
On Degrees in Random Triangulations of Point Sets∗

Micha Sharir
School of Computer Science

Tel Aviv University
Tel Aviv 69978, Israel

—
Courant Inst. of Math. Sci.

New York University
New York, NY 10012, USA

michas@tau.ac.il

Adam Sheffer
School of Computer Science

Tel Aviv University
Tel Aviv 69978, Israel
sheffera@tau.ac.il

Emo Welzl
Institut für Theoretische
Informatik, ETH Zürich

CH-8092 Zürich, Switzerland
emo@inf.ethz.ch

ABSTRACT
We study the expected number of interior vertices of degree
i in a triangulation of a point set S, drawn uniformly at
random from the set of all triangulations of S, and derive
various bounds and inequalities for these expected values.
One of our main results is: For any set S of N points in
general position, and for any fixed i, the expected number of
vertices of degree i in a random triangulation is at least γiN ,
for some fixed positive constant γi (assuming that N > i and
that at least some fixed fraction of the points are interior).

We also present a new application for these expected val-
ues, using upper bounds on the expected number of interior
vertices of degree 3 to get a new lower bound, Ω(2.4317N ),
for the minimal number of triangulations any N-element pla-
nar point set in general position must have. This improves
the previously best known lower bound of Ω(2.33N ).

Categories and Subject Descriptors
G.2.1 [Discrete Mathematics]: Combinatorics—Count-
ing Problems

General Terms
Theory
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1. INTRODUCTION
A planar graph is a graph that can be drawn in the plane

in such a way that its edges intersect only at their endpoints.
A plane straight-line graph is an embedding of a planar graph
in the plane such that its edges are mapped to non-crossing
straight line segments. In this paper, we consider only plane
straight-line graphs, but refer to them as plane graphs or
non-crossing graphs, for simplicity.

A triangulation of a finite point set S in the plane is a
maximal plane graph on S. Let T (S) denote the set of all
triangulations of S and let P(S) denote the set of all plane
graphs of S. Moreover, tr(S) := |T (S)| and pg(S) := |P(S)|.

Improved bounds on the number of plane graphs of several
special kinds on a set S of N points have been obtained
by studying the properties of a graph chosen uniformly at
random from the set of all such graphs on a fixed set S.
• pg(S) ≤ tr(S) · 8N holds for any planar point set S of
N points, because each triangulation has at most 3N edges
and each plane graph is contained in some triangulation.
Razen et al. [9] proved that this relation is not tight with
an exponentially better bound of pg(S) = O

`

tr(S) · 7.98N
´

.
The new bound is established by showing that the expected
number of edges in a plane graph, uniformly chosen from
P(S), is at least M

2
+ N−4

16
, where M ≤ 3N −6 is the number

of edges in a triangulation of S.
• Upper bounds for the maximal value of tr(S), for sets S
of N points in the plane, have been studied during the past
three decades ([1, 3, 10, 11, 14, 13]). The best known bound
is tr(S) < 30N from [12]. It is obtained by showing that the
expected number of vertices of degree 3 in a triangulation,
drawn uniformly at random from T (S), exceeds N/30.

(Abstract random planar graphs of a given size have been
considered, for example, in [4, 6, 8].) Here we continue the
study of random triangulations of planar point sets, initiated
in [13], investigating the number of vertices of degree i in a
random triangulation. For T ∈ T (S), let vi(T ) denote the
number of interior vertices (i.e., points which are not vertices
of the convex hull of S) of degree i in T . Furthermore, let

v̂i = v̂i(S) := E(vi(T )) =

P

T∈T (S) vi(T )

tr(S)
,

i.e., the expected number of interior vertices of degree i in a
random triangulation of S. Due to linearity of expectation,
any linear identity or inequality in the vi(T )’s will also be
satisfied by the v̂i’s. However, as noted in [13], the v̂i’s are
more constrained than the vi’s. Charging schemes seem to



provide an efficient way to bound the v̂i’s; they are the main
tool used throughout this paper. In [12, 13] considerations
were restricted to point sets with triangular convex hull.
Here we abandon this restriction. For this purpose, we define
So as the set of interior points of S, and write N = n + h,
with h the number of hull vertices and n := |So|.

Section 2 establishes the upper bounds v̂3 ≤ 2n+h/2
5

and
v̂3 ≤ n/2 (for N ≥ 7), and it is shown how these bounds
imply a lower bound of Ω

`

2.4317N
´

on the minimal num-
ber of triangulations any set of N points in general position
must have. This improves the previous bound of Ω

`

2.33N
´

in Aichholzer et al. [2]. A construction with O(3.455N ) tri-
angulations is presented by Hurtado and Noy [5], the cur-
rently best known upper bound on the minimum number
of triangulations. McCabe and Seidel [7] proved that when
h is constant, there are Ω

`

2.63N
´

triangulations (full proof
not yet published). This is sharper than our bound. More
specifically, our bound depends on the ratio between n and
N , and attains the minimum when n ≈ 0.89901N . When
N−n = O(1), as in [7], our bound is Ω

`

2.5N
´

, short of their
bound.

In Section 3, we derive inequalities relating the v̂i’s and
we show that the inequalities imply the bound

v̂4 ≥ max
˘

1
340

`

n + 15 − 8h
3

´

, 1
1360

(n + 18 − 2h)
¯

;

(this will prove useful in the later sections).
Following the lower bounds on v̂3 in [12, 13] and on v̂4

(just stated), we complete the picture in Section 4, where we
derive linear lower bounds on v̂i for any i ≥ 5. Specifically,
we show that for each i ≥ 5, ε > 0, and 3 ≤ h ≤

`

1
2
− ε
´

n,
there exists a positive constant δi,h such that, for any N-
element point set S with h hull vertices, we have v̂i ≥ δi,hn.
That is, a random triangulation of S is expected to contain
many interior vertices (at least a constant fraction of the
points) of degree i, for every 3 ≤ i < N .

We end Section 4 with observations on improved lower
bounds on the expected number of low-degree vertices in
a random triangulation, which are sharper than the bounds
that we can get for individual degrees: max {v̂3, v̂4, v̂5, v̂6} ≥
n−h+9

10
and max {v̂4, v̂5, . . . , v̂11} ≥ 12n−9.5h+45

180
.

1.1 Notations
Vints and bints. As in [12, 13], we consider So×T (S) and
call each of its elements a vint (vertex in triangulation), i.e. a
vint is an instance of a vertex in a specific triangulation. The
degree of a vint (p, T ) is the degree (number of neighbors)
of p in T ; a vint of degree i is called an i-vint. Note that
hull vertices do not participate in this definition.

The link of a vint (p, T ) is the face obtained by removing
p with incident edges from T , a star-shaped polygon with
respect to p; its number of edges equals the degree of p.

Let B denote the set of edges of the convex hull of S. Sim-
ilarly to the set of vints, we consider B×T (S) and call each
of its elements a bint (boundary edge in triangulation).
Catalan numbers. Cm := 1

m+1

`

2m
m

´

=

Figure 1: Sep-
arable edges.

Θ(m−3/24m) = Θ∗(4m), m ∈ N0, de-
notes the mth Catalan number. (In O∗(),
Θ∗(), and Ω∗(), we neglect polynomial
factors.) The number of triangulations
of h points in convex position is Ch−2

and the number of subtrees of the complete binary tree,
that contain exactly k nodes, is Ck (see [15, section 5.3]),
properties useful later in the paper.

