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Abstract

This chapter reviews randomization algorithms developed in the last few years to

solve a wide range of geometric optimization problems. We review a number of gen-

eral techniques, including randomized binary search, randomized linear-programming

algorithms, and random sampling. Next, we describe several applications of these tech-

niques, including facility location, proximity problems, nearest neighbor searching, sta-

tistical estimators, and Euclidean TSP.
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Introduction 1

1 Introduction

Combinatorial optimization typically deals with problems of maximizing or minimizing

a function of one or more variables subject to a large number of inequality constraints.

Many problems can be formulated as combinatorial optimization problems, which has made

this a very active area of research during the past half century. In several applications,

the underlying optimization problem involves a constant number of variables and a large

number of constraints that are induced by a given collection of geometric objects; we refer

to such problems as geometric optimization problems. In such cases one expects that

faster and simpler algorithms can be developed by exploiting the geometric nature of the

problem. Much work has been done on geometric optimization problems during the last

twenty years. Many new elegant and sophisticated techniques have been developed and

successfully applied to a wide range of geometric optimization problems.

Since the seminal paper by Rabin [163], which initiated the study of randomization in

developing fast algorithms, randomization has permeated in several areas, including algo-

rithmic number theory, machine learning, distributed computing, and complexity theory.

Even though one of the problems studied in Rabin's paper was the closest-pair problem,

a central problem in computational geometry. randomization did not become popular in

computational geometry until the late 1980s. In the mid 1980s Clarkson was developing his

random-sampling technique, which he extended to a surprisingly general framework in his

1988 paper [46, 54]. Around the same time Haussler and Welzl [100] introduced the idea of

"-nets and VC-dimensions. These two techniques brought randomization to the forefront

of computational geometry and revolutionized the �eld. Numerous randomized divide-

and-conquer and incremental algorithms, dynamic data structures, and analysis techniques

(e.g., backward analysis, Mulmuley's probabilistic games) have been developed in the last

decade. Detailed accounts of these developments can be found in the books by Motwani

and Raghavan [156] and Mulmuley [157] and in the survey papers [51, 139, 158, 175].

In this chapter we focus on the impact of randomization in geometric optimization. We

review a number of randomized techniques that have been successfully applied to geometric

optimization problems and review some of their applications. Like other areas, randomiza-

tion has lead to simpler and improved algorithms for a wide range of geometric optimization

problems.

We begin by discussing randomized binary search. Several randomized techniques have

been developed for searching over the solution space, each step of which discards a fraction

of the candidate values with probability at least 1=2. This simple technique leads to fast and

simple algorithms for many geometric optimization problems. Next, we review randomized

algorithms for linear programming. Seidel [174], Dyer and Frieze [71], and Clarkson [50]

proposed randomized algorithms for linear programming whose expected time is linear in

any �xed dimension, which are much simpler than their earlier deterministic counterparts.

The dependence on the dimension of the running time of these algorithms is better (though
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Randomized Binary Search 2

still exponential). Actually, some of these technique are rather general, and are also ap-

plicable to a variety of other geometric optimization problems. We discuss some of these

techniques in Section 3. Another signi�cant progress on linear programming was made

in the beginning of the 1990s, when new randomized algorithms for linear programming

were obtained independently by Kalai [116], and by Matou�sek et al. [145, 181] (these two

algorithms are essentially dual versions of the same technique). The expected number of

arithmetic operations performed by these algorithms is subexponential in the input size,

and is still linear in any �xed dimension, so they constitute an important step toward the

still open goal of obtaining strongly polynomial algorithms for linear programming.

1

This

new technique is presented in Section 4. The algorithm in [145, 181] is actually formulated

in a general abstract framework, which �ts not only linear programming but many other

problems. Such LP-type problems are also reviewed in Section 4.

We also describe a randomized algorithm for set cover, based on the linear-programming

algorithm by Clarkson [50]. Since many geometric optimization problems can be formulated

as set-cover of hitting-set problems, many of these problems have bene�ted from this simple

algorithm.

Next, we survey various geometric applications of these techniques and discuss a few

additional problem-speci�c techniques. These applications include problems involving facil-

ity location (e.g., �nding p congruent disks of smallest possible radius whose union covers a

given planar point set), geometric proximity (e.g., nearest-neighbor searching and comput-

ing the diameter of a point set), statistical estimators and metrology (e.g., computing the

smallest-width annulus that contains a given planar point set), and placement and inter-

section of polygons and polyhedra (e.g., �nding the largest similar copy of a convex polygon

that �ts inside a given polygonal environment).

Although the common theme of most of the applications reviewed here is that they can

be solved e�ciently using the general techniques described in the beginning, many of them

require a problem-speci�c, and often fairly sophisticated, approach. For example, the heart

of a typical randomized binary search is the design of an e�cient algorithm for solving the

appropriate problem-speci�c \decision procedure" (see below for details). We will discuss

details of these solutions for some of the problems, but will omit them for most of the

applications because of lack of space.

2 Randomized Binary Search

In this section we describe various techniques for performing a randomized binary search.

A geometric optimization problem P = (�;W) can be described as follows. � is a family

1

Recall that the polynomial-time algorithms by Khachiyan [121] and by Karmarkar [118] are not strongly

polynomial, as the number of arithmetic operations performed by these algorithms depends on the size of

the coe�cients of the input constraints.
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of \geometric" objects, and W is a cost function such that, for a �nite subset S � �,

W(S) gives the cost of the optimal solution for S. For example, for the Euclidean 1-center

problem, W(S) is the radius of the smallest disk enclosing S; for the traveling sales person

(TSP) problem, W(S) is the length of the shortest tour of S. Given a subset S � �, the

problem P ask for computing the value of W(S).

A subset A � S is called a basis B(S) of S if A is the smallest subset of S for which

W(A) =W(S). The size of a basis is constant for many geometric optimization problems.

For example, for any given set S of points in the plane, there is a subset A � S of size at

most three so that the smallest disk enclosing S is the same as that of A. Therefore in this

case, there is a basis of size at most three. For a given S, de�ne

� = fW(A) j A � S and jAj � jB(S)jg:

Let �

�

= W(S). By de�nition, �

�

2 �. We can, of course, compute the entire set �

explicitly and choose �

�

. However, � is typically too large to be computed explicitly. We

therefore want to search over � implicitly. We can associate a decision problem D

P

with

the optimization problem P, which, given a value �, asks whether � < �

�

, � = �

�

, or

� > �

�

. Suppose we have an algorithm A for the decision problem that runs in time T (n).

The randomized binary search techniques use A to compute �

�

in time O(T (n) log

c

n). In

some applications even the decision algorithm A is randomized. We now describe a few

techniques for performing an implicit binary search.

2.1 Randomized halving technique

The randomization halving technique is based on the following simple idea, which has been

used in a number of problems, including selecting an item from an ordered set [156]. Suppose

we know that �

?

lies in an interval I = [�; �]. Suppose further that we can randomly choose

an element �

0

2 I \�, where each item is chosen with probability 1=jI \�j. Then it follows

that, by comparing �

?

with a few randomly chosen elements of I \� (i.e., by executing the

decision algorithm at these values), we can shrink I to an interval I

0

that is guaranteed to

contain �

?

and that is expected to contain signi�cantly fewer critical values. The di�cult

part is, of course, choosing a random element from I \ �. In many cases, a procedure for

computing jI \ �j can be converted into a procedure for generating a random element of

I \ �.

We illustrate this technique by applying it to the so-called slope-selection problem. Given

a set S of n points in the plane and an integer k �

�

n

2

�

, determine a line `

k

connecting two

input points that has the kth smallest slope among all such segments. For k =

��

n

2

�

=2

�

,

`

k

is called the Theil-Sen estimator of S. Using the duality transform [73], which maps

a point p = (a; b) to the line p

�

: y = �ax + b and a line ` : y = �x + � to the point

`

�

= (�; �) (see Figure 1), we can formulate this problem as follows: We are given a set

L of n nonvertical lines in the plane and an integer 1 � k �

�

n

2

�

, and we wish to �nd
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Figure 1: The duality transform in two dimensions.

an intersection point between two lines of L that has the kth smallest x-coordinate. (We

assume, for simplicity, general position of the lines, so that no three lines are concurrent,

and no two intersection points have the same x-coordinate.) We are thus seeking the kth

leftmost vertex of the arrangement A(L) of the lines in L;

2

see [11, 73, 179] for more details

concerning arrangements. A complicated O(n log n) deterministic algorithm was developed

by Cole et al. [55]; a simpler O(n log n)-time deterministic algorithm, based on so-called

cuttings, was later proposed by Br�onnimann and Chazelle [34]. Here we present optimal

randomized algorithms.

In this case � is the set of x-coordinates of the vertices of A(L). We describe the decision

algorithm and show how it can be used to select a random element of �\I, for a given interval

I. Given a vertical strip W = (�; �) � R, let L

�

= (`

1

; `

2

; : : : ; `

n

) denote the sequence of

lines in L sorted by their intercepts with x = �, and let L

�

= (`

�(1)

; `

�(2)

; : : : ; `

�(n)

) denote

the sequence of these lines sorted by their intercepts with x = �. An easy observation is

that two lines `

i

, `

j

, with i < j, intersect insideW if and only if �(i) > �(j). In other words,

jI \W j can be computed, in O(n logn) time, by counting the number of inversions in the

permutation �, using the merge-sort procedure as follows [123]. We compute the sequence

L

�

and then sort it by the intercepts with x = � using the merge sort. We maintain a global

counter C to count the number of inversions. Let A = (a

1

; : : : ; a

n=2

) be the sequence of the

�rst half of L

�

sorted by their intercepts along x = �, and let B = (b

1

; : : : ; b

n=2

) be the

second half of the lines in L

�

sorted by their intercepts along x = �. Suppose that we have

recursively computed A and B and that we have also counted the number of inversions (i; j)

such that both i; j lie either in A or in B. The merge step merges A and B into a sorted

sequence and counts the number of inversions of the form (b

j

; a

i

). The algorithm keeps track

of the last element of B that was added to the overall sorted sequence. For 1 � i � n=2,

suppose b

k(i)

was the last element of B inserted in the sequence before adding a

i

. Then

b

1

; : : : b

k(i)

< a

i

, so (b

j

; a

i

), 1 � j � k(i), is an inversion. We therefore increment the counter

C by k(i) after inserting a

i

. The overall running time of the algorithm is O(n log n).

