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ON GRAPHS THAT DO NOT CONTAIN THE CUBEAND RELATED PROBLEMSROM PINCHASI, MICHA SHARIR*Received November 4, 20021. IntroductionLet Q denote the edge graph of the 3-dimensional cube (it has 8 verticesand 12 edges). The Turan number of Q is the maximum number of edgesin a graph on n vertices that does not contain Q. Back in 1969, Erd}os andSimonovits [1] have shown that the Turan number of Q is O(n8=5). In thispaper, we provide an alternative simpler proof of this result. The originalproof in [1] was based on the assumption that the given graph G is regular,and required a nontrivial technical lemma that reduces the general case tothe case of a regular graph. Our proof does not need to assume that G isregular (and so does not use this lemma), and follows a di�erent approachthat appears to be more powerful than the one in [1]. We demonstrate thisby applying the technique to obtain Turan numbers for more general graphsthan Q, which the method of [1] seems incapable of achieving.2. Graphs That Do Not Contain the 3-Dimensional CubeCertain applications of extremal graph theory involve bipartite graphs wherethe sizes of the two vertex sets are di�erent from each other. For this reason,Mathematics Subject Classi�cation (2000): . . . . . . . . . . . . . . . . . . . . . . . . . . . (please �ll in!)* Work on this paper by Micha Sharir has been supported by NSF Grants CCR-97-32101and CCR-00-98246, by a joint grant from the U.S.{Israel Binational Science Foundation,by a grant from the Israeli Academy of Sciences for a Center of Excellence in GeometricComputing at Tel Aviv University, and by the Hermann Minkowski{MINERVA Centerfor Geometry at Tel Aviv University.



2 ROM PINCHASI, MICHA SHARIRwe state our main result for the bipartite case; the non-bipartite case is thenan immediate corollary.Theorem 2.1. A bipartite graph G�A�B, with jAj=m, jBj= n, thatdoes not contain Q has O(m4=5n4=5+mn1=2+nm1=2) edges.Proof. Let E denote the number of edges of G. We de�ne a con�guration tobe a 6-tuple �=(u;v;a;b;c;d) of distinct vertices of G, such that a;c;v2A,u;b;d2B, and (v;u), (a;u), (a;b), (v;b), (c;u), (c;d), (v;d) are all edges of G;see Figure 1. In other words, � consists of two C4's (cycles of length 4) witha common edge and with no other common vertex. We say that a pair (a;b),(c;d) of edges of G is tame if all four endpoints are distinct, and there existat most two pairs (u;v) such that (u;v;a;b;c;d) is a con�guration. We saythat � = (u;v;a;b;c;d) is a tame con�guration if (a;b), (c;d) form a tamepair. a bu
c dvFigure 1. A con�guration in the proof of Theorem 2.1.Let K be the set of all tame con�gurations. A trivial upper bound for jKjis O(E2), because the number of pairs (a;b);(c;d) of edges of G is O(E2),and each of them, if tame, gives rise to only two con�gurations in K.We next obtain a lower bound for jKj, as follows. Fix an edge e=(v;u)of G, with v 2 A, u 2 B, and let Ge denote the graph whose vertices arethe neighbors of either u or v in G, and whose edges are the edges of Gthat connect pairs of these neighbors. Let Ae, Be, Ee denote the numberof vertices in A, of vertices in B, and of edges of Ge, respectively. PutVe=Ae+Be.We note that the (tame or bad) con�gurations of the form (u;v;a;b;c;d),for the �xed pair of vertices u;v, correspond in a 1-1 manner to the vertex-disjoint pairs of edges of Ge. For a vertex a of Ge, let �e(a) denote the degreeof a in Ge.



ON GRAPHS THAT DO NOT CONTAIN THE CUBE 3Lemma 2.2. The number Me of tame pairs of edges in Ge is at least12Ee(Ee�4Ve�1).Proof. Call any pair of edges, which is not tame, a bad pair. We wish tobound the number of bad pairs of edges in Ge. Suppose that (a;b), (c;d) is abad pair. Consider any other pair (u0;v0), such that (u0;v0;a;b;c;d) is also acon�guration. If u 6=u0 and v 6=v0 then the 8-tuple (u;v;u0;v0;a;b;c;d) formsa forbidden copy of Q in G, contrary to assumption; see Figure 2. Hence,either all such pairs (u0;v0) satisfy u0=u, or all such pairs satisfy v0=v. Inthe former case we say that the pair (a;b), (c;d) is a bad u-pair and in thelatter case we say that the pair (a;b), (c;d) is a bad v-pair.By symmetry, it su�ces to bound the number of bad u-pairs, and twicethis bound will serve as a bound for the number of all bad pairs in Ge.Let a;c 2 A be two distinct neighbors of u in Ge, and let b 2 B be aneighbor of a in Ge (so b is a neighbor of v in G). There is at most one edgeof Ge incident to c (namely, (c;b)) that shares a vertex with (a;b).a b
c du0 v0u v