Separable edges. Let w = (p, T ) be a vint. We call an
edge e incident to p in T separable at w if it can be sepa-
rated from the other edges incident to p by a line through p.
Equivalently, the two angles between e and its clockwise and
counterclockwise neighboring edges (around p) have to sum
up to more than π. We observe the easy following properties.

(S0) No edge is separable at both vints induced by its end-
points.

(S1) If w has degree 3, every edge incident to its point is
separable at w (recall that points of vints are interior).

(S2) If w has degree at least 4, at most two incident edges
can be separable at w; if two edges are separable at w,
they must be consecutive.

External chords. Let o be a link of a a

b c

v

Figure 2: Ex-
ternal chords
ab and bc.

vint. An edge, which is openly disjoint
from o but its endpoints are vertices of o,
is called an external chord of o (see Figure
2). Observe that a link with i edges can
have at most i − 3 external chords.
“Flips-down-to” relation. For vints u = (pu, Tu) and
v = (pv, Tv), we define u → v if pv = pu and Tv is obtained
by flipping one edge incident to pu in Tu. We see that u
and v are associated with the same point but in different
triangulations; u is an (i + 1)-vint and v an i-vint, for some
i ≥ 3. We let →∗ denote the transitive reflexive closure of
→. If u →∗ v, we say that u can be flipped down to v.

2. UPPER BOUNDS FOR v̂3

We derive upper bounds on v̂3. Upper bounds of this kind
translate into lower bounds on the number of triangulations
every N-element point set in general position must have.

The following lemma with proof is taken from [13] (with
“3” there replaced by “h” here). The main raison d’être of
this first lemma is to introduce its proof technique, which we
will adapt in two lemmas to obtain the improvements rele-
vant for our lower bounds on the number of triangulations.

(1) boundary-
charge

(2.1) flip-charge (2.2) neighbor-
charge

a

T

T

T

T ′

e
e

ep
p p p

Figure 3: The various types of charges of a 3-vint in
the proof of Lemma 2.1.

Lemma 2.1. v̂3 ≤ 2n+h
5

holds for every planar point set
S in general position with |So| = n and |S| = n + h.

Proof. We apply a scheme where every 3-vint charges 3
units to vints of larger degrees or to bints. No vint will be
charged more than 2 units, no bint more than 1. Hence

3v̂3 ≤ h + 2
P

j≥4v̂j = h + 2(n − v̂3), (1)

which yields the asserted inequality.
Let v = (p, T ) be a 3-vint, and let ov denote its link, which

is a triangle. For each edge e of ov we do the following,
depending on the nature of e; see Figure 3.

(1) e is an edge of the hull. Then we let v charge 1 to bint
(e, T ); we call this a boundary-charge.



pu

(a) (b) (c)

q

T

T ′

pu pu

Figure 5: (a) 4-vint (pu, T ) with non-convex link is
charged once by a flip-charge (right) and once by
a neighbor-charge (left). (b) Two neighbor-charges
to vint u with one separable edge. (c) Neighbor-
charges to vint u with two separable edges.

(2) There is a triangle t incident to e on its other side:

(2.1) t forms with p a convex quadrilateral. We flip e to get
a 4-vint (in a different triangulation!) to which v charges 1;
we call this a flip-charge.

(2.2) t forms with p a non-convex quadrilateral. Let a be
the endpoint of e that is reflex; a cannot be a hull vertex
and it has to be of degree at least 4, since interior vertices
of degree 3 are never adjacent. Here v charges 1 to vint
(a, T ); we call this a neighbor-charge. (e must be separable
at (a, T ).)

The fact that no bint is charged more

Figure 4: A 4-
vint with two
flippable inci-
dent edges.

than once is obvious, so we turn to show
that no vint u can be charged more than
twice. Consider first the case of a 4-vint
u = (pu, Tu). Let ou denote the quadran-
gular link of pu. We note that at most
two edges incident to pu are flippable:
One out of each pair of opposite edges
is separable at u (regardless of whether
the link of v is convex or not), and thus
unflippable; see Figure 4. We distinguish between the fol-
lowing two cases:
(a) ou is a convex quadrilateral, as depicted in Figure 4. In
this case, u receives exactly two flip-charges. Moreover, u
cannot be charged as a neighbor, since no vertex of ou can
be interior and of degree 3.
(b) ou has a reflex vertex, as depicted in Figure 5(a). Here
u receives exactly one flip-charge. This obvious fact is a
special case of a more general analysis, given in Lemma 3.2.
Moreover, u can be charged at most once as a neighbor.
Indeed, if q is a vertex of ou of degree 3, then it must be a
reflex vertex of ou and there can be at most one such vertex.
(q, Tu) cannot charge u twice through two edges of the link
of (q, Tu), for then these two edges have to be separable at
p, but they are not consecutive around p; cf. (S2).

Consider next the case where u = (pu, Tu) is a vint of
degree at least 5. Each flip-charge is to a 4-vint and therefore
u receives neighbor-charges only. Neighbor charges are made
within the same triangulation and claim that in this case pu

can be a neighbor of at most two points of degree 3 that
charge it as a neighbor (as just noted, no point can charge u
twice in this manner). Recall the ingredients necessary for
such a neighbor-charge to be made to u: (i) an edge e that
is separable at u, and (ii) a neighbor a of pu that has degree
3 so that the edges e and pua are consecutive around pu.
Clearly, if there is only one edge separable at u then there are
at most two such constellations; see Figure 5(b). If there are
two separable edges at u, then they have to be consecutive
around pu, cf. (S2). This rules out the possibility that any
of these two edges is involved in more than one neighbor-
charge, since an edge cannot be both separable at pu and
connect to an interior point of degree 3 (Figure 5(c)).

With slight changes to the charging scheme, the two fol-
lowing lemmas improve the result of Lemma 2.1.

Lemma 2.2. v̂3 ≤ n
2

holds for every point set S in general
position with |So| = n and |S| ≥ 7.

Proof. A refined version of Inequality (1) in the proof of
Lemma 2.1 is 3v̂3 ≤ hc +2(n− v̂3), where hc is the expected
number of charged bints in a uniformly chosen triangulation.
We now change the charging scheme so that we can show
hc ≤ v̂3; combining this bound with the inequality implies
the assertion of the lemma.

We change the charging scheme as follows. For each 3-
vint that charges two bints, we move the charge from one
of these bints to a vint of degree at least 5, such that the
overall number of charges made to a vint is at most two.

First, consider a point p such that any triangle (spanned
by S) that contains only p in its interior, is incident to at
most one boundary edge. Such a case is depicted in Figure
6(a), where p has to be above the dotted edges. Equivalently,
the condition says that, for each triangle t, two of whose
edges are consecutive edges of the hull, either p lies outside
this triangle t or it lies in t with at least one additional
interior point. In this case, each 3-vint with p as a vertex
charges at most one bint; thus we leave the charges made by
p as in the preceding scheme.

p p p p
a

bc
de

a
bc

d
e

(a) (b) (d)(c)

t

Figure 6: (a) No triangle incident to two boundary
edges contains p in its interior. (b) Only the shaded
triangle t is incident to two boundary edges and con-
tains p in its interior. (c) bc and cd are flippable. (d)
The link of the 5-vint of p is not convex.

Next, assume that there is a single triangle t that is in-
cident to two boundary edges and contains only p in its
interior, as depicted in Figure 6(b). We notice that the 3-
vints of p which charge two bints are exactly those for which
the link of p is t. Consider such a 3-vint v = (p, T ), and
denote the vertices of the link of v as a, b, and c, such that
ab and ac are boundary edges (as depicted in Figure 6(c)).
It is easily checked that the edge bc must be flippable; let us
denote the third vertex of the other triangle incident to bc as
d. Moreover, we notice that, after flipping bc, at least one of
the edges bd and cd is flippable. Without loss of generality,
we assume that cd is flippable (after flipping bc), and denote
the third vertex of the other triangle incident to cd as e (as
depicted in Figure 6(c)).

