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Abstract

Recently Guth and Katz [16] invented, as a step in their nearly com-
plete solution of Erdős’s distinct distances problem, a new method for
partitioning finite point sets in R

d, based on the Stone–Tukey polynomial
ham-sandwich theorem. We apply this method to obtain new and simple
proofs of two well known results: the Szemerédi–Trotter theorem on inci-
dences of points and lines, and the existence of spanning trees with low
crossing numbers. Since we consider these proofs particularly suitable for
teaching, we aim at self-contained, expository treatment. We also men-
tion some generalizations and extensions, such as the Pach–Sharir bound
on the number of incidences with algebraic curves of bounded degree.

1 Introduction

A dramatic breakthrough in discrete geometry took place in November 2010,
when Guth and Katz [16] completed a project of Elekes, exposed in [13], and
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established a nearly complete solution of Erdős’s distinct distances problem
[14], originally posed in 1946.

In one of the main steps of their analysis, they apply the polynomial ham-
sandwich theorem of Stone and Tukey [33] to obtain a partition of a finite point
set P in R

d with certain favorable properties, detailed in Section 2.3 below. The
partition is effected by what we call an r-partitioning polynomial. The removal
of the zero set Z of the polynomial partitions space into connected components,
each containing at most |P |/r points of P .

In this paper we apply partitioning polynomials in several classical problems
of discrete geometry, mostly planar ones, and we provide new and simple proofs
of some well known results.

Incidences. For a finite set P ⊂ R
2 and a finite set L of lines in R

2, let
I(P,L) denote the number of incidences of P and L, i.e., of pairs (p, ℓ) with
p ∈ P , ℓ ∈ L, and p ∈ ℓ.

The following fundamental result was first proved by Szemerédi and Trotter
in 1983, in response to a problem of Erdős [14].

Theorem 1.1 (Szemerédi and Trotter [35]) I(P,L) = O(m2/3n2/3 +m+
n) for every set P of m distinct points in the plane and every set L of n distinct
lines.

We remark that the bound in the theorem is tight in the worst case for all
m,n (see [14], [11] for original sources or [24] for a presentation).

A simpler proof of the Szemerédi–Trotter theorem, based on cuttings, was
given by Clarkson et al. [8] in 1990, and in 1997 Székely [34] found a beautiful
and elegant proof, based on the crossing lemma for graphs embedded in the
plane (also see, e.g., [24]).

In Section 3 we present an alternative proof based on polynomial partitions,
hoping that the reader will find it equally simple. We also believe that the new
proof is suitable for teaching purposes, so our goal is to make the exposition as
elementary and self-contained as possible. For this we also give proofs of several
well known and basic facts about multivariate polynomials. The only major
ingredient of the analysis which we do not prove is the classical ham-sandwich
theorem, which we use as a black box (see, e.g., [25] for an exposition).

The Szemerédi–Trotter theorem has led to an extensive study of incidences
of points and curves in the plane and of points and surfaces in higher dimensions.
A survey of the topic can be found in Pach and Sharir [30]. In particular, the
following theorem on incidences between points and planar curves has been
established:

Theorem 1.2 (Pach and Sharir [29]) Let P be a set of m points and let Γ
be a set of n simple curves, all lying in the plane. If no more than C1 curves
of Γ pass through any k given points, and every pair of curves of Γ intersect in
at most C2 points, then

I(P,Γ) = O
(

mk/(2k−1)n(2k−2)/(2k−1) +m+ n
)

,

with an appropriate constant of proportionality that depends on k, C1, C2.
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A weaker version of this result, where the the curves in Γ are assumed to
be algebraic and to belong to a family parameterized by k real parameters, was
obtained earlier, also by Pach and Sharir [28] (special cases of this result, e.g.,
for incidences of points and circles, were obtained even earlier by Clarkson et
al. [8]).

In Section 4, we give a simple proof of a version of Theorem 1.2, with the
additional assumption that Γ consists of algebraic curves of degree bounded by
a constant.

Spanning trees with low crossing number. Let P be a finite set of points
in R

2. A (geometric) graph on P is a graph G with vertex set P whose edges
are realized as straight segments connecting the respective end-vertices. The
crossing number of G is the maximum number of edges that can be intersected
simultaneously by a line not passing through any point of P .1 We will consider
geometric spanning trees on P , i.e., acyclic connected geometric graphs on P .

The following result has been established in the late 1980s by Welzl [38] and
by Chazelle and Welzl [7]; also see Welzl [39].

Theorem 1.3 (Welzl [38], Chazelle and Welzl [7]) Every set of n points
in the plane has a geometric spanning tree with crossing number O(

√
n ).

The bound in the theorem is tight up to a multiplicative constant, as the
example of a

√
n × √

n grid shows. Spanning trees with low crossing num-
ber have many applications in discrete and computational geometry, including
range searching [7], the design of other geometric algorithms (see, e.g., [3]),
discrepancy theory [26], and approximation [23].

The original proof of Theorem 1.3 constructs the tree iteratively, through a
process called iterative reweighing. In each step several new edges are added,
and these are selected using a packing argument with balls in a line arrangement
(or, alternatively, using a so-called cutting). An alternative proof, replacing
iterative reweighing with linear programming duality, was recently given by
Har-Peled [18].

In Section 5 we present a new and simple proof of Theorem 1.3 via polyno-
mial partitions.

