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ABSTRACT
We derive improved upper bounds on the number of crossing-
free straight-edge spanning cycles (also known as Hamilto-
nian tours and simple polygonizations) that can be embed-
ded over any specific set of N points in the plane. More
specifically, we bound the ratio between the number of span-
ning cycles (or perfect matchings) that can be embedded
over a point set and the number of triangulations that can
be embedded over it. The respective bounds are O(1.8181N )
for cycles and O(1.1067N ) for matchings. These imply a new
upper bound of O(54.543N ) on the number of crossing-free
straight-edge spanning cycles that can be embedded over
any specific set of N points in the plane (improving upon
the previous best upper bound O(68.664N )). Our analysis
is based on a weighted variant of Kasteleyn’s linear algebra
technique.
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1. INTRODUCTION
In this paper we consider the problem of bounding the

number of all crossing-free straight-edge spanning cycles that
can be embedded over a specific set of points in the plane.
That is, given a set S of N labeled points in the plane, we
consider the number of spanning cycles that have a straight-
edge planar embedding over S. We rely on Kasteleyn’s
linear-algebra technique [13], and on edge-flipping techniques
that were developed in a previous paper by the authors [8].
No familiarity with [8] is necessary, since we re-introduce all
the notions that we require from it. We now give a detailed
and more formal definition of the problem.

A planar graph is a graph that can be embedded in the
plane in such a way that its vertices are embedded as points
and its edges are embedded as Jordan arcs that connect
the respective pairs of points and can meet only at a com-
mon endpoint. A crossing-free straight-edge graph is a plane
embedding of a planar graph such that its edges are embed-
ded as non-crossing straight line segments. In this paper,
we only consider crossing-free straight-edge graphs, and we
also assume that the points of the vertex set S are in general
position, that is, no three points are collinear. (For upper
bounds on the number of graphs, this involves no loss of gen-
erality, because the number of graphs can only grow when a
degenerate point set is slightly perturbed into general posi-
tion.) For simplicity, we sometimes refer to such graphs as
plane graphs.

We focus on upper bounding the maximal number of plane
spanning cycles (also known as Hamiltonian cycles, Hamil-
tonian tours, and simple polygonizations) that can be em-
bedded over a fixed set of points in the plane. For a set
S of points in the plane, we denote by C(S) the set of all
crossing-free straight-edge spanning cycles of S, and put
sc(S) := |C(S)|. Moreover, we let sc(N) = max|S|=N sc(S).
The main goal of this paper is thus to obtain improved upper
bounds on sc(N).

There are many similar variants of this problem, such as
bounding the number of plane forests, spanning trees, trian-



gulations, and general plane graphs. Recent work on some of
these variants can be found in [1, 8, 19], and we try to keep a
comprehensive list of the up-to-date upper and lower bounds
in a dedicated webpage1. It seems that the case of spanning
cycles is the most popular one, already considered in [2, 3,
4, 5, 6, 15, 21] and many other works. Moreover, spanning
cycles were the first case for which bounds were published,
namely the bounds 3/20·10N/3 ≤ sc(N) ≤ 2·6N−2 ·(⌊N/2⌋)!
in [15]. A brief history of the steady progress on bounding
the number of spanning cycles can be found in a dedicated
webpage by Erik Demaine2. Currently, the best known lower
bound is sc(N) = Ω(4.642N ), due to Garćıa, Noy, and Tejel
[6], and the previous upper bound is sc(N) = O(68.664N )
by Dumitrescu et al. [5]. We derive the improved bound
sc(N) = O(54.543N ).
These problems have also been studied from an algorith-

mic point of view, deriving algorithms for enumeration or
counting of the plane graphs (or other graph types) that
can be embedded over a given point set (such as in [12, 17]).
The combinatorial upper bounds are useful for analyzing the
running times of such algorithms, and also to answer ques-
tions such as “how many bits are required to represent a
triangulation (or any other kind of plane graphs)?”.
Our bound (as do some of the previous bounds) relies on

triangulations. A triangulation of a set S of N points in
the plane is a maximal plane graph on S (that is, no addi-
tional straight edges can be inserted without crossing some
of the existing edges). For a set S of points in the plane, we
denote by T (S) the set of all triangulations of S, and put
tr(S) := |T (S)|. Moreover, we let tr(N) = max|S|=N tr(S).

Currently, the best known bounds for tr(N) are tr(N) < 30N

[19], and tr(N) = Ω(8.65N ) [5].
The upper bound by Dumitrescu et al. [5] is obtained

by proving that for every set S of N points in the plane
sc(S) = O

(
2.2888N

)
· tr(S). This has sharpened an earlier

bound of Buchin et al. [4], who showed that every trian-

gulation T of S contains at most 30N/4 ≈ 2.3404N span-
ning cycles (i.e., cycles whose edges belong to T ), implying3

that sc(S) < 2.3404N · tr(S). Combining the above ratio
with the bound tr(N) < 30N directly implies the asserted
bound. We derive our bound in a similar manner, showing
that sc(S) = O

(
1.8181N

)
· tr(S) = O(54.5430N ).

Figure 1: Two spanning cycles embedded over a double chain

point configuration.

In spite of our improved bound, we strongly believe, and
conjecture, that for every point set S (of size at least N0, for

1http://www.cs.tau.ac.il/~sheffera/counting/
PlaneGraphs.html (version of March 2012).
2http://erikdemaine.org/polygonization/ (version of
March 2012).
3The implication comes from the fact that every spanning
cycle, and in fact every plane graph, is contained in at least
one triangulation; see Section 2.

some sufficiently large constant N0) one has sc(S) < tr(S),
and perhaps even a much sharper ratio holds. The best lower
bound for this ratio that we know of is obtained from the
double chain configuration, presented in [6] (and depicted
in Figure 1). It is shown in [6] that when S is a double
chain configuration with N vertices, tr(S) = Θ∗ (8N) and

sc(S) = Ω∗ (4.64N).4 Thus, in this case, sc(S)/tr(S) =

Ω∗(0.58N ). (It is stated in [1], albeit without proof, that
sc(S) = O(5.61N ), so this example supports our conjecture.)