2

The arrangement of L, denoted as A(L), is the planar subdivision induced by L whose vertices are the

intersection points of lines in L, edges are the portions of lines not containing any vertex of A(L), and whose

faces are the maximal connected components of R

2

n

S

L.

Geometric Optimization June 6, 2000



Randomized Binary Search 5

The above algorithm can be extended to to generate a multiset of q random vertices

of A(L) \ W in time O(n logn + q) as follows. Using the above algorithm, we compute

the number � of vertices of A(L) lying in W . We then generate a random multiset Q of q

integers in the range [1; �], and sort it in O(q) time using the bucket-sort algorithm. We

run the inversion-counting algorithm once again, but with the following additional twist.

Suppose C

i

is the value of the counter C after we inserted a

i

to the sorted sequence. If Q

contains a value j 2 [C

i�1

+ 1; C

i

], we return the intersection point of a

i

and b

j�C

i�1

. The

overall running time of the algorithm is O(n logn + q). Using this procedure, Matou�sek

[138] obtained the following simple slope-selection algorithm: Each step of the algorithm

maintains a vertical strip W (a; b) = f(x; y) j a � x � bg that is guaranteed to contain the

kth leftmost vertex; initially a = �1 and b = +1. Let m be the number of vertices of

A(L) lying inside W . We repeat the following step until the algorithm terminates.

If k � n, the kth leftmost vertex of A(L) can be computed in O(n logn) by a sweep-line

algorithm (through W ). Otherwise, set k

�

to be the number of vertices lying to the left of

the line x = a. Let j = b(k � k

�

) � n=mc, j

a

= j�b3

p

nc, and j

b

= j+ b3

p

nc. We choose n

random vertices of A(L) lying insideW (a; b). If the kth leftmost vertex lies inW (j

a

; j

b

) and

the vertical stripW (j

a

; j

b

) contains at most cm=

p

n vertices, for some appropriate constant

c > 0, we set a = j

a

, b = j

b

, and repeat this step. Otherwise, we discard the random sample

of vertices, and draw a new sample. It can be shown, using Cherno�'s bound [156], that the

expected running time of the above algorithm is O(n logn). This technique is quite general

and has been used for many other problems.

Shafer and Steiger [177] gave a slightly di�erent O(n logn) expected-time algorithm

for the slope-selection problem. They choose a random subset of u = O(n log n) vertices

of A(L). Let a

1

; a

2

; : : : ; a

u

be the x-coordinates of these vertices. Using the algorithm

by Cole et al. [55] for counting the number of inversions approximately, they determine

in O(n log n) time the vertical strip W (a

i

; a

i+1

) that contains the kth leftmost vertex of

A(L). They prove that, with high probability, W (a

i

; a

i+1

) contains only O(n) vertices of

A(L), and therefore the desired vertex can be computed in an additional O(n logn) time

by a sweep-line algorithm. Dillencourt et al. [63] proposed yet another randomized slope-

selection algorithm.

2.2 Clarkson-Shor technique

Clarkson and Shor [54] gave another randomized technique for solving a variety of geometric

optimization problems. Although they had originally proposed the algorithm for computing

the diameter of a set of points in R

3

(see Section 7.2), their approach works under the

following more general setting. Let S be a set of objects, and let � : S ! R be a function

such thatW(S) = min

p2S

�(p). For example, consider the closest-pair problem: Given a set

S of n points in R

d

, �nd the minimum distance between a pair of distinct points of S. We

set W(S) = min

p;q2S;p 6=q

d(p; q). De�ne �(p) = min

q 6=p

d(p; q). Then W(S) = min

p2S

�(p).
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We can then compute W(S) as shown in Figure 2.

function procedure OPTIMIZE (S);

choose a random point p 2 S;

hp

1

; : : : ; p

n

i: a random permutation of S.

curr =1

for i = 1 to n do

if �(p

i

) < curr

curr = �(p

i

) (?)

return curr

Figure 2: Clarkson-Shor algorithm.

Note that Step (?) is executed in the ith iteration only if �(p

i

) < �(p

j

) for all j < i.

Since we choose a random permutation of S,

Pr[�(p

i

) = min

1�j�i

�(p

j

)] =

1

i

:

Therefore, the expected number of times Step (?) is executed is O(log n). The above

algorithm is thus useful when, possibly after some preprocessing, deciding whether �(p

i

) <

curr is easier than computing �(p

i

). Suppose for a given curr, S can be preprocessed in

time P (n) so that one can determine in Q(n) time whether �(p) < curr, then the expected

running time of the above algorithm is O(P (n) log n+nQ(n)). For the 3D diameter problem,

Clarkson and Shor showed that for a given r, S can be preprocessed in O(n log n) time into

a data structure of size O(n) so that whether �(p) < curr can be determined in O(log n)

time, thereby attaining an O(n log

2

n) time algorithm. In Section 7.2, we will show that the

expected running time can be further improved to O(n logn) using another observation.

Preprocessing S for answering a query of the form \is �(p) < curr?" is expensive in

general. Agarwal and Sharir [9] combined the Clarkson-Shor technique with the random-

sampling technique to solve a class of geometric optimization problems that can be formu-

lated as computing a closest pair in some metric.

2.3 Chan's algorithm

Chan [38] extended the Clarkson-Shor technique to a more general framework. Suppose P is

decomposable in the sense that we can decompose, in timeD(n), a given input S into subsets

S

1

; : : : ; S

r

, for some integer r > 0, each of size at most �n so thatW(S) = min

1�i�r

W(S

i

).

Further suppose given a real value curr, we can determine whetherW(A) < curr in D(jAj)

time. Then we can use the Clarkson-Shor technique as follows. First compute the sub-

problems S

1

; : : : ; S

r

, and then processes these subproblems in a random order. For each

subproblem S

i

being processed, �rst determine whether W(S

i

) < curr using the decision

Geometric Optimization June 6, 2000
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algorithm. If the answer is yes, then compute W(S

i

) recursively. The expected number

of subproblems for which the optimum value is recursively computed (to reset the current

minimum) is only O(log r). Chan shows, and as we will see in the following sections, that

in many instances the expected running time of this technique is O(D(n)).

3 Linear Programming

As noted in the introduction, several randomized algorithms have been developed for linear

programming in the last decade [1, 71, 50, 174, 145]. These algorithms run in expected

linear time for any �xed dimension. In this section we describe the algorithms by Seidel

and Clarkson. In the next section we will discuss the algorithm by Matou�sek et al. [145].

We are given a set H = fh

1

; : : : ; h

n

g of n halfspaces in R

d

, called constraints, and a vector

c called the objective function. We wish to compute an x 2 R

d

so that cx is minimized over

the feasible region K =

T

n

i=1

h

i

.

function procedure SEIDEL lp(H; c) /* H : n constraints in R

d

if n � d then

return Basis (H) /* returns v(H)

else

choose a random h 2 H

x := SEIDEL lp(H n fhg)

if x 2 h

return x

else return SEIDEL lp (fh \ g j g 2 H n fhgg) (?)

Figure 3: Seidel's randomized LP algorithm.

Seidel's algorithm is sketched in Figure 3. Given a set H of d constraints in general

position, the function Basis(H) computes x 2

T

H that minimizes cx. He proved that

the probability of executing Step (?) is at most d=n. Since the recursive call in this step

is an instance (d � 1)-dimensional linear programming, the expected running time of the

algorithm is O(d

d

n).

Dyer and Freize [71] gave another randomized algorithm based on the random-sampling

technique with O(d

d

n) expected running time. Agarwal et al. [12] later extended this

approach to solve a number of other optimization problems.

In the late 1980s an open question was whether there exists an algorithm whose running

time is linear in n but the dependency on d is better than d

d

. Clarkson developed two

randomized algorithms with faster expected running time. His �rst algorithm is recursive

and is summarized in Figure 4.
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function procedure RECURSIVE lp(H; c) /* H : n constraints in R

d

if n � 9d

2

then

return SIMPLEX lp (H) /* returns v(H)

else

V = ;, r = d

p

n

choose random R 2

�

H

r

�

repeat

x := RECURSIVE lp(R [ V; c)

V

x

:= fh 2 H jx violates hg

if jV

x

j � 2

p

n then

V = V [ V

x

(?)

until V = ;

return x

Figure 4: Clarkson's recursive LP algorithm.

We call an iteration successful if Step (?) is executed. It can be shown that an iteration is

successful with probability at least 1=2 and that there are at most d+1 successful iterations.

Using these observations it can be shown that the expected running time of the algorithm is

O(d

2

n+d

d=2+log log n+O(1)

). Chan [36] showed that RECURSIVE lp algorithm can be modi�ed

to answer linear-programming queries. That is, preprocess a set H of n constraints, so that

for a query objective function c, the point x 2

T

H that minimizes cx can be computed

e�ciently. He sets r = n=b where b > 9d

2

is a su�ciently large constant. Consequently, with

probability at least 1=2, jV

x

j � logn. He preprocesses H and a family of random subsets of

H for halfspace range-reporting queries so that V

x

can be computed e�ciently. He shows

how to solve the recursive subproblem for R [ V . For a parameter n � m � n

bd=2c

, H

can be preprocessed in m log

O(1)

n time into a data structure of O(m) size so that a linear-

programming query can be answered in O((n=m

1=bd=2c

) log

2d+1

n) expected time. See the

original paper for details. The query time was slightly improved by Ramos [166]. In

particular, his algorithm can answer a query in time n

1�1=bd=2c

2

O(log

�

n)

using O(n) space.

We now describe the second algorithm by Clarkson. Let H be the set of constraints. We

assign a weight �(h) 2 Z to each constraint; initially �(h) = 1 for all h 2 H. For a subset

A � H, let �(A) =

P

h2A

�(h). The algorithm works in rounds, each of which consists of

the following steps. Set r = 6d

2

. If jHj � 6d

2

, we compute the optimal solution using the

simplex algorithm. Otherwise, choose a random sample R � H such that �(R) = r. (We

can regard H as a multiset in which each constraint h appears �(h) times, and we choose

a multiset R 2

�

H

r

�

of r constraints.) We compute the optimal solution x

R

for R and the

subset V � H nR of constraints that x

R

violates (that is, the subset of constraints that do

not contain x

R

). If V = ;, the algorithm returns x

R

. If �(V ) � 3�(H)=d, we double the

weight of each constraint in V ; in any case, we repeat the sampling procedure. See Figure 5

for a pseudocode of the algorithm.
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function procedure ITERATIVE lp (H) /* H : n constraints in R

d

if n � 6d

2

then

return SIMPLEX lp(H) /* returns v(H)

else

r := 6d

2

; �

h

:= 1 8h 2 H

repeat

choose random R 2

�

H

r

�

x

R

:= SIMPLEX lp(R)

V := fh 2 H jx

R

violates hg

if �(V ) � 3�(H)=d then

for all h 2 V do �

h

:= 2�

h

until V = ;

return x

R

Figure 5: Clarkson's iterative LP algorithm.

