
SIAM J. COMPUT. c© 2013 Society for Industrial and Applied Mathematics
Vol. 42, No. 6, pp. 2039–2062

ON RANGE SEARCHING WITH SEMIALGEBRAIC SETS. II∗

PANKAJ K. AGARWAL† , JIŘÍ MATOUŠEK‡ , AND MICHA SHARIR§

Abstract. Let P be a set of n points in R
d. We present a linear-size data structure for

answering range queries on P with constant-complexity semialgebraic sets as ranges, in time close to
O(n1−1/d). It essentially matches the performance of similar structures for simplex range searching,
and, for d ≥ 5, significantly improves earlier solutions by the first two authors obtained in 1994.
This almost settles a long-standing open problem in range searching. The data structure is based on
a partitioning technique of Guth and Katz [On the Erdős distinct distances problem in the plane,
arXiv:1011.4105, 2010], which shows that for a parameter r, 1 < r ≤ n, there exists a d-variate
polynomial f of degree O(r1/d) such that each connected component of Rd \ Z(f) contains at most
n/r points of P , where Z(f) is the zero set of f . We present an efficient randomized algorithm
for computing such a polynomial partition, which is of independent interest and is likely to have
additional applications.

Key words. range searching, ham-sandwich cuts, polynomial partitions, cylindrical algebraic
decomposition

AMS subject classifications. 52C45, 68P05, 68Q01, 68U05

DOI. 10.1137/120890855

1. Introduction.

Range searching. Let P be a set of n points in R
d, where d is a small constant.

Let Γ be a family of geometric “regions,” called ranges, in R
d, each of which can

be described algebraically by some fixed number of real parameters (a more precise
definition is given below). For example, Γ can be the set of all axis-parallel boxes,
balls, simplices, or cylinders, or the set of all intersections of pairs of ellipsoids. In the
Γ-range searching problem, we want to preprocess P into a data structure so that the
number of points of P lying in a query range γ ∈ Γ can be counted efficiently. Similar
to many previous papers, we actually consider a more general setting, the so-called
semigroup model, where we are given a weight function on the points in P and we ask
for the cumulative weight of the points in P ∩ γ. The weights are assumed to belong
to a semigroup, i.e., subtractions are not allowed. We assume that the semigroup
operation can be executed in constant time.

In this paper we consider the case in which Γ is a set of constant-complexity
semialgebraic sets. We recall that a semialgebraic set is a subset of R

d obtained

∗Received by the editors September 10, 2012; accepted for publication (in revised form) July 15,
2013; published electronically November 5, 2013. Part of this work was done while the first and third
authors were visiting ETH Zürich. A preliminary version of the paper appeared in Proceedings of
the 53rd Annual IEEE Symposium on Foundations of Computer Science, 2012.

http://www.siam.org/journals/sicomp/42-6/89085.html
†Department of Computer Science, Duke University, Durham, NC 27708-0129 (pankaj@cs.duke.

edu). This author’s research was supported by the NSF under grants IIS-07-13498, CCF-09-40671,
CCF-10-12254, and CCF-11-61359, by ARO grants W911NF-07-1-0376 and W911NF-08-1-0452, and
by an ARL award W9132V-11-C-0003.

‡Department of Applied Mathematics, Charles University, 118 00 Praha 1, Czech Republic,
and Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland (matousek@
kam.mff.cumi.cz). This author’s research was supported by the ERC Advanced grant 267165.

§School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute
of Mathematical Sciences, New York University, New York, NY 10012 (michas@post.tau.ac.il). This
author’s research was supported by NSF grant CCF-08-30272, by grant 338/09 from the Israel Science
Fund, by the Israeli Centers for Research Excellence (I-CORE) program (Center no. 4/11), and by
the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.