In Section 2 we go over the preliminaries required for our
analysis. These include, among others, the edge-flip tech-
niques used in [8]. Section 3 derives the bound sc(S) =

O
(
12N/4

)
· tr(S) = O

(
1.8613N

)
· tr(S) for any set S of N

points in the plane. As part of this derivation, we describe
Kasteleyn’s technique for counting perfect matchings and
present a new way of applying it. The more advanced anal-

ysis, deriving the improved bound sc(S) = O
(
10.9247N/4

)
·

tr(S) = O
(
1.8181N

)
·tr(S), is presented in Section 5. In Sec-

tion 4 we use the same methods to prove an upper bound
on the ratio between the number of plane perfect matchings
and the number of triangulations, showing that pm(S) =
O(1.1067N ) · tr(S) (where pm(S) is the number of crossing-
free straight-edge matchings that can be embedded over the
point set S).

While this paper constitutes a significant improvement
over previous bounds, it is only one stepping stone towards
the goal of establishing a sharp bound on sc(N), or of at
least showing that sc(N) < tr(N), as conjectured above.
The interest in this paper, in our opinion, is in the tech-
nique that it employs, where it combines recent results on
edge flippability in triangulations [8] with the beautiful (and
fairly old) technique of Kasteleyn [13, 14] that applies tools
from linear algebra to derive upper bounds on the number of
perfect matchings in planar graphs. Kasteleyn’s technique
has already been used recently in [4] for deriving bounds on
sc(N), but the application in this paper is different, as it
handles edge-weighted planar graphs. Instead of bounding
the number of perfect matchings, it bounds the sum of their
weights, where the weight of a matching is the product of
the weights of its edges. This enhanced version allows us to
“push” the technique much further and obtain our improved
bounds. We hope that this enhanced tool will lead to further
results in this area.

2. PRELIMINARIES
In this section we establish some notations and lemmas

that are required for the following sections.
Given two plane graphs G and H over the same point set

S, if every edge of G is also an edge of H, we write G ⊆ H.
Hull edges and vertices (resp., interior edges and vertices)

of a graph embedded on a point set S are those that are part
of the boundary of the convex hull of S (resp., not part of
the convex hull boundary).

Given a set S of N points in the plane, we denote by h
the number of hull vertices of S, and put n = N − h, which
is the number of interior vertices of S.

2.1 The support of a graph
4In the notations O∗(), Θ∗(), and Ω∗(), we neglect polyno-
mial factors.



Let us denote by sc∆(N) the maximal number of plane
spanning cycles that can be contained in any fixed triangu-
lation of a set of N points in the plane. Moreover, denote
the set of spanning cycles contained in a triangulation T by
C(T ), so sc∆(N) = max|S|=N, T∈T (S) |C(T )|.
Any spanning cycle (or, for that matter, any plane graph)

is contained in at least one triangulation. Therefore, we
can upper bound the number of spanning cycles of a set S
of N points in the plane by going over every triangulation
T ∈ T (S) and counting the number of spanning cycles con-
tained in T . This implies the bound sc(N) ≤ tr(N) ·sc∆(N).
Applying the bounds tr(N) < 30N from [19] and sc∆(N) ≤
30N/4 from [4], we obtain sc(N) < 305N/4 ≈ 70.21N .
This bounding method seems rather weak since it poten-

tially counts some spanning cycles many times. For example,
consider a spanning cycle of the double-chain configuration
consisting of two convex chains facing each other, as de-
picted in the left-hand side of Figure 1. Garćıa, Noy, and
Tejel [6] show that such a spanning cycle is contained in
Θ∗(8N ) triangulations of its point set. Therefore, the above
method will count this spanning cycle Θ∗(8N ) times. In this
case the above analysis method will be grossly over-counting
because, as stated in [1], this point set has only O(5.61N )
spanning cycles.
In order to deal with this inefficiency, we define the notion

of support (the same notion was also used in [5, 8, 19, 20,
22]). Given a plane edge graph G embedded over a set S
of points in the plane, we say that G has a support of x if
G is contained in (exactly) x triangulations of S; we write
supp(G) = x. Notice that

sc(S) =
∑

T∈T (S)

∑
C∈C(T )

1

supp(C)
, (1)

because every spanning cycle C contributes exactly one to
the right-hand side of the equation (it appears in supp(C)
terms of the first sum, and contributes 1/supp(C) in every
appearance). We will use (1) to obtain better upper bounds
for sc(N), by showing that, on average, supp(C) is large.

2.2 Ps-flippable edges
An edge in a triangulation is said to be flippable, if its

two incident triangles form a convex quadrilateral. A flip-
pable edge can be flipped, that is, removed from the graph
of the triangulation and replaced by the other diagonal of
the resulting quadrilateral. Such an operation is depicted in
Figure 2(a), where the edge ce can be flipped to the edge
ad.
In [8], we present the concept of pseudo simultaneously

flippable edges (or ps-flippable edges, for short). Given a tri-
angulation T , we say that a subset F of its edges is a set of
ps-flippable edges if the edges of F are diagonals of interior-
disjoint convex polygons (whose boundaries are also parts
of T ). For example, in Figure 2(b), the three dashed edges
form a set of ps-flippable edges, since they are diagonals of
interior-disjoint convex quadrilateral and convex pentagon
(another set of ps-flippable edges, in a different triangula-
tion, is depicted in Figure 2(c)).
Ps-flippable edges are related to convex decompositions.

