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Abstract

A radial point for a finite set P in the plane is a point ¢ € P with the property that
each line connecting ¢ to a point of P passes through at least one other element of P.
We prove a conjecture of Pinchasi, by showing that the number of radial points for a
non-collinear n-element set P is O(n). We also present several extensions of this result,
generalizing theorems of Beck, Szemerédi and Trotter, and Elekes on the structure of
incidences between points and lines.

1 Introduction

Let P be a set of n points in the plane, not all lying on the same line. A point ¢ ¢ P is
called a radial point (for P) if for every line ¢ passing through ¢ we have [N P| # 1. In
other words, every line connecting ¢ to some point p € P passes through at least one other
element of P.

For instance, let P be the vertex set of a regular 2k-gon in the plane. Then, the
intersection of the line at infinity with each line supporting an edge of P is a radial point
for P. The center of the regular 2k-gon is another radial point. We thus have a 2k-element
set which has k£ + 1 radial points.

Rom Pinchasi [6] conjectured that any non-collinear set of n points in the plane has
at most O(n) radial points. He verified this conjecture in the special case when no three
points of the set are collinear, and he also established the weaker upper bound O(n3/ 2) for
the general case. The main result of our paper is a proof of Pinchasi’s conjecture:

Theorem 1. The mazimum possible number of radial points for a non-collinear set of n
points in the plane is O(n).

The construction of Pinchasi depicted in Figure 1 shows that the constant of proportion-
ality in Theorem 1 is at least 5/3 (although it is still possible that the constant is smaller
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if n > 6 is sufficiently large). Nevertheless, Pinchasi has shown that the number of radial
points of a non-collinear set P of n points in the plane that lie in a halfplane disjoint from
P is at most 0.9n. The constant yielded by our proof is much larger, though.

'
]
. LAERN ‘b/ [ .
. ~
.
. . — \'/I S .
. -
- '
& @ : @
I- . b
LS "~/ ' . "
s\ -
. . e ~ -~ ' - "
. '.- -
.

Figure 1: Pinchasi’s set of six points with ten radial points

The notion of radiality can be extended, as follows. For any ¢ € (0,1), we say that
q & P is an e-radial point for P, if the number of distinct lines connecting ¢ to the points
of P is at most (1 — ¢)n.

Note that, according to this definition, any radial point is (1/2)-radial. If at least en+1
points of P lie on a common line, then every point of this line (which does not belong to P)
is e-radial. Therefore, in this case the number of e-radial points for P is infinite. However,
by a slight modification of the proof of Theorem 1, we can obtain the following positive
result.

Theorem 2. For any 0 < 0 < e < 1, there exists a constant C = C(0,¢) with the following
property.

Let P be any set of n points in the plane. Then the number of e-radial points that do
not belong to any line passing through at least dn elements of P is at most Cn.

Corollary 3. For any 0 < § < e < 1, there exists a constant C' = C(6,¢) with the following
property. Let P be any set of n points in the plane, no on of which are collinear. Then the
number of e-radial points for P is at most Cn.



The following result of G. Elekes [3] (see also [4]) is another immediate consequence of
Theorem 2.

Corollary 4. For every ¢ <1 there is a constant C = C(e) such that every n-element set
P on a line has at most Cn subsets similar to a given |en|-element set Q.

Proof: Assume without loss of generality that P and @ lie on two parallel lines in the
plane. For any similar copy Q' C P of @, the lines connecting the corresponding points of
Q and @' are concurrent. Their common point is some €/2-radial point for P U @, which
does not belong to any line containing more than two elements of this set. Hence, Theorem
2 can be applied to bound the number of such points (and sets Q). O

Note that Theorem 2 yields stronger results. For example, it shows that P has at most
C'n subsets, each similar to some subset of at least |en/2] elements of @, for another
constant C' = C'(e).

