
Radial Points in the Plane�J�anos Pachy Micha SharirzJanuary 26, 2001AbstractA radial point for a �nite set P in the plane is a point q 62 P with the property thateach line connecting q to a point of P passes through at least one other element of P .We prove a conjecture of Pinchasi, by showing that the number of radial points for anon-collinear n-element set P is O(n). We also present several extensions of this result,generalizing theorems of Beck, Szemer�edi and Trotter, and Elekes on the structure ofincidences between points and lines.1 IntroductionLet P be a set of n points in the plane, not all lying on the same line. A point q =2 P iscalled a radial point (for P ) if for every line ` passing through q we have j` \ P j 6= 1. Inother words, every line connecting q to some point p 2 P passes through at least one otherelement of P .For instance, let P be the vertex set of a regular 2k-gon in the plane. Then, theintersection of the line at in�nity with each line supporting an edge of P is a radial pointfor P . The center of the regular 2k-gon is another radial point. We thus have a 2k-elementset which has k + 1 radial points.Rom Pinchasi [6] conjectured that any non-collinear set of n points in the plane hasat most O(n) radial points. He veri�ed this conjecture in the special case when no threepoints of the set are collinear, and he also established the weaker upper bound O(n3=2) forthe general case. The main result of our paper is a proof of Pinchasi's conjecture:Theorem 1. The maximum possible number of radial points for a non-collinear set of npoints in the plane is �(n).The construction of Pinchasi depicted in Figure 1 shows that the constant of proportion-ality in Theorem 1 is at least 5=3 (although it is still possible that the constant is smaller�Work on this paper has been supported by an NSF Grant CCR-97-32101, and by a grant from the U.S.-Israel Binational Science Foundation. Work by J�anos Pach has also been supported by OTKA T-020914.Work by Micha Sharir has also been supported by the Hermann Minkowski{MINERVA Center for Geometryat Tel Aviv University.yMathematical Institute of the Hungarian Academy of Sciences and Courant Institute of MathematicalSciences, New York University. pach@math-inst.huzSchool of Mathematical Sciences, Tel Aviv University, and Courant Institute of Mathematical Sciences,New York University. sharir@math.tau.ac.il 1



if n > 6 is su�ciently large). Nevertheless, Pinchasi has shown that the number of radialpoints of a non-collinear set P of n points in the plane that lie in a halfplane disjoint fromP is at most 0:9n. The constant yielded by our proof is much larger, though.

Figure 1: Pinchasi's set of six points with ten radial pointsThe notion of radiality can be extended, as follows. For any " 2 (0; 1), we say thatq 62 P is an "-radial point for P , if the number of distinct lines connecting q to the pointsof P is at most (1� ")n.Note that, according to this de�nition, any radial point is (1=2)-radial. If at least "n+1points of P lie on a common line, then every point of this line (which does not belong to P )is "-radial. Therefore, in this case the number of "-radial points for P is in�nite. However,by a slight modi�cation of the proof of Theorem 1, we can obtain the following positiveresult.Theorem 2. For any 0 < � < " < 1, there exists a constant C = C(�; ") with the followingproperty.Let P be any set of n points in the plane. Then the number of "-radial points that donot belong to any line passing through at least �n elements of P is at most Cn.Corollary 3. For any 0 < � < " < 1, there exists a constant C = C(�; ") with the followingproperty. Let P be any set of n points in the plane, no �n of which are collinear. Then thenumber of "-radial points for P is at most Cn.2