A convex decomposition of a point set S is a crossing-free
straight-edge graph D on S such that (i) D includes all the
hull edges, (ii) each bounded face of D is a convex polygon,
and (iii) no point of S is isolated in D. See Figure 2(c)
for an illustration. For additional information about convex

ab

c
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e

ab

c

d

e

(a) (b)

(c)

Figure 2: (a) The edge ce can be flipped to the edge ad. (b)

A set of three (dashed) ps-flippable edges which are diagonals of

interior-disjoint convex quadrilateral and convex pentagon. (c) A

convex decomposition with four bounded cells obtained by removing

the dashed edges from the triangulation; here too the dashed edges

are diagonals of pairwise disjoint convex faces, and form a set of

ps-flippable edges.

decompositions, see, for example, [9]. Notice that if T is
a triangulation that contains D, the edges of T \ D form
a set of ps-flippable edges, since they are the diagonals of
the interior-disjoint convex polygons of D (again, consider
the dashed edges in Figure 2(c) for an illustration). Thus,
finding a large set of ps-flippable edges in a triangulation T
is equivalent to finding a convex decomposition with a small
number of faces (or edges) in T .

In [8], we prove the two following lemmas.

Lemma 2.1. Every triangulation T over a set of N points
in the plane contains a set F of N/2− 2 ps-flippbale edges.
Also, there are triangulations with no larger sets of ps-flippable
edges.

Lemma 2.2. Consider a triangulation T , a set F of N/2−
2 ps-flippable edges in T , and a graph G ⊆ T . If G does not
contain j edges from F then supp(G) ≥ 2j .

Proof sketch. Consider the set F ′ = F \G of j ps-flippable
edges. The convex faces of T \ F ′ can be triangulated in at
least 2j ways (the actual number, which is a product of Cata-
lan numbers [23, Section 5.3], attains this minimum when
every edge of F ′ is a diagonal of a distinct quadrangular face
of T \ F ′), and each of the resulting triangulations contains
G. See [8] for more details.

Non-valid Valid

Figure 3: A vertex is valid if and only if it is not a reflex vertex

of any face.

We now describe another property of convex decomposi-
tions (not discussed in [8]). Consider a set S of points in the
plane and a crossing-free straight-edge graph G embedded



on S. We say that an interior point p ∈ S has a valid triple
of edges in G if there exist three points a, b, c ∈ S such that
p is contained in the convex hull of {a, b, c} and the edges ap,
bp, and cp belong to G. To simplify the notation, we refer to
vertices with valid triples as valid (with respect to G), and
to the other interior vertices as non-valid. See Figure 3 for
an illustration.

Lemma 2.3. Let S be a set of points in the plane and let
G be a crossing-free straight-edge graph over S that contains
all the edges of the convex hull of S. Then G is a convex
decomposition of S if and only if every interior vertex of S
is valid with respect to G.

Proof. An interior vertex v is a reflex vertex of some face
of G if and only if v is non-valid (see Figure 3). The lemma
follows by observing that G is a convex decomposition if and
only if no bounded face of G has a reflex vertex.

Figure 4: In a point set of an even size, every spanning cycle is

the union of two edge-disjoint perfect matchings.

2.3 Spanning cycles and perfect matchings
Our analysis, as most of the previous works dealing with

the number spanning cycles, heavily relies on the number of
plane perfect matchings on S (for example, see [4, 5, 21]).
To see the connection between the two problems, notice that
if |S| is even, every spanning cycle C is the union of two
edge-disjoint perfect matchings on S; namely, the matching
consisting of the even-indexed edges of C, and the matching
consisting of the odd-indexed edges. An illustration of this
property is depicted in Figure 4. Denote by M(S) the set of
all plane perfect matchings on S, and put pm(S) = |M(S)|.
We also set pm(N) = max|S|=N pm(S). Hence, a simple

upper bound on sc(S) is pm(S)2. In general, the union of
two edge-disjoint perfect matchings is not always a spanning
cycle, but it is a cover of S by vertex-disjoint even-sized
cycles.

e

λ

e1

e2

(b)

p

(a)

Figure 5: (a) We can always connect a new vertex p outside the

convex hull of S to two endpoints of some edge of the spanning

cycle. (b) The set {e, e1, e2} is a valid triple of edges.

To deal with point sets of odd size, we use the following
lemma:

Lemma 2.4. Let c > 1 be a constant such that every set
S of an even number of points in the plane satisfies sc(S) =

O(c|S|). Then sc(S) = O(c|S|) also holds for sets S of an
odd number of points.

Proof. Consider a set S of N points in the plane, where
N is odd. Pick a new point p outside the convex hull of S,
and put S′ = S∪{p}. Let C be a plane spanning cycle of S.
Then there exists an edge e = vu of C such that p can be
connected to the two endpoints u, v of e without crossing C
(e.g., see Figure 5(a)). Indeed, this is a projective variant of
the property, noted in [7], that every finite collection of non-
crossing straight segments in the plane contains a segment e
such that no other segment lies vertically above any point of
e (see also [16, Section 8.7]). By replacing e with the edges
vp and pu, we obtain a crossing-free spanning cycle of S′.
This implies that we can map every spanning cycle of S to a
distinct spanning cycle of S′, and thus, sc(S) ≤ sc(S′). The
lemma then follows since sc(S′) = O(cN+1) = O(cN ).

Bounding the number of perfect matchings on S within
a fixed triangulation T can be done by the beautiful linear-
algebra technique of Kasteleyn [13], described in detail in
[14, Section 8.3]; see Section 3 for more details. Buchin et
al. [4] have used this technique to show that any triangula-

tion T of S contains at most 6N/4 perfect matchings, and at
most 30N/4 ≈ 2.3403N spanning cycles. We also note that
Sharir and Welzl [21] showed that pm(S) = O

(
10.05N

)
,

completely bypassing the approach of counting matchings
(or other graphs) within a triangulation. While this bound
is fairly small, it does not seem to be useful for obtaining
a good bound on sc(N). For example, using the inequality
sc(N) ≤ pm(N)2, noted above, only gives the rather weak
bound sc(N) = O(101.01N ).

3. AN UPPER BOUND ON THE NUMBER
OF SPANNING CYCLES

In this section we first review an enhanced variant of
Kasteleyn’s technique and then use it to derive an upper
bound on sc(S).

Theorem 3.1. For any set S of N points in the plane,

sc(S) = O
(
12N/4

)
· tr(S) = O

(
1.8613N

)
· tr(S).