The proof of Theorem 1 is presented in Section 2. In Section 3, we establish a general-
ization of Theorem 2. The main result of that section, Theorem 3.1, is a strengthening of
the following theorem of J. Beck [1] and E. Szemerédi and W.T. Trotter [9] (also known as
the “weak Dirac-Motzkin conjecture”).

Corollary 5. There is a constant ¢ > 0 with the property that any non-collinear set P of
points in the plane has an element q such that the number of distinct lines connecting q to
all other points of P is at least c|P)|.

According to the “strong Dirac-Motzkin conjecture,” this statement should be true with
¢ = 1/2. Corollary 5 has several interesting applications in combinatorial geometry (see e.g.
[7], for the most recent one).

2 Proof of Theorem 1

Clearly, we only need to prove the upper bound. The idea of the proof is the following. Let
q be a radial point for P, and let j denote the average number of points of P that lie on the
lines connecting ¢ to the points of P. If each of these lines contained exactly j points then
the number of lines would be about n/j. In general, some relaxation of this relationship is
needed: We show that any radial point ¢ has an ‘index’ j such that the number of lines that
connect ¢ to at least j points of P is at least n/(65log? j). We then show (in Lemma, 2.4)
that the number of radial points that have a small index (up to ¢y/n for some constant c) is
linear, and finally derive a linear bound on the number of radial points with a large index.

The following well known results of Szemerédi and Trotter [9, 10] are crucial to the
proof.

Lemma 2.1 (i) The number of incidences between | distinct lines and n distinct points in
the plane cannot exceed 3n2/312/3 + n +1.

(ii) For any j < n, the number of lines containing at least j elements of a given set of
n points in the plane cannot exceed 40 - max{n?/43, n/j}. O



Part (i) is asymptotically tight in the worst case, apart from the values of the constants,
and it implies part (ii). The best known constants for (i) are given in [5]. A simple proof
of (i) was found by Székely [8]; see also [2].

In the sequel, let P be a fixed set of n points in the plane, not all on a line, and let R
be the set of radial points for P.

Let £ be the set of all lines that pass through at least two points of P. Denote by L;
(resp. L<j, L>;) the set of those elements of £ which contain precisely j (resp. at most j, at
least j) elements of P. Throughout this paper, we write log j for In j, the natural logarithm
of j.

Lemma 2.2 For every radial point ¢ € R, there is an integer 2 < j < n — 2 such that the
number of lines in L>; passing through q is at least fﬁ]

Proof: Suppose to the contrary that for some ¢ € R no such j exists. Let [; denote the
number of lines in £; passing through g. We have

lo+lg+---+1, 2 < 321”@’
34+ 4+l 2 < ?){))ITLW,
ln—o < n

3(n—2)log®(n—2)"

Summing up all these inequalities, the first one with coefficient two, and noting that 2[5 +
3l3+ -+ (n—2)l,—2 = n, we obtain

1 (|
<n-|——+Y ——— | <0.3n,
e <3log22 ;,)leong) "

the desired contradiction. O

Definition 2.3 The index of a point ¢ € R is the smallest integer j = j(q) such that
2 < j <n—2 and the number of lines in L>; passing through q is at least fﬁ]

Clearly, Lemma 2.2 implies that every radial point has an index. (The constant 6 has
been chosen for technical reasons that will become clear later.)

Lemma 2.4 For every ¢ > 0, there exists ¢ > 0 such that the number of radial points
whose indez is at most c\/n does not exceed 'n.

Proof: Note first that Lemma 2.1(ii) implies that for j < \/n, the size of L, is at most
40n? /33, whereas for j > \/n, the size of L is at most 40n/j. We will assume that ¢ > 1;
in the other case the proof gets only simpler.