Figure 2. A double con�guration forming a cube in G.We claim that there is at most one vertex d2B (di�erent from b) suchthat (a;b), (c;d) is a bad u-pair. Indeed, assume to the contrary that thereare at least two such neighbors of c, say d1;d2. Since (a;b), (c;d1) is a badu-pair, there exist at least two distinct vertices v01;v001 2A, di�erent from v,such that (u;v01;a;b;c;d1) and (u;v001 ;a;b;c;d1) are con�gurations. Similarly,there exist at least two distinct vertices v02;v002 2A, di�erent from v, such that(u;v02;a;b;c;d2) and (u;v002 ;a;b;c;d2) are con�gurations. Clearly, there exist apair of vertices v12fv01;v001g, v22fv02;v002g, such that v1 6=v2. Then the eightvertices (v;v1;v2; c;u;b;d1;d2) form a forbidden copy of Q in G (in fact, it isa copy of Q plus one main diagonal (u;v)); see Figure 3.This contradiction shows that there exist at most two `bad' neighborsof c in Ge, with respect to the �xed edge (a;b) of that graph: one of themis b, and at most one other vertex d forms a bad u-pair (a;b), (c;d) in Ge.



4 ROM PINCHASI, MICHA SHARIRa b
c u vv1v2 d1d2Figure 3. Two bad pairs f(a;b);(c;d1)g and f(a;b);(c;d2)g, forming a cube in G.Let N(u) (resp., N(v)) denote the set of neighbors of u (resp., of v); thusAe = jN(u)j, Be = jN(v)j. Then the number of bad u-pairs of edges (a;b),(c;d) is at most 2AeEe. Similarly, the number of bad v-pairs of edges isat most 2BeEe. Therefore the total number of bad pairs in Ge is at most2Ee(Ae+Be)=2EeVe.It follows that the number Me of tame pairs of edges in Ge satis�esMe � �Ee2 �� 2EeVe = 12Ee(Ee � 4Ve � 1);as asserted.Put G1 = fe 2 G j Ee � 8Veg;G2 = fe 2 G j Ee < 8Veg:The total number jKj of tame con�gurations thus satis�esjKj =Xe2GMe � Xe2G1Me � Xe2G1 Ee(Ee � 4Ve � 1)2� 14 Xe2G1E2e � 12Xe2GEe � �Pe2G1 Ee�24E � Pe2GEe2 :Assume for the time being that Pe2G2Ee� 12Pe2GEe; the complementarycase will be treated later. Then Pe2G1Ee� 12Pe2GEe, andjKj � �Pe2GEe�216E � Pe2GEe2 :



ON GRAPHS THAT DO NOT CONTAIN THE CUBE 5Note that PeEe=4S, where S is the number of C4's in G. Hence,jKj � S2E � 2S:For each pair of distinct vertices u;v of G (both in A or both in B), let Wu;vdenote the number of paths of length 2 that connect u and v in G. Notethat Pu6=v2AWu;v=W (A), where W (A) is the number of paths of length 2in G whose extreme vertices are in A and whose middle vertex is in B, andthatPu6=v2A �Wu;v2 �=S. Similarly,Pu6=v2BWu;v=W (B), where W (B) is thenumber of paths of length 2 in G whose extreme vertices are in B and whosemiddle vertex is in A, and Pu6=v2B �Wu;v2 �=S. Then we can lower bound SbyS = Xu;v2A�Wu;v2 � = Xu;v2A"W 2u;v2 � Wu;v2 #
� �Pu;v2AWu;v�22�m2 � � Pu;v2AWu;v2 = (W (A))22�m2 � � W (A)2 :Finally, we have W (A)=Pu2B ��(u)2 �, where �(u) is the degree of a vertex uin G. Hence,W (A) = Xu2B��(u)2 � = Xu2B ��(u)22 � �(u)2 �(1) � �Pu2B �(u)�22n � Pu2B �(u)2 = E22n � E2 :We next assume that W (A)�2�m2 �, which implies that S� (W (A))24(m2 ) . Finally,we assume that E � 2n, which implies that W (A) � E24n . Putting it all to-gether, we obtain2S + jKj = 
�S2E � = 
 (W (A))4m4E ! = 
� E7m4n4� :Combining this with the upper bound for jKj, which also holds trivially forS, we obtain E7m4n4 = O(E2);or E=O(m4=5n4=5).