The following result of G. Elekes [3] (see also [4]) is another immediate consequence ofTheorem 2.Corollary 4. For every " � 1 there is a constant C = C(") such that every n-element setP on a line has at most Cn subsets similar to a given b"nc-element set Q.Proof: Assume without loss of generality that P and Q lie on two parallel lines in theplane. For any similar copy Q0 � P of Q, the lines connecting the corresponding points ofQ and Q0 are concurrent. Their common point is some "=2-radial point for P [ Q, whichdoes not belong to any line containing more than two elements of this set. Hence, Theorem2 can be applied to bound the number of such points (and sets Q0). 2Note that Theorem 2 yields stronger results. For example, it shows that P has at mostC 0n subsets, each similar to some subset of at least b"n=2c elements of Q, for anotherconstant C 0 = C 0(").The proof of Theorem 1 is presented in Section 2. In Section 3, we establish a general-ization of Theorem 2. The main result of that section, Theorem 3.1, is a strengthening ofthe following theorem of J. Beck [1] and E. Szemer�edi and W.T. Trotter [9] (also known asthe \weak Dirac-Motzkin conjecture").Corollary 5. There is a constant c > 0 with the property that any non-collinear set P ofpoints in the plane has an element q such that the number of distinct lines connecting q toall other points of P is at least cjP j.According to the \strong Dirac-Motzkin conjecture," this statement should be true withc = 1=2. Corollary 5 has several interesting applications in combinatorial geometry (see e.g.[7], for the most recent one).2 Proof of Theorem 1Clearly, we only need to prove the upper bound. The idea of the proof is the following. Letq be a radial point for P , and let j denote the average number of points of P that lie on thelines connecting q to the points of P . If each of these lines contained exactly j points thenthe number of lines would be about n=j. In general, some relaxation of this relationship isneeded: We show that any radial point q has an `index' j such that the number of lines thatconnect q to at least j points of P is at least n=(6j log2 j). We then show (in Lemma 2.4)that the number of radial points that have a small index (up to cpn for some constant c) islinear, and �nally derive a linear bound on the number of radial points with a large index.The following well known results of Szemer�edi and Trotter [9, 10] are crucial to theproof.Lemma 2.1 (i) The number of incidences between l distinct lines and n distinct points inthe plane cannot exceed 3n2=3l2=3 + n+ l.(ii) For any j � n, the number of lines containing at least j elements of a given set ofn points in the plane cannot exceed 40 �maxfn2=j3; n=jg. 23



Part (i) is asymptotically tight in the worst case, apart from the values of the constants,and it implies part (ii). The best known constants for (i) are given in [5]. A simple proofof (i) was found by Sz�ekely [8]; see also [2].In the sequel, let P be a �xed set of n points in the plane, not all on a line, and let Rbe the set of radial points for P .Let L be the set of all lines that pass through at least two points of P . Denote by Lj(resp. L�j, L�j) the set of those elements of L which contain precisely j (resp. at most j, atleast j) elements of P . Throughout this paper, we write log j for ln j, the natural logarithmof j.Lemma 2.2 For every radial point q 2 R, there is an integer 2 � j � n� 2 such that thenumber of lines in L�j passing through q is at least d n3j log2 j e.Proof: Suppose to the contrary that for some q 2 R no such j exists. Let lj denote thenumber of lines in Lj passing through q. We havel2 + l3 + � � �+ ln�2 < n3�2 log2 2 ;l3 + � � �+ ln�2 < n3�3 log2 3 ;� � �ln�2 < n3(n�2) log2(n�2) :Summing up all these inequalities, the �rst one with coe�cient two, and noting that 2l2 +3l3 + � � �+ (n� 2)ln�2 = n, we obtainn < n �0@ 13 log2 2 + n�2Xj=3 13j log2 j1A < 0:8n;the desired contradiction. 2De�nition 2.3 The index of a point q 2 R is the smallest integer j = j(q) such that2 � j � n� 2 and the number of lines in L�j passing through q is at least d n6j log2 j e.Clearly, Lemma 2.2 implies that every radial point has an index. (The constant 6 hasbeen chosen for technical reasons that will become clear later.)Lemma 2.4 For every c > 0, there exists c0 > 0 such that the number of radial pointswhose index is at most cpn does not exceed c0n.Proof: Note �rst that Lemma 2.1(ii) implies that for j � pn, the size of L�j is at most40n2=j3, whereas for j > pn, the size of L�j is at most 40n=j. We will assume that c > 1;in the other case the proof gets only simpler.For j = 2; : : : ; bcpnc, let Rj denote the set of radial points of index j, and put rj = jRjj.Let Ij denote the number of incidences between the points in Rj and the lines in L�j. Sinceeach q 2 Rj is incident to at least n6j log2 j lines of L�j, we haveIj � rjn6j log2 j :4