Consider the pentagon abdec, which is the link of a 5-
vint of p (in a different triangulation). First, assume that
this is a convex pentagon, as depicted in Figure 6(c). In
triangulations where the pentagon is the link of a 5-vint of
p, it cannot contain any 3-vints on its boundary (recall that
a vint can use only interior vertices, so we are claiming that
neither d nor e can be a 3-vint in such a triangulation), and
thus the 5-vint is not charged at all in the charging scheme
of Lemma 2.1. We move the charge from one of the bints
of v to this 5-vint. There are two 3-vints which can charge
the 5-vint in this new manner—v and the symmetric 3-vint



of p, with the same link and with the edge be replacing cd.
Therefore, the 5-vint gets charged exactly twice overall.

Assume next that the pentagon is not convex, which im-
plies that e cannot “see” b from within the pentagon, and
perhaps also a (notice that e cannot “hide” from a behind
c, since c is a hull vertex). In such a case, v is the only
3-vint that will charge the 5-vint in the new manner (since
the quadrilateral bced—the complement of the link of v in-
side the pentagon—has a single triangulation). Moreover,
there may be a 3-vint of d adjacent to the 5-vint, which may
charge the 5-vint (only once) by a neighbor-charge, as de-
picted in Figure 6(d), where the link of the 5-vint is shaded.
No other 3-vint can charge the 5-vint by a neighbor-charge,
which implies that the 5-vint is charged, in the modified
scheme, at most twice.

Finally, assume that there are two distinct triangles, each
incident to two boundary edges and containing only p, as
depicted in Figure 7(a) (notice that there cannot exist more
than two such triangles). Let us denote the vertices of these
triangles as a, b, c, and d, appearing in this order along the
convex hull, so the two triangles are ∆abc and ∆bcd, and the
non-boundary edges are ac and bd (as depicted in Figure
7(a)). Consider a 3-vint v = (p, T ) with ∆abc as its link
(the case where the link is ∆bcd is handled symmetrically).
v can be analyzed as before, flipping edges to turn it into
a 5-vint and charging this 5-vint, except for the case where
the resulting pentagon contains the quadrilateral abcd (as
depicted in Figure 7(b)). In such a case, the pentagon must
be convex, and four 3-vints of p that charge two bints have
their links contained in the pentagon—two with ∆abc as the
link of p and two with ∆bcd as the link, and they all charge
the 5-vint.

We thus need to find additional “victims” to distribute
charges to. To this end, we denote the fifth vertex of this
convex pentagon as e, as depicted in Figure 7(b), and note
that, after flipping ac and ad, at least one of the edges ae and
de is flippable (since |S| ≥ 7). Without loss of generality, we
assume that ae is flippable (after flipping ac and ad), and
denote the third vertex of the other triangle incident to ae
as f .

(a) (b) (c)

a

b c

d
p

a

b c

d

e
f

p
a

b c

d
e

f

p

Figure 7: (a) Two triangles that are incident to two
boundary edges and contain p only in their interiors.
(b) ad and ae are flippable; the resulting hexagon is
convex. (c) 6-vint with non-convex link.

Consider the hexagon abcdef , which is the link of a 6-vint
of p (in an appropriate triangulation). First, assume that
this is a convex hexagon, as depicted in Figure 7(b). Such
a hexagon contains the links of ten 3-vints of p that charge
two bints (five with ∆abc as their link and five with ∆bcd as
their link; the number 5 is C3, the number of triangulations
of the pentagon completing the link of the 3-vint into the
hexagon). Moreover, in triangulations where such a hexagon
is the link of a 6-vint of p, it cannot contain any 3-vints on
its boundary, and thus the 6-vint is not charged at all in
the charging scheme of Lemma 2.1. This also applies to
the four convex 5-vints obtained by removing either a, d,
e, or f from the hexagon. (Note that the link of each of

the “truncated” 5-vints contains at least one of the triangles
∆abc, ∆bcd, and that p lies in both of these triangles, so
the link of each of these 5-vints does indeed contain p in its
interior, as it should.) Therefore, we have five vints which
are not charged at all. We can therefore shift ten boundary
charges from the above ten 3-vints to those five vints, so
each of those latter vints is charged exactly twice.

Assume next that the hexagon is not convex, which im-
plies that f cannot “see” d within the hexagon and perhaps
also c, as depicted in Figure 7(c), where the link of the 6-vint
is shaded. In such a case, the link of the hexagon contains
the links of at most six 3-vints of p that charge two bints
(three with ∆abc as their link and three with ∆bcd as their
link; here 3 is the maximum number of triangulations of the
non-convex pentagon completing the link of the 3-vint into
the hexagon). There may be a 3-vint of e adjacent to the
6-vint, as depicted in Figure 7(c). However, since both fp
and dp are flippable, the 6-vint is not charged at all by the
old scheme. A similar analysis also applies to the 5-vints
obtained by removing either a or d from the 6-vint. (Again,
the links of these 5-vints do indeed contain p.) The 5-vint
obtained by removing f also does not get charged, since
its link is a convex pentagon. Therefore, we can shift one
boundary charge from each of the (at most) six 3-vints to
one of the four larger vints, with enough room to conclude
that each of these latter vints gets charged at most twice.

We have thus established the bound hc ≤ v̂3, and this
completes the proof of the lemma.

Lemma 2.3. v̂3 ≤ 2n+h/2
5

holds for every point set S in
general position with |So| = n and |S| = n + h ≥ 6.

Proof. We use the same inequality 3v̂3 ≤ hc +2(n− v̂3) as
in the preceding proof, hc is the expected number of charged
bints in a uniformly chosen triangulation. Again we mod-
ify the charging scheme, now in order to ensure hc ≤ h/2;
combining this bound with the above inequality implies the
assertion of the lemma. This bound is achieved by decom-
posing the collection of all bints into sets of at most nine
bints each, such that the total charge in each set is at most
half its size. The sets are not necessarily disjoint, but only
charged bints can appear in more than one set, which is only
to our advantage in establishing the bound hc ≤ h/2.

A bint β gets charged if and only if the third vertex of the
triangle incident to β is a 3-vint. Consider such a bint β =
(b, T ) that is charged by a 3-vint v = (p, T ), as depicted in
Figure 8(a) (where b is the edge ac). Following the notations
in the figure, we notice that at least one of the edges ad and
cd must be flippable, and assume, without loss of generality,
that cd is flippable (as depicted in the figure). Let T ′ denote
the triangulation obtained by flipping cd in T . Notice that
the bint β′ = (b, T ′) is not charged, since it is adjacent to
the 4-vint v′ = (p, T ′) (depicted in Figure 8(b)). If v′ cannot
flip-down to another 3-vint with a link that contains b, we
create the set {β, β′}, which has two elements, only one of
which is charged.