6 ROM PINCHASI, MICHA SHARIRIt remains to handle the cases that we have ignored so far. First, if E�2n,then clearly E satis�es the asserted bound. Next, suppose thatW (A)�2�m2 �.Since W (A)=Pu2B ��(u)2 �, we obtainE = Xu2B �(u) � n+ Xu2B; �(u)�1(�(u) � 1) = O "n+�Xu2B ��(u)2 ��1=2 � n1=2#= O(mn1=2 + n):Note that by interchanging the roles of A and B, we may also assume thatE�m and that W (B)�2�n2�. Otherwise we get, as above, E=O(nm1=2+m).Finally, assume that neither of these inequalities hold but thatXe2G2Ee > 12Xe2GEe = 2S:We haveXe2G2Ee < 8 Xe2G2(Ae +Be) � 8Xe2G(Ae +Be) = 16�W (A) +W (B)�;where the last equality is easily veri�ed. Hence, S<8(W (A)+W (B)). Suppose,without loss of generality, that W (B)�W (A), so S<16W (A). This impliesXu;v2A"W 2u;v2 � Wu;v2 # = Xu;v2A�Wu;v2 � = S � Xu;v2A 16Wu;v;In other words, we have Xu;v2AW 2u;v = O(W (A));which, using the Cauchy{Schwarz inequality, implies thatW (A) = Xu;v2AWu;v � �m2�1=2 �0@ Xu;v2AW 2u;v1A1=2 = O�m�W (A)�1=2�;or W (A) = O(m2). Since we assume that E � 2n, we have, using (1),W (A)� E24n , implying that E=O(mn1=2). The complementary case W (A)�W (B) yields, in a fully symmetric manner, E=O(m1=2n).We have thus completed the proof of Theorem 2.1.The general case is now a straightforward corollary:Corollary 2.3. A graph with n vertices that does not contain Q hasO(n8=5) edges.



ON GRAPHS THAT DO NOT CONTAIN THE CUBE 73. A GeneralizationIn this section we generalize the method presented in Section 2 to boundthe Turan number of more general families of graphs.Let k�m be positive integers. Let A1;A2;B1;B2 be four pairwise disjointsets, so that jA1j= jB1j=k and jA2j= jB2j=m. De�ne Qk;m to be a bipartitegraph whose set of edges is (A1�B2)[ (A2�B1)[M1[M2, where Mi isa perfect bipartite matching in Ai �Bi, for i = 1;2. It is easily checkedthat Q2;2 =Q. The following theorem bounds the Turan number of Qk;m,but only for graphs that satisfy an additional assumption (for simplicity ofpresentation, we do not consider the bipartite version of this case):Theorem 3.1. Let 2�k�m be positive integers, and let G be a graph onn vertices which does not contain a copy of Qk;m, and also does not containa copy of Kk+1;k+1. Then G has at most O(n 4k2k+1 ) edges.Proof. Note �rst that the number of edges of a graph that satis�es onlythe second assumption of the theorem is O(n2� 1k+1 ), and that this boundstrictly dominates the bound asserted in the theorem, so the �rst assumptionis non-redundant for the asserted bound.Again, we assume without loss of generality that G is a bipartite graph.We de�ne a con�guration to be a (2k+2)-tuple (u;v;a1; : : : ;ak; b1; : : : ; bk) ofdistinct vertices of G, so that (u;v), and (ai; bi), (ai;u), (bi;v), for i=1; : : : ;k,are all edges of G.We say that a 2k-tuple (a1; : : : ;ak; b1; : : : ; bk) of distinct vertices is tameif (a1; b1); : : : ;(ak; bk) are all edges of G, and there are at most 2km edges(u;v) in G such that (u;v;a1; : : : ;ak; b1; : : : ; bk) is a con�guration. Every suchcon�guration will be called a tame con�guration. The proof proceeds alongthe same lines as in the proof of Theorem 2.1, but is actually simpler becauseof the second assumption of the theorem. It proceeds by e�ectively showingthat all con�gurations are tame.Let E denote the number of edges of G, and let N denote the number oftame con�gurations. An easy upper bound for N is 2kmEk=O(Ek).We next obtain a lower bound for N . We �x an edge (u;v) of G andde�ne Ge exactly as in Section 2, namely, its vertices are the neighbors of uand the neighbors of v in G, and its edges are the edges of G that connectthe neighbors of u to the neighbors of v. De�ne, as above, Ve and Ee to bethe number of vertices and edges of Ge, respectively.We claim that any matching of size k in Ge gives rise to a tame con�gu-ration. Indeed, let (a1; b1); : : : ;(ak; bk) be such a matching, and consider all