For j =2,...,|ey/n], let R; denote the set of radial points of index j, and put r; = |R;|.
Let I; denote the number of incidences between the points in ; and the lines in £>;. Since

each ¢ € R; is incident to at least 5 lgng lines of L>;, we have

TN
Ii>—J°
7= 6jlog? j
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Applying Lemma 2.1(i) to R; and L>;, we obtain that
I; < 37"]2-/3|£2j|2/3 +7r; + |[,2j|.
Comparing the last two inequalities, we have

| ) 2/3 2
%§3r2-/3-402/3 max %, u +7j + 40 - max %’ e
67 log“ 5 J 7 7

Therefore,

2/3
. 40n2 40n\ 2/3 120n2 12
_mn < max{327"]2-/3 < On ) ) 327’72-/3 <m> y 375, ﬂ, _On )

65 log? j Ik ] 73 ]

which yields that, for j < \/n,

log® j log? j log? j
< max{63.36.402” 08" 7997108 J} < 1007108"],
J J

J
and, for j > /n,

1 6 -
rj < max {63 36402298 1 79 log2j} < 72010g? j,
n

provided that n is at least some sufficiently large constant ng. Summing up these inequal-
ities, we obtain that the number of radial points with index at most c¢y/n satisfies (for
n > ng)

lev/n] Lv/n] nlog? j lev/n]
Z rj < Z 109,72 + Z 7201log? j < ¢'n,
J=2 J=2 j=lvn|+1

for an appropriate constant ¢’. (For n < ng, this will trivially hold, if we choose ¢’ sufficiently
large.) O

Note that the dependence of ¢’ on ¢ is rather weak. In fact, if n is at least some constant
no(c) that depends on ¢, we can choose ¢’ to be an absolute constant independent of c.

Let R* denote the set of all radial points with index greater than ¢\/n, where ¢ > 1 is
a constant to be specified later, and let £L* = L. 5. Then R* = R{ U R3, where R} (resp.
R3) denotes the set of those elements of R* that lie on exactly one line (resp. at least two
lines) belonging to L£*.

The number of incidences between the original point set P and £* is at least ¢\/n|L*|.
On the other hand, by Lemma 2.1(i), the same quantity can be bounded from above by
3n23|L*?/3 4 n + |L*]. Thus, |£*| < /n, provided that c is sufficiently large (¢ > 5 will
do). This immediately implies that

|R5| < <|£2 |> <n/2.

It remains to show that the size of R} is O(n).



Lemma 2.5 For every point ¢ € R}, the (unique) line in L* passing through q contains
more than [n/2] elements of P.

Proof: Assume, in order to obtain a contradiction, that some g € R} violates this condition.
Then each line through ¢, different from the unique element £* of £* that passes through g¢,
contains at most ¢y/n points of P. (At this point we use the fact that the constant in the
denominator of the quantity that appears in Definition 2.3 is 6.) Apply Lemma 2.2 to ¢ and
to the set P’ = P\ £*, to conclude that there exists an integer 2 < j < |P’| — 2 such that ¢
is incident to at least |P'|/(3; log? 7) lines, each containing at least j points of P, and thus
at least j points of P. Clearly, we have j < ¢y/n. Since |P'| > n/2, it follows, according to
Definition 2.3, that the index of ¢ (with respect to P) is at most j < ¢y/n. That is, ¢ € R*,
a contradiction. O

Now we are in a position to complete the proof of Theorem 1. Since there are no two
distinct lines passing through more than [n/2] points of P, it follows from Lemma 2.5 that
all points of R} are collinear. Let ¢ be the line containing R7.

Let P’ denote the set of points of P that do not lie on £. For each radial point ¢ € R},
let f(q) denote the number of pairs {p’,p”"} C P’, for which ¢,p’, and p” are collinear.

Obviously,
S 1) < ('Z '>.

qeERY

On the other hand, f(q) > |P'|/2 holds for every ¢ € Rj. This immediately implies that
|Ri| < [P'|—1<n/2,

completing the proof of Theorem 1.

3 e-Radial and Quasiradial Points

If a point ¢ € P is e-radial, then the total number of points on those lines which pass
through ¢ and contain more than one element of P is at least en. This suggests the
following definition.