Chazelle and Welzl [7] established their result on spanning trees with low
crossing number in a very general setting, where the points do not lie in the
plane, but rather in the ground set of an arbitrary set system F . The bound
on the crossing number is then expressed in terms of the dual shatter function
of F .

At present it seems that the approach with polynomial partitions is not
suitable for this level of generality. However, some generalizations are possible.
First, we have verified that Theorem 1.3 can be extended the case where the
crossing number is taken with respect to a family of algebraic curves of degree
bounded by a constant, but we will not pursue this in this paper.

1The condition of avoiding the points of P is important; for example, if all of the points of
P are collinear, then the line containing P necessarily intersects all edges.
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Second, one can also prove a d-dimensional generalization of Theorem 1.3,
and this we do in Section 6. Here we are given a set P of n points in R

d, and
consider spanning trees of P , which we embed into R

d by drawing their edges as
straight segments connecting the respective end-vertices, as in the plane. The
crossing number of such a tree is the maximum number of its edges that are
crossed by a hyperplane not passing through any point of P . According to [38],
[7], for every n-point set in R

d there exists a straight-edge spanning tree with
crossing number O

(

n1−1/d
)

.
We re-prove this fact using polynomial partitions, similar to the planar

case. However, the proof is more involved in higher dimensions. Informally, the
partition distributes the input points evenly among the resulting cells, except
that some (in the worst case even all) of the points may lie on the zero set Z
of the partitioning polynomial, and therefore not belong to any of the subsets.

We avoid this situation using a perturbation argument. This works for the
spanning tree construction because there we may assume general position of
the input points. For incidence problems this assumption cannot be made, and
other techniques are needed to handle the points on Z. We intend to investigate
this issue in a subsequent paper.

2 Review of tools

2.1 Preliminaries on polynomials

Here we recall some standard facts about polynomials. The proofs are given
for didactic purposes, and can be skipped by more experienced readers.

Since most of the problems that we study here are planar, we will consider
mostly bivariate polynomials f = f(x, y) =

∑

i,j aijx
iyj ∈ R[x, y], but the

analysis can easily be extended to d-variate polynomials in R
d. The degree of f

is deg(f) = max{i+ j | aij 6= 0}. Let Z(f) = {(x, y) ∈ R
2 | f(x, y) = 0} denote

the zero set of f .

Lemma 2.1 If ℓ is a line in R
2 and f ∈ R[x, y] is of degree at most D, then

either ℓ ⊆ Z(f), or |ℓ ∩ Z(f)| ≤ D.

Proof. Writing ℓ in parametric form {(u1t+ v1, u2t+ v2) | t ∈ R}, we get that
the points of ℓ ∩ Z(f) are roots of the univariate polynomial g(t) := f(u1t +
v1, u2t+ v2), which is of degree at most D. Thus, either g is identically 0, or it
has at most D roots. 2

Lemma 2.2 If f ∈ R[x, y] is nonzero and of degree at most D, then Z(f)
contains at most D distinct lines.

Proof. We need to know that a nonzero bivariate polynomial (i.e., with at
least one nonzero coefficient) does not vanish on all of R2. (Readers who do
not consider this a sufficiently standard fact are welcome to work out a quick
proof.)
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Now we fix a point p ∈ R
2 not belonging to Z(f). Let us suppose that Z(f)

contains lines ℓ1, . . . , ℓk. We choose another line ℓ passing through p that is
not parallel to any ℓi and not passing through any of the intersections ℓi ∩ ℓj .
(Such an ℓ exists since only finitely many directions need to be avoided.) Then
ℓ is not contained in Z(f) and it has k intersections with

⋃k
i=1 ℓi. Lemma 2.1

yields k ≤ D. 2

In the proof of Theorem 1.3 (spanning trees with low crossing number), we
will also need the following result.

Theorem 2.3 (Harnack’s curve theorem [17]) Let f ∈ R[x, y] be a bivari-
ate polynomial of degree D. Then the number of (arcwise) connected compo-
nents of Z(f) is at most 1 +

(

D−1
2

)

. The bound is tight in the worst case.

For our application, we actually do not need the precise bound in Harnack’s
theorem; it suffices to know that the number of components is at most O(D2).
For the sake of completeness, we provide a short proof of an almost tight bound.

First we recall, without proof, another basic result in algebraic geometry;
see, e.g., [4, 9, 10].

Theorem 2.4 (Bézout’s theorem) Let f, g ∈ R[x, y] be two bivariate poly-
nomials of degrees Df and Dg, respectively. (a) If the system f = g = 0 has
finitely many solutions, then their number is at most DfDg. (b) If the system
f = g = 0 has infinitely many solutions, then f and g have a nontrivial common
factor.

For a proof of Theorem 2.3, we choose a generic direction, and assume,
without loss of generality, that it is the x-direction. We may assume that f is
square-free, because eliminating repeated factors of f does not change its zero
set.

Every bounded component of Z(f) has at least two extreme points in the
x-direction (that is, its leftmost and rightmost points). Such an extreme point
has to satisfy f = fy = 0, where fy is the partial derivative of f with respect
to y.