Let B be the set of d constraints whose boundaries are incident to the optimal solution.

A round is called successful if �(V ) � 3�(H)=d. Using the fact that R is a random subset,

one can argue that each round is successful with probability at least 1=2. Every successful

round increases �(H) by a factor of at most (1 + 1=3d), so the total weight �(H) after kd

successful rounds is at most n(1 + 1=3d)

kd

< ne

k=3

. On the other hand, each successful

iteration doubles the weight of at least one constraint in B (it is easily veri�ed that V must

contain such a constraint), which implies that after kd iterations �(H) � �(B) � 2

k

. Hence,

after kd successful rounds, 2

k

� �(H) � ne

k=3

. This implies that the above algorithm

terminates in at most 3d lnn successful rounds. Since each round takes O(d

d

) time to

compute x

R

and O(dn) time to compute V , the expected running time of the algorithm

is O((d

2

n + d

d+1

) log n). By combining this algorithm with RECURSIVE lp algorithm, i.e.,

using ITERATIVE lp inside the loop of RECURSIVE lp, the expected running time can be

improved to O(d

2

n) + d

d=2+O(1)

logn.

Clarkson showed that ITERATIVE lp can be extended to integer linear programming by

choosing an appropriate value of the sample size and using Lenstra's integer-programming

algorithm [131] for the base case. Let b denote the maximum number of bits required to

specify the coe�cients in a constraint or in the objective function. Then the algorithm

performs O(2

d

dn + 8

d

d

p

n log n log n) + d

O(d)

b log n expected number of operations, each

involving at most d

O(1)

b bit numbers. See [117] for an earlier result on integer programming

in �xed dimensions.
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4 Abstract Linear Programming

In this section we present an abstract framework that captures linear programming, as well

as many other geometric optimization problems, including computing smallest enclosing

balls (or ellipsoids) of �nite point sets in R

d

, computing largest balls (ellipsoids) inscribed

in convex polytopes in R

d

, computing the distance between polytopes in R

d

, general con-

vex programming, and many other problems. Sharir and Welzl [181] and Matou�sek et

al. [145] presented a randomized algorithm for optimization problems in this framework,

whose expected running time is linear in terms of the number of constraints whenever the

combinatorial dimension d (whose precise de�nition, in this abstract framework, will be

given below) is �xed. More importantly, the running time is subexponential in d for many

of the LP-type problems, including linear programming. This is the �rst subexponential

\combinatorial" bound for linear programming, and is a �rst step toward the major open

problem of obtaining a strongly polynomial algorithm for linear programming. The papers

by G�artner and Welzl [90] and Goldwasser [92] also survey the known results on LP-type

problems. A dual version of the algorithm was independently obtained by Kalai [116], but

only in the context of linear programming.

4.1 An abstract framework

Let us consider optimization problems speci�ed by a pair (H;w), where H is a �nite set,

and w : 2

H

! O is a function into a linearly ordered set (O;�); we assume that O has a

minimum value �1. The elements of H are called constraints, and for G � H, w(G) is

called the value of G. Intuitively, w(G) denotes the smallest value attainable by a certain

objective function while satisfying all the constraints of G. The goal is to compute a minimal

subset B

H

of H with w(B

H

) = w(H), assuming the availability of three basic operations,

which we specify below.

Such a minimization problem is called LP-type if the following two axioms are satis�ed:

Axiom 1. (Monotonicity) For any F;G with F � G � H, we have

w(F ) � w(G).

Axiom 2. (Locality) For any F � G � H with �1 < w(F ) = w(G) and any

h 2 H,

w(G) < w(G [ fhg)) w(F ) < w(F [ fhg):

Linear programming is easily shown to be an LP-type problem: Set w(G) to be the

vertex of the feasible region that minimizes the objective function and that is coordinate-

wise lexicographically smallest (this de�nition is important to satisfy Axiom 2), and extend
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the de�nition of w(G) in an appropriate manner to handle empty or unbounded feasible

regions.

A basis B � H is a set of constraints satisfying �1 < w(B), and w(B

0

) < w(B) for all

proper subsets B

0

of B. For G � H, with �1 < w(G), a basis of G is a minimal subset

B of G with w(B) = w(G). (For linear programming, a basis of G is a minimal set of

halfspace constraints in G such that the minimal vertex of their intersection is the minimal

vertex of G.) A constraint h is violated by G if w(G) < w(G [ fhg), and it is extreme in G

if w(G � fhg) < w(G). The combinatorial dimension of (H;w), denoted as dim(H;w), is

the maximum cardinality of any basis. We call an LP-type problem basis regular if for any

basis with jBj = dim(H;w) and for any constraint h, every basis of B [ fhg has exactly

dim(H;w) elements. (Clearly, linear programming is basis-regular, where the dimension of

every basis is d.)

We assume that the following primitive operations are available:

(Violation test) h is violated by B: for a constraint h and a basis B, tests

whether h is violated by B.

(Basis computation) basis(B; h): for a constraint h and a basis B, computes a

basis of B [ fhg.

(Initial basis) initial(H): An initial basis B

0

with exactly dim(H;w) elements

is available.

For linear programming, the �rst operation can be performed in O(d) time, by substituting

the coordinates of the vertex w(B) into the equation of the hyperplane de�ning h. The

second operation can be regarded as a dual version of the pivot step in the simplex algorithm,

and can be implemented in O(d

2

) time. The third operation is also easy to implement.

We are now in position to describe the algorithm. Using the initial-basis primitive, we

compute a basis B

0

and call SUBEX lp(H;B

0

), where SUBEX lp is the recursive algorithm,

given in Figure 6, for computing a basis B

H

of H.

A simple inductive argument shows the expected number of primitive operations per-

formed by the algorithm is O(2

�

n), where n = jHj and � = dim(H;w) is the combinatorial

dimension. However, using a more involved analysis, which can be found in [145], one can

show that basis-regular LP-type problems can be solved with an expected number of at most

e

2

p

� ln((n��)=

p

� )+O(

p

�+lnn)

violation tests and basis computations. This is the subexponen-

tial bound that we alluded to. A surprising feature of the LP-type problems is that some of

them are instances of nonconvex programming. We will point out a few such instances be-

low. Earlier algorithms for linear programming did not extend to nonconvex programming.

Matou�sek [140] has given examples of abstract LP-type problems of combinatorial dimen-

sion d with 2d constraints, for which the above algorithm requires 
(e

p

2d

=

4

p

d) primitive

operations.
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function procedure SUBEX lp(H;C); /* H : set of n constraints in R

d

;

if H = C then /* C � H : a basis;

return C /* returns a basis of H .

else

choose a random h 2 H n C;

B := SUBEX lp(H n fhg; C);

if h is violated by B then

return SUBEX lp(H; basis(B; h))

else

return B;

Figure 6: A randomized algorithm for LP-type problems.

4.2 Linear programming

Returning to linear programming, let H be the given set of n constraints and c the objective

function. We can assume that the objective vector is c = (1; 0; 0; : : : ; 0). For a subset

G � H, de�ne w(G) to be the lexicographically smallest point (vertex) of the intersection

of halfspaces in G. Some care is needed to handle unbounded or empty feasible regions; we

omit here details concerning this issue.

As noted above, linear programming is a basis-regular LP-type problem, with combi-

natorial dimension d, and each violation test or basis computation can be implemented in

time O(d) or O(d

2

), respectively. In summary, we obtain a randomized algorithm for lin-

ear programming, which performs e

2

p

d ln(n=

p

d )+O(

p

d+lnn)

expected number of arithmetic

operations. Using SUBEX lp instead of the simplex algorithm for solving the small-size prob-

lems in the ITERATIVE lp algorithm (given in Figure 5), the expected number of arithmetic

operations can be reduced to O(d

2

n) + e

O(

p

d log d)

.

In view of Matou�sek's lower bound on the performance of SUBEX lp, one should aim to

exploit additional properties of linear programming if one wants to obtain a better bound

on the performance of the algorithm for linear programming; this is still a major open

problem.

4.3 Extensions

Matou�sek [142] has investigated the problem of �nding the best solution, for an abstract

LP-type problem, that satis�es all but k of the given constraints. He proved that the

number of bases that violate at most k constraints in a non-degenerate instance of an LP-

type problem is O((k + 1)

�

), where � is the combinatorial dimension of the problem, and

that they can be computed in time O(n(k + 1)

�

). In some cases the running time can be

improved using appropriate data structures. For example, given a set H of n halfplanes in
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the plane and an integer k � n, the point with the smallest y-coordinate that lies in at least

n�k halfplanes can be computed in time O(n log k+k

3

log

2

n) [142, 169]. For larger values

of k, the running time is O(n log n+nk) [38]. Using the technique developed in Section 2.3,

Chan [38] showed that if the intersection of the halfspaces is nonempty, the running time

can be improved to O(n + k(n=k)

"

logn) for any " > 0. Recently G�artner and Welzl [91]

have proved tail estimates on the running times of some of the LP-type problems. Chazelle

and Matou�sek [44] gave a deterministic algorithm for solving LP-type problems in time

O(�

O(�)

n), provided an additional axiom holds together with an additional computational

assumption.

Amenta [17] considered the following extension of the abstract framework: Suppose we

are given a family of LP-type problems (H;w

�

), monotonically parameterized by a real

parameter �; the underlying ordered value setW has a maximum element +1 representing

infeasibility. The goal is to �nd the smallest � for which (H;w

�

) is feasible, i.e., w

�

(H) <

+1. See [17, 18] for more details and applications of this result.

5 Geometric Set Cover

Let � = (X;R) be a set system, where X is a set of objects and R, a family of subsets

of X, is a set of ranges. A set cover C of � is a subset of R such that X =

S

C. The

set-cover problem is to �nd a set cover of the smallest size. The hitting-set problem, which

is dual of set cover, asks for computing a subset H � X that intersects all ranges of R. In a

geometric setting, X is a set of geometric objects, e.g., points, lines, hyperplanes, spheres,

etc., and R are geometric ranges. Let H be the set of all d-dimensional halfspaces. Here are

two examples of geometric set systems: (i) (R

d

; H ), and (ii) (H; ffh 2 H j p 2 hg j p 2 R

d

g.