Applying Lemma 2.1(i) to Rj and L�j, we obtain thatIj � 3r2=3j jL�j j2=3 + rj + jL�jj:Comparing the last two inequalities, we haverjn6j log2 j � 3r2=3j � 402=3  max(n2j3 ; nj )!2=3 + rj + 40 �max(n2j3 ; nj ) :Therefore,rjn6j log2 j � max8<:32r2=3j  40n2j3 !2=3 ; 32r2=3j �40nj �2=3 ; 3rj ; 120n2j3 ; 120nj 9=; ;which yields that, for j � pn,rj � max(63 � 36 � 402n log6 jj3 ; 720n log2 jj2 ) � 109n log2 jj2 ;and, for j > pn, rj � max(63 � 36 � 402 j log6 jn ; 720 log2 j) � 720 log2 j;provided that n is at least some su�ciently large constant n0. Summing up these inequal-ities, we obtain that the number of radial points with index at most cpn satis�es (forn > n0) bcpncXj=2 rj � bpncXj=2 109n log2 jj2 + bcpncXj=bpnc+1 720 log2 j � c0n;for an appropriate constant c0. (For n � n0, this will trivially hold, if we choose c0 su�cientlylarge.) 2Note that the dependence of c0 on c is rather weak. In fact, if n is at least some constantn0(c) that depends on c, we can choose c0 to be an absolute constant independent of c.Let R� denote the set of all radial points with index greater than cpn, where c > 1 isa constant to be speci�ed later, and let L� = L�cpn. Then R� = R�1 [R�2, where R�1 (resp.R�2) denotes the set of those elements of R� that lie on exactly one line (resp. at least twolines) belonging to L�.The number of incidences between the original point set P and L� is at least cpnjL�j.On the other hand, by Lemma 2.1(i), the same quantity can be bounded from above by3n2=3jL�j2=3 + n + jL�j. Thus, jL�j < pn, provided that c is su�ciently large (c � 5 willdo). This immediately implies thatjR�2j �  jL�j2 ! < n=2:It remains to show that the size of R�1 is O(n).5



Lemma 2.5 For every point q 2 R�1, the (unique) line in L� passing through q containsmore than dn=2e elements of P .Proof: Assume, in order to obtain a contradiction, that some q 2 R�1 violates this condition.Then each line through q, di�erent from the unique element `� of L� that passes through q,contains at most cpn points of P . (At this point we use the fact that the constant in thedenominator of the quantity that appears in De�nition 2.3 is 6.) Apply Lemma 2.2 to q andto the set P 0 = P n `�, to conclude that there exists an integer 2 � j � jP 0j � 2 such that qis incident to at least jP 0j=(3j log2 j) lines, each containing at least j points of P 0, and thusat least j points of P . Clearly, we have j � cpn. Since jP 0j > n=2, it follows, according toDe�nition 2.3, that the index of q (with respect to P ) is at most j � cpn. That is, q 62 R�,a contradiction. 2Now we are in a position to complete the proof of Theorem 1. Since there are no twodistinct lines passing through more than dn=2e points of P , it follows from Lemma 2.5 thatall points of R�1 are collinear. Let ` be the line containing R�1.Let P 0 denote the set of points of P that do not lie on `. For each radial point q 2 R�1;let f(q) denote the number of pairs fp0; p00g � P 0, for which q; p0; and p00 are collinear.Obviously, Xq2R�1 f(q) �  jP 0j2 !:On the other hand, f(q) � jP 0j=2 holds for every q 2 R�1. This immediately implies thatjR�1j � jP 0j � 1 < n=2;completing the proof of Theorem 1.3 "-Radial and Quasiradial PointsIf a point q 62 P is "-radial, then the total number of points on those lines which passthrough q and contain more than one element of P is at least "n. This suggests thefollowing de�nition.Let P be a set of n points in the plane, and let q be another point which may or maynot belong to P . For any positive real " � 1 and for any integer k � 2, we say that q is an("; k)-quasiradial point for P , if the number of points p 2 P n fqg sitting on lines that passthrough q and at least k elements of P n fqg is at least "n.Theorem 3.1 For any 0 < � < " � 1 and for any integer k � 2, there exists a constantC = C(�; "; k) with the following property.Let P be any set of n points in the plane. Remove from the plane all lines that passthrough at least �n elements of P . Then the total number of ("; k)-quasiradial points lyingin the remaining regions is at most Cn, provided that n is large enough. Moreover, as ntends to in�nity, C(�; "; k) = O� 1("� �)3k log k� :6