2039

2040 P. K. AGARWAL, J. MATOUŠEK, AND M. SHARIR

from a finite number of sets of the form {x ∈ R
d | g(x) ≥ 0}, where g is a d-variate

polynomial with integer coefficients,1 by Boolean operations (unions, intersections,
and complementations). Specifically, let Γd,Δ,s denote the family of all semialgebraic
sets in R

d defined by at most s polynomial inequalities of degree at most Δ each.
If d,Δ, s are all regarded as constants, we refer to the sets in Γd,Δ,s as constant-
complexity semialgebraic sets (such sets are sometimes also called Tarski cells). By
semialgebraic range searching we mean Γd,Δ,s-range searching for some parameters
d,Δ, s; in most applications the actual collection Γ of ranges is only a restricted
subset of some Γd,Δ,s. Besides being interesting in its own right, semialgebraic range
searching also arises in several geometric searching problems, such as searching for
a point nearest to a query geometric object, counting the number of input objects
intersecting a query object, and many others.

This paper focuses on the low storage version of range searching with constant-
complexity semialgebraic sets—the data structure is allowed to use only linear or
near-linear storage, and the goal is to make the query time as small as possible. At
the other end of the spectrum we have the fast query version, where we want queries
to be answered in polylogarithmic time using as little storage as possible. This variant
is discussed briefly in section 8.

As is typical in computational geometry, we will use the real RAM model of
computation, where we can compute exactly with arbitrary real numbers and each
arithmetic operation is executed in constant time.

Previous work. Motivated by a wide range of applications, several variants of
range searching have been studied in computational geometry and database systems
at least since the 1980s. See [1, 22] for comprehensive surveys of this topic. The
early work focused on the so-called orthogonal range searching, where ranges are axis-
parallel boxes. After three decades of extensive work on this particular case, some
basic questions still remain open. However, geometry plays little role in the known
data structures for orthogonal range searching.

The most basic and most studied truly geometric instance of range searching is
with halfspaces, or, more generally, simplices, as ranges. Studies in the early 1990s
have essentially determined the optimal trade-off between the worst-case query time
and the storage (and preprocessing time) required by any data structure for simplex
range searching.2 Lower bounds for this trade-off have been given by Chazelle [7]
under the semigroup model of computation, where subtraction of the point weights
is not allowed. It is possible that, say, the counting version of the simplex range
searching problem, where we ask just for the number of points in the query simplex,
might admit better solutions using subtractions, but no such solutions are known.
Moreover, there are recent lower-bound results when subtractions are also allowed;
see [18] and references therein.

The data structures proposed for simplex range searching over the last twenty
years [20, 21] match the known lower bounds within polylogarithmic factors. The
state-of-the-art upper bounds are by (i) Chan [6], who, building on many earlier

1The usual definition of a semialgebraic set requires these polynomials to have integer coefficients.
However, for our purposes, since we are going to assume the real RAM model of computation, we
can actually allow for arbitrary real coefficients without affecting the asymptotic overhead.

2This applies when d is assumed to be fixed and the implicit constants in the asymptotic notation
may depend on d. This is the setting in all the previous papers, including the present one. Of course,
in practical applications, this assumption may be unrealistic unless the dimension is really small.
However, the known lower bounds imply that if the dimension is large, no efficient solutions to
simplex range searching exist, at least in the worst-case setting.

SEMIALGEBRAIC RANGE SEARCHING 2041

results, provides a linear-size data structure with O(n logn) expected preprocessing
time and O(n1−1/d) query time, and (ii) Matoušek [21], who provides a data structure
with O(nd) storage, O((log n)d+1) query time, and O(nd(log n)ε) preprocessing time.3

A trade-off between space and query time can be obtained by combining these two
data structures [21].

Yao and Yao [31] were perhaps the first to consider range searching in which
ranges were delimited by graphs of polynomial functions. Agarwal and Matoušek [2]
have introduced a systematic study of semialgebraic range searching. Building on the
techniques developed for simplex range searching, they presented a linear-size data
structure with O(n1−1/b+ε) query time, where b = max(d, 2d − 4). For d ≤ 4, this
almost matches the performance for the simplex range searching, but for d ≥ 5 there
is a gap in the exponents of the corresponding bounds. Also see [27] for related recent
developments.