Since f is square-free, f and fy have no common factor,2 and so by Theo-
rem 2.4 the system f = fy = 0 has at most D(D−1) solutions. Every bounded
component consumes at least two of these critical points, and hence the number
of bounded components is at most 1

2D(D − 1).
If B is a sufficiently large number, then (again, assuming generic directions

of the coordinate axes) every unbounded compoment of Z(f) meets (at least)
one of the two lines x = +B and x = −B. Thus, there are at most 2D
unbounded components, and in total we get a bound of 1

2D(D + 1) on all
components.

2Assume by induction that this is true for polynomials of degree smaller than D, and let
f be a square-free polynomial of degree D. Assume that f = h · g and fy = h · k for some
polynomials h, g, and k, where h is not a constant. Then fy = hy ·g+gy ·h = h·k. So h divides
hy · g. By induction, h and hy have no common factors, and so h divides g, contradicting our
assumption that f is square-free.
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2.2 The polynomial ham-sandwich theorem

Here we review the polynomial ham-sandwich theorem of Stone and Tukey [33],
the key tool used by Guth and Katz in constructing their partitioning polyno-
mials.

We assume the standard ham-sandwich theorem in the following discrete
version: Every d finite sets A1, . . . , Ad ⊂ R

d can be simultaneously bisected by
a hyperplane. Here a hyperplane h bisects a finite set A if neither of the two
open halfspaces bounded by h contains more than ⌊|A|/2⌋ points of A.

From this, it is easy to derive the polynomial ham-sandwich theorem, which
we state for bivariate polynomials.

Theorem 2.5 Let A1, . . . , As ⊆ R
2 be finite sets, and let D be an integer such

that
(

D+2
2

)

− 1 ≥ s. Then there exists a nonzero polynomial f ∈ R[x, y] of
degree at most D that simultaneously bisects all the sets Ai, where “f bisects
Ai” means that f > 0 in at most ⌊|Ai|/2⌋ points of Ai and f < 0 in at most
⌊|Ai|/2⌋ points of Ai.

Proof. We note that
(

D+2
2

)

is the number of monomials in a bivariate polyno-
mial of degree D, or in other words, the number of pairs (i, j) of nonnegative
integers with i+ j ≤ D. We set k :=

(

D+2
2

)

− 1, and we let Φ: R2 → R
k denote

the Veronese map, given by

Φ(x, y) :=
(

xiyj
)

(i,j)|1≤i+j≤D
∈ R

k.

(We think of the coordinates in R
k as indexed by pairs (i, j) with 1 ≤ i+j ≤ D.)

Assuming, as we may, that s = k, we set A′
i := Φ(Ai), i = 1, 2, . . . , k,

and we let h be a hyperplane simultaneously bisecting A′
1, . . . , A

′
k. Then h has

an equation of the form a00 +
∑

i,j aijzij = 0, where (zij)(i,j)|1≤i+j≤d are the

coordinates in R
k. It is easy to check that f(x, y) :=

∑

i,j aijx
iyj is the desired

polynomial (where here the sum includes a00 too). 2

2.3 Partitioning polynomials

In this section we recall the construction of Guth and Katz [16], specialized to
the planar setting (our formulation is slightly different from theirs). We also
(informally) compare it to older tools of discrete geometry, such as cuttings.

Let P be a set of n points in the plane, and let r be a parameter, 1 < r ≤ n.
We say that f ∈ R[x, y] is an r-partitioning polynomial for P if no connected
component of R2 \ Z(f) contains more than n/r points of P .

In the sequel, we will sometimes call the connected components of R2 \Z(f)
cells. Let us also stress that the cells are open sets. The points of P lying on
Z(f) do not belong to any cell, and usually they require a special treatment.

Lemma 2.6 (Polynomial partitioning lemma) For every r > 1, every fi-
nite point set P ⊂ R

2 admits an r-partitioning polynomial f of degree at most
O(

√
r ).
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Proof. We inductively construct collections P0,P1, . . ., each consisting of dis-
joint subsets of P , such that |Pj | ≤ 2j for each j. We start with P0 := {P}.
Having constructed Pj , with at most 2j sets, we use the polynomial ham-

sandwich theorem to construct a polynomial fj , of degree deg(fj) ≤
√
2 · 2j ,

that bisects each of the sets of Pj . Then for every subset Q ∈ Pj , we let Q+

consist of the points of Q at which fj > 0, and let Q− consist of the points of
Q with fj < 0, and we put Pj+1 :=

⋃

Q∈Pj
{Q+, Q−} (empty sets are ignored).

Each of the sets in Pj has size at most |P |/2j . We let t = ⌈log2 r⌉; then
each of the sets in Pt has size at most |P |/r. We set f := f1f2 · · · ft.

By the construction, no component of R2 \ Z(f) can contain points of two
different sets in Pt, because any arc connecting a point in one subset to a point
in another subset must contain a point at which one of the polynomials fj
vanishes, so the arc must cross Z(f). Thus f is an r-partitioning polynomial
for P .

It remains to bound the degree:

deg(f) = deg(f1) + deg(f2) + · · ·+ deg(ft) ≤
√
2

t
∑

j=1

2j/2 ≤ 2√
2− 1

2t/2 ≤ c
√
r.

where c = 2
√
2/(

√
2− 1) < 7. 2

A comparison with other partitioning techniques.3 The Guth–Katz
technique with partitioning polynomials is useful for problems where we deal
with a finite point set P and with a collection Γ of lines, algebraic curves, or
algebraic varieties in higher dimensions. It provides a method of implementing
the divide-and-conquer paradigm.