The proof of this theorem is similar to that of Theorem 1.Let P be a �xed set of n points, and let Q denote the set of all ("; k)-quasiradial pointsfor P . Then Q = Q0 [Q1, where Q0 = Q n P and Q1 = Q \ P . Instead of Lemma 2.2, wenow haveLemma 3.2 For every point q 2 Q0, there is an integer j � k, and, for every point q 2 Q1,there is an integer j � k + 1 such that the number of lines in L�j passing through q is atleast d " log k3j log2 jne.Proof: Suppose to the contrary that for some q 2 Q no such j exists. Let lj denote thenumber of lines in Lj passing through q, for 1 � j � n. We havelk+1 + lk+2 + � � � + ln < " log k3(k+1) log2(k+1) � n;lk+2 + � � � + ln < " log k3(k+2) log2(k+2) � n;� � �ln < " log k3�n log2 n � n;and, if q 2 Q0, then also lk + lk+1 + � � �+ ln < " log k3k log2 k � n:If q 2 Q0, then summing up these inequalities (the last one with coe�cient k), and com-paring it with the relation klk + (k + 1)lk+1 + � � � � "n, we obtain"n < " log k �0@ 13 log2 k + nXj=k+1 13j log2 j1A � n < 0:8"n;the desired contradiction. If q 2 Q1, then klk+1+ (k+1)lk+2+ � � � � "n. Hence, arguing asabove, now we have"n < " log k �0@ k3(k + 1) log2(k + 1) + nXj=k+2 13j log2 j1A � n < 0:8"n;again a contradiction. 2De�nition 3.3 The index of a point q 2 Q0 (resp. q 2 Q1) is the smallest integer j =j(q) � k (resp. j = j(q) � k + 1) such that the number of lines in L�j passing through q isat least d ("��) log k3j log2 j � ne.Lemma 3.2 implies that every point q 2 Q has a (unique) index.Lemma 3.4 Let c > 1 be �xed. There exists an absolute constant d > 0 (independent ofc; �; "; and k) such that the number of points q 2 Q whose index is at most cpn does notexceed dn("��)3k log k , provided that n � n0(c; �; "; k) is su�ciently large.7



