them. We therefore add two points, one at y = +o00 and
another y = —oo0, to each P,, and compute F(P,, L,)
at each node v of T, in a bottom-up manner. Let k,
be the complexity of F(P,, L,). For each leaf w € T,
we compute the lower and upper envelopes of L, in
O(ny logny,) time. For each internal node v € T, with
children w and z, we compute F(P,, L,) from F(P,, L)
and F(P,,L.) in O((ky + Kkw + K2 + my + ny)logn)
time, using the “red-blue-merge” algorithm proposed
by Edelsbrunner et al. [14]. It can be shown that the
total time spent in computing F(P,, L,) at all nodes of
T is O((m? + n)log®n). Next, we use (1/r)-cuttings
to obtain an algorithm for computing F(P, L), which is
efficient for all ranges of m and n, as in [1], and in the
general spirit of the preceding section. Omitting further
details, we conclude the following.

THEOREM 6.1. Let L be a set of n pseudo-lines that
are extensions of circular or polynomial arcs of bounded
degree in the plane, and let P be a set of m points, none
lying on any pseudo-line. One can compute F(P,L) in
time O(m2/375n2/3+25 + m1+5 + 1’L1+E).

Let C be a set of n congruent circles and P a set
of points. We wish to compute F(P,C). We partition



each circle in C into two semicircles by splitting it at
its leftmost and rightmost points. Let U and L denote
the sets of resulting upper and lower semicircles, respec-
tively. Each pair of arcs within U (or L) intersects in at
most one point. Although U and L do not conform to
the framework described in the beginning of Section 2,
we can nevertheless use Theorem 6.1 to compute F(P, L)
and F(P,U) in time O(m?/3==n2/3+2 mqmlte 4 plte),
We can then compute F(P,C) = F(P,U U L) from
F(P, L) and F(P,U) in time O(klogn) by using the red-
blue-merge algorithm of [14], where & is the total num-
ber of vertices in F(P,L),F(P,U), and F(P,C). Hence
we obtain the following.

THEOREM 6.2. Let P be a set of m points and C a set

of n congruent circles in the plane. We can compute
F(P,C) in time O(m?/3~=n?/3+2 f mlte 4 plte),

7 Cutting Lenses

One of our main motivations for studying arrangements
of pseudo-lines was the problem of computing incidences
(and many faces) between points and circles. The recent
analysis of Aronov and Sharir [9] shows that a collec-
tion of n circles can be cut into O(n?/2*%) arcs that are
pseudo-segments, meaning that any pair of arcs inter-
sect at most once. One can then apply known bounds
for incidences between points and pseudo-segments, to
obtain a bound that is roughly O(m?/3n2/3 + n3/?) on
the number of incidences between m points and n cir-
cles. (This bound can then be further refined, for small
values of m; see [9] for details.) Our goal is to make
this combinatorial analysis constructive, so as to obtain
a comparably-efficient algorithm for detecting, count-
ing, or reporting these incidences. The first task that
we face is to find, in time O(n®/?%%), a set of O(n?/?*<)
points that cut the given circles into pseudo-segments.
If two circles v,v" € C intersect, then the boundaries of
the three bounded faces of A({7,v'}) are called lenses.
Our goal is thus to cut the circles in C' so that all lenses
will be cut, i.e., a cut is made on at least one of the two
edges of each lens.

The algorithm proceeds in two stages. In the first
stage, we use standard range-searching techniques [4],
to decompose the intersection graph of the circles in C'
into a union of complete bipartite subgraphs {4; x B;};
so that the following condition holds (see also [9]).

(7.1) S (14l +1Bi)*? = 0m®/*+).

(3

In the second stage, we cut circles in each bipartite
subgraph independently. Let A be a set of “red” circles
and B a set of “blue” circles, so that every red circle
intersects every blue circle, and let m = |A| + |B|. We

cut circles in A and B into circular arcs so that all
bichromatic lenses, i.e., lenses formed by a red circle and
a blue circle, are cut. We describe a recursive algorithm
for making these cuts. At each step, we have a pseudo-
trapezoid 7 and two sets of circular arcs I and I clipped
to within 7. The arcs in I and T lie on the circles in A
and B, respectively. Initially, T' (resp. I') is the set of
upper and lower semicircles in A (resp. B), and 7 is the
entire plane. We omit the proof of the following lemma;
see [23] for a similar result.