The bottleneck in the performance of the just mentioned range-searching data
structure of [2] is a combinatorial geometry problem, known as the decomposition of
arrangements into constant-complexity cells. Here, we are given a set Σ of t algebraic
surfaces in R

d (i.e., zero sets of d-variate polynomials), with degrees bounded by
a constant Δ0, and we want to decompose each cell of the arrangement A(Σ) (see
section 4 for details) into subcells that are constant-complexity semialgebraic sets, i.e.,
belong to Γd,Δ,s for some constants Δ (bound on degrees) and s (number of defining
polynomials), which may depend on d and Δ0, but not on t. The crucial quantity is
the total number of the resulting subcells over all cells of A(Σ); namely, if one can
construct such a decomposition with O(tb) subcells, with some constant b, for every
t and Σ, then the method of [2] yields query time O(n1−1/b+ε) (with linear storage).
The only known general-purpose technique for producing such a decomposition is the
so-called vertical decomposition [8, 26], which decomposes A(Σ) into roughly t2d−4

constant-complexity subcells, for d ≥ 4 [17, 26].
An alternative approach, based on linearization, was also proposed in [2]. It

maps the semialgebraic ranges in R
d to simplices in some higher-dimensional space

and uses simplex range searching there. However, its performance depends on the
specific form of the polynomials defining the ranges. In some special cases (e.g., when
ranges are balls in R

d), linearization yields better query time than the decomposition-
based technique mentioned above, but for general constant-complexity semialgebraic
ranges, linearization has worse performance.

Our results. In a recent breakthrough, Guth and Katz [11] have presented a
new space decomposition technique, called polynomial partitioning. For a set P ⊂
R

d of n points and a real parameter r, 1 < r ≤ n, an r-partitioning polynomial
for P is a nonzero d-variate polynomial f such that each connected component of
R

d \ Z(f) contains at most n/r points of P , where Z(f) := {x ∈ R
d | f(x) = 0}

denotes the zero set of f . The decomposition of Rd into Z(f) and the connected
components of Rd \ Z(f) is called a polynomial partition (induced by f). Guth and
Katz show that an r-partitioning polynomial of degree O(r1/d) always exists, but their
argument does not lead to an efficient algorithm for constructing such a polynomial,
mainly because it relies on ham-sandwich cuts in high-dimensional spaces, for which
no efficient construction is known. Our first result is an efficient randomized algorithm
for computing an r-partitioning polynomial.

3Here and in what follows, ε denotes an arbitrarily small positive constant. The implicit constants
in the asymptotic notation may depend on it, generally tending to infinity as ε decreases to 0.

2042 P. K. AGARWAL, J. MATOUŠEK, AND M. SHARIR

Theorem 1.1. Given a set P of n points in R
d, for some fixed d, and a parameter

r ≤ n, an r-partitioning polynomial for P of degree O(r1/d) can be computed in
randomized expected time O(nr + r3).

Next, we use this algorithm to bypass the arrangement-decomposition problem
mentioned above. Namely, based on polynomial partitions, we construct partition
trees [1, 22] that answer range queries with constant-complexity semialgebraic sets in
near-optimal time, using linear storage. An essential ingredient in the performance
analysis of these partition trees is a recent combinatorial result of Barone and Basu [3],
originally conjectured by the second author, which deals with the complexity of certain
kinds of arrangements of zero sets of polynomials (see Theorem 4.2). While there have
already been several combinatorial applications of the Guth–Katz technique (the most
impressive being the original one in [11], which solves the famous Erdős’s distinct
distances problem, and some of the others presented in [13, 14, 28, 33]), ours seems
to be the first algorithmic application.