8 ROM PINCHASI, MICHA SHARIRthe edges (ui;vi) (including (u;v)), so that (ui;vi;a1; : : : ;ak; b1; : : : ; bk) is acon�guration; note that the edges (aj ; bj) are distinct and vertex-disjoint.Among the edges (ui;vi) one cannot �nd a matching of size m, becausesuch a matching would have induced a copy of Qk;m in G. On the otherhand, there can be at most k indices i with a common vi, and at most kindices with a common ui. Indeed, assume, without loss of generality, thatv1 = � � � = vk+1. Then A = fu1; : : : ;uk+1g and B = fb1; : : : ; bk;v1g inducea copy of Kk+1;k+1 in G, contrary to assumption. Now take a maximummatching among the edges (ui;vi); its size is at most m� 1, and we maywrite it as (u1;v1); : : : ;(uj ;vj), for some j�m�1. Any other edge (ui;vi)must be incident to one of the 2j vertices u1; : : : ;uj ;v1; : : : ;vj , and each ofthese vertices is incident to at most (k�1) such additional edges, for a totalof at most j+2j(k� 1)� (m� 1)(2k� 1)< 2km. In other words, we haveshown that, for any choice of a matching of size k fromGe, the correspondingcon�guration (u;v;a1; : : : ;ak; b1; : : : ; bk) is tame.The number of ways to pick k distinct and vertex-disjoint edges from Geis at leastEe(Ee � Ve)(Ee � 2Ve) � � � (Ee � (k � 1)Ve)k! > (Ee � (k � 1)Ve)kk! ;assuming that Ee�(k�1)Ve.The total number N of tame con�gurations satis�es, using H�older's in-equality,N � 1k! XejEe>(k�1)Ve(Ee � (k � 1)Ve)k � �PejEe>(k�1)Ve(Ee � (k � 1)Ve)�kk!Ek�1 :Arguing as before, one hasPeEe=4S, where S is the number of C4's in G,and PeVe=2W , where W is the number of paths of length 2 in G. Let usassume that S�(k�1)W . Then we haveXejEe>(k�1)Ve(Ee � (k � 1)Ve) �Xe (Ee � (k � 1)Ve) = 4S � 2(k � 1)W � 2S;and thus N � (2S)kk!Ek�1 :Using the analysis in the previous section we obtain, assuming E � n andW � 2�n2�, that S = 
(E4=n4). Thus, N = 
(E3k+1=n4k). Combining thiswith the upper bound O(Ek), we get E=O(n 4k2k+1 ).



ON GRAPHS THAT DO NOT CONTAIN THE CUBE 9The remaining cases E<n, W<2�n2�, or S<(k�1)W , are analyzed in amanner similar to that in Section 2. (Recall that these cases yield the boundE = O(n3=2), which is dominated by the bound asserted in the theorem,provided that k�2.)Remarks. (1) We do not know whether Theorem 3.1 also holds withoutthe assumption that G does not contain Kk+1;k+1.(2) The approach of [1] seems incapable of obtaining this bound.References[1] P. Erd}os and M. Simonovits: Some extremal problems in graph theory, Combinato-rial Theory and Its Applications 1 (Proc. Colloq. Balatonf�ured, 1969), North Holland,Amsterdam, 1970, pp. 377{390.Rom PinchasiDepartment of MathematicsMassachusetts Institute of TechnologyCambridge, MA 02139USAroom@math.mit.edu
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