It is known that the set-cover problem is NP-Hard even in geometric settings. For

example, Fowler et al. [82] proved that it is NP-Hard to decide whether a given set of n

points can be covered by k unit squares. The greedy algorithm can be used for computing

an O(log n) approximation. However, one can do slightly better if the VC-dimension of the

set system � is �nite; see [100] for the de�nition of VC-dimension. Clarkson [48] modi�ed

the ITERATIVE lp algorithm for computing a convex polytope of small complexity that lies

between two nested convex polytopes, by reducing it to a geometric set-cover problem. Later

Br�onnimann and Goodrich [35] showed that Clarkson's algorithm works for any instance of

set cover. For simplicity, we describe the algorithm for computing a hitting set. It performs

a binary search on the size of the hitting set. At each stage, given an integer k, it either

returns a hitting set of size O(k log k), or it returns that there is no hitting set of size at

most k. Figure 7 summarizes the algorithm.

We call an iteration successful if �(r) � �(X)=2k (see Figure 7 for the de�nition of

�). Following the same argument as for the linear-programming algorithm, Clarkson (and

Br�onniman and Goodrich) showed that an iteration is successful with probability at least
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function procedure HITTING SET(X;R);

r := O(k log k); successful := 0;

�(x) = 1 8x 2 X

repeat

choose a random H 2

�

X

r

�

;

if H \ r 6= ; for all r 2 R then

return H

choose a r 2 R s.t. r \H = ;

if �(r) � �(X)=2k then

successful := successful + 1

for all x 2 r do �(x) = 2�(x)

until successful := 12k logn

return no

Figure 7: A randomized hitting-set algorithm.

1=2 and that if there exists a hitting set of size at most k, then the algorithm returns a

hitting set of size of O(k log k) within 12k log n successful iterations. The only nontrivial

steps in the algorithm are determining whether H intersects all ranges, choosing a range

that does not intersect H, and updating the weights of objects. If each iteration can be

performed in T (n) logn time, then the expected running time of the decision algorithm

is O(kT (n) log n). If the set system is maintained implicitly, then T (n) is proportional to

P

r2R

jrj. But R could be quite large and in many geometric settings it is de�ned explicitly.

In such cases the main di�culty is to run the above algorithm e�ciently without computing

R explicitly. Such algorithms have been proposed in some cases [6, 8], and we will mention

them below.

6 Facility-Location Problems

A typical facility-location problem is de�ned as follows: Given a set D = fd

1

; : : : ; d

n

g of

n demand points in R

d

, a parameter p, and a distance function �, we wish to �nd a set S

of p supply objects (points, lines, segments, etc.) so that a given cost function f(D;S) is

minimized. A widely studied cost function, known as k-center, is the maximum distance

between a demand point and its nearest supply object is minimized. That is, we minimize,

over all possible appropriate sets S of supply objects, the following objective function:

c(D;S) = max

1�i�n

min

s2S

�(d

i

; s):

Instead of minimizing the above quantity, one can choose other objective functions, such as

c

0

(D;S) =

n

X

i=1

min

s2S

�(d

i

; s):
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In some applications, a weight w

i

is assigned to each point d

i

2 D, and the distance from

d

i

to a point x 2 R

d

is de�ned as w

i

�(d

i

; x). The book by Drezner [67] describes many

other variants of the facility-location problem. For a parameter " > 0, a solution to the

clustering problem is called an "-approximate solution if its cost is at most (1+") times that

of an optimal solution. A useful extension of the facility-location problem, which has been

widely studied, is the capacitated facility-location problem, in which we have an additional

constraint that the size of each cluster should be at most c for some parameter c � n=p.

The set S = fs

1

; : : : ; s

p

g of supply objects partitions D into p clusters, D

1

; : : : ; D

p

, so

that s

i

is the nearest supply object to all points inD

i

. Therefore, a facility-location problem

can also be regarded as a clustering problem. These facility-location (or clustering) prob-

lems arise in many areas, including operations research, shape analysis [96, 146, 173], data

compression and vector quantization [137], information retrieval [58, 59], drug design [81],

and data mining [16, 33, 176].

If p is considered as part of the input, most facility-location problems are NP-Hard,

even in the plane or even when only an "-approximate solution is being sought (provided

that " is a su�ciently small constant) [80, 93, 126, 136, 149, 150]. Although many of these

problems can be solved in polynomial time for a �xed value of p, some of them still remain

intractable. In this section we review e�cient algorithms for a few speci�c facility-location

problems, which can be solved using randomization, especially when p is a small constant.

6.1 Euclidean p-center

Given a set D of n demand points in R

d

, we wish to �nd a set S of p supply points so that

the maximum Euclidean distance between a demand point and its nearest neighbor in S is

minimized. This problem can be solved e�ciently, when p is small, using randomized binary

search or parametric searching [147]. The decision problem in this case is to determine, for

a given radius r, whether D can be covered by the union of p balls of radius r. In some

applications, S is required to be a subset of D, in which case the problem is referred to as

the discrete p-center problem.

Euclidean 1-center. The 1-center problem is to compute the smallest ball enclosing D.

The decision procedure for the 1-center problem is thus to determine whether D can be

covered by a ball of radius r. The Euclidean 1-center problem is an LP-type problem, with

combinatorial dimension d + 1 [181, 186]. Indeed, the constraints are the given points,

and the function w maps each subset G to the radius of the smallest ball containing G.

Monotonicity of w is trivial, and locality follows easily from the uniqueness of the smallest

enclosing ball of a given set of points. The combinatorial dimension is d+1 because at most

d+1 points are needed to determine the smallest enclosing ball. This problem, however, is

not basis regular (the smallest enclosing ball may be determined by any number, between
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2 and d+1, of points), and a na��ve implementation of the basis-changing operation may be

quite costly (in d). Nevertheless, G�artner [89] showed that this operation can be performed

in this case using expected e

O(

p

d)

arithmetic operations. Hence, the expected running time

of the algorithm is O(d

2

n) + e

O(

p

d log d)

.

A natural extension of the 1-center problem is to �nd a disk of the smallest radius that

contains k of the n input points. The best known randomized algorithm runs in O(n log n+

nk) expected time using O(nk) space, or in O(n logn+ nk log k) expected time using O(n)

space [141]. The best known deterministic algorithms are somewhat slower [62, 77, 74].

Matou�sek [142] also showed that the smallest disk covering all but k points can be computed

in time

3

O(n logn+ k

3

n

"

). Chan [38] presented a randomized algorithm for computing the

discrete 1-center in R

3

whose expected running time is O(n logn).

There are several other extensions of the smallest-enclosing-ball problem. They include

(i) computing the smallest enclosing ellipsoid of a point set [44, 70, 161, 186], (ii) computing

the largest ellipsoid (or ball) inscribed inside a convex polytope in R

d

[89], (iii) computing

a smallest ball that intersects (or contains) a given set of convex objects in R

d

(see [148],

and (iv) computing a smallest area annulus containing a given planar point set. All these

problems are known to be LP-type, and thus can be solved using the algorithm described

in Section 4. However, not all of them run in subexponential expected time because they

are not all basis regular.

Euclidean 2-center. In this problem we want to cover a set D of n points in R

d

by

two balls of smallest possible common radius. There is a trivial O(n

d+1

)-time algorithm

for the 2-center problem in R

d

, because the clusters D

1

and D

2

in an optimal solution can

be separated by a hyperplane [65]. Matou�sek [138] gave an algorithm with O(n

2

log

2

n)

expected time by using the randomized halving technique described in Section 2.1. The

running time of the decision algorithm was improved by Hershberger [103] to O(n

2

), which

has been utilized in the best near-quadratic solution, by Jaromczyk and Kowaluk [113],

which runs in O(n

2

log n) time; see also [114].

A major progress on this problem was made by Sharir [178], who gave an O(n log

9

n)-

time algorithm, by combining the parametric-searching technique with several additional

techniques, including a variant of the matrix-searching algorithm of Frederickson and John-

son [85]. Eppstein [76] simpli�ed Sharir's algorithm, using randomization and better data

structures, and obtained an improved solution, whose expected running time is O(n log

2

n).

Halperin et al. [95] studied the 2-center problem amid obstacles. That is, given a set

D of n demand points in R

2

and a set O of pairwise disjoint simple polygons, called

obstacles, with a total of m vertices, compute two supply points outside O so that the

3

In this chapter, the meaning of complexity bounds that depend on an arbitrary parameter " > 0, such

as the one stated here, is that given any " > 0, we can �ne-tune the algorithm so that its complexity satis�es

the stated bound. In these bounds the constant of proportionality usually depends on ", and tends to in�nity

when " tends to zero.
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maximum distance between a point its nearest supply point is minimized. Following the

same approach as in [76, 178] but using some novel data structures, they presented an

O(mn log

2

(mn) logn) expected time randomized algorithm for this problem. They also

presented an "-approximation algorithm with O((1=") log(1=")(m + n logn) log(mn)) ex-

pected running time.

Inaba et al. [106] have studied the problem of partitioning D into two clusters so that

a function on the variance of points within each cluster is minimized. More precisely, let

x(S) denote the centroid of a point set S. Then the variance of S, denoted as Var(S), is

Var(S) =

1

jSj

X

x

i

2S

kx

i

� x(S)k

2

:

De�ne  

�

(S) = jSj

�

Var(S). Inaba et al. [106] de�ne the cost of an optimal clustering to

be c(S) = min 

�

(S

1

) +  

�

(S

2

), where the minimum is taken over all partitions S

1

; S

2

of

S. They consider � = 1; 2. For a given " > 0, they presented an O(n="

2

) expected time

randomized algorithm for partitioning D into two clusters so that the cost of the clustering

is at most (1 + ")c(S). Recently, their algorithm was derandomized by Matou�sek [143].

See [108] for some recent results on 2-clustering in higher dimensions.

Rectilinear p-center. In this problem the metric is the L

1

-distance, so the decision

problem is now to cover the given set D by a set of p axis-parallel cubes, each of length

2r. The problem is NP-Complete if p is part of the input and d � 2, or if d is part of the

input and p � 3 [82, 149]. Ko et al. [126] showed that computing a solution set S with

c(D;S) < 2r

�

, where r

�

is the size of an optimal solution, is also NP-Complete.