We establish two range-searching results, both based on polynomial partitions.
For the first result, we need to introduce the notion of D-general position, for an
integer D ≥ 1. We say that a set P ⊂ R

d is in D-general position if no k points of P
are contained in the zero set of a nonzero d-variate polynomial of degree at most D,
where k :=

(
D+d
d

)
. This is the number one expects for a “generic” point set.4

Theorem 1.2. Let d,Δ, s, and ε > 0 be constants. Let P ⊂ R
d be an n-point set

in D0-general position, where D0 is a suitable constant depending on d,Δ, and ε. Then
the Γd,Δ,s-range searching problem for P can be solved with O(n) storage, O(n log n)
expected preprocessing time, and O(n1−1/d+ε) query time.

We note that both here and in the next theorem, while the preprocessing algo-
rithm is randomized, the queries are answered deterministically, and the query time
bound is worst-case.

Of course, we would like to handle arbitrary point sets, not only those in D0-
general position. This can be achieved by an infinitesimal perturbation of the points
of P . A general technique known as “simulation of simplicity” (in the version con-
sidered by Yap [32]) ensures that the perturbed set P ′ is in D0-general position. If
a point p ∈ P lies in the interior of a query range γ, then so does the corresponding
perturbed point p′ ∈ P ′, and similarly for p in the interior of Rd \ γ. However, for p
on the boundary of γ, we cannot be sure if p′ ends up inside or outside γ.

Let us say that a boundary-fuzzy solution to the Γd,Δ,s-range searching problem
is a data structure that, given a query γ ∈ Γd,Δ,s, returns an answer in which all
points of P in the interior of γ are counted and none in the interior of R

d \ γ is
counted, while each point p ∈ P on the boundary of γ may or may not be counted.
In some applications, we can think of the points of P being imprecise anyway (e.g.,
their coordinates come from some imprecise measurement), and then boundary-fuzzy
range searching may be adequate.

Corollary 1.3. Let d,Δ, s, and ε > 0 be constants. Then for every n-point
set in R

d, there is a boundary-fuzzy Γd,Δ,s-range searching data structure with O(n)
storage, O(n logn) expected preprocessing time, and O(n1−1/d+ε) query time.

4Indeed, d-variate polynomials of degree at most D have at most k − 1 distinct nonconstant
monomials. The Veronese map (see, e.g., [11]) maps Rd to R

k−1, and hyperplanes in R
k−1 correspond

bijectively to k-variate polynomials of degree at most D. It follows that any set of k − 1 points in
Rd is contained in the zero set of a d-variate polynomial of degree at most D, corresponding to
the hyperplane in Rk−1 passing through the Veronese images of these points. Similarly, k points in
general position are not expected to have this property, because one does not expect their images to
lie in a common hyperplane. See [9, 10] for more details.

SEMIALGEBRAIC RANGE SEARCHING 2043

Actually, previous results on range searching that use simulation of simplicity to
avoid degenerate cases also solve only the boundary-fuzzy variant (see, e.g., [20, 21]).
However, the previous techniques, even if presented only for point sets in general
position, can usually be adapted to handle degenerate cases as well, perhaps with
some effort, which is nevertheless routine. For our technique, degeneracy appears to
be a more substantial problem because it is possible that a large subset of P (maybe
even all of P) is contained in the zero set of the partitioning polynomial f , and the
recursive divide-and-conquer mechanism yielded by the partition of f does not apply
to this subset.

Partially in response to this issue, we present a different data structure that, at
a somewhat higher preprocessing cost, not only gets rid of the boundary-fuzziness
condition but also has a slightly improved query time (in terms of n). The main idea
is that we build an auxiliary recursive data structure to handle the potentially large
subset of points that lie in the zero set of the partitioning polynomial.

Theorem 1.4. Let d,Δ, s, and ε > 0 be constants. Then the Γd,Δ,s-range
searching problem for an arbitrary n-point set in R

d can be solved with O(n) storage,
O(n1+ε) expected preprocessing time, and O(n1−1/d logB n) query time, where B is a
constant depending on d,Δ, s, and ε.

We remark that the dependence of B on Δ, s, and ε is reasonable, but its depen-
dence on d is superexponential.