In the planar case discussed above, the plane is subdivided by Z(f) into some
number of (open, connected) cells, each containing at most |P |/r points of P .
If Γ consists of lines, then every γ ∈ Γ intersects at most deg(f) + 1 = O(

√
r)

cells (by Lemma 2.1). Similarly, for Γ consisting of algebraic curves of degree
bounded by a constant, every γ ∈ Γ intersects at most O(

√
r ) cells by Bézout’s

theorem (Theorem 2.4). Thus, if we define, for every cell Ci of R2 \ Z(f), a
subset Pi ⊆ P as the set of points of P contained in Ci, and we let Γi consist
of the lines or curves of Γ intersecting Ci, then |Pi| ≤ |P |/r for all i, and the
average size of the Γi is O(|Γ|/√r ).

There are two earlier partitioning tools in discrete geometry with a similar
effect. The first, and simpler, kind of them are cuttings (see [6]). A cutting
for a collection Γ of curves in the plane subdivides R

2 into a collection of
connected, simply shaped cells, in such a way that no cell is crossed by more
than a presribed fraction of the curves of Γ. If we again let Pi denote the set of
points of P in the ith cell, and Γi is the set of the curves intersecting that cell,
then this time all Γi have size O(|Γ|/√r ), and the average of the sizes |Pi| is4

3This part is slightly more advanced and assumes some familiarity with previous techniques
used in incidence problems.

4Here we choose the parameterization so that it agrees with the one for polynomial parti-
tions; the usual notation in the literature would use r for our

√
r.
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|P |/r. Thus, the behavior of cuttings is, in a sense, “dual” to that of polynomial
partitions. For many applications, this does not really make a difference.

The second of the earlier tools are simplicial partitions [22]. Here, as in
the case of polynomial partitions, the plane is subdivided into cells so that
|Pi| ≤ |P |/r for each i (where, again, Pi is the set of points of P in the ith cell),
and no γ ∈ Γ intersects more than O(

√
r) cells.5

In the plane, as far as we can see, whatever can be done with polynomial
partitions, can also be achieved through cuttings or through simplicial parti-
tions. The main advantage of polynomial partitions is simplicity of the proof.
On the other hand, cuttings and simplicial partitions can be constructed and
manipulated with fairly efficient algorithms, at least in the sense of asymptotic
complexity, which is not at all clear for polynomial partitions. (For example,
finding a ham-sandwich cut in a high-dimensional space is a rather costly op-
eration; see [20] for a computational hardness result and references.)

Polynomial partitions may be more powerful than the earlier tools if we
pass to a higher-dimensional space R

d, d > 2. Asymptotically optimal cut-
tings and simplicial partitions are known to exist in R

d, for every fixed d, in
the case where Γ is a collection of hyperplanes. However, if we want to apply
analogous methods to construct cuttings (or simplicial partitions, whose con-
struction needs cuttings as a subroutine) for Γ consisting of algebraic surfaces
of constant-bounded degree, say, then there is a stumbling block. In one of
the steps of the construction, we have a collection Γ′ of m surfaces from Γ.
It is known that these surfaces partition R

d into O(md) cells, but we need to
further subdivide each cell into subcells, so that each of the resulting subcells
can be described by a constant-bounded number of real parameters. There is
no known general solution that achieves O(md) subcells in total, which is the
optimal bound one is after for most applications. For d = 3, 4, the situation is
still not bad, since bounds only slightly worse than O(md) have been proved,
but for d ≥ 5, the best bound is of order roughly m2d−4, and so for large d,
the exponent is almost twice larger of what it probably should be (see [1] for a
more detailed discussion). The new approach with polynomial partitions might
hopefully be able to bypass this stumbling block, at least in non-algorithmic
applications.

3 Proof of the Szemerédi–Trotter theorem

We recall that we are given a set P of m distinct points and a set L of n distinct
lines in the plane and we want to bound the number of incidences I(P,L).

We begin with a simple observation (appearing in most of the previous
proofs).

Lemma 3.1 I(P,L) ≤ n+m2.

Proof. We divide the lines of L into two subsets: the lines in L′ are incident to
at most one point of P , while the lines in L′′ pass through at least two points.

5In the original version of simplicial partitions [22], the cells cover R
2, but they need not

be disjoint. In a newer version due to Chan [5], disjointness can also be guaranteed.
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Obviously, I(P,L′) ≤ |L′| ≤ n. In order to bound I(P,L′′), we note that a
point p ∈ P may have at most m−1 incidences with the lines of L′′, since there
are at most m − 1 lines passing through p and some other point of P . Thus,
I(P,L′′) ≤ m(m− 1) ≤ m2. 2

Let us remark that this lemma also follows from the Kővári–Sós–Turán
theorem [21] concerning graphs with forbidden complete bipartite subgraphs.
In the above argument, we are really proving the required instance of Kővári–
Sós–Turán.

Proof of the Szemerédi–Trotter theorem. For simplicity, we first do the
proof form = n, and then indicate the changes needed to handle an arbitrarym.