This bound is slightly weaker than the one stated in the
introduction, but its proof is considerably simpler; the im-
proved bound is derived in Section 5.

Proof. First, by Lemma 2.4, we may assume that N is
even. Consider a triangulation T of S. As already observed,
every spanning cycle contained in T is the union of two edge-
disjoint perfect matchings contained in T . Given a plane
graph G, we denote byM(G) the set of all perfect matchings
that are contained in G. Recalling (1), we have

sc(S) ≤
∑

T∈T (S)

∑
M1,M2∈M(T )

M1,M2 edge-disjoint

1

supp(M1 ∪M2)
.

(The inequality comes from the fact that not every pair
M1,M2 of matchings, as in the sum, necessarily yields a
spanning cycle.) Let us fix the“first”perfect matching M1 ⊂
T ; as mentioned above, Buchin et al. [4] prove that |M(T )| ≤
6N/4, so there are at most 6N/4 choices of M1. Next, we con-
struct a convex decomposition D such that M1 ⊂ D ⊂ T ,
as follows. We start with M1 and add all the missing hull



edges; let us denote the resulting graph as D′. By Lemma
2.3, it suffices to add edges to D′ so as to ensure that every
interior point p ∈ S is connected in D to (at least) three
points a, b, c ∈ S, such that p is inside the convex hull of
{a, b, c}. Every interior vertex p of S has degree 1 in D′,
so we start by setting D := D′, and then, for each interior
point p ∈ S, we add to D two additional edges of T adja-
cent to p, so as to create a valid triple. To do so, let e be
the edge of D′ (that is, of M1) incident to p, and let λ be
the ray emanating from p in the opposite direction. Let e1
(resp., e2) be the first edge of T incident to p encountered
in clockwise (resp., counterclockwise) direction from λ; see
Figure 5(b). Then, as is easily checked, {e, e1, e2} is a valid
triple of edges, and we add e1, e2 to D. After applying this
step to each interior point p, the resulting graph D is indeed
a convex decomposition of S.
We denote by F the set of edges that are in T but not

in D. The edges of F are diagonals of interior-disjoint con-
vex polygons, and thus F is a set of ps-flippable edges. By
Euler’s formula, the triangulation T contains 3N−2h−3 in-
terior edges, and D contains at most 2n+N/2 interior edges
(at most N/2 edges of M1 and at most 2n added edges to
form n valid triples). Therefore,

|F | ≥ 3N − 2h− 3− (2n+N/2) = N/2− 3.

Remark. Note the strength of this bound: Lemma 2.1 has
a rather involved proof, given in [8], and it yields a set of
N/2 − 2 ps-flippable edges in the entire triangulation. In
contrast, here we get the same number (minus 1) after we
remove from T an arbitrary perfect matching, with a consid-
erably simpler analysis. Thus the significance of the analysis
in [8] (giving the proof of Lemma 2.1) is only for triangula-
tions which contain no perfect matching on S. For example,
any triangulation with more than N/2 interior vertices of
degree 3 cannot contain a perfect matching, since, as is eas-
ily checked, two interior vertices of degree 3 cannot share an
edge.

Without loss of generality, we assume that F consists of
exactly N/2−3 edges. We now proceed to bound the number
of ways to choose the second matching M2 while taking the
supports of the resulting graphs M1∪M2 into account. Since
M1 and M2 have to be edge-disjoint, we can remove the N/2
edges of M1 from T , and remain with a subgraph T ′ that has
fewer than 5N/2 edges. Next, we define a weight function µ
over the edges of T ′, such that every edge in F has a weight
of 1 and every other edge has a weight of 1/2. We define the
weight µ(M2) of a perfect matching M2 ⊂ T ′ as the product
of the weights of its edges. Therefore, if M2 contains exactly
j edges of F , then µ(M2) = (1/2)N/2−j . Moreover, for such
a matching M2, we have |F \ M2| = N/2 − 3 − j. Clearly,
F \ M2 is also a set of ps-flippable edges, none of which
belongs to M1 ∪M2. We thus have

1

supp(M1 ∪M2)
≤ 1

2N/2−3−j
= 8µ(M2),

which implies that, given a specific triangulation T and a
specific perfect matching M1 ⊂ T ,∑

M2∈M(T ′)

1

supp(M1 ∪M2)
≤ 8

∑
M2∈M(T ′)

µ(M2), (2)

with T ′ = T \M1, as above.

Kasteleyn’s technique: An enhanced version. We

now apply an extension of Kasteleyn’s technique to estimate
the sum in the right-hand side of (2). Here is a brief overview
of the technique being used (where instead of the original
technique, we apply a weighted extension of it). Given an

oriented graph5 G⃗ = (V,E) with no anti-parallel edges and
a weight function µ over the edges, we define the following
weighted adjacency matrix BG⃗,µ = (bij)N×N of (G⃗, µ),

bij =

 µ(e), if e = (i, j) ∈ E,
−µ(e), if e = (j, i) ∈ E,
0, otherwise

(where N = |V |, and the rows and columns of BG⃗,µ corre-

spond to an arbitrary fixed enumeration of the vertices).
An easy extension of Kasteleyn’s theorem states that ev-

ery planar graphG can be oriented into some digraph G⃗ such
that, for any real-valued weight function µ on its edges, we
have  ∑

M∈M(G)

µ(M)

2

=
∣∣∣det(BG⃗,µ

)∣∣∣ (3)

(recall that µ(M) =
∏

e∈M µ(e)). In the “pure” form of
Kasteleyn’s theorem µ ≡ 1 (i.e., G is unweighted) and the
left-hand side is just the squared number of perfect match-
ings in G. A detailed presentation of Kasteleyn’s theorem
can be found in [14, Section 8.3]. The extension (3) to
weighted graphs is given in Exercise 8.3.9 therein.