Let P be a set of n points in the plane, and let ¢ be another point which may or may
not belong to P. For any positive real ¢ < 1 and for any integer k > 2, we say that ¢ is an
(¢, k)-quasiradial point for P, if the number of points p € P\ {¢} sitting on lines that pass
through ¢ and at least k elements of P\ {q} is at least en.

Theorem 3.1 For any 0 < § < ¢ < 1 and for any integer k > 2, there exists a constant
C = C(6,¢, k) with the following property.

Let P be any set of n points in the plane. Remove from the plane all lines that pass
through at least on elements of P. Then the total number of (e, k)-quasiradial points lying
in the remaining regions is at most Cn, provided that n is large enough. Moreover, as n
tends to infinity,

C(6,e,k) = O (W) .



The proof of this theorem is similar to that of Theorem 1.

Let P be a fixed set of n points, and let () denote the set of all (¢, k)-quasiradial points
for P. Then Q = Qo U Q1, where Qp = Q \ P and Q1 = Q N P. Instead of Lemma 2.2, we
now have

Lemma 3.2 For every point q € Qq, there is an integer j > k, and, for every point q € @1,

there is an integer j > k + 1 such that the number of lines in L>; passing through q is at

least [?j—ll?é% ]

Proof: Suppose to the contrary that for some ¢ € () no such j exists. Let [; denote the

number of lines in £; passing through ¢, for 1 < j <n. We have
clogk

o1+l + ool < 3(k+1)logZ(k+1)

. __ clogh |
izttt < gpmnegey ™

n,

clogh |
In < 3-nlogZn n,

and, if ¢ € Qg, then also

elogk

by gy 4 A Iy < g -
k k+1 n 3]€10g2]€ n

If ¢ € Qp, then summing up these inequalities (the last one with coefficient k), and com-
paring it with the relation kil 4+ (k + 1)lgy1 + - -+ > en, we obtain

n

1
<elogh- | ——5 +
e (3log2k 2

-n < 0.8en,
j=k+1

3;jlog” j
the desired contradiction. If ¢ € @1, then kly1 + (K + 1)lk42 +--- > en. Hence, arguing as
above, now we have
k_ n
+ N
3(k + 1) log?(k + 1) j_Zk:H 3jlog?j

6n<6logk-< )-n<0.86n,

again a contradiction. O

Definition 3.3 The index of a point ¢ € Qo (resp. q € Q1) is the smallest integer j =
j(q) > k (resp. j = j(q) > k+1) such that the number of lines in L>; passing through q is
at least ((?5)# nl.
j log” j
Lemma 3.2 implies that every point ¢ € @ has a (unique) index.

Lemma 3.4 Let ¢ > 1 be fized. There exists an absolute constant d > 0 (independent of
¢,0,¢, and k) such that the number of points ¢ € Q whose index is at most c\/n does not
exceed (6—5)%%’ provided that n > no(c,d,¢,k) is sufficiently large.
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Proof: For j > k, let R; C (Q now denote the set of (e, k)-quasiradial points of index j,

and put r; = |R;|. Let I; denote the number of incidences between the points in R; and
(e=9) logk

the lines in £>;. Since each ¢ € R; is incident to at least 3iT0g”

-n lines of L>;, we have
S ri(e — 5)210gk .
37 log” g
and, by Lemma 2.1(i),
I; < 305 L% + vy + | L541.

Comparing the last two inequalities, as in the proof of Lemma 2.4, an easy computation
shows that

L%m P (117 B Lg 720log? j dn
> . > )
et i §2(e — 6)3log® k- A (e —0)logk — (e —d)3klogk

for an appropriate absolute constant d, provided that n is sufficiently large. O

It is interesting to note that we have not excluded in the proof of the lemma points
that lie on ‘heavy’ lines, as prescribed in the statement of Theorem 3.1. In particular, the
number of quasiradial points with a ‘small’ index is finite.