We set r := n2/3, and we let f be an r-partitioning polynomial for P . By the
polynomial partitioning lemma (Lemma 2.6), we may assume D = deg(f) =
O(

√
r ) = O(n1/3).
Let Z := Z(f), let C1, . . . , Cs be the connected components of R2 \ Z, let

Pi := P ∩ Ci, and let P0 := P ∩ Z. Since f is an r-partitioning polynomial, we
have |Pi| ≤ n/r = n1/3, i = 1, 2, . . . , s. Furthermore, let L0 ⊂ L consist of the
lines of L contained in Z; we have |L0| ≤ D by Lemma 2.2.

We decompose

I(P,L) = I(P0, L0) + I(P0, L \ L0) +
s

∑

i=1

I(Pi, L).

We can immediately bound

I(P0, L0) ≤ |L0| · |P0| ≤ |L0|n ≤ Dn = O(n4/3),

and
I(P0, L \ L0) ≤ |L \ L0|D = O(n4/3),

since each line of L \ L0 intersects Z, and thus also P0, in at most D = deg(f)
points.

It remains to bound
∑s

i=1 I(Pi, L). Let Li ⊂ L be the set of lines containing
at least one point of Pi (the Li are typically not disjoint). By Lemma 3.1 we
get

s
∑

i=1

I(Pi, Li) ≤
s

∑

i=1

(

|Li|+ |Pi|2
)

.

We have
∑s

i=1 |Li| = O((D + 1)n) = O(n4/3), since by Lemma 2.1, no line
intersects more than D + 1 of the sets Pi. Finally,

∑s
i=1 |Pi|2 ≤ (maxi |Pi|) ·

∑s
i=1 |Pi| ≤ n

r · n = O(n4/3). This finishes the proof for the case m = n.
We generalize the proof for an arbitrary m as follows. We may assume,

without loss of generality, that m ≤ n; the complementary case is handled
by interchanging the roles of P and L, via a standard planar duality. We
may also assume that

√
n ≤ m, since otherwise, the theorem follows from

Lemma 3.1. Then we set r := m4/3/n2/3. Noting that 1 ≤ r ≤ m for the
assumed range of m, we then proceed as in the case m = n above. We get
D = deg(f) = O(m2/3/n1/3), and we check that all the partial bounds in the
proof are at most O(m2/3n2/3). 2
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4 Incidences of points with algebraic curves

As was announced in the introduction, we prove the following (weaker) version
of Theorem 1.2.

Theorem 4.1 Let b, k and C be constants, let P be a set of m points in the
plane, and let Γ be a family of planar curves such that

(i) every γ ∈ Γ is an algebraic curve of degree at most b, and

(ii) for every k distinct points in the plane, there exist at most C distinct
curves in Γ passing through all of them.

Then I(P,Γ) = O
(

mk/(2k−1)n(2k−2)/(2k−1) +m+ n
)

, with the constant of pro-
portionality depending on b, k, C.

In the proof, we may assume that the curves in Γ are irreducible.6 In-
deed, if it is not the case, we apply the forthcoming analysis to the irreducible
components of the curves of Γ, whose number is at most bm.

We begin with an analog of Lemma 3.1.

Lemma 4.2 Under the conditions of Theorem 4.1, we have I(P,Γ) = O(n +
mk), and also I(P,Γ) = O(m+ n2); the constants of proportionality depend on
b, k, C.

Proof. For the first estimate, we distinguish between the curves with fewer
than k incidences, which altogether generate O(n) incidences, and curves with
at least k incidences, observing that there are at most C

(

m−1
k−1

)

such curves
through each point of P .

For the second estimate, we first note that, by the assumed irreducibility
and by Bézout’s theorem (Theorem 2.4), every pair of curves of Γ intersect in
at most b2 points. Then we distinguish between points lying on at most one
curve each, which have O(m) incidences altogether, and the remaining points,
each lying on at least two curves. Now a single γ ∈ Γ has at most b2(n − 1)
intersections with the other curves, and thus it contributes at most b2(n − 1)
incidences with these latter points. So I(P,Γ) = O(m+ n2) follows. 2

Proof of Theorem 4.1. We may assume m ≤ n2 and n ≤ mk, for otherwise,
the bounds of Lemma 4.2 give I(P,Γ) = O(m+ n).

We set r := m2k/(2k−1)/n2/(2k−1), and we observe that our assumptions on
m,n yield 1 ≤ r ≤ m. Let f be an r-partitioning polynomial for P , of degree

deg(f) = O(
√
r ) = O

(

mk/(2k−1)/n1/(2k−1)
)

.

The proof now continues in much the same way as the proof of the Szemerédi–
Trotter theorem.

6We recall that a planar algebraic curve γ is irreducible if γ = Z(g) for an irreducible
polynomial g, i.e., one that cannot be written as g = g1g2 with both g1, g2 nonconstant (and
real in our case). For γ = Z(g) with g arbitrary, we can write g = g1g2 · · · gk as a product of
irreducible factors, and the irreducible components of g are Z(g1),. . . , Z(gk).
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We put Z := Z(f), let P0 := P ∩ Z, and let Γ0 ⊂ Γ consist of the curves
fully contained in Z. Since every γ ∈ Γ0 is irreducible, it must be a zero set of a
factor of f (this follows from Bézout’s theorem), and so |Γ0| ≤ deg(f) = O(

√
r ).

Hence I(P0,Γ0) = O(m + |Γ0|2) = O(m + r) = O(m) by the second bound of
Lemma 4.2. (Here the argument differs from the one for the Szemerédi–Trotter
theorem—in the latter, it was sufficient to use the trivial bound I(P0, L0) ≤
|P0| · |L0|, which in general is not sufficient here.)