We denote by bi the column vectors of B, for 1 ≤ i ≤
N , and estimate the above determinant using Hadamard’s
inequality ∣∣∣det(BG⃗,µ

)∣∣∣ ≤ N∏
i=1

∥bi∥2. (4)

Applying the above machinery to our plane graph T ′ (i.e.,
using (3) and (4)), with the edge weights µ as defined above,
we have

∑
M2∈M(T ′)

µ(M2) =

√∣∣∣det(BT⃗ ′,µ)
∣∣∣ ≤

√√√√ N∏
i=1

∥bi∥2

=

(
N∏
i=1

∥bi∥22

)1/4

≤

(
1

N

N∑
i=1

∥bi∥22

)N/4

=

(
2

N

∑
e∈T ′

µ(e)2
)N/4

(5)

(where we have used the arithmetic-geometric mean inequal-

ity and the fact that every edge of T⃗ ′ has two corresponding
matrix entries). We note that the bound 6N/4 on the num-
ber of perfect matchings in a triangulation T is obtained in
[4] by applying the unweighted version of Kasteleyn’s theo-
rem to the entire T . In this case

∑
e∈T µ(e)2 is the number

of edges of T , which is at most 3N , and the bound follows.
By noting that

|T ′ \ F | ≤ 5N/2− (N/2− 3) = 2N + 3,

5We follow here the notation used in [14] to denote a di-
graph obtained from an underlying undirected graph by giv-
ing each of its edges an orientation.



and combining this with (2) and (5), we obtain

∑
M2∈M(T ′)

1

supp(M1 ∪M2)
≤ 8 ·

(
2

N

∑
e∈T ′

µ(e)2
)N/4

≤ 8 ·

(
2

N
·

(
12 · (N/2− 3) +

(
1

2

)2

· (2N + 3)

))N/4

= O
(
2N/4

)
. (6)

Recalling once again that a triangulation contains at most
6N/4 perfect matchings [4] (that is, there are 6N/4 ways of
choosing M1), and combining this with (6), we obtain

sc(S) ≤
∑

T∈T (S)

∑
M1,M2∈M(T )

M1,M2 edge-disjoint

1

supp(M1 ∪M2)

≤
∑

T∈T (S)

6N/4 ·O
(
2N/4

)
= O

(
12N/4

)
· tr(S),

as asserted.

As already noted, by applying a more complex analysis, we
will obtain in Section 5 a slightly better bound.

4. PERFECT MATCHINGS AND TRIANGU-
LATIONS

In this section we apply the machinery of the previous
section to derive an upper bound on the ratio between the
number of plane perfect matchings and the number of tri-
angulations. As already mentioned in Section 2, Kaste-
leyn’s technique implies that a triangulation of a set of N
points can contain at most 6N/4 perfect matchings (see [4]).
This implies that for every set S of N points in the plane,
pm(S) ≤ 6N/4 · tr(S) ≈ 1.5651N · tr(S). We will improve
this bound, using lower bounds on the supports of perfect
matchings, in a manner similar to that in Section 3.

Figure 6: A set of 12 points in a double circle configuration.

Before proceeding, we note the following lower bound on
the ratio pm(S)/tr(S). Let S be a double circle configura-
tion, depicted in Figure 6, consisting of N points (see [10]
for a precise definition). An inclusion-exclusion argument

implies that tr(S) = 12N/2 ≈ 3.464N (see [10, 18]). More-
over, Aichholzer et al. [1] proved that pm(S) = Θ∗(2.2N ).
Therefore, in this case, pm(S)/tr(S) ≈ Θ∗(0.635N ).
We now present an improved upper bound for this ratio.

Theorem 4.1. For any set S of N points in the plane,

pm(S) ≤ 8 · (3/2)N/4 · tr(S) = O(1.1067N ) · tr(S).

Proof. The exact value of pm(S) is

pm(S) =
∑

T∈T (S)

∑
M∈M(T )

1

supp(M)
. (7)

Consider a triangulation T ∈ T (S) and a perfect matching
M ⊆ T . As shown in the proof of Theorem 3.1, there exists
a set of N/2− 3 ps-flippable edges in T \M . Therefore, the

support of M is at least 2N/2−3. Combining this with (7)
implies

pm(S) ≤
∑

T∈T (S)

∑
M∈M(T )

1

2N/2−3
≤

∑
T∈T (S)

6N/4

2N/2−3

= 8 · (3/2)N/4 · tr(S).

As already mentioned above, this does not imply a new
bound on pm(N), since Sharir and Welzl [21] showed that
pm(S) = O

(
10.05N

)
, bypassing the approach of counting

matchings within a triangulation. We are not aware of
any construction for which pm(S) ≥ tr(S), and offer the
conjecture that there exists a constant c < 1 such that
pm(S) = O(c|S| · tr(S)) for every finite set S of points in the
plane. (See also the stronger conjecture concerning spanning
cycles, made in the introduction.)

5. AN IMPROVED BOUND
In this section we present a more complex analysis for the

number of spanning cycles, obtaining a slightly better bound
than the one presented in Section 3. The analysis has three
parts, each presented in a separate subsection.

Let us denote the number of interior vertices of degree 3
in the triangulation T as v3(T ), and the number of flippable
edges in T as flip(T ). In Subsection 5.1 we give an upper
bound for

∑
C∈C(T )

1
supp(C)

that depends on v3(T ). In Sub-

section 5.2 we give an alternative upper bound that depends
on flip(T ). Finally, in Subsection 5.3 we combine these two
bounds to obtain

sc(N) = O(1.8181N ) · tr(N) = O(54.543N ).

5.1 A v3(T )-sensitive bound
In this subsection we derive the following bound, which is

a function of N and v3(T ).

Lemma 5.1. Let T be a triangulation over a set S of
N ≥ 6 points in the plane, such that N is even and S has a
triangular convex hull; also, let v3(T ) = tN . Then

∑
C∈C(T )

1

supp(C)
< 8

(
3

2t

(
(2− t)(2− t/2)

(1− t)2

)1−t
)N/4

.