Let Q* denote the set of all elements of () which do not belong to any line containing
at least dn points of P and whose index is greater than c¢y/n, where we set

¢ = max{20, (¢ — 6)*/2,/(5k/d) log k},

with d being the same constant as in the previous lemma. Let £* = L. 5. Then Q" =
Q7 U Q3, where Q7 (resp. QQ5) denotes the set of those elements of @* which lie on exactly
one line (resp. at least two lines) belonging to L£*.

The number of incidences between the original point set P and L£* is at least c¢\/n|L*|.
On the other hand, by Lemma 2.1(i), the same quantity can be bounded from above by
3n23|L*?/3 + n 4 |L*|. Thus, |£*| < /n/c. This immediately implies that

L7 dn
< —
|Q2| ( < (5—6)3k10gk’
if n is sufficiently large.

To complete the proof of Theorem 3.1, it is sufficient to establish the following.
Lemma 3.5 Q7 is empty.

Proof: Suppose, to the contrary, that Q] has a point gq. Let ¢* denote the unique line in
L* that passes through ¢, and let P’ denote the set of points of P that lie outside ¢£*. By
assumption, £* contains at most dn points of P, so the size of P’ is at least (1—d)n. Clearly,

q is an ((ﬂ;‘f')", k)—quasiradial point for P'. Applying Lemma 3.2 to P’ and to ¢, we obtain




that there is a j > k such that the number of lines in £ ; passing through ¢ (and excluding
7*) is at least
e—9)logk
o
37 log” 5
Hence, by Definition 3.3, the index of ¢ is at most j. Since ¢ € @7, every line through g,
except for £*, contains at most ¢y/n points of P. Thus, j and therefore the index of ¢ cannot
exceed c¢y/n, contradicting our assumption that the index of all points in Q* is larger than

cy/n. O

4 Concluding Remarks

4.1 Superradial points. Let P be a set of n points in the plane, not all on a line. We
call a point ¢ & P k-superradial for P, if every line that passes through ¢ and at least one
point of P contains at least k elements of P. In this terminology, a radial point for P can
also be called 2-superradial. Using the definition in the last section, a point is k-superradial
if and only if it is (1, k)-quasiradial.

It follows from Theorem 3.1 that the number of k-superradial points for P is at most
cpn, with a coefficient ¢i that goes to zero as k increases. The following construction shows
that the the number of k-superradial points can exceed ¢},/n for some ¢, > 0.

For any positive integer m, let v{", v, ..., v} be the sequence of all vectors (p,q) with
relatively prime integer coordinates satisfying |p|, |¢| < m, listed in increasing order of their
slopes (i.e., according to the clockwise angle between the positive z-axis and (p,q)). It is
well known that M > c¢m? for a suitable constant ¢ > 0. The points wit = oM (j=
1,2,...,M) form the vertex set of a centrally symmetric convex polygon @ of perimeter
at most M+v2m < 4v2m?. Let P be the set of all points (z,y) € @Q, whose distance
from the boundary of @ is at most 2m and (k — 1)z and (k — 1)y are integers. Clearly,
|P| < 2(k — 1)2M(2m) < ' (k — 1)?>m?, for some ¢ > 0. On the other hand, for every
i (1 <1< M), the intersection of the supporting line of v} with the line at infinity is easily
seen to be a k-superradial point for P. Therefore, the number of k-superradial points is at

least
1

M > cem? > |P|,

c
k—1

for an appropriate constant ¢’ > 0, as asserted.

4.2 Lower bounds for quasiradial points. It can be shown by a similar construction
that, for every fixed k and for every sufficiently large n, there exists a set P of n points
in the plane with at most o(n) points lying on any line, such that the number of (1/2,k)-
quasiradial points for P is at least ©(n/k?). To see this, take all integer lattice points in a
disk of radius /n/m, and notice that the intersection of the line at infinity with every line
y = (p/q)x with |p|, |q| < /n/(10k) is a (1/2, k)-quasiradial point.
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