Our algorithms work for the semigroup model described earlier. Assuming that
a semigroup operation can be executed in constant time, the query time remains the
same as for the counting query. A reporting query—report the points of P lying in
a query range—also fits in the semigroup model, except one cannot assume that a
semigroup operation in this case takes constant time. The time taken by a reporting
query is proportional to the cost of a counting query plus the number of reported
points.

Roadmap of the paper. Our algorithm is based on the polynomial partition-
ing technique by Guth and Katz, and we begin by briefly reviewing it in section 2.
Next, in section 3, we describe the randomized algorithm for constructing such a par-
titioning polynomial. Section 4 presents an algorithm for computing the cells of a
polynomial partition that are crossed by a semialgebraic range, and discusses several
related topics. Section 5 presents our first data structure, which is as in Theorem 1.2.
Section 6 describes the method for handling points lying on the zero set of the par-
titioning polynomial, and section 7 presents our second data structure. We conclude
in section 8 by mentioning a few open problems.

2. Polynomial partitions. In this section we briefly review the Guth–Katz
technique for later use. We begin by stating their result.

Theorem 2.1 (Guth–Katz [11]). Given a set P of n points in R
d and a parameter

r ≤ n, there exists an r-partitioning polynomial for P of degree at most O(r1/d) (for
d fixed).

The degree in the theorem is asymptotically optimal in the worst-case because
the number of connected components of Rd \Z(f) is O((deg f)d) for every polynomial
f (see, e.g., Warren [30, Theorem 2]).

Sketch of proof. The Guth–Katz proof uses the polynomial ham-sandwich the-
orem of Stone and Tukey [29], which we state here in a version for finite point sets:
If A1, . . . , Ak are finite sets in R

d and D is an integer satisfying
(
D+d
d

)− 1 ≥ k, then
there exists a nonzero polynomial f of degree at most D that simultaneously bisects

2044 P. K. AGARWAL, J. MATOUŠEK, AND M. SHARIR

all the sets Ai. Here “f bisects Ai” means that f > 0 in at most �|Ai|/2� points of
Ai and f < 0 in at most �|Ai|/2� points of Ai; f might vanish at any number of the
points of Ai, possibly even at all of them.

Guth and Katz inductively construct collections P0,P1, . . . ,Pm of subsets of P .
For j = 0, 1, . . . ,m, Pj consists of at most 2j pairwise-disjoint subsets of P , each of
size at most n/2j; the union of these sets does not have to contain all points of P .

Initially, we have P0 = {P}. The algorithm stops as soon as each subset in Pm

has at most n/r points. This implies that m ≤ 	log2 r
. Having constructed Pj−1, we
use the polynomial ham-sandwich theorem to construct a polynomial fj that bisects
each set of Pj−1, with deg fj = O(2j/d) (this is indeed an asymptotic upper bound

for the smallest D satisfying
(
D+d
d

) − 1 ≥ 2j−1, assuming d to be a constant). For
every subset Q ∈ Pj−1, let Q

+ = {q ∈ Q | fj(q) > 0} and Q− = {q ∈ Q | fj(q) < 0}.
We set Pj := {Q+, Q− | Q ∈ Pj−1}; empty subsets are not included in Pj.

The desired r-partitioning polynomial for P is then the product f := f1f2 · · · fm.
We have

deg f =

m∑
j=1

deg fj =

m∑
j=1

O(2j/d) = O(r1/d).

By construction, the points of P lying in a single connected component of Rd \ Z(f)
belong to a single member of Pm, which implies that each connected component
contains at most n/r points of P .