Proof. As before, we treat every spanning cycle as the
union of two edge-disjoint perfect matchingsM1,M2 ∈ M(T ).
We start by bounding the number of ways to choose the first
perfect matching M1. For this, we use the standard variant
of Kasteleyn’s technique, with the weight function µ ≡ 1
(i.e., the underlying graph G is unweighted).

Recall the inequality
∑

M∈M(T ) µ(M) ≤
(∏N

i=1 ∥bi∥
2
2

)1/4
obtained in Equation (5), where the bi’s (for 1 ≤ i ≤ N)
are the column vectors of the (signed) adjacency matrix of

the oriented graph T⃗ . Substituting µ ≡ 1, the left hand
side becomes the number of perfect matchings in T , and the
squared l2-norm of each column vector is the degree of the
vertex corresponding to that column. Since every column
that corresponds to a vertex of degree 3 has a squared norm



of 3, the product of the squared norms of these columns is
3v3(T ) = 3tN .
For the remainingN−v3(T ) columns, we use, as in Section

3, the arithmetic-geometric mean inequality to bound the
product of their squared norms (as in Equation (5)). This
yields the bound(

X

N − v3(T )

)(N−v3(T ))/4

=

(
X

N(1− t)

)(N(1−t))/4

, (8)

where X is the sum of the degrees of all vertices other than
those counted in v3(T ). The sum of the degrees over the
vertices of any specific triangulation is smaller than 6N , and
the sum of the degrees of the interior degree-3 vertices in T
is 3v3(T ). Therefore, we have

X < 6N − 3v3(T ) = 3N(2− t). (9)

Combining (8), (9), and the product of the squared norms
that correspond to interior vertices of degree 3, implies that
the number of ways to choose M1 is less than(

3t ·
(
3N(2− t)

N(1− t)

)1−t
)N/4

=

(
3 ·
(
2− t

1− t

)1−t
)N/4

. (10)

Next, let us fix a specific perfect matching M1 ∈ M(T ). As
shown at the beginning of the proof of Theorem 3.1, there
exists a set F of N/2 − 3 ps-flippable edges in T , none of
which belongs to M1.
We continue as in the proof of Theorem 3.1, by assigning

a weight of 1 to the edges of F and a weight of 1/2 to the
rest of the edges of T \M1, recalling (2), and then applying
Kaseteleyn’s technique to bound the sum

∑
M2∈M(T ′)

1

supp(M1 ∪M2)
≤ 8

∑
M2∈M(T\M1)

µ(M2) ≤ 8

(
N∏
i=1

∥b′i∥22

)1/4

,

where b′i are the column vectors of the oriented weighted
adjacency matrix of T \M1.
An interior vertex v of degree 3 in T has only two edges ad-

jacent to it in T \M1, both not in F (since an edge adjacent
to an interior vertex of degree 3 cannot be flippable). There-
fore, the squared norm of a matrix column that corresponds
to such a vertex is (1/2)2+(1/2)2 = 1/2, and the product of

the squared norms of all such columns is 1/2v3(T ) = 1/2tN .
For the remaining N −v3(T ) columns, we may once again

use the arithmetic-geometric mean inequality to obtain a
bound similar to the one in (8). Namely(

Y

N(1− t)

)(N(1−t))/4

, where Y =
∑

∥b′i∥22,

and the sum is over the N − v3(T ) vertices of T \M1 which
are not of degree 3 in T . Each such vertex contributes to Y
the sum of the squared weights of its incident edges. The
estimate for Y will therefore be different, since (i) some of
the edges of T were removed, and (ii) the weight function
µ is not identically 1. The edges of F have remained and
still have a weight of 1 each, so they contribute at most
2 · (N/2 − 3) · 1 < N to Y . Every other edge contributes
2 · 1/4 = 1/2 if it is not incident to an interior vertex of
degree 3 in T , and 1/4 otherwise. Since a triangulation has
fewer than 3N − 3 edges, there are fewer than 2N edges in

T \ {F ∪M1}, and we get

X < N + (2N − 2v3(T )) ·
1

2
+ 2v3(T ) ·

1

4
= 2N − v3(T )

2

= N(2− t/2).

By combining this with the rest of the squared norms and
with the present version of (8), we have

∑
M2∈M(T\M1)

1

supp(M1 ∪M2)
< 8

(
1

2t

(
N(2− t/2)

N(1− t)

)1−t
)N

4

= 8

(
1

2t
·
(
2− t/2

1− t

)1−t
)N/4

. (11)

Finally, to complete the proof, we combine (10) and (11),
and obtain∑

C∈C(T )

1

supp(C)
≤

∑
M1,M2∈M(T )

M1,M2 edge-disjoint

1

supp(M1 ∪M2)

<

(
3 ·
(
2− t

1− t

)1−t
)N/4

· 8

(
1

2t
·
(
2− t/2

1− t

)1−t
)N/4

= 8

(
3

2t

(
(2− t)(2− t/2)

(1− t)2

)1−t
)N/4

.

Remark. Notice that in the worst case (i.e., when t = 0)
we obtain the same asymptotic value as in our initial bound
of 12N/4. Similarly, the bound in (10) becomes 6N/4 when
t = 0, as in Buchin et al. [4].

5.2 A flip(T )-sensitive bound
Hurtado, Noy, and Urrutia [11] proved that flip(T ) ≥

N/2− 2, and that this bound is tight in the worst case (the
upper bound is also implied by Lemma 2.1; see also [8]).
In this subsection we obtain a bound on

∑
C∈C(T )

1
supp(C)

as a function of flip(T ), which improves our initial bound

of 12N/4 when flip(T ) is larger than N/2 by some positive
fraction of N .

We define cgon as the maximum real number satisfying
the following property. Every simple polygon P that has a
triangulation TP with k of its diagonals flippable and with
l ≤ k of these diagonals forming a ps-flippable set, has at
least 2lck−l

gon triangulations. Notice that the triangulations
under consideration, including TP , are triangulations of the
polygon P , and not of its vertex set. Note also that we can
have the equality l = k only when P is convex.