Suppose that v′ can flip down to another 3-vint with a
link containing b, as in Figure 8(c) (note here that the link
of v′, the quadrilateral aced, has to be convex and p has to
lie below its diagonals). Since the link of v′ is convex and
contains a boundary edge, one of its edges must be flippable.
Let us denote one of the 5-vints obtained by flipping such an
edge as v′′ = (p, T ′′) and let f be the vertex that is in the link



(a) (b) (c) (d)

β β′

a c

d

e

p a c

d

e

p a c

d e
f

p
a c

d e
f

p

Figure 8: (a) The link of the 3-vint has at least one
flippable edge. (b) A 4-vint that flips down to v. (c)
A link of a 4-vint that flips down to two 3-vints that
charge β. (d) A 5-vint with a non-convex link.

of v′′ but not in the link of v′. First, assume that the link of
v′′ is a convex pentagon, as depicted in Figure 8(c), where
we flip de in T ′ to get v′′. The link of v′′ contains the links
of five 3-vints (there are five ways to triangulate a convex
pentagon and to insert p as a 3-vint into it) and three 4-vints
of p (by removing either d, e, or f from the pentagon—
note that any of these removals keeps p inside the resulting
quadrilateral) that are adjacent to the edge b. Since the link
of v′′ is convex, it is not charged at all in the original scheme,
and thus we can charge it twice. Notice that ad and bc might
be boundary edges, so they could induce bints that also get
charged by some 3-vints of p. Nevertheless, the assumption
on the location of p (depicted in Figure 8(c)) implies that,
even if there is a 3-vint of p which charges bints of ad or ce,
the respective 4-vints cannot flip down to another 3-vint of
p that charges the same edge, which implies that such bints
belong to the previous case. Therefore, there is a unique
case where v′′ gets charged. In conclusion, we have a set
of nine bints, all involving edge b (five adjacent to 3-vints,
three to 4-vints, and one to a 5-vint), with a total modified
charge of 5 − 2 = 3 < 9/2 (only 3-vints charge b in the
original scheme).

Finally, assume that the link of v′′ is not convex. This
implies that, in the link of v′′, f cannot see either one or
two of the other vertices. Figure 8(d) depicts such a case,
where f is adjacent to ad and only e is invisible from f (the
following analysis does not refer specifically to this example,
though). Let x denote the number of 3-vints of p that are
adjacent to b and have their link contained in the link of
v′′. Notice that x ≤ 3, since there are at most three ways
to triangulate the non-convex 5-gon and then insert p as the
3-vint. We can always obtain a 4-vint of p that is adjacent
to b by removing f from the 5-vint, and an additional 4-
vint by removing either d or e (or both, depending on the
position of f). Therefore, we have a set of at least x + 3
bints, all involving the edge b (x bints adjacent to 3-vints,
one adjacent to a 5-vint, and at least two adjacent to 4-
vints), with x ≤ x+3

2
of them charged.

We have shown hc ≤ h/2 as claimed

Let tr
−(n, h) denote the minimal number of triangulations

for point sets with n interior points and h boundary points
and set tr

−(N) := minn+h=N tr
−(n, h). We now employ the

upper bounds for v̂3 for a lower bound for tr
−(N). The

following is a generalization of [13, Lemma 2.1(ii)].

Lemma 2.4. For n ≥ 1, let δn,h > 0 be a real number,
such that v̂3 ≤ δn,hn holds for any set of n interior points
and h boundary points in general position. Then,

tr
−(n, h) ≥ 1

δn,h
tr

−(n − 1, h) .

Proof . Let S be a set that minimizes tr(S) among all
sets with n interior points and h boundary points in general

position. As easily seen and argued for [13, Lemma 2.1(ii)],
we have

v̂3 · tr(S) =
P

T∈T (S)v3(T ) =
P

q∈SoT (S \ {q}).

The leftmost expression equals v̂3 · tr−(n, h), the rightmost
one is at least n · tr−(n − 1, h). Hence, with v̂3 ≤ δn,h n,

tr
−(n, h) ≥ n

v̂3
· tr−((n − 1, h) ≥ 1

δn,h
· tr−(n − 1, h).

Theorem 2.5. tr
−(N) = Ω

“

2.4317N
”

.

Proof. We know tr
−(0, h) = Ch−2 = Θ∗(4h). Moreover,

combining the results of Lemmas 2.2, 2.3, and 2.4 yields

tr
−(n, h) ≥ 2 · tr−(n − 1, h) and (2)

tr
−(n, h) ≥ 5n

2n+h/2
· tr−(n − 1, h) = 10n

3n+N
· tr−(n − 1, h) (3)

for n ≥ 1 and N ≥ 7. (3) is stronger iff n > N/2, and
therefore, for any point set S with n ≤ N/2 and N ≥ 7,

tr(S) ≥ 2n · tr−(0, N − n) = Ω∗
“

22N−n
”

= Ω∗
“

23N/2
”

(4)

with 23/2 = 2.828 . . .. Next, assume that n > N/2, so (3) is
the stronger inequality. Let x be the maximal number of in-
terior points we can remove before (2) becomes the stronger;

x is the maximal with 10(n−x)
(N−x)+3(n−x)

≥ 2, that is, x = 2n−N .

Using the above, we derive the bound (assuming that N+3n
is divisible by 4, which, if true initially, remains true as we
remove interior points)

tr
−(N) ≥ 10n

N+3n
· 10(n−1)

N+3n−4
· · · 10(n−x+1)

N+3n−4(x+1)
· 2n−x · Θ∗

`

4N−n
´

= 10x·n!
(n−x)!

· ((N+3n)/4−x)!
4x·((N+3n)/4)!

· 2n−x · Θ∗
`

4N−n
´

.

In order to simplify this bound, we use Stirling’s approxima-
tion. Since we are only interested in the exponential part of
the bound, we can simply replace m! by (m/e)m. Therefore,
tr

−(N) is lower bounded by

Ω∗
“

22N−n−2x · 5x · nn

en · en−x

(n−x)n−x

· ((N+3n)/4−x)(N+3n)/4−x

e(N+3n)/4−x · e(N+3n)/4

((N+3n)/4)(N+3n)/4

”

,

and after some cleanup, we get a lower bound of

Ω∗

„

22N−n · 5x ·
nn

(n − x)n−x
·
(N + 3n − 4x)(N+3n)/4−x

(N + 3n)(N+3n)/4

«

.

After replacing x with 2n − N , substituting n = tN , 0.5 <
t < 1, and performing some additional cleanup, we get

tr
−(N) = Ω∗

„

22N−n · 5(3n+N)/4 · nn ·
(N − n)(N−n)/4

(N + 3n)(N+3n)/4

«

= Ω∗

 

„

22−t · 5(3t+1)/4 · tt ·
(1 − t)(1−t)/4

(1 + 3t)(1+3t)/4

«N
!

. (5)

Finding the t minimizing this expression (for given N) can
be done either numerically or through differentiation. The
latter approach produces the quartic equation t4 − 288t2 −
128t − 16 = 0, whose solution is t ≈ 0.89901, which implies
a minimum of Ω

`

2.4317N
´

. We have thus shown that for

every n + h = N , we have tr
−(N) = Ω

`

2.4317N
´

.



Remark. The analysis provides lower bounds on tr
−(n, h),

for any n and h. Collecting the bounds in (4) and (5), with
t = N/n, 0 ≤ t < 1, we have lower bounds on tr

−(n, h) of

Ω∗
“

`

22−t
´N
”

0 ≤ t ≤ 0.5

Ω∗

„

“

22−t · 5(3t+1)/4 · tt · (1−t)(1−t)/4

(1+3t)(1+3t)/4

”N
«

0.5 < t < 1.

The base in the bound starts at 4 for t = 0 and ends at the
limit 2.5 for n = N − 3 (where t is almost 1). This latter
value is still not as large as the base of 2.63 in [7].