The rectilinear 1-center problem is trivially solved in linear time. See [66, 124, 125, 149]

for some earlier results. Sharir and Welzl [182] developed a linear-time algorithm for the

rectilinear 3-center problem, by showing that it is an LP-type problem (as is the rectilinear

2-center problem). This is an instance of nonconvex programming that is LP-type. Using

the technique described in Section 2.3, Chan [38] proposed an O(n logn) expected time

randomized algorithm for computing a rectilinear 5-center, which is optimal in the worst-

case. Chan also presented an O(n log n) expected time algorithm for computing the smallest

square that contains k of a given set of n points in the plane. See [120, 182] for additional

related results.

6.2 Euclidean p-line-center

Let D be a set of n points in R

d

and � be the Euclidean distance function. We wish to

compute the smallest real value w

�

so that D can be covered by the union of p strips of width

w

�

. Megiddo and Tamir [151] showed that the problem of determining whether w

�

= 0 (i.e,

D can be covered by p lines) is NP-Complete, which not only proves that the p-line-center
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problem is NP-Complete, but also proves that approximating w

�

within a constant factor

is NP-Complete.

Since even approximating w

�

is NP-Complete, Agarwal and Procopiuc [8] developed an

e�cient algorithm for the case in which one approximates both w

�

and p. In particular,

let w

�

p

= w

�

p

(D) denote the size of the Euclidean p-line center of S. By modifying the

hitting-set algorithm described in Section 5, they presented a randomized algorithm that

computes O(p log p) strips of width at most 6w

�

p

that contain S. The expected running time

of their algorithm is O(np

2

log

3

n log(p log n)) provided that p �

p

n. They also extended

their algorithm to higher dimensions in some cases. The main contribution of this result is

that the expected running time of the algorithm is near linear as a function of n. In most

practical applications, n is quite large and p is a small constant. One can, of course, use

HITTING SET algorithm to compute O(p log p) strips of width at most w

�

p

in polynomial time,

as the problem can be reduced to an instance of the hitting-set problem. If one maintains

the underlying set system explicitly, the expected running time of the algorithm is 
(n

3

p).

Agarwal and Procopiuc showed that by maintaining the set system implicitly, the expected

running time can be improved to roughly n

4=3

p

4=3

, but this algorithm is not practical. A

few other approximation algorithms for this problem are given in [98].

6.3 Euclidean p-median

Let D be a set of n points in R

d

. We wish to compute a set S of p supply points so that the

sum of distances from each demand point to its nearest supply point is minimized (i.e., we

want to minimize the objective function c

0

(D;S)). This problem can be solved in polynomial

time for d = 1 (for d = 1 and p = 1 the solution is the median of the given points, whence the

problem derives its name), and it is NP-Hard for d � 2 [150]. The special case of d = 2; p = 1

is the classical Fermant-Weber problem, and it goes back to the seventeenth century. It is

known that the solution for the Fermant-Weber problem is unique and algebraic provided

that all points of D are not collinear. Several numerical approaches have been proposed

to compute an approximate solution. See [40, 187] for the history of the problem and for

the known algorithms, and [159] for some heuristics for the p-median problem that work

well for a set of random points. Recently, Arora et al. [23] described an "-approximation

algorithm for the p-median problem in the plane whose running time is n

O(1=")

. For d > 2,

the running time of their algorithm is n

O((log n=")

d�1

)

. Their algorithm is an extension of

Arora's approximation algorithm for TSP, which we will describe in Section 10 below. The

bound was later improved by Kolliopoulos and Rao [128], who proposed a Monte Carlo

"-approximation algorithm that runs in time O(2

1="

d

n logn log p) with probability at least

1=2.

There has also been much work on the p-median problem in arbitrary metric spaces. Lin

and Vitter [133] (see also [134]) proposed a randomized algorithm, based on a randomized-

rounding scheme, that, for any parameter " > 0, computes (1 + 1=")p clusters with a
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total cost of 2(1 + ") times that of an optimal solution. If we want to return exactly p

clusters, Bartal [29] gave an O(log n log logn)-approximation algorithm for the p-median

problem, which was later improved by Charikar et al. [41] to O(log p log log p) using a

randomized embedding technique. The best known approximation algorithm is by Charikar

and Guha [42] that computes a 0:853-approximate solution in time. See also [43].

7 Proximity Problems

7.1 Nearest-neighbor searching

The nearest-neighbor query (NN query) problem, also known as the post-o�ce problem [123],

is de�ned as follows: Preprocess a set S of points in R

d

into a data structure so that a point

in S closest to a query point � can be reported quickly. This is one of the most widely

studied problems not only in computational geometry but in several areas of computer sci-

ence, including pattern recognition [57, 68], data compression [24, 164], information retrieval

[79, 171], CAD [152], molecular biology [183], image analysis [127, 129], data mining [78, 99],

machine learning [56], and geographic information systems [170, 184]. Most applications

use so-called feature vectors to map a complex object to a point in high dimensions. Ex-

amples of feature vectors include color histograms, shape descriptors, Fourier vectors, and

text descriptors.

For simplicity, we assume that the distance between points is measured in the Euclidean

metric, though a more complicated metric can be used depending on the application. Dobkin

and Lipton [64] described a locus based method that partitions the space into connected re-

gions such that all points in a region have the same nearest neighbor among the n points.

So the problem reduces to point-location for which the method required n

2

O(d)

space and

O(2

d

log n) query time. For d = 2, one can construct the Voronoi diagram of S and prepro-

cess it for point-location queries in O(n logn) time using O(n) space so that an NN query

can be answered in O(log n) time [162]. For higher dimensions, Clarkson [47], presented

a data structure of size O(n

dd=2e+"

), for any constant " > 0, that can answer a query in

2

O(d)

log n time. The data structure can be constructed in O(n

dd=2e+"

) expected time. This

paper was one of the earliest applications of random sampling in computational geometry.

The query time can be improved to O(d

5

logn), using a technique of Meiser [153]. Note

that the query time of the above approach is exponential in d, so it is impractical even for

moderate values of d (say d � 10). This exponential dependence on dimension is called the

curse of dimension. Several heuristics have been developed, especially in higher dimensions,

which use practical data structures such as kd-trees, R-trees, R

�

-trees, and Hilbert R-trees;

see e.g. [87, 104, 129, 127, 78, 99, 170, 184]. Even these algorithms su�er from the curse of

dimensionality.

This has lead to the development of algorithms for �nding approximate nearest neighbors
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[25, 26, 27, 49, 122, 129] or for special cases, such as when the distribution of query points

is known in advance [52, 188]. For a given parameter " > 0 and a query point �, an "-

approximate nearest-neighbor query ("-NN query) asks for returning a point p 2 S so that

d(p; �) � (1 + ")d(p

0

; �) for all p

0

2 S. This relaxation is quite meaningful in the context

of the applications mentioned above. Arya et al. [27] showed that an "-NN query can be

answered in O((1="

d

) log n) time using O(n) space. Note that the size of their data structure

is independent of ", and that " can be speci�ed as a part of the query. Although the query

bound was later improved by Clarkson [49] and Chan [37] to O((1=")

(d�1)=2

logn), " is �xed

for all queries in both the data structures and the size of their data structures depends on ".

Moreover, the data structure by Arya et al. [27] is practical and works well for dimensions

up to 20 ��30.

Many approximation techniques based on distance preserving random projections of

points onto lower dimensional subspaces have been proposed, which result in randomized al-

gorithms with query time polynomial in d and log n [112, 111, 122, 130]. Many of these tech-

niques rely on the following classical result by Johnson and Lindenstrauss [115], which was

subsequently improved and simpli�ed in [61, 83, 84]: Any set of n points in d-dimensional

Euclidean space E

d

can be embedded in O((1="

2

) log n) dimensions with at most " relative

error in the pairwise distances of S. Simpler proofs using elementary probabilistic tech-

niques have been proposed [61, 111], which immediately give randomized polynomial-time

algorithms for computing such an embedding.

Although distance preserving hashing had been used earlier for points in R

1

[135] and

for searching in higher dimensions [112], Kleinberg [122] was perhaps the �rst to exploit

random projections in the context "-NN searching. His algorithm relies on the following

observation:

Lemma 7.1 ([122]) Let x; y 2 R

d

be two vectors such that (1 + )kxk � kyk for some

 � 1=2. Then for a random unit vector v chosen uniformly over S

d�1

,

Pr[jv � xj � jv � yj] �

1

2

�



3

:

This lemma implies that if the ratio of the lengths of two vectors is at least (1+), then their

random projections can be distinguished in a probabilistic sense. Based on this observation,

an "-NN query can be answered as follows. Choose a su�ciently large set of random unit

vectors V = fv

1

; v

2

; : : : v

L

g � S

d�1

and project the points in S on each of these vectors. For

a point a 2 R

d

, let a

(i)

denote the projection of a on v

i

. For a point q 2 R

d

, we say that

a point a dominates b with respect to v

i

if jq

(i)

� a

(i)

j � jq

(i)

� b

(i)

j, and that a �

q

b if a

dominates b with respect to at least L=2 vectors in V . To answer an "-NN query for a point

q, we compute the point p in S that is minimal in the �

q

-ordering. Kleinberg showed that

S can be stored into a data structure of size O((n="

2

)

2d

log

2d

n) so that for a query point

q, the minimal point in the �

q

-ordering can be computed in time (d

2

="

2

) log

O(1)

n. He also
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proposed another data structure of size (nd="

2

) log

O(1)

n that answers an "-NN query in

time O((d="

2

) log d log n log(d log n)). These algorithms can report k "-approximate nearest

neighbors in additional O(k) time.

Kleinberg's result was subsequently improved by Kushilevitz et al. [130]. Using a clus-

tering argument, they showed that "-NN searching in E

d

can be reduced to "

0

-NN searching

on d-dimensional hypercube Q

d

= f0; 1g

d

, for some "

0

= "=O(1), under the Hamming

metric. (A similar reduction was used by Indyk and Motwani [111].) More precisely,

Kushilevitz et al. [130] showed that an "-NN data structure in Q

d

using S(n; d; ") storage

and Q(n; d; ") query time leads to an "-NN structure in E

d

using O(n

2

)S(n;�; "

0

) storage

and ((d log n)=")

O(1)

+ log nQ(n;�; "

0

)) query time, where � = O((d="

8

) log

2

(d=")) and

"

0

= "=O(1). Their data structure for answering an "-NN query in Q

d

is based on the

following observation. Let H(�; �) denote Hamming distance.