Lemma 5.2. x ≤ cgon ≤ 5/4 where x ≈ 1.17965 is the
unique real root of the polynomial 1 + 4x2 − 4x3. That is,
the left inequality means that every simple polygon P that
has a triangulation TP with k of its diagonals flippable and
with l ≤ k of these diagonals forming a ps-flippable set, has
at least 2lxk−l triangulations.

For a proof of this lemma, see the full version of the pa-
per.6 Next, we show how to use cgon (or rather, its lower
bound x) and flip(T ) to upper bound

∑
C∈C(T )

1
supp(C)

.

6http://arxiv.org/abs/1109.5596



Lemma 5.3. Consider a triangulation T with flip(T ) =
N/2− 3 + κN , for some κ ≥ 0, and let x be the constant in
Lemma 5.2. Then∑
C∈C(T )

1

supp(C)

< 8

(
(3 + (γ2 − 1)(κ+ 1/2))(4 + (x2 − 1)κ)

x4κ

)N/4

,

where

γ = x · e−
x2−1

4(4+(x2−1)κ) .

Proof. Once again, we treat every spanning cycle as the
union of a pair of edge-disjoint perfect matchings M1,M2 ∈
M(T ), and use Kasteleyn’s technique (as presented in Sec-
tion 3) to bound the number of such pairs. We start by
fixing some perfect matching M1 ∈ M(T ) and denote the
number of flippable edges of T that are in M1 as flipT (M1).
As shown in the proof of Theorem 3.1, there is a set of at
least N/2− 3 ps-flippable edges in T \M1. We restrict our
attention to a set F of exactly N/2− 3 ps-flippable edges in
T \M1.
For analyzing the complementary matchings M2, we de-

fine a weight function µ(·) on the edges of T \ M1, such
that

µ(e) =

 2, if e ∈ F,
x, if e /∈ F is flippable,
1, if e is not flippable.

Notice that any spanning cycle partitions the convex hull
of its point set into interior-disjoint simple polygons. The
support of the spanning cycle is the product of the number
of triangulations of each of these polygons. For a fixed choice
of M2 (and of M1), denote by P1, . . . , Pm the polygons in
the partition produced by M1∪M2 (assuming that M1∪M2

is indeed a spanning cycle). For each i, let ki be the number
of flippable diagonals of Pi, and let li be the number of those
diagonals (among the ki flippable ones) that belong to F . If
M2 uses flipT (M2) flippable edges of T \M1, l of which are
in F , then

∑m
i=1 ki = flip(T ) − flipT (M1) − flipT (M2) and∑m

i=1 li = |F | − l = N/2 − 3 − l. Applying Lemma 5.2 to
each Pi and multiplying the resulting bounds, we obtain a

total of at least 2
∑

lix
∑

ki−
∑

li triangulations. Hence,

supp(M1 ∪M2) ≥ (2/x)
∑

lix
∑

ki

= (2/x)N/2−3−lxflip(T )−flipT (M1)−flipT (M2).

Next, notice that µ(M2) = 2lxflipT (M2)−l, so we have

supp(M1 ∪M2) ≥
2N/2−3xflip(T )−flipT (M1)−(N/2−3)

µ(M2)

=
2N/2−3xκN−flipT (M1)

µ(M2)
. (12)

By combining (12) with Kasteleyn’s method, we obtain∑
M2∈M(T\M1)
M1∪M2∈C(T )

1

supp(M1 ∪M2)

≤
∑

M2∈M(T\M1)

µ(M2)

2N/2−3xκN−flipT (M1)

≤ 1

2N/2−3xκN−flipT (M1)
·

 2

N

∑
e∈T\M1

µ(e)2

N/4

. (13)

To bound the sum in the parentheses, we notice that T \
M1 contains exactly N/2 − 3 edges of F , exactly κN −
flipT (M1) flippable edges not in F , and fewer than 2N −
(κN − flipT (M1)) non-flippable edges. Therefore,

2

N

∑
e∈T\M1

µ(e)2 <
2

N

(
12 · (2N − (κN − flipT (M1))) (14)

+x2 · (κN − flipT (M1)) + 22 ·N/2
)

= 8 + 2(x2 − 1)κ− 2(x2 − 1) · flipT (M1)/N

= (8 + 2(x2 − 1)κ)

(
1− 2(x2 − 1)

8 + 2(x2 − 1)κ
· flipT (M1)

N

)
≤ (8 + 2(x2 − 1)κ) · e−

x2−1

4+(x2−1)κ
· flipT (M1)

N

= (8 + 2(x2 − 1)κ) · (γ/x)4·flipT (M1)/N , (15)

where in the penultimate inequality we applied 1− u ≤ e−u

(which holds for u ≥ 0). Combining (13) and (15), we get∑
C∈C(T )

1

supp(C)
≤

∑
M1,M2∈M(T )

M1,M2 edge-disjoint
M1∪M2∈C(T )

1

supp(M1 ∪M2)

≤
∑

M1∈M(T )

(
(8 + 2(x2 − 1)κ) · (γ/x)4·flipT (M1)/N

)N/4

2N/2−3xκN−flipT (M1)

= 8

(
8 + 2(x2 − 1)κ

4x4κ

)N/4 ∑
M1∈M(T )

γflipT (M1). (16)

To bound the sum in (16), we once again use Kasteleyn’s
technique. This time, we define a weight function ν(·) over
the edges of T , such that every flippable edge gets a weight
of γ, and every other edge a weight of 1. Notice that, in this
manner, ν(M1) = γflipT (M1) for every M1 ∈ M(T ). We thus
have ∑

M1∈M(T )

γflipT (M1) ≤

(
2

N

∑
e∈T

ν(e)2
)N/4

<

(
2

N

(
γ2 · flip(T ) + 1 · (3N − flip(T ))

))N/4

<

(
6 +

2

N
(γ2 − 1)(N/2 + κN)

)N/4

<
(
6 + 2(γ2 − 1)(κ+ 1/2)

)N/4
. (17)

Finally, combining (16) and (17) implies the assertion of the
lemma.