3. RELATING THE v̂i’S
We derive inequalities among the v̂i’s which we then ma-

nipulate for a lower bound on v̂4. These facts are required
for the proof of Theorem 4.1 in Section 4, which yields linear
lower bounds for all v̂i’s, i ≥ 4. We first recall the notion of
a flip-tree studied in [12, 13] (and implicitly in [10]).

(a) (b) (c)
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Figure 9: (a) A 5- and a 6-vint that can be flipped
down to the same 4-vint. (b) The shaded area is
dual to the flip tree of the 3-vint v. (c) The flip-tree
itself (solid edges only).

The flip-tree of a vint. How do we find the vints that
flip down to a given i-vint v = (pv, Tv)? Clearly, there is v
itself. Consider a flippable edge e (in Tv) that is not incident
to pv but is part of the boundary of its link. Flipping e
yields an (i + 1)-vint u = (pv, Tu) that can be flipped down
to v (by reversing the preceding flip). Similarly, if in the
triangulation Tu there is a flippable edge that is not incident
to pv but is part of its link, then we can flip this edge to
get an (i + 2)-vint that can be flipped down to v, and so
on. Figure 9(a) depicts a 4-vint v, that, by flipping ab to
cv, turns into a 5-vint that can be flipped down to v (and
which, by flipping ac to dv, turns into a 6-vint that can also
be flipped down to v).

In order to represent this structure, we associate with an
i-vint v = (pv, Tv) a flip-tree τ (v), defined as follows. The
root of the tree is labeled by the pair (ov, Nv), where ov

is the link of v (an i-gon) and Nv is the set of vertices of
ov (the neighbors of pv in Tv). Any other node of the tree
is associated with a pair (t, q), where t is a face of Tv and
q is a vertex of that face, which does not belong to the
union of the faces labeling the ancestors of the present node
(note, though, that ov from the root is not a face of Tv—it
is the union of the i faces incident to pv). The associated
faces represent a duality between the flip-tree and part of
the triangulation Tv (which will be explained momentarily).
While defining the structure of the flip-tree in the following
paragraphs, we refer to an example depicted in Figures 9(b)
and 9(c). These figures depict a 3-vint v and its flip-tree,
and the nodes of this flip-tree are labeled only by their vertex
(and not by their triangle).

(i) Every edge e of ov gives rise to a child if it can be
flipped in Tv. If so, this child is labeled by the triangle

incident to e that is not incident to pv, and by the vertex
of this triangle which is not incident to e. Therefore, the
root has at most i children. In our example, the root has
two children—(∆bcd, d) (since bc is flippable) and (∆abh, h)
(since ab is flippable). In what follows, as in Figure 9, we
will often suppress the triangle t in the label (t, q) of a node
of the flip-tree, and just use the vertex q. The triangle t is
the unique triangle of Tv into which the segment qpv enters
as we trace it from q.

(ii) Consider now a non-root node of the tree labeled by
(t, q) and an edge e of t incident to q. If e is a boundary
edge, no child will be obtained via e. Otherwise, let t′ be the
other triangle incident to e. If t′ together with the triangle
formed by e and pv is a convex quadrilateral (in which e can
be flipped), then this gives rise to a child of (t, q) labeled
by (t′, q′), where q′ is the vertex of t′ that is not incident
to e. Therefore, a non-root node has at most two children.
In our example, the node corresponding to h has the single
child i, since the quadrilateral vhia is convex, but the other
potential quadrilateral vbjh is not.

Note that the union of all triangles of the nodes of any
subtree of τ (v) (containing the root) form a polygon which
is star-shaped with respect to pv; this follows easily by the
inductive definition of τ (v). The triangles of the original
Tv form a triangulation of the polygon, and the subtree is
actually the dual tree of this triangulation. The shaded area
in Figure 9(b) is the portion of the triangulation dual to the
entire flip-tree of v. Also, an edge in the flip-tree incident
to two nodes that are dual to (i.e., labeled by) the triangles
∆1, ∆2 in Tv, can be regarded as dual to the edge in Tv

incident to both ∆1 and ∆2. If we retriangulate this polygon
in Tv by connecting pv to all vertices of the polygon, we get
a vint that flips down to v. Moreover, every vint u that
flips down to v can be obtained in this way (by taking the
subtree dual to the link of u). That is:

Lemma 3.1. The subtrees of τ (v) containing its root are
in bijective correspondence to the vints that flip down to v.

We recall a basic fact about flippable edges.

Lemma 3.2. Each i-vint, i ≥ 4, is incident to a flippable
edge.

Proof. The link of a vint (p, T ) has at least three vertices
with a convex angle (less than π) and at most two edges are
separable at p. Hence, there is an edge incident to p that is
separable at none of its endpoints – thus flippable.

The next lemma is from [13, Lemma 4.1] with its proof
based on [10, Lemma 4]. (Note that h does not play a role.)

Lemma 3.3. For all integers 3 ≤ i < j there is a positive

integer δi,j such that v̂i ≥
v̂j

δi,j
. In particular, v̂i ≥

v̂i+1

i
,

v̂3 ≥
v̂j

Cj−1−Cj−2
for j ≥ 4, and v̂4 ≥

v̂j

Cj−1−2Cj−2
for j ≥ 5.

Proof. For a proof of v̂i ≥
v̂i+1

i
, we let every (i + 1)-vint

charge some i-vint it can be flipped down to, by Lemma 3.2
this is possible, since i + 1 ≥ 4. In this way an i-vint can be
charged at most i times, so the first inequality holds.

For the general inequality we let every j-vint charge some
i-vint it can be flipped down to. By Lemma 3.1, every j-vint
that flips down to an i-vint v corresponds to a subtree of the
flip-tree of v. More precisely, since the root of the flip-tree of



v corresponds to an i-gon in the triangulation of v, every j-
vint corresponds to a subtree with j−i+1 nodes. Therefore,
an i-vint can be charged at most ti,j−i+1 times, where ti,k

denotes the number of (ordered) binary trees with k nodes
and with an exceptional root of degree i; that is, the root has
i potential children pointers, but not all of them need to be
used (just like binary nodes distinguish between a left and a
right child, the root discriminates its children via an index
in {1, 2, . . . , i}). For example, ti,1 = 1 and ti,2 = i. Hence,
as in the case of j = i + 1, we can take δi,j = ti,j−i+1. The
number of ordered binary trees is known to be t2,k = Ck

(see Subsection 1.1), which also implies that t1,k = Ck−1.
Furthermore, a recurrence of ti,k = ti−1,k+1 − ti−2,k+1 can
be derived, cf. [10]. This allows us to choose

δ3,j ≤ t3,j−2 = t2,j−1 − t1,j−1 = Cj−1 − Cj−2, and

δ4,j ≤ t4,j−3 = t3,j−2 − t2,j−2 = Cj−1 − 2Cj−2.

We will now improve the bound for δ4,j , which we will use
to derive a reasonably large lower bound on v̂4.

Lemma 3.4. v̂4 ≥
3v̂j

Cj−1−Cj−2
holds for all integers j ≥ 5.

Proof . In the previous proof we made a j-vint charge
a single 4-vint, a scheme now modified. For u a vint, let
supp4(u) :=

˛

˛{v | v 4-vint with u →∗ v}
˛

˛, called 4-support
of u. We let every j-vint split a charge of 1 evenly among
the 4-vints it can be flipped down to, i.e., 1

supp4(u)
each.

Given a 4-vint v, let w be a 3-vint such that v → w, and let
τ be the flip-tree of w. The subtree of τ which corresponds to
v consists of a single level-1 edge e (i.e., an edge emanating
from the root). Therefore, there is a bijective correspon-
dence between the vints that flip down to v and subtrees of
τ that contain e. Counting the number of such subtrees of
size j − 2 (i.e., the number of j-vints that flip down to v)
implies our previous result of t3,j−2−t2,j−2 = Cj−1−2Cj−2.