Next, we consider γ ∈ Γ \ Γ0. Applying Bézout’s theorem to γ and every
irreducible component of Z in turn, we see that |γ ∩ Z| ≤ b · deg(f) = O(

√
r ).

So I(P0,Γ \ Γ0) = O(n
√
r) = O

(

mk/(2k−1)n(2k−2)/(2k−1)
)

.
Letting C1, . . . , Cs be the connected components of R2 \ Z, it remains to

bound
∑s

i=1 I(Pi,Γi), where Pi = P ∩Ci and Γi is the set of curves meeting Ci.
By Bézout’s theorem once again, we have

∑s
i=1 |Γi| = O(n ·deg(f)) = O(n

√
r ).

Then, by the first bound of Lemma 4.2, we obtain

s
∑

i=1

I(Pi,Γi) = O
(

s
∑

i=1

(

|Γi|+ |Pi|k
)

)

≤ O(n
√
r ) +

(

max i|Pi|
)k−1

O
(

s
∑

i=1

|Pi|
)

= O(n
√
r + (m/r)k−1m) = O

(

mk/(2k−1)n(2k−2)/(2k−1)
)

.

2

5 Spanning trees with low crossing number in the

plane

In the forthcoming proof of Theorem 1.3, instead of constructing a geometric
spanning tree directly, it will be more natural to construct an arcwise connected
set X, made of segments and algebraic arcs, that has a low crossing number
and contains the given point set P . Here we say that a set X ⊆ R

d has crossing
number at most k if each line, possibly with finitely many exceptions, intersects
X in at most k points. (It is easy to check that for a geometric spanning tree,
this new definition is equivalent to the earlier one.)

The following lemma allows us to convert such an X into a geometric span-
ning tree. Although we are not aware of an explicit reference for the statement
we need, most of the ideas of the proof appear in the literature in some form.

Lemma 5.1 Let P be a set of n points in the plane, and let X be an arcwise
connected set containing P , with crossing number at most k. Then there exists
a (geometric) spanning tree of P whose edges are straight segments and whose
crossing number is at most 2k.

Proof. In the first stage of the proof we build a Steiner tree S for P , whose
edges are arcs contained in X. We order the points of P arbitrarily, into a
sequence p1, p2, . . . , pn. We set S1 = {p1}, and, having built a Steiner tree
Si ⊆ X for {p1, . . . , pi}, we choose an arc αi connecting pi+1 to some point qi
of Si, in such a way that αi ∩ Si = {qi}. Then we set Si+1 := Si ∪ αi. Having

11



p1 = q1

p2

p3
q2

p4

q3

q4

p5

p1 = q1

p2

p3
q2

p4

q3

q4

p5

Figure 1: Illustrating the proof of Lemma 5.1: Left: Building a Steiner tree from arcs.

Right: Shortcutting the arcs into segments.

reached i = n, we set S := Sn; see Fig. 1. The crossing number of S is at most
k since S ⊆ X.

In the second stage, we replace arcs by straight segments. Namely, the
points qj divide S into finitely many subarcs, and we replace each of them by a
straight segment connecting its endpoints. It is easily seen (and standard) that
the crossing number does not increase. This yields a Steiner tree for P whose
edges are straight segments.

In the third and last stage, we eliminate the Steiner points and obtain a
spanning tree, at the price of at most doubling the crossing number. This is done
by performing an inorder traversal of the tree, starting from some arbitrary root
vertex, tracing each edge in both directions, skipping over the Steiner points,
connecting each pair of consecutively visited points of P by a straight segment,
and finally eliminating cycles in the resulting tour. 2

The main step in the proof of Theorem 1.3 is the following lemma.

Lemma 5.2 Let P be a set of n points in the plane. Then there exists a set
X ⊆ R

2 that contains P , has at most n/2 arcwise connected components, and
with crossing number O(

√
n ).

Proof. If n is below a suitable constant, we can interconnect the points of P
by an arbitrary geometric spanning tree, and so we may assume that n is large.

We apply the polynomial partitioning lemma (Lemma 2.6), to obtain an
r-partitioning polynomial f for P , with r as large as possible but so that Z :=
Z(f) is guaranteed to have at most n/2 connected components. By Lemma 2.6,
we have deg(f) = O(

√
r ), and so, by Harnack’s theorem (Theorem 2.3), we can

afford to take r = n/c for a suitable constant c.
Then, for every p ∈ P not lying in Z, we pick a straight segment σp connect-

ing p to a point of Z (and otherwise avoiding Z). We let X := Z ∪⋃

p∈P\Z σp.
Clearly, X has at most n/2 components, and it remains to bound its crossing
number.