Lemma 7.2 ([130]) Let x; y be two points in Q

d

, let  > 0 be a constant, let 0 � ` � d be

an integer, and let q be a point with H(q; x) � ` and H(q; y) > (1+)`. Suppose we choose

a random vector r = (r

1

; : : : ; r

d

) 2 Q

d

where Pr[r

i

= 1] = 1=2`, for each 1 � i � d. For

two vectors u; v 2 Q

d

, let

�

r

(v) =

X

r

i

� v

i

(mod 2) and �(u; v) = Pr[�

r

(u) 6= �

r

(v)]:

Then there are constants �; �

1

> 0 depending only on  such that �(q; x) � �

1

and �(q; y) >

� + �

1

.

For a query point q 2 Q

d

, we can now decide whether there exists a point S within

distance ` from q, as follows. Choose a set R = fr

1

; : : : ; r

t

g of t = O((1="

2

) log(n log d))

of random vectors as described in the above lemma. Let a be a point in S. Let � = �(a)

be the number of vectors r 2 R for which �

r

(a) 6= �

r

(q). Using Lemma 7.2 and Cherno�'s

bound, it can be shown that if H(q; a) � ` then � � (�

1

+ �=3)t with probability at least

1 � e

�2�

2

t=9

, and that if H(q; a) � (1 + ")` then � � (�

1

+ 2�=3) with probability at least

1�e

�2�

2

t=9

. We thus need to determine whether there exists a point a 2 S for which �(a) �

(�

1

+ �=3)t. Based on this observation, Kushilevitz et al. showed that, with probability at

least 1��, S can be preprocessed in a data structure of size d(n log d)

O(1="

2

)

so that a query

can be answered in time O((d

2

="

2

) log(n log d=�)). Constructing this structure for every

0 � ` � d and using the above procedure as the decision procedure in a binary search, we

can answer an "-NN query with probability at least 1� � in O((d

2

="

2

) log(n log d=�) log d)

using d

2

(n log d)

O(1="

2

)

storage.

Indyk and Motwani [111] proposed another randomized approach for answering "-NN

queries. They develop a data structure called ring cover trees, which lets them reduce

the "-NN searching problem to the "-PLEB ("-approximate point location in equal balls)

de�ned as follows: Given a set S of n points in R

d

and two parameters "; r > 0, preprocess

S into a data structure that for a query point q performs as follows: If there is a point
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p 2 S so that d(p; q) � r, then it returns yes and a point p

0

with d(p; p

0

) � (1 + ")r. If

d(p; q) > (1 + ")r for all p 2 S, then it returns no. Otherwise, it either returns no or a

point p with d(p; q) � (1 + ")r. They introduced the notion of locality sensitive hashing

to answer "-PLEB queries. For given parameters r

1

> r

2

� 0 and 1 > p

1

> p

2

> 0, a

family H = fh : S ! Ug of hash functions is called (r

1

; r

2

; p

1

; p

2

)-sensitive if for every

p; q 2 S: (i) d(p; q) � r

1

implies that Pr

H

[h(p) = h(q)] � p

1

, and (ii) d(p; q) > r

2

implies

that Pr

H

[h(p) = h(q)] � p

2

. Using such a family of hash functions, they answer an "-PLEB

query as follows. For simplicity, we will describe the data structure for points in Q

d

under

Hamming distance. Set k = log

1=p

2

n, � = log p

1

= log p

2

, and ` = n

�

. De�ne a family

G = f(h

1

; h

2

; : : : ; h

k

) : Q

d

! U

k

j h

1

; h

2

; : : : ; h

k

2 Hg:

Choose a random subset of ` functions g

1

; : : : g

`

2 G. Let T be a table of size jU j

k

. For each

p 2 S and i � `, we store p in the cell g

i

(p) of T , i.e., each point of S is stored in ` cells of

T . Therefore only O(n`) = O(n

1+�

) cells of T are nonempty. We can use the data structure

by Fredman et al. [86] to store these nonempty entries in a table of size O(n

1+�

) so that for

a point q, we can access the cell of T corresponding to g(q) in time O(1) time after having

computed the value of g(q), which in turns requires evaluating k hash functions. For a

query point q 2 Q

d

, the algorithms proceed as follows. It accesses the cells g

1

(q); : : : ; g

`

(q)

of T , and checks whether any of the points stored in these cells is within distance (1 + ")r.

If so, it returns such a point. If more than a total of 2` points (including duplicates) are

stored in these cells, the procedure checks at most 2` points. It returns no, if no point

(among at most 2` points) within distance (1 + ")r from q was found. The correctness of

this procedure follows from the following lemma:

Lemma 7.3 ([111]) With probability at least 1=2, for any p 2 S so that d(p; q) � r,

g

j

(p) = g

j

(q) for some j � `, and

P

`

j=1

jfp 2 S j d(p; q) > (1 + ")r ^ g

j

(p) = g

j

(q)gj < 2`.

The size of the data structure is O(n

1+�

) and a query requires evaluating ` hash functions.

Andersson et al. [19] showed that for any r; " > 0, the family of projection functions,

H = fh

i

: h

i

(x

1

; : : : x

d

) = x

i

j 1 � i � dg is (r; (1 + ")r; 1 � r=d; 1 � (1 + ")r=d)-sensitive.

Plugging these values, we obtain that an "-PLEB query can be answered with probability

at least 1=2 in O(dn

1=(1+")

) time using O(n

1+1=(1+")

) space.

All the algorithms described above are Monte Carlo algorithms. Recently, Indyk [109]

proposed a Las Vegas algorithm that answer an "-NN query under L

1

-metric in ((d=") log n)

O(1)

expected time using polynomial space. This also yields constant-factor approximation algo-

rithms for "-NN searching under L

2

- and Hamming-metrics. See also [107, 110] for related

results. The above data structures have recently been used to answer farthest neighbor

queries, to compute the diameter of a point set, and for several other proximity problems.

See [32, 97, 109] for details.
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7.2 Diameter in R

3

Given a set S of n points in R

3

, we wish to compute the diameter of S, that is, the maximum

distance between any two points of S. The decision procedure here is to determine, for a

given radius r, whether the intersection of the balls of radius r centered at the points of

S contains S. The intersection of congruent balls in R

3

has linear complexity [94, 102],

therefore it is natural to ask whether the intersection of n congruent balls can be computed

in O(n logn) time. (Checking whether all points of S lie in the intersection can then be

performed in additional O(n logn) time, using straightforward point-location techniques.)

The technique described in Section 2.2 can compute the diameter in R

3

in O(n log

2

n)

expected time. Clarkson and Shor [54] showed that their technique can be re�ned so that

the diameter can be computed in O(n log n) expected time. The basic observation is that

the size of the problem can also be reduced in each step. Figure 8 gives an outline of the

algorithm.

function procedure DIAMETER (S);

choose a random point p 2 S;

q = a farthest neighbor of p in S;

compute I =

T

p

0

2S

B(p

0

; �(p; q))

S

1

= S n I

if S

1

= ;

then return �(p; q)

else return DIAMETER (S

1

)

Figure 8: A randomized algorithm for computing the diameter in 3D.

The correctness of the above algorithm is easy to check. The only nontrivial step in

the above algorithm is computing I and S

1

. If �(�; �) is the Euclidean metric, I can be

computed in O(jSj log jSj) expected time, using the ball-intersection algorithm. S

1

can

then be computed in additional O(jSj log jSj) time, using any optimal planar point-location

algorithm (see, e.g., [172]). Hence, each recursive step of the algorithm takes O(jSj log jSj)

expected time. Since p is chosen randomly, jS

1

j = i with probability 1=n, which implies that

the expected running time of the overall algorithm is O(n log n). After several attempts,

an O(n log n) deterministic algorithm was recently obtained by Ramos [165]. Using the

recent techniques for nearest-neighbor searching, Monte Carlo "-approximation algorithms

have been developed for computing the diameter of a point set in E

d

whose running time

is subquadratic in n and polynomial in d [32, 108].

7.3 Distance between polytopes

We wish to compute the Euclidean distance d(P

1

;P

2

) between two given convex polytopes

P

1

and P

2

in R

d

. If the polytopes intersect, then this distance is 0. If they do not intersect,
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then this distance equals the maximum distance between two parallel hyperplanes separating

the polytopes; such a pair of hyperplanes is unique, and they are orthogonal to the segment

connecting two points a 2 P

1

and b 2 P

2

with d(a; b) = d(P

1

;P

2

). It is shown by G�artner

[89] that this problem is LP-type, with combinatorial dimension at most d + 2 (or d + 1,

if the polytopes do not intersect). It is also shown there that the primitive operations

can be performed with expected e

O(

p

d)

arithmetic operations. Hence, the problem can be

solved by the general LP-type algorithm, whose expected number of arithmetic operations

is O(d

2

n) + e

O(

p

d log d)

, where n is the total number of facets in P

1

and P

2

.

7.4 Selecting distances

Let S be a set of n points in the plane, and let 1 � k �

�

n

2

�

be an integer. We wish

to compute the kth smallest distance between a pair of points of S. This can be done

using parametric searching. The decision problem is to compute, for a given real r, the

sum

P

p2S

jD

r

(p) \ (S n fpg)j, where D

r

(p) is the closed disk of radius r centered at p.

(This sum is twice the number of pairs of points of S at distance � r.) Agarwal et al. [4]

gave a randomized algorithm, with O(n

4=3

log

4=3

n) expected time, for the decision problem,

using the random-sampling technique of [54], which yields an O(n

4=3

log

8=3

n) expected-time

algorithm for the distance-selection problem. Matou�sek [138] showed that the randomized

halving technique can be used to solve this problem in time O(n

4=3

log

5=3

n) time.

7.5 Surface simpli�cation

A generic surface-simpli�cation problem is de�ned as follows: Given a polyhedral object P

in R

3

and an error parameter " > 0, compute a polyhedral approximation � of P with the

minimum number of vertices, so that the maximum distance between P and � is at most

". There are several ways of de�ning the maximum distance between P and �, depending

on the application. We will refer to an object that lies within " distance from P as an

"-approximation of P . Surface simpli�cation is a central problem in graphics, geographic

information systems, scienti�c computing, and visualization.