Proof: For j � k, let Rj � Q now denote the set of ("; k)-quasiradial points of index j,and put rj = jRj j. Let Ij denote the number of incidences between the points in Rj andthe lines in L�j. Since each q 2 Rj is incident to at least ("��) log k3j log2 j � n lines of L�j, we haveIj � rj("� �) log k3j log2 j � n;and, by Lemma 2.1(i), Ij � 3r2=3j jL�j j2=3 + rj + jL�jj:Comparing the last two inequalities, as in the proof of Lemma 2.4, an easy computationshows thatbcpncXj=k rj � bpncXj=k 109 log2 jj2("� �)3 log3 k � n+ bcpncXj=bpnc+1 720 log2 j("� �) log k � dn("� �)3k log k ;for an appropriate absolute constant d, provided that n is su�ciently large. 2It is interesting to note that we have not excluded in the proof of the lemma pointsthat lie on `heavy' lines, as prescribed in the statement of Theorem 3.1. In particular, thenumber of quasiradial points with a `small' index is �nite.Let Q� denote the set of all elements of Q which do not belong to any line containingat least �n points of P and whose index is greater than cpn, where we setc = maxf20; (" � �)3=2q(5k=d) log kg;with d being the same constant as in the previous lemma. Let L� = L�cpn. Then Q� =Q�1 [Q�2, where Q�1 (resp. Q�2) denotes the set of those elements of Q� which lie on exactlyone line (resp. at least two lines) belonging to L�.The number of incidences between the original point set P and L� is at least cpnjL�j.On the other hand, by Lemma 2.1(i), the same quantity can be bounded from above by3n2=3jL�j2=3 + n+ jL�j. Thus, jL�j < pn=c. This immediately implies thatjQ�2j �  jL�j2 ! < dn("� �)3k log k ;if n is su�ciently large.To complete the proof of Theorem 3.1, it is su�cient to establish the following.Lemma 3.5 Q�1 is empty.Proof: Suppose, to the contrary, that Q�1 has a point q. Let `� denote the unique line inL� that passes through q, and let P 0 denote the set of points of P that lie outside `�. Byassumption, `� contains at most �n points of P , so the size of P 0 is at least (1��)n. Clearly,q is an � ("��)njP 0j ; k�-quasiradial point for P 0. Applying Lemma 3.2 to P 0 and to q, we obtain8



that there is a j � k such that the number of lines in L�j passing through q (and excluding`�) is at least � ("� �) log k3j log2 j � n� :Hence, by De�nition 3.3, the index of q is at most j. Since q 2 Q�1, every line through q,except for `�, contains at most cpn points of P . Thus, j and therefore the index of q cannotexceed cpn, contradicting our assumption that the index of all points in Q� is larger thancpn. 24 Concluding Remarks4.1 Superradial points. Let P be a set of n points in the plane, not all on a line. Wecall a point q 62 P k-superradial for P , if every line that passes through q and at least onepoint of P contains at least k elements of P . In this terminology, a radial point for P canalso be called 2-superradial. Using the de�nition in the last section, a point is k-superradialif and only if it is (1; k)-quasiradial.It follows from Theorem 3.1 that the number of k-superradial points for P is at mostckn, with a coe�cient ck that goes to zero as k increases. The following construction showsthat the the number of k-superradial points can exceed c0kpn for some c0k > 0.For any positive integer m, let vm1 ; vm2 ; : : : ; vmM be the sequence of all vectors (p; q) withrelatively prime integer coordinates satisfying jpj; jqj � m, listed in increasing order of theirslopes (i.e., according to the clockwise angle between the positive x-axis and (p; q)). It iswell known that M > cm2 for a suitable constant c > 0. The points wmj = Pji=1 vmi (j =1; 2; : : : ;M) form the vertex set of a centrally symmetric convex polygon Q of perimeterat most Mp2m < 4p2m3. Let P be the set of all points (x; y) 2 Q, whose distancefrom the boundary of Q is at most 2m and (k � 1)x and (k � 1)y are integers. Clearly,jP j < 2(k � 1)2M(2m) < c0(k � 1)2m4, for some c0 > 0. On the other hand, for everyi (1 � i �M), the intersection of the supporting line of vmi with the line at in�nity is easilyseen to be a k-superradial point for P . Therefore, the number of k-superradial points is atleast M > cm2 > c00k � 1qjP j;for an appropriate constant c00 > 0, as asserted.4.2 Lower bounds for quasiradial points. It can be shown by a similar constructionthat, for every �xed k and for every su�ciently large n, there exists a set P of n pointsin the plane with at most o(n) points lying on any line, such that the number of (1=2; k)-quasiradial points for P is at least 
(n=k2). To see this, take all integer lattice points in adisk of radius pn=�, and notice that the intersection of the line at in�nity with every liney = (p=q)x with jpj; jqj < pn=(10k) is a (1=2; k)-quasiradial point.
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