τ might have two additional level-1 edges e2 and e3. Let
v2 (v3) denote the 4-vint corresponding to the subtree of
τ which consists of edge e2 (e3, resp.) only. A subtree
containing e2 can flip down to v2, a subtree containing e3 can
flip down to v3. Hence, a vint with a subtree that contains
two level-1 edges has a 4-support of at least 2, and a vint
with a subtree that contains all three level-1 edges has a
support of at least 3. For example, out of the four possible
5-vints that can flip down to a certain 4-vint, if they all exist,
two contain two level-1 edges, and thus have a support of at
least 2. Figure 10(a) depicts a subtree of a 5-vint that might
have a support of 1, and Figure 10(b) depicts a subtree of a
5-vint that has a support of at least 2.

(a) (b) e2e2
e3e3 ee

Figure 10: (a) One of two subtrees that correspond
to a 5-vint with a support of at least 1. (b) One of
two subtrees of a 5-vint with a support of at least 2.

Therefore, the number of j-vints that flip down to v and
have a support of 1, is at most t1,j−2. The number of j-vints
that flip down to v with a subtree having exactly two level-1
edges, is at most 2 (t2,j−2 − 2t1,j−2) (choose one of e2, e3

and count subtrees containing both e and the chosen edge
but not the third). The number of j-vints that flip down
to v with their corresponding subtrees having three level-1

edges, is at most t3,j−2−3t2,j−2+3t1,j−2 (inclusion-exclusion
principle). Therefore, v receives a charge of at most

t1,j−2 + 1
2
2(t2,j−2 − 2t1,j−2) + 1

3
(t3,j−2 − 3t2,j−2 + 3t1,j−2)

which equals 1
3
t3,j−2 = 1

3
(Cj−1 − Cj−2).

Lemma 3.5. If |So| ≥ 3, we have
P

i iv̂i ≤ 6n + h − 9.

Proof . The number of edges in a triangulation of S is
3n+2h−3, therefore

P

i ivi = 2(3n+2h−3)−D, where D
is the sum of the degrees of the hull vertices. One can show
D ≥ 3h + 3 – details omitted –, provided there are at least
3 interior points. This yields the bound for the vi’s which
carries over to the v̂i’s via linearity of expectation.

Lemma 3.6. For n ≥ 3, we have v̂4 ≥ 1
340

`

n + 15 − 8h
3

´

.
In particular, when S has a triangular convex hull, v̂4 > n

340
.

Proof.
P

i(9 − i)v̂i ≥ 9n − (6n + h − 9) = 3n − h + 9 (by

Lemma 3.5), v̂3 ≤ 2n+h/2
5

(Lemma 2.3), and by Lemma 3.4

v̂5 ≤ C4−C3
3

v̂4 = 3v̂4 v̂7 ≤ C6−C5
3

v̂4 = 30v̂4

v̂6 ≤ C5−C4
3

v̂4 = 28
3

v̂4 v̂8 ≤ C7−C6
3

v̂4 = 99v̂4.
(6)

Hence,

3n + 9 − h ≤ 6v̂3 + 5v̂4 + 4v̂5 + 3v̂6 + 2v̂7 + v̂8

≤ 6(2n+h/2)
5

+ v̂4

`

5 + 4·3 + 3· 28
3

+ 2·30 + 99
´

= 12n+3h
5

+ 204v̂4 ,

implying that v̂4 ≥ 1
340

`

n + 15 − 8h
3

´

, as asserted.

Here is an alternative lower bound whose dependence on h
is better, while the dependence on n is worse.

Lemma 3.7. For n ≥ 4, we have v̂4 ≥ 1
1360

(n + 18 − 2h).

Proof. Lemma 3.5, again, delivers
P

i(10−i)v̂i ≥ 4n−h+9.
From Lemma 2.2, we employ v̂3 ≤ n

2
and from Lemma 3.4,

we use (6) and v̂9 ≤ C8−C7
3

v̂4 = 1001
3

v̂4. Hence, we get

4n − h + 9 ≤ 7v̂3 + 6v̂4 + 5v̂5 + 4v̂6 + 3v̂7 + 2v̂8 + v̂9

≤ 7n
2

+ v̂4 ·
`

6 + 5·3 + 4· 28
3

+ 3·30 + 2·99 + 1001
3

´

= 7n
2

+ 680v̂4 .

4. LOWER BOUNDS FOR ALL v̂i’S
In this section, we establish lower bounds for each of the

quantities v̂i. The bound v̂3 > n
30

was proved in [12] (for
a triangular convex hull), and in Section 3 we derived the
bound v̂4 ≥ 1

1360
(n + 18 − 2h). We now present a general-

ized bound which holds for each i ≥ 4.

Theorem 4.1. For each N > i ≥ 4, ε > 0, and 3 ≤
h ≤

`

1
2
− ε
´

n, there exists a constant γi,h = γi,h(ε), which
depends on i, h, and ε, such that, for any set S with h hull
vertices and n interior vertices, we have v̂i ≥ γi,hn.

Proof . The proof is by induction on i, where the base
case i = 4 has already been established. More precisely,
Lemma 3.7 implies that, when h ≤

`

1
2
− ε
´

n, there is a con-
stant cε > 0 such that v̂4 ≥ cεn, and we use this inequality
as our induction basis, with γ4,h = cε.
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Figure 13: (a) The grey vertex is a vertex of the
link that is contained in ∆psq. (b) No edge of the
link is incident to a triangle with a third vertex not
contained in o. (c) There is a path from the link of
p to the triangle containing q. (d) The link is split
into two corridors.

For the general induction step, we assume v̂i−1 ≥ γi−1,hn
and proceed to establish a similar inequality on v̂i. This will
be done by charging each (i − 1)-vint v to various vints of
degree at least i. This will yield an inequality involving the
quantities v̂k, for k ≥ i−1, which we will then combine with
the inequalities of Lemma 3.3, to replace all v̂k, for k > i,
by v̂i, and thereby obtain the desired lower bound on v̂i.

Let v = (p, T ) be a fixed (i − 1)-vint, and let o denote its
link. The charging that v makes depends on the structure
of o and of the triangles of T in its vicinity. The charging is
performed depending on the following cases:

(a) (b) (c) (d)

e pp p p
q

a b

Figure 11: (a) A link with a flippable edge. (b) The
lightly shaded portion is the link, and the union of
the shaded portions is the extended link. (c) The
edge pq crosses only edges of the extended link. (d)
Two vertices “hiding” from p.

(a) o has a flippable bounding edge e, as depicted in Figure
11(a). In this case we flip e to turn v into an i-vint, and
charge that i-vint. Clearly, any i-vint can be charged in this
way at most i times.
(b) No edge of o is flippable, and all the vertices of o that
are interior to the hull have degree at most i − 1. We argue
that the following property holds in such a case.

Lemma 4.2. In case (b), we can connect p to some point
r ∈ S outside o, such that pr crosses at most (i−2)(i−4)+1
edges of T .

Proof. Recall N > i, so there is

u

q t

p

s

r

Figure 12: Case (b).

at least one point not connected to
p. First, assume that there exists
an edge e of the link, such that
e is incident to a triangle with a
third vertex that is not a vertex
of o (see below for an illustration
and analysis of the complementary situation). Let s and t
be the endpoints of e, and let q be the third vertex of the
triangle. Without loss of generality, assume that the edge
sq is shorter than the edge tq (i.e., that q is “hiding” from
p behind s). Such a case is depicted in Figure 12 (for now,
ignore the non-solid lines and the shading).