The simplest, but nevertheless an interesting, special case is when P is a convex polytope

(containing the origin). In this case we wish to compute another convex polytope Q with

the minimum number of vertices so that (1 � ")P � Q � (1 + ")P (or so that P �

Q � (1 + ")P ). We can thus pose a more general problem: Given two convex polytopes

P

1

� P

2

in R

3

, compute a convex polytope Q with the minimum number of vertices such

that P

1

� Q � P

2

. Das and Joseph [60] have attempted to prove that this problem is

NP-Hard, but their proof contains an error, and it still remains an open problem. Mitchell

and Suri [155] have shown that there exists a nested polytope Q with at most 3k

OPT

vertices, whose vertices are a subset of the vertices of P

2

, where k

OPT

is the minimum

number of vertices in a convex polytope lying between P

1

and P

2

. The problem can now be
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formulated as a hitting-set problem, and, using a greedy approach, they presented an O(n

3

)-

time algorithm for computing a nested polytope with O(k

OPT

log n) vertices. Clarkson [48]

showed that the randomized technique described in Section 5 can compute a nested polytope

with O(k

OPT

log k

OPT

) vertices in O(n log

c

n) expected time, for some constant c > 0.

Br�onnimann and Goodrich [35] extended Clarkson's algorithm to obtain a polynomial-time

deterministic algorithm that constructs a nested polytope with O(k

OPT

) vertices.

A widely studied special case of surface simpli�cation, motivated by applications in geo-

graphic information systems and scienti�c computing, is when P is a polyhedral terrain (i.e.,

the graph of a continuous piecewise-linear bivariate function). In most of the applications,

P is represented as a �nite set of n points, sampled from the input surface, and the goal is to

compute a polyhedral terrain Q with the minimum number of vertices, such that the verti-

cal distance between any point of P and Q is at most ". Agarwal and Suri [14] showed that

this problem is NP-Hard. Agarwal and Desikan [6] have shown that Clarkson's randomized

algorithm can be extended to compute a polyhedral terrain of size O(k

2

OPT

log

2

k

OPT

) in

expected time O(n

2+�

+k

3

OPT

log

3

k

OPT

). The survey paper by Heckbert and Garland [101]

summarizes most of the known results on terrain simpli�cation.

Instead of �xing " and minimizing the size of the approximating surface, we can �x

the size and ask for the best approximation. That is, given a polyhedral surface P and an

integer k, compute an approximating surface Q that has at most k vertices, whose distance

from P is the smallest possible. Very little is known about this problem, except in the

plane. If the vertices of Q are required to be a subset of S, the best known algorithm is by

Agarwal and Varadarajan [15]; it is based on the randomized halving technique described

in Section 2.1, and its running time is O(n

4=3+"

).

8 Statistical Estimators and Related Problems

8.1 Line �tting

Fitting a line to a set S = fp

1

; : : : ; p

n

g of n points in the plane is an important problem

in statistical estimation. In order to cope with outliers, there has been much interest in

de�ning robust line estimators whose slopes do not change much by a few outliers. One

such estimator is the Theil-Sen estimator de�ned in Section 2.1 for which several optimal

O(n log n) algorithms exist. Another commonly used estimators is the repeated median

(RM) estimator, de�ned as follows. For each p

i

2 S, let �

i

be the median of the slopes

of the n � 1 lines passing through p

i

and another point of S, and let � be the median of

f�

1

; : : : ; �

n

g. Then the RM estimator of S is the line of slope � passing through a pair of

input points. Using a variant of the randomized halving technique described in Section 2.1

and some sophisticated range-searching data structures, Matou�sek et al. [144] described an

O(n log n) expected time algorithm for computing the RM estimator. They also described
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a somewhat simpler randomized algorithm with O(n log

2

n) expected time.

8.2 Plane �tting

Given a set S of n points in R

3

, we wish to �t a plane h through S so that the maximum

distance between h and the points of S is minimized. This is the same problem as computing

the width of S | the smallest distance between a pair of parallel supporting planes of S,

which is considerably harder than the two-dimensional variant mentioned in Section 6.2. It

can be shown that either one of the parallel planes determining the width contains a vertex

and the other contains a face of conv(S), or each of the two parallel planes contains an edge

of conv(S). Houle and Toussaint [105] gave an O(n

2

)-time algorithm for computing the

width in R

3

. They show that the �rst type of pairs of planes can be computed in O(n logn)

time, but there could be �(n

2

) antipodal pairs of convex hull edges. (A pair of edges e

1

; e

2

of conv(S) is called antipodal if there exist two parallel planes �

1

; �

2

supporting them such

that S lies between �

1

and �

2

.) The problem of computing a closest pair of antipodal edges

can be reduced to a number of subproblems, each of which asks for computing a closest pair

between two sets L;L

0

of lines in R

3

(each line containing an edge of the convex hull of S),

such that each line in L lies below all the lines of L

0

[11, 9]. Agarwal and Sharir [9] developed

an O(n

3=2+"

) expected-time randomized algorithm for this problem, which implies that the

width can also be computed in expected time O(n

3=2+"

).

8.3 Circle �tting

Given a set S of n points in the plane, we wish to �t a circle C through S so that the

maximum distance between the points of S and C is minimized. This is equivalent to

�nding an annulus of minimum width that contains S. Ebara et al. [72] observed that

the center of a minimum-width annulus is a vertex of the closest-point Voronoi diagram

of S, a vertex of the farthest-point Voronoi diagram, or an intersection point of a pair

of edges of the two diagrams. Based on this observation, they obtained a quadratic-time

algorithm. Agarwal and Sharir [9] reduced this problem to computing a bichromatic closest

pair in two given sets of lines in R

3

, under an appropriate distance function. Using the

technique described in Section 2.2, they showed that such a closest pair can be computed

in O(n

3=2+"

) expected time, which in turn implies that the minimum-width annulus can

be computed within that time. If we know the angular ordering of points with respect to

the center of the minimum-width annulus, which is the case in some of the applications,

Ramos [88] showed that the problem becomes an LP-type problem and can therefore be

solved in O(n) expected time. Recently Chan [39] developed an approximation algorithm

that using his linear-programming data structure (mentioned in Section 3) can compute in

O(n+ 1="

16=3

log n) expected time an annulus containing S whose width is at most (1 + ")

times that of the thinnest annulus.
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8.4 Center points

Let S be a set of n points in R

d

. Let h be a hyperplane, and let S

+

; S

�

be the subset of

points lying in the positive and negative open halfspaces determined by h. For 0 � � � 1=2,

we say that h �-splits S if maxfjS

+

j=jSj; jS

�

j=jSjg � (1� �). A point c 2 R

d

is a �-center

of S if any hyperplane containing c (1 � �)-splits S. It is a known consequence of Helly's

Theorem that a 1=(d+ 1)-center always exists. Computing 1=(d+ 1)-center is expensive in

high dimensions, so approximation algorithms have been proposed. For a given parameter

0 < � < 1, Clarkson et al. [53] gave a randomized algorithm that runs in O((d log(1=�))

log d

)

time and computes an 
(1=d

2

)-center with probability at least 1 � �. By combining this

approach with linear programming, they developed another algorithm that computes in

O(d=")

O(d)

log(1=�) time a (1=(d + 1)� ")-center with probability at least 1� �.

8.5 Bucketing

Let S = fp

1

; : : : ; p

n

g be a set of n points in R

2

and 1 � b � n an integer. We want to

partition S into b equal-size buckets so that the maximum number of points in a bucket

is minimized. We consider two types of buckets. First, we consider the case in which the

buckets are strips. That is, we want to �nd b + 1 equally spaced parallel lines so that all

points of S lie between the extremal lines, the extreme lines contain at least one points of

S, and the maximum number of points in a bucket is minimized; see Figure 9. We refer to

this problem as the uniform-projection problem. If the lines have slope �, we refer to these

(i) (ii)

Figure 9: (i) Uniform-projection problem; (ii) two-dimensional partitioning problem.

buckets as the �-cut of S. For each �, there is unique �-cut of S.

It is convenient to consider the problem in the dual plane (see Section 2.1 for the

de�nition of the duality transform). Let `

i

denote the line dual to the point p

i

2 S, and

let L = f`

i

j 1 � i � ng. The dual of a strip � bounded by two parallel lines `

1

and `

2

is

the vertical segment �

�

= `

�

1

`

�

2

; a point p lies in � if and only if the line �

�

intersects the

segment �

�

. Let A(L) be the arrangement of L. For a �xed x-coordinate �, let s(�) denote

the vertical segment connecting the points on the upper and lower envelopes of A(L). The

dual of the �-cut is the partition of s(�) into b equal subsegments. A point p

i

2 S lies

in the jth bucket of the �-cut if the dual line `

i

intersects the jth subsegment of s(�).
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The goal is therefore to compute � so that the maximum number of lines intersecting a

subsegment of s(�) is minimum (over all �). By sweeping the dual plane with a vertical line

from x = �1 to x = +1 and maintaining the intersection points of s(�) and L during

this sweep, the optimal solution can be computed in a straightforward manner. Asano and

Tokuyama [28] showed that such a sweep can be performed in O(n

2

) time. Agarwal et

al. [5] developed a Monte Carlo algorithm that computes an optimal solution, with high

probability, in subquadratic time in certain cases. They choose a random subset R � L of

lines and compute an optimal uniform projection for this subset. Using this solution, they

compute a set of x-intervals that contains an optimal �-cut with high probability and sweep

a vertical line only through these x-intervals. Suppose the maximum number of points in

a bucket of an optimal solution is

n

b

+�. By choosing a subset R of appropriate size and

by performing the sweep carefully, their algorithm computes an optimal solution in time

O(minfbn

5=3

log

7=3

n+ (b

2

�)n log

3

n; n

2

g), with probability at least 1� 1=n. In particular,

the algorithm can detect and report whether there is a uniform projection (i.e., with � = 0)

in O(minfbn

5=3

log

7=3

n; n

2

g) time.

The second type of buckets that one can consider are rectangular buckets. See Fig-

ure 9 (ii) for an example. A natural extension of the previous approach results in an algo-

rithm that runs in time O(minfb

1=2

n

5=3

log

7=3

n+(b

3=2

�)n log

3

n; n

2

g), with probability at

least 1� 1=n, where the optimal value is (n=b) + �.