Sketch of proof of the Stone–Tukey polynomial ham-sandwich theorem.
We begin by observing that

(
D+d
d

) − 1 is the number of all nonconstant monomials

of degree at most D in d variables. Thus, we fix a collection M of k ≤ (
D+d
d

) − 1
such monomials. Let Φ: Rd → R

k be the corresponding Veronese map, which maps
a point x = (x1, . . . , xd) ∈ R

d to the k-tuple of the values at (x1, . . . , xd) of the
monomials from M. For example, for d = 2, D = 3, and k = 8 ≤ (

3+2
2

) − 1, we may
use Φ(x1, x2) = (x1, x2, x

2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2) ∈ R

8, where M is the set of the
eight monomials appearing as components of Φ.

Let Bi := Φ(Ai) ⊂ R
k be the image of the given Ai under this Veronese map,

for i = 1, . . . , k. By the standard ham-sandwich theorem (see, e.g., [23]), there exists
a hyperplane h in R

k that simultaneously bisects all the Bi’s, in the sense that each
open halfspace bounded by h contains at most half of the points of each of the sets Bi.
In a more algebraic language, there is a nonzero k-variate linear polynomial, which
we also call h, that bisects all the Bi’s, in the sense of being positive on at most half
of the points of each Bi, and being negative on at most half of the points of each Bi.
Then f := h ◦Φ is the desired d-variate polynomial of degree at most D bisecting all
the Ai’s.

3. Constructing a partitioning polynomial. In this section we present an
efficient randomized algorithm that, given a point set P and a parameter r < n,
constructs an r-partitioning polynomial. The main difficulty in converting the above
proof of the Guth–Katz partitioning theorem into an efficient algorithm is the use of
the ham-sandwich theorem in the possibly high-dimensional space R

k. A straight-
forward algorithm for computing ham-sandwich cuts in R

k inspects all possible ways
of splitting the input point sets by a hyperplane, and has running time about nk.
Compared to this easy upper bound, the best known ham-sandwich algorithms can
save a factor of about n [19], but this is insignificant in higher dimensions. A recent
result of Knauer, Tiwari, and Werner [16] shows that a certain incremental variant of

SEMIALGEBRAIC RANGE SEARCHING 2045

computing a ham-sandwich cut is W [1]-hard (where the parameter is the dimension),
and thus perhaps one should not expect much better exact algorithms.

We observe that the exact bisection of each Ai is not needed in the Guth–Katz
construction—it is sufficient to replace the Stone–Tukey polynomial ham-sandwich
theorem by a weaker result, as described below.

Constructing a well-dissecting polynomial. We say that a polynomial f is
well-dissecting for a point set A if f > 0 on at most 7

8 |A| points of A and f < 0 on
at most 7

8 |A| points of A. Given point sets A1, . . . , Ak in R
d with n points in total,

we present a Las-Vegas algorithm for constructing a polynomial f of degree O(k1/d)
that is well-dissecting for at least 	k/2
 of the Ai’s.

As in the above proof of the Stone–Tukey polynomial ham-sandwich theorem,
let D be the smallest integer satisfying

(
D+d
d

) − 1 ≥ k. We fix a collection M of k
distinct nonconstant monomials of degree at most D, and let Φ be the corresponding
Veronese map. For each i = 1, 2, . . . , k, we pick a point ai ∈ Ai uniformly at random
and compute bi := Φ(ai). Let h be a hyperplane in R

k passing through b1, . . . , bk,
which can be found by solving a system of linear equations, in O(k3) time.

If the points b1, . . . , bk are not affinely independent, then h is not determined
uniquely (this is a technical nuisance, which the reader may want to ignore on first
reading). In order to handle this case, we prepare in advance, before picking the ai’s,
auxiliary affinely independent points q1, . . . , qk in R