We consider the triangle ∆psq, and notice that it may
contain additional vertices of o, as well as other points of
S. Such a case is depicted in Figure 13(a), where the grey

vertex is a vertex of o that is contained in ∆psq. Let S∆psq

be the set of points of S contained in ∆psq, but not in o
(including q, but not p). Let r be the vertex in S∆psq that
minimizes the angle ∠spr (r is well defined, because S∆psq is
nonempty—it contains q). Let ℓ denote the line containing
the edge pr, and let u denote the point where ℓ crosses sq
(by definition, ℓ must indeed cross sq; the crossing could be
at q if r = q). Our choice of r implies that the interior of the
triangle ∆spu does not contain any point of S∆psq, so the
only points of S it can contain are vertices of o. We again
refer the reader to Figure 12, where ∆psq is shaded.

We now show that pr can cross at most (i − 2)(i − 4) + 1
edges of T . For an edge of T to cross pr, exactly one of its
vertices must lie in the triangle ∆spu (this is only a necessary
condition). However, we have just argued that this triangle
can only contain vertices of o. Since t lies outside ∆spu,
there are at most i − 2 vertices in this triangle (including
s). Each of these vertices is of degree at most i − 1, one of
its incident edges is connected to p, and two other edges are
part of the boundary of o. Therefore, excluding the single
crossing between pr and o, each of the i − 2 vertices can
participate in at most i − 4 edges that cross pr.

Next, assume that there is no edge e with an incident
triangle on the other side which has a vertex not in o (such
a case is depicted in Figure 13(b)). Every edge of o interior
to the hull must be incident to a triangle that has an external
chord as an edge.

We walk through T , starting at some edge e of o and
walking away from o, crossing from each visited triangle to
an adjacent one through a common external chord, until we
get to a triangle incident to an external chord e′ and to a
vertex q which is not contained in o. It is easily seen that
the rules for the walk are well-defined: we can either find an
external chord to cross into the next triangle, or get stuck
with a terminal triangle as above. Moreover, since N > i,
the walk will always end in such a terminal triangle. Such
a walk is depicted in Figure 13(c), where the link is shaded,
and there is a path that leads to q. Now, denoting the
endpoints of e′ as s and t, we can apply the same analysis as
above. That is, assume first that q hides behind s, as above,
and denote by r the vertex in S∆psq that minimizes the angle
∠spr. In this case one can argue, as above, that pr can cross
at most (i − 2)(i − 4) + 1 edges. However, here (unlike in
the preceding analysis) it is also possible for q not to hide
at all, that is, pq can cross e′. In this case, we can choose
q as the point r, and notice that pq can only cross external
chords and a single edge of o, which implies that there are
at most (i− 3) + 1 = i− 2 crossings (< (i− 2)(i− 4) + 1 for
i ≥ 5).

We now explain how to deal with an (i−1)-vint v that falls
under case (b) of the present analysis. We charge v to a vint
v′ = (p, T ′) obtained as follows. Let r be the point provided
in Lemma 4.2. Delete from T all the µ ≤ i2 − 6i + 9 edges
that cross pr, and add pr to the new graph. This leaves two
links, referred to as “corridors”, with pr as a common edge.
We triangulate each of the corridors in an arbitrary manner,
leaving the rest of T untouched, to obtain a triangulation
T ′, and then charge v to v′ = (p, T ′). In Figure 13(d), the
shaded areas are the two untriangulated corridors obtained
from the vint depicted in Figure 13(a).

Note that the degree of v′ is at least i (because we have
added pr as an edge). It can be larger than i, if the trian-
gulations of the corridors use additional edges incident to p.
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Figure 14: (a) Two vertices cannot hide behind the
same vertex of o′. (b) All the vertices of S′ hide in
a clockwise manner. (c) The shaded area is a domi-
nating sequence of size 4. (d) There is a dominating
sequence of u from pu clockwise to uw.

Since we have removed µ edges from T , and then inserted the
edge pr, the re-triangulation of the corridors requires µ − 1
additional edges. The maximal degree of v′ is obtained when
all of these additional edges are incident to p. Hence, the de-
gree of p is at most i+(µ−1) ≤ i+(i2−6i+9−1) = i2−5i+8.

We next show that the number of (i − 1)-vints, that fall
under case (b) and charge the fixed vint v′, is at most some
(large) quantity Mi that depends only on i. By the preceding
discussion, we can assume that the degree d of v′ is at most
i2 − 5i + 8. Given v′, we can reconstruct v as follows. We
first choose the vertex r from the d neighbors of p in T ′.
Next, we choose the two corridors bounded by pr. To do so,
we recall that, together, these corridors consisted of at most
i2 − 6i + 10 triangles (in the original triangulation T ), so
T ′ uses the same number of triangles to fill them up. Thus,
starting from the two triangles of T ′ that are adjacent to pr,
we append to them up to i2 − 6i + 8 additional triangles, in
a breadth-first manner. Specifically, we maintain a queue of
triangles to be appended to the corridors. When appending
a triangle, we have already used one of its edges to reach
it from its predecessor (the same holds for the two initial
triangles, which cannot reach other triangles through their
common edge pr). We therefore have up to two other edges
that we can cross to reach other triangles. Hence, when
appending a triangle, we have up to four choices: append
its two neighboring triangles, append only the first of them,
append only the second, or not append any of them. (Some
of these neighbor triangles may have already been appended;
this only limits our choices.) We continue this process until
we collect the desired number of triangles. Hence, a crude

upper bound for the number of such choices is 4i2−6i+10.
Finally, having guessed these triangles, we remove from

T ′ all the inner edges of their union (i.e., edges adjacent to
two of these triangles), and re-triangulate the resulting link
in an arbitrary manner (using only edges that cross pr).
Notice that the number of ways to triangulate this polygon
is maximized when it is convex (since every triangulation
of a non-convex polygon is combinatorially equivalent to a
triangulation of a convex polygon with the same number of
edges). The polygon has at most i2 − 6i + 12 vertices, and

thus it has M ′
i = O∗

“

4i2−6i+10
”

triangulations.

In conclusion, the number of (i− 1)-vints, that fall under
case (b) and charge the fixed vint v′, is at most

Mi = (i2 − 5i + 8) · 4i2−6i+10 · M ′
i .

In the remaining cases, we assume that no edge of o is
flippable and that o contains a vint u of degree at least i.
Define the extended link o′ of o by iteratively repeating the
following process — find in T a triangle ∆ incident to two
(consecutive) edges of the current link o∗ and lying in the

exterior of o∗, and append ∆ to o∗. When we can no longer
find such a triangle, we have obtained the extended link
o′ = o∗; see Figure 11(b). Note that all the edges of the
triangles ∆ encountered in this process are either edges of o
or extended chords of o.
(c) There exists a vertex q which is not a vertex of o, and
the line segment pq crosses only edges contained in o′. Such
a case is depicted in Figure 11(c). Notice that pq crosses a
single edge of o, and possibly some external chords. There-
fore, pq cannot cross more than (i − 4) + 1 = i − 3 edges of
T . Similarly to case (b), we can remove the edges that cross
pq, insert pq, retriangulate the two resulting“corridors”, and
charge the resulting j-vint of p (where j ≥ i). As in the pre-
vious case, such a j-vint cannot get charged more than Li

times in this manner, for some Li depending only on i.
(d) For every q ∈ S, either q is a vertex of o or the line
segment pq crosses at least one edge not contained in o′. By
definition, every triangle of T not contained in o′ is incident
to at most one edge of o′. Let S′ be the set of third vertices
(not contained in o) of triangles incident to edges of o′.