9 Placement and Intersection

9.1 Intersection of polyhedra

Given a set P = fP

1

; : : : ; P

m

g of m convex polyhedra in R

d

, with a total of n facets, is

their common intersection I =

T

m

i=1

P

i

nonempty? If the answer is yes, return a point in

I, say the smallest point v

�

in the lexicographical order. We assume that each polytope

P

i

2 P is preprocessed so that we can determine in O(log n) time whether a query point

lies inside P

i

. Let us call the query procedure Feasibility.

Of course, this is an instance of linear programming in R

d

with n constraints, but the

goal is to obtain faster algorithms that depend on m more signi�cantly than they depend

on n. Note that there exist three polytopes P

i

; P

j

; P

k

2 P so that v

�

is the smallest vertex

of P

i

\P

j

\P

k

. Reichling [168] and Eppstein [75] showed that one can compute the smallest

vertex of P

i

\P

j

\P

k

in O(log

3

n) time using Feasibility as a subroutine. Let us call this

procedure as Intersect. Using Intersect and Feasibility, we can compute v

�

as fol-

lows. For each triple 1 � i; j; k � m, compute the smallest vertex v

ijk

of P

i

\P

j

\P

k

if there

exists one and check whether v

ijk

lies inside all other polytopes of P. Hence, computing v

ijk

and checking whether v

ijk

2 I require O(log

3

n+m logn) time. We then return the smallest

vertex that lies inside I. The total time spent is O(m

3

log

3

n + m

4

logn). Eppstein [75]
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presented a randomized recursive algorithm for computing v

�

. At each step his algorithm

solves a recursive subproblem for a subset of P with one less polytope, say P

i

, and uses

Feasibility to check whether the solution returned by the sub problem lies in P

i

. At the

base case, it invokes Intersect. Using randomization and the order in which his algorithm

calls recursive subproblems, he proved that the expected number of times his algorithm ex-

ecutes Intersect and Feasibility procedures are O(

p

m logm) and O(m logm), respec-

tively. Hence, the expected running time of his algorithm is O(m logm log n+

p

m log

3

n).

9.2 Polygon placement

Let P be a convex m-gon, and let Q be a closed planar polygonal environment with n

edges. We wish to compute the largest similar copy of P (under translation, rotation, and

scaling) that can be placed inside Q. Using generalized Delaunay triangulation induced by

P within Q, Chew and Kedem [45] obtained an O(m

4

n

2

2

�(n)

log n)-time algorithm. Faster

algorithms can be developed using randomization and search parametric searching [3, 180].

The decision problem in this case can be de�ned as follows: Given a convex polygon B

with m edges (a scaled copy of P ) and a planar polygonal environment Q with n edges,

can B be placed inside Q (allowing translation and rotation)? Each placement of B can be

represented as a point in R

3

, using two coordinates for translation and one for rotation. Let

FP denote the resulting three-dimensional space of all free placements of B inside Q. FP is

the union of a collection of cells of an arrangement of O(mn) contact surfaces in R

3

. Leven

and Sharir [132] have shown that the complexity of FP is O(mn�

6

(mn)), where �

s

(n) is the

maximum length of a Davenport{Schinzel sequence of order s composed of n symbols [179]

(it is almost linear in n for any �xed s). Agarwal et al. [3] gave an O(mn�

6

(mn) logmn)

expected-time randomized algorithm to compute FP . Plugging these algorithms into the

parametric-searching machinery, one can obtain an O(m

2

n�

6

(mn) log

3

mn log logmn)-time

deterministic algorithm, or an O(mn�

6

(mn) log

4

mn) expected-time randomized algorithm,

for computing a largest similar placement of P inside Q.

The biggest-stick problem is another interesting special case of the largest-placement

problem; here Q is a simple polygon and P is a line segment. In this case, we are interested

in �nding the longest segment that can be placed insideQ. This problem can be solved using

a divide-and-conquer algorithm, developed in [13], and later re�ned in [2, 9]. It proceeds

as follows: Partition Q into two simple polygons Q

1

; Q

2

by a diagonal ` so that each of Q

1

and Q

2

has at most 2n=3 vertices. Recursively compute the longest segment that can be

placed in each Q

i

, and then determine the longest segment that can be placed in Q and

that intersects the diagonal `. The decision algorithm for the merge step is to determine

whether there exists a placement of a line segment of length w that lies inside Q and crosses

`. Agarwal et al. [13] have shown that this problem can be reduced to the following: We

are given a set S of points and a set � of algebraic surfaces in R

4

, where each surface is the

graph of a trivariate function, and we wish to determine whether every point of S lies below
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all the surfaces of �. Agarwal and Sharir [9] gave a randomized algorithm with O(n

3=2+"

)

expected running time for this point-location problem. Using randomization, instead of

parametric searching, they obtained an O(n

3=2+"

) expected-time procedure for the overall

merge step (�nding the biggest stick that crosses `). The total running time of the algorithm

is therefore also O(n

3=2+"

).

Another related placement problem is the penetration-depth problem: Let P and Q

be two polytopes in R

3

. The penetration depth of P and Q is the minimum distance

by which Q has to be translated in a �xed direction so that P and Q become disjoint.

Recently, Agarwal et al. [7] showed that the algorithm for computing the width can be used

to compute the penetration depth of two convex polytopes in R

3

.

10 Network Design Problems

In this section, we review a randomized technique that has lead to approximation algorithms

for several intractable network-design problems in a geometric setting, including Euclidean

traveling salesperson, Euclidean Steiner tree, Euclidean k-MST, and Euclidean k-TSP. Until

recently, it was not known whether polynomial-time approximation schemes (PTAS) exist

for the Euclidean version of these problems even in the planar case (see [160, 22, 31, 189]

for the previously best known approximation schemes). For the general problem (including

the metric case), no polynomial-time "-approximation algorithm can be obtained unless

P = NP ([22]). Recently it was shown that the some of these problems are MAX SNP-Hard

even in the Euclidean setting if the dimension is part of the input [185]. In a signi�cant

breakthrough, Arora [20, 21] obtained an "-approximate polynomial-time algorithms for

the above problems in any �xed dimension. See also [154]. For simplicity, we describe his

technique for Euclidean TSP in R

2

.

Let S be a set of n points in the plane, and let " > 0 be a given parameter. The goal is

to compute a tour of S (i.e., a cycle that visits every point of S exactly once) whose length

is at most (1 + ")�

�

, where �

�

is the length of an optimal tour. Since we are interested in

an approximation algorithm, a well-known perturbation argument allows us to assume that

the minimum distance between any two points is 8 and the maximum distance between

any two points is O(n="), and that the coordinates of points are in the interval [0; L] for

L = O(n=") (see e.g. [21]). Let us assume that L is of the form 2

k

for some integer k. Let

B be the square [0; 2L] � [0; 2L]. Choose two random integers a; b 2 [0; L] and translate

each point of S by the vector (a; b). We will use S to denote the translated copy of S

(i.e., S = S + (a; b)). Construct a quad tree Q on B for (the translated copy of) S, i.e.,

we recursively divide a square into four equal squares, starting from B, until the square

contains at most one point; see Figure 10.

For two integers m; r, an m-regular portal set for Q is a set of points on the edges of

each square � of Q (at all levels) so that each corner of � contains a portal and there are
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(0,0) (0,0)

(a,b)

(L,L)

Figure 10: (i) Box B and original point set S; (ii) translated point set and the quad tree Q.

m other equally spaced points on each edge of �. A tour � of S is called (m; r)-light if

it crosses an edge of every square in Q only at portals and if it crosses an edge at most r

times. The crux of Arora's algorithm lies in the following lemma.

Lemma 10.1 Let S and Q be as above, and let " > 0 be a parameter. With probability at

least 1/2, there is an ((c=") log n; c=")-light tour of S of length at most (1 + ")�

�

, where c

is a constant.

The proof of this lemma relies on two observations. Let � be a tour of S. First, if �

intersects a line segment e of length � at least three times, then there exists another tour

of S of length at most j�j + 3� that intersects e at most twice. This argument was used

by several heuristics for TSP in the past (see e.g. [30, 119]). Second, if we draw the integer

grid inside B, then the number of intersections between � and the grid lines is at most 2j�j.

These lemmas and a simple probabilistic argument imply the above lemma.

The above lemma leads to a natural dynamic programming approach for computing

an ((c=") log n; c=")-light tour � of S. With probability at least 1=2, thelength of � is

at most (1 + ")�

�

. With some care, the dynamic programming can be executed in time

n(logn)

O(1=")

. Since the only randomization step in the above algorithm is choosing the

vector (a; b), we can derandomize the algorithm by running the above algorithm for all values

of a; b 2 [0; L]. These algorithms extend to higher dimensions in straightforward manner.

Rao and Smith [167] improved Arora's Monte Carlo algorithm by combining his dynamic

programming approach with spanners of small overall weight. Their algorithm computes

an "-approximate tour in time (

p

d=")

O(d(

p

d=")

d�1

)

n+O(dn log n) with probability at least

1=2. Note that the running time of these algorithms is doubly exponential in d. In view

of the hardness result by Trevisan [185], which shows that the Euclidean TSP problem

is MAX SNP-hard in R

log n

, this dependence is necessary unless NP has subexponential

algorithms.

11 Discussion
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In this chapter we reviewed several randomized techniques and algorithms for a wide range

of geometric optimization problems. We mostly focussed on summarizing the known tech-

niques and did not state open problems. There are, however, several interesting open prob-

lems in this area, e.g., nearest-neighbor searching and clustering algorithms in high dimen-

sions, practical approximation algorithms for network-design problems, strongly polynomial-

time algorithms for linear programming, faster algorithms for surface simpli�cation etc. In

the last few years several elegant techniques, e.g., Monte Carlo algorithms using random

walks on expander graphs and randomized rounding in conjunction with semide�nite pro-

gramming, have been developed for nongeometric problems. It would be interesting to

explore whether geometric optimization problems can bene�t from these techniques. Simi-

larly, the recent work on hardness of approximation algorithms has not been applicable to

geometric optimization problems in �xed dimensions.

Although we covered a variety of topics, we did not attempt to cover all applications

of randomization in geometric optimization, as it would be an impossible task. Additional

applications of randomization in geometric optimization include volume estimation of con-

vex bodies [69], learning geometric concepts, and shape matching. Interested readers can

�nd more material on geometric optimization in [10, 31, 90] and on randomized geometric

algorithms in various chapters of this book as well as in [157, 139, 51].
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