Let ℓ be a line that is not contained in Z and that does not contain any of
the segments σp. It intersects Z in at most deg(f) = O(

√
n ) points, and so it

remains to bound the number of the segments σp intersected by ℓ.
Since f is an r-partitioning polynomial for P , no component of R2 \Z con-

tains more than c points of P . The line ℓ meets at most 1+deg(f) components,
and so it intersects at most c(1 + deg(f)) = O(

√
n) of the segments σp. The

lemma is proved. 2
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Proof of Theorem 1.3. In view of Lemma 5.1, it suffices to construct an
arcwise connected set X containing P , with crossing number O(

√
n). To this

end, we apply Lemma 5.2 recursively.
We construct a sequence B0, B1, B2, . . . of sets, such that each Bi contains P

and has at most n/2i arcwise connected components. We begin with B0 := P ,
and, having constructed Bi, we choose a point in each of its components, which
yields a set Ri of at most n/2i points. Lemma 5.2 then provides us with a
set Xi ⊇ Ri with at most n/2i+1 components and crossing number O(

√

n/2i).
We set Bi+1 := Bi ∪Xi and continue with the next iteration, until for some i0
we reach an arcwise connected Bi0 , which we use as X. The crossing numbers
of the Xi are bounded by a geometrically decreasing sequence, and so X has
crossing number bounded by its sum, which is O(

√
n), as required. 2

6 Spanning trees in higher dimensions

Here we prove that every set P of n points in R
d admits a geometric span-

ning tree with crossing number at most Cdn
1−1/d, with Cd a sufficiently large

constant depending on d.
When one tries to extend the planar proof from Section 5, with the ap-

propriate higher-dimensional analogs of the polynomial partition lemma and
Harnack’s theorem (discussed below), a problem arises when almost all the
points of P happen to lie on the zero set Z(f) of the partitioning polynomial.
(This situation seems hard to avoid—for example, P may lie on a low-degree
algebraic variety, in which case the zero set of each of the bisecting polynomials
would simply coincide with this variety.)

In the planar case this did not matter, since we could use Z(f) itself as a
part of the connecting set X. However, in higher dimension, we cannot take all
of Z(f) (which is typically a (d− 1)-dimensional object), so we would still need
to construct a suitable connecting set with low crossing number within Z(f).

Fortunately, the spanning tree problem behaves well with respect to small
perturbations. Namely, it is easy to see (and well known) that the crossing
number of a geometric spanning tree cannot decrease by a (sufficiently small)
perturbation of its vertex set, and this will allow us to avoid the situation with
too many points on Z(f). Before carrying out this plan, we first summarize
and review the additional tools we need, beyond those already covered.

6.1 Additional tools

The polynomial ham sandwich theorem (Theorem 2.5) and the polynomial par-
titioning lemma (Lemma 2.6) immediately generalize to R

d, with the d-variate
r-partitioning polynomial f having degree O(r1/d) (this relies on the fact that
the number of monomials of degree D in d variables is

(

D+d
d

)

, so the degree will

be the smallest integer satisfying
(

D+d
d

)

− 1 ≥ r).
We will also need a kind of generalization of Harnack’s theorem, dealing

with components of the complement of Z(f), rather than with the components
of Z(f):

13



Lemma 6.1 Let f be a real polynomial of degree D in d variables. Then the
number of connected components of Rd \ Z(f) is at most 6(2D)d.

This follows, for example, from Warren [37, Theorem 2] (also see [4] for an
exposition, and [2] for a neatly simplified proof).

We also note that if f is as in Lemma 6.1 and h is a hyperplane in R
d,

then h \ Z(f) has at most 6(2D)d−1 connected components, and consequently,
h intersects at most that many components of Rd \ Z(f). Indeed, this is clear
from Lemma 6.1 if h is the coordinate hyperplane xd = 0, and the general case
follows by a linear transformation of coordinates.

6.2 A general position lemma

We need the following lemma, which is probably known, but unfortunately we
do not have a reference at the moment.

Lemma 6.2 Let d,D be given integers, and let k :=
(

D+d
d

)

− 1. Let P =
(p1, . . . , pk+1) be an ordered (k + 1)-tuple of points in R

d. Let us call P ex-
ceptional if it is contained in the zero set of a nonzero d-variate polynomial of
degree at most D. Then there is a nonzero polynomial ψ = ψd,D with integer
coefficients in the variables zij, 1 ≤ i ≤ k + 1, 1 ≤ j ≤ d, such that all excep-
tional (k+1)-tuples (p1, . . . , pk+1) belong to the zero set of ψ (that is, if we set
zij to the jth coordinate of pi, for all i, j, then ψ evaluates to 0).

Proof. The value of k in the lemma is the number of nonconstant monomials
of degree at most D in the d variables x1, . . . , xd. Let µ1, µ2, . . . , µk be an
enumeration of these monomials in some fixed order.

It is convenient to phrase the argument using the Veronese map Φ: Rd →
R
k, which we encountered in Section 2.2 for the special case d = 2. For x =

(x1, . . . , xd) ∈ R
d, we can write Φ(x) = (µi(x) | i = 1, 2, . . . , k) ∈ R

k.
As in the proof of Theorem 2.5, the zero set Z(f) of a polynomial f of

degree at most D can be written as Φ−1(h), where h is a suitable hyperplane
in R

k. Thus, the condition for a sequence P = (p1, . . . , pk+1) of points in R
d to

be exceptional is equivalent to the k + 1 points Φ(p1), . . . ,Φ(pk+1) lying on a
common hyperplane in R

k.
The condition that k + 1 points q1, . . . , qk+1 in R

k lie on a common hy-
perplane can be expressed by the vanishing of a suitable determinant in the
coordinates of q1, . . . , qk+1. Namely, it is equivalent to det(A) = 0, where

A = A(q1, . . . , qk+1) =











1 q11 q12 . . . q1k
1 q21 q22 · · · q2k

...
...

1 q(k+1)1 q(k+1)2 · · · q(k+1)k











.