LEMMA 7.1. If the endpoints of all arcs in T and T lie
on Ot, then we can determine, in O((|T| + |T’|) log® m)
time, whether T' and T" induce at least one bichromatic
lens that lies entirely in the interior of T.

If the endpoints of all arcs in I’ UT” lie on d7 and
I' and IV do not form a bichromatic lens that is fully
contained inside 7, then we stop. Otherwise (i.e., an
endpoint lies inside 7, or there is a bichromatic lens lying
inside 7), we choose a sufficiently large constant r, and
compute a (1/r)-cutting = of TULY, of size O(r?) within
7. For every arc v € TUT" and for every cell A € = that
is crossed by v, we cut «y at its intersection points with
OA. The total number cuts made is O(mr) = O(m).
After this step all lenses that lie in more than one cell
of Z have been cut, so we recursively solve the problem
within each cell A of =, with the sets I'a and I')y, which
are the sets of arcs in " and T, respectively, clipped to
within A, that intersect the interior of A.

It is clear that the algorithm cuts all bichromatic
lenses inside 7. (Initially, 7 is the whole plane.) In
order to analyze the running time of the algorithm, we
need the following observations. (See also [7] for a proof
of a similar result.)

LEMMA 7.2. Let A be a lens in A(C). Then \ contains
(in the closure of its interior) a lens ' (possibly X' = \)
such that any circle that crosses \' intersects both of its
arcs (either once or twice).

We call a lens A elementary if the lens that satisfies
Lemma 7.2 is A itself. Returning to the subproblem
inside the trapezoid 7, if 7 contains a lens in its interior,
then it also contains an elementary lens. Let m =
IT'| + |TV|, let k be the number of endpoints of arcs in
I UT' that lie in the interior of 7 plus the number of
elementary bichromatic lenses that lie in the interior of
7, and let T'(m, k) denote the maximum running time of
the above algorithm, for sets I', I that have parameters
m and k. Then the above observation gives the following
recurrence for T'(m, k).

T(m, k)= Z T(m/r,ka) + O(mlog® m),
A€E



where ka is the number of endpoints of I' U T plus
the number of elementary lenses that lie in the interior
of the cell A of =, so > ,ka < k. We also have
T(m,0) = O(mlog®m). Hence, the same analysis as
in [23, 29] implies that T'(m,k) = O(m'**Vk). The
following lemma is a re-statement of a recent result
in [7].

LEMMA 7.3. The number of elementary bichromatic
lenses formed by T' and I is O(m).

Hence, k = O(m), so the total time spent in cutting
the bichromatic lenses formed by A and B is O(m?/2+*),
Repeating this procedure to all bipartite graphs A; x B;,
and adding up the resulting complexity bounds using
(7.1), we obtain the following:

THEOREM 7.1. A collection of n circles can be cut into
O(n?/?1¢) pseudo-segments, in time O(n3/21¢).

8 Circular Arrangements

Combining Theorem 7.1 with Theorem 5.1, we can
conclude that the incidences between m points and n
circles can be detected, counted or reported in time
O(m?/3-=n2/3+2¢ 1 ml+e 4 p3/24). This bound is
nearly worst-case optimal for m larger than roughly
n5/*. Aronov and Sharir [9] show how to improve
such a bound for the number of incidences when m
is smaller. The extra step that they use, constructing
a dual partitioning for the set of circles, represented
as points in R®, is in fact constructive. Putting it
all together, and omitting any further details in this
abstract, we obtain:

THEOREM 8.1. The incidences between m points and

n circles can be detected, counted or reported in time
O(m2/3—6n2/3+25 +m6/11+36n9/11—5 +mlte +n1+€)_

The following result on range searching can also be
obtained by modifying our incidence algorithm.

THEOREM 8.2. Given a set C of n circles and a set P of
m points in the plane, we can count the number of points
lying inside each circle in time O(m?/3—en2/3+2 4
m6/11+36n9/11—5 +mlte +n1+6)_
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