Note that in the worst case, when κ = 0, the bound be-

comes O
(
(10 + 2γ2)N/4

)
. For k = 0, we have γ = x ·

e−(x2−1)/16, and it is easy to verify that γ > 1 for 1 < x ≤



5/4. So the bound is actually asymptotically worse than our

initial bound of 12N/4, and it continues to be worse when κ
is sufficiently small. As the next subsection shows, in this
case the v3-dependent bound from Subsection 5.1 becomes
small and can be used instead.

5.3 Integration
In this subsection we combine the results from the two

previous subsections to obtain an improved bound for sc(N).
This is done by deriving a connection between v3(T ) and
flip(T ). We start by presenting a generalization of Lemma
2.4.

Lemma 5.4. Let c > 1 be a constant such that every set
S of an even number of points in the plane and a triangular
convex hull satisfies sc(S) = O(c|S|). Then sc(S) = O(c|S|)
also holds for every other finite point set S in the plane.

Proof. Consider a point set S. If S has an even number
of points, we pick a new point p outside the convex hull
of S, and put S′ = S ∪ {p}. As mentioned in the proof
of Lemma 2.4, inserting an additional vertex outside the
convex hull of the point set can only increase the number
of spanning cycles. If S has an odd number of points, we
put S′ = S. Notice that, either way, S′ has an odd number
of points. Let ∆abc be a large triangle containing S′ in its
interior, and let S′′ = S′ ∪ {a, b, c}. Again, since inserting
an additional vertex outside the convex hull of the point set
can only increase the number of spanning cycles, we have
sc(S′) ≤ sc(S′′). Since S′′ has an even number of points
and a triangular convex hull, sc(S) ≤ sc(S′) ≤ sc(S′′) =

O(cN+4) = O(c|S|).

Figure 7: Separable edges.

We also require the notion of separable edges, as presented
in [20]. Consider a point set S, a triangulation T ∈ T (S),
and an interior point p ∈ S. We call an edge e incident to
p in T a separable edge at p if it can be separated from the
other edges incident to p by a line through p. An equivalent
condition is that the two angles between e and its clockwise
and counterclockwise neighboring edges (around p) sum up
to more than π. We observe the easy following properties
(see Figure 7 for an illustration).

(S0) No edge is separable at both vertices induced by its
endpoints.

(S1) If p has degree 3 in T , every edge incident to it is
separable (recall that p is an interior point).

(S2) If p has degree at least 4 in T , at most two incident
edges can be separable at w.

(S3) If p has degree at least 4 in T and there are two edges
separable at p, then they must be consecutive in the
order around it.

We are now ready for the main theorem of the section.

Theorem 5.5. For any set S of N points in the plane,

sc(S) = O
(
10.9247N/4

)
· tr(S) = O

(
1.8181N

)
· tr(S).

Proof. By Lemma 5.4, we may assume that N is even and
that S has a triangular convex hull. Recall that

sc(S) =
∑

T∈T (S)

∑
C∈C(T )

1

supp(C)
.

We sort the triangulations in the first sum according to the
number of interior vertices of degree 3 that they contain,
and get

sc(S) =

(2N+1)/3∑
i=0

∑
T∈T (S)
v3(T )=i

∑
C∈C(T )

1

supp(C)
. (18)

(The fact that v3(T ) ≤ (2N + 1)/3 for every triangulation
T is established, e.g., in [22].) Given a triangulation T with
v3(T ) = i, we can use Lemma 5.1 to bound

∑
C∈C(T )

1
supp(C)

.

However, when v3(T ) is small, the improvement in Lemma
5.1 is not significant. In this case we will use instead the
bound in Lemma 5.3 which, as we now proceed to show,
becomes significant when v3(T ) is small.

Consider a triangulation T ∈ T (S). Since S has a trian-
gular convex hull, T contains 3N − 9 interior edges. Notice
that an interior edge e is flippable if and only if e is not sep-
arable at either of its endpoints (this property is equivalent
to e being a diagonal of a convex quadrilateral). From the
above properties of separable edges, we have

flip(T ) ≥

Interior edges︷ ︸︸ ︷
3N − 9 −3 ·

Interior vertices of degree 3︷ ︸︸ ︷
v3(T )

−2 ·

Other interior vertices︷ ︸︸ ︷
(N − v3(T )− 3) = N − 3− v3(T ).

To find for which values of i it is better to use Lemma 5.1,
and for which values it is better to use Lemma 5.3, we define
t = v3(T )/N and

κ =
flip(T )− (N/2− 3)

N
≥ (N − tN − 3)− (N/2− 3)

N

= 1/2− t,

and solve the equation

8

(
3

2t

(
(2− t)(2− t/2)

(1− t)2

)1−t
)N/4

= 8

(
(3 + (γ2 − 1)(κ+ 1/2))(4 + (x2 − 1)κ)

x4κ

)N/4

with κ = 1/2−t, where x ≈ 1.17965 and γ = x·e−
x2−1

4(4+(x2−1)κ) ;
this will determine the threshold where the two bounds co-
incide. That is, we need to solve the equation (again, with
κ = 1/2− t)

3

2t

(
(2− t)(2− t/2)

(1− t)2

)1−t

=
(3 + (γ2 − 1)(κ+ 1/2))(4 + (x2 − 1)κ)

x4κ
.



For this, we use the Wolfram Mathematica software [24],
and obtain the solution t ≈ 0.1072. Moreover, it is easily
shown that for i ≥ 0.1072N the bound from Lemma 5.1 is
smaller, and for i ≤ 0.1072N the bound from Lemma 5.3 is
smaller. In fact, these bounds, in their appropriate usage,
are all dominated by the common bound for t ≈ 0.1072.
This, together with (18), Lemma 5.1, and Lemma 5.3 imply
the asserted bound.

By combining Theorem 5.5 with the bound tr(N) < 30N

[19], we obtain:

Corollary 5.6. sc(N) = O
(
54.543N

)
.
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