We define the desired polynomial ψ by

ψ = ψ(z11, . . . , z(k+1)d) := det(A(Φ(z1),Φ(z2), . . . ,Φ(zk+1))),
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where zi = (zi1, . . . , zid). Clearly, ψ has integer coefficients, and by the above,
it vanishes on all exceptional sequences; it remains to verify that it is not
identically 0.

Assuming the contrary, it means that the images of any k + 1 points under
the Veronese map lie on a common hyperplane in R

d. This in turn implies
that all of Φ(Rd) is contained in a hyperplane. But the Φ-preimage of every
hyperplane is the zero set of some nonzero polynomial, and thus it cannot
be all of Rd (extending the observation in the proof of Lemma 2.2 to higher
dimensions). The resulting contradiction proves the lemma. 2

6.3 Spanning trees with low crossing number in R
d

Given a finite point set P ⊂ R
d, we first perturb each point slightly, obtaining

a new set P ′, for which we may assume that the coordinates of its points are
algebraically independent (i.e., they do not satisfy any nontrivial polynomial
equation with integer coefficients).7

In particular, for everyD = 1, 2, . . ., if we set k :=
(

D+d
d

)

−1 as in Lemma 6.2,
then no (k + 1)-tuple of points of P ′ is contained in Z(f), for any nonzero
polynomial f of degree at most D.

By the observation mentioned at the beginning of Section 6, it suffices to
exhibit a geometric spanning tree with crossing number O(n1−1/d) for P ′.

Moreover, it suffices to show that there exists a geometric graph G on
the vertex set P ′ with at most n/2 components and with crossing number
O(n1−1/d); the existence of the desired spanning tree then follows by recursion
on the size of P ′ (as in the proof of the planar case).

So we set r := n/c for a sufficiently large constant c > 0, and construct an
r-partitioning polynomial f for P ′, of degree D = O(r1/d); thus, no component
of Rd \ Z contains more than c points of P ′, where Z = Z(f).

By the algebraic independence of P ′, and by Lemma 6.2, Z contains fewer
than

(

D+d
d

)

= O(r) points of P ′, with a constant of proportionality depending
only on D. For c sufficiently large, we thus have |P ′

0| ≤ n
4 , where P

′
0 := P ′ ∩Z.

By Lemma 6.1, we may also assume that for c sufficiently large, Rd \ Z has at
most n

4 components.
For each component U of Rd\Z, we now interconnect the points of U∩P ′ by

an arbitrary geometric spanning tree TU . The geometric graph G is the union
of all the trees TU and the points of P ′

0 (which appear as isolated vertices in
G). The number of connected components of G is at most n

2 (one for each TU
and one for each point of P ′

0). It remains to bound its crossing number.
To this end, let h be a hyperplane avoiding P ′, and let us consider an edge

{p, q} of G crossed by h. This edge belongs to some TU , and so the points p and
q lie in the same component U of Rd \Z. Considering an arc α ⊂ U connecting
p to q, we see that h has to intersect α and thus U too. By the remark following
Lemma 6.1, h intersects at most O(Dd−1) = O(n1−1/d) components of Rd \ Z,

7The existence of such P ′ is well known and follows, e.g., by a standard measure argu-
ment via Sard’s theorem (which guarantees that the zero set of every nonzero multivariate
polynomial has zero measure; see, e.g., [31, 32]).
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and within each such component U it meets at most c edges of G (that is, of
TU ). Hence the crossing number of G is O(n1−1/d), as claimed. 2

7 Conclusion

We regard this paper as an initial stepping stone in the development of appli-
cations of the new algebraic machinery of Guth and Katz. It is encouraging
that this technique can replace more traditional approaches and yield simpler
proofs of central theorems in combinatorial geometry.

Of course the real challenge is to use the techniques to obtain improved
solutions to other “hard Erdős problems in discrete geometry” (borrowing from
the title of [34]), as Guth and Katz themselves did, first for the joints problem
in [15] and then for the harder distinct distances problem in [16]. There is a long
list of candidate problems, of varying degree of difficulty. Perhaps the hardest
in the list is the planar unit distances problem of Erdős: What is the maximum
possible number of unit distances determined by a set of n points in the plane?
This problem seems to require an algebraic approach, mainly because the best
known upper bound, O(n4/3), is known to be tight if the norm is not Euclidean,
as shown by Valtr [36].

In closing, one should note that the algebraic approach used in this paper
has also some disadvantages. For one, it seems to require the objects to be alge-
braic or semialgebraic. For example, the Szemerédi-Trotter theorem can easily
be extended to yield the same bound on the number of incidences of points
and pseudolines, using, e.g., the combinatorial proof technique of Székely [34],
but such an extension does not seem to follow from the polynomial partitioning
technique. The same situation occurs in the setup of Theorem 1.2, where the
general situation considered there can be handled by traditional combinato-
rial tools, but not by the algebraic machinery, which can only establish weaker
variants, like the one in Theorem 4.1. Perhaps some abstract version of poly-
nomial partitions, yet to be discovered, might combine the advantages of both
approaches.

Acknowledgements.

The authors wish to thank Roel Apfelbaum and Sariel Har-Peled for useful
exchanges of ideas that were helpful in the preparation of this paper.

References
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geometry, in G. Halász et al. editors, Paul Erdős and His Mathematics, J.
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