For each s ∈ S′, its corresponding vint in T must “hide”
from p, either in a clockwise manner (such as a in Figure
11(d)), or in a counterclockwise manner (such as b in Fig-
ure 11(d)). Notice that two such vints cannot hide behind
the same vertex of o, one in a clockwise manner and the
other in a counterclockwise manner, since this would imply
that their corresponding triangles overlap (see Figure 14(a)).
Therefore, either all of the vertices of S′ hide in a clockwise
manner, or they all hide in a counterclockwise manner; see
Figure 14(b). This also implies that o′ cannot contain an
edge of the convex hull.

Consider a j-vint w. Its link ow consists of j triangles, all
incident to w, such that the sum of the angles at w over all j
triangles is 2π. We say that a set D of consecutive triangles
is a dominating sequence if the sum of the angles in those
triangles is larger than π. Figure 14(c) depicts an 11-vint,
and the four shaded triangles form a dominating sequence.
Note that a separable edge defines a dominating sequence of
size 2 (see Figure 1).

Lemma 4.3. For every i ∈ N, every vint has fewer than
3i2 dominating sequences of size at most i.

Proof. Consider a j-vint w with at least one dominating
sequence D of size at most i. A subset of the complemen-
tary set D′ cannot be dominating. Thus every dominating
sequence of w must include at least one triangle of D. There
are less than i2 contiguous subsequences of D. For sequences
of size at most i not completely contained in D, we note that
there are at most 2i such sequences with one element from
D, at most 2i such sequences with two elements from D,
. . . , for a total of at most 2i2 sequences.

Recall that we assume that there exists a vint u = (pu, T )
in o of degree at least i. From the above, there is another
vint w = (pw, T ) hiding from v behind u (Figure 14(d)).
Note that, because of the ‘hiding’, there is a dominating
sequence of v starting from uv and going clockwise up to
uw. The edges between the triangles of this sequence are
external chords and a single edge of o. Thus the size of the
set is at most i− 2. In this case, we let v charge u. Since uv
is on the boundary of a dominating sequence of u of size at
most i−2, u is charged fewer than 6i2 times in this manner.
Recurrence with solution. Summing up the charges in



all three cases and averaging over all (i−1)-vints, we obtain

v̂i−1 ≤ iv̂i + Li

P

k≥i v̂k + 6i2
P

k≥i v̂k + Mi

P

k≥i v̂k

= (i + Mi + Li + 6i2)v̂i + (Mi + Li + 6i2)
P

k≥i+1 v̂k

= Aiv̂i + Bi

Pt
k=i+1 v̂k + Bi

P

k>t v̂k,

where Ai = i + Mi + Li + 6i2, Bi = Mi + Li + 6i2, and
where t is chosen so that t > 14Bi/γi−1,h. Note that t too
depends only on i (and on h). By Lemma 3.5,

P

k≥3 kv̂k ≤
6n + h − 9 < 7n, and thus

Bi

P

k>t v̂k ≤ Bi
t

P

k>t kv̂k < Bi·7n
t

< 1
2
γi−1,hn.

By the induction hypothesis, γi−1,hn ≤ v̂i−1 ≤ Aiv̂i +
Bi

Pt
k=i+1 v̂k + 1

2
γi−1,hn. By Lemma 3.3, for each k ≥ i +1

there is a constant δi,k such that v̂k ≤ δi,kv̂i. Putting
Di =

Pt
k=i+1 δi,k, we get

1
2
γi−1,hn ≤ (Ai + BiDi)v̂i , and v̂i ≥

γi−1,h

2(Ai+BiDi)
n.

This establishes γi,h =
γi−1,h

2(Ai+BiDi)
for induction on i and so

completes the proof of Theorem 4.1.

4.1 Large v̂i’s must always exist
The lower bounds for the vi’s, presented above come with

small constants. We complement the analysis by showing,
using a simple counting argument, that, for every point set
with sufficiently many interior points, there are v̂i’s with
much larger values, for small values of the index i. The
“catch” is that we use an averaging argument, so we do not
know which specific v̂i has to be large.

Lemma 4.4. For every planar set of N points in general
position, where n of them are interior and h are hull vertices,

we have max {v̂3, v̂4, v̂5, v̂6} ≥ (n−h+9)
10

. In particular, when

the convex hull is triangular, max {v̂3, v̂4, v̂5, v̂6} > N
10

holds.

Proof. Consider a charging scheme for a triangulation T ,
where each i-vint of T is charged 7 − i. By Lemma 3.5, we
get the following lower bound on the total charge in T :

P

i(7 − i)vi(T ) =
P

i 7vi(T ) −
P

i ivi(T )

≥ 7n − (6n + h − 9) = n − h + 9.

Charges of i-vints with i ≥ 7 are non-positive, thus ignoring
them can only increase the total charge. Hence

4v3(T )+3v4(T )+2v5(T )+v6(T ) ≥
P

i(7−i)vi(T ) ≥ n−h+9.

By linearity of expectation, 4v̂3 +3v̂4 +2v̂5 + v̂6 ≥ n−h+9.
Letting m̂ = max {v̂3, v̂4, v̂5, v̂6}, we have

10m̂ ≥ 4v̂3 + 3v̂4 + 2v̂5 + v̂6 ≥ n − h + 9,

so m̂ ≥ n−h+9
10

, as asserted.

Looking at the preceding lemma, one might suspect that
the larger lower bound that it yields is due to v̂3 being large
(as also suggested by the lower bound of [12], even though
this latter bound is only N/30), and that the other v̂i’s are
probably much smaller. As the following lemma shows, this
is not the case, and some other large v̂i’s must also exist.

Lemma 4.5. For every point set in general position, with
parameters N , n, and h, as above, max {v̂4, v̂5, . . . , v̂11} ≥
12n−9.5h+45

180
. In particular, when the convex hull is triangu-

lar, we have max {v̂4, v̂5, . . . , v̂11} ≥ N−39/24
15

.

Proof . Similarly to Lemma 4.4, we consider a charg-
ing scheme for a triangulation T , where each i-vint of T is
charged 12− i. Once again, Lemma 3.5 provides the follow-
ing lower bound on the total charge in T (with vi = vi(T )):
P

i(12 − i)vi ≥ 12n − (6n + h − 9) = 6n − h + 9.

Ignoring the charge of i-vints with i ≥ 12 can only increase
the total charge. Let m := max {v4, v5, . . . , v11} and obtain

9v3+36m ≥ 9v3+8v4+· · ·+v11 ≥
P

i(12−i)vi ≥ 6n−h+9.

Using linearity of expectation and arguing as in the pre-
vious proof, we have m̂ ≥ 6n−h+9−9v̂3

36
, where we set m̂ :=

max {v̂4, v̂5, . . . , v̂11}. With the inequality v̂3 ≤ 2n+h/2
5

from
Lemma 2.3 this yields the asserted bound.

5. REFERENCES
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Szemerédi, Crossing-free subgraphs, Annals Discrete
Math. 12 (1982), 9–12.

[2] O. Aichholzer, F. Hurtado, and M. Noy, A lower
bound on the number of triangulations of planar point
sets, Comput. Geom. Theory Appl. 29(2) (2004),
135–145.

[3] M.O. Denny and C.A. Sohler, Encoding a
triangulation as a permutation of its point set, Proc.
9th Canadian Conf. on Computational Geometry
(1997), 39–43.
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