k, which are in general position
with respect to Φ(A1), . . . ,Φ(Ak); here we mean the “ordinary” general position, i.e.,
no unnecessary affine dependences, that involve some of the qi’s and the other points,
arise. The points qi can be chosen at random, say, uniformly in the unit cube; with
high probability, they have the desired general position property. (If we do not want
to assume the capability of choosing a random real number, we can pick the qi’s
uniformly at random from a sufficiently large discrete set). If the dimension of the
affine hull of b1, . . . , bk is k′ < k−1, we choose the hyperplane h through b1, . . . , bk and
q1, . . . , qk−k′−1. If h is not unique, i.e., q1, . . . qk−k′−1 are not affinely independent with
respect to b1, . . . bk, which we can detect while solving the linear system, we restart the
algorithm by choosing q1, . . . , qk anew and then picking new a1, . . . , ak. In this way,
after a constant expected number of iterations, we obtain the uniquely determined
hyperplane h through b1, . . . , bk and q1, . . . , qk−k′−1 as above, and we let f = h ◦ Φ
denote the corresponding d-variate polynomial. We refer to these steps as one trial
of the algorithm. For each Ai, we check whether f is well-dissecting for Ai. If f is
well-dissecting for only fewer than k/2 sets, then we discard f and perform another
trial.

We now analyze the expected running time of the algorithm. The intuition is
that f is expected to well-dissect a significant fraction, say at least half, of the sets
Ai. This intuition is reflected in the next lemma. Let Xi be the indicator variable of
the event: Ai is not well-dissected by f .

Lemma 3.1. For every i = 1, 2, . . . , k, E[Xi] ≤ 1/4.
Proof. Let us fix i and the choices of aj (and thus of bj = Φ(aj)) for all j
= i.

Let k0 be the dimension of F0, the affine hull of {bj | j
= i}. Then the resulting
hyperplane h passes through the (k − 2)-flat F spanned by F0 and q1, . . . , qk−k0−2,
irrespective of which point of Ai is chosen. If ai, the point chosen from Ai, is such
that bi = Φ(ai) lies on F0, then h also passes through qk−k0−1.

Put Bi := Φ(Ai), and let us project the configuration orthogonally to a 2-di-
mensional plane π orthogonal to F . Then F appears as a point F ∗ ∈ π, and Bi

projects to a (multi)set B∗
i in π. The random hyperplane h projects to a random line

2046 P. K. AGARWAL, J. MATOUŠEK, AND M. SHARIR

L∗
i

R∗
i

F ∗

Fig. 1. Illustration to the proof of Lemma 3.1.

h∗ in π, whose choice can be interpreted as follows: pick b∗i ∈ B∗
i uniformly at random;

if b∗i
= F ∗, then h∗ is the unique line through b∗i and F ∗; otherwise, when b∗i = F ∗,
h∗ is the unique line through F ∗ and q∗k−k0−1; by construction, q∗k−k0−1
= F ∗. The

indicator variable Xi is 1 if and only if the resulting h∗ has more than 7
8 |B∗

i | points
of B∗

i , counted with multiplicity, (strictly) on one side.
The special role of q∗k−k0−1 can be eliminated if we first move the points of B∗

i

coinciding with F ∗ to the point q∗k−k0−1, and then slightly perturb the points so as
to ensure that all points of B∗

i are distinct and lie at distinct directions from F ∗; it
is easy to see that these transformations cannot decrease the probability of Xi = 1.
Finally, we note that the side of h∗ containing a point b∗ ∈ B∗

i only depends on the

direction of the vector
−−−→
F ∗b∗, so we can also assume the points of B∗

i to lie on the unit
circle around F ∗.

Using (a simple instance of) the standard planar ham-sandwich theorem, we par-
tition B∗

i into two subsets L∗
i and R∗

i of equal size by a line through the center F ∗.
Then we bisect L∗

i by a ray from F ∗, and we do the same for R∗
i . It is easily checked

(see Figure 1) that there always exist two of the resulting quarters, one of L∗
i and one

of R∗
i (the ones whose union forms an angle ≤ π between the two bisecting rays), such

that every line connecting F ∗ with a point in either quarter contains at least 1
4 |B∗

i |
points of B∗

i on each side. Referring to these quarters as “good,” we now take one of
the bisecting rays, say that of L∗

i , and rotate it about F ∗ away from the good quarter
of L∗

i . Each of the first 1
8 |B∗

i | points that the ray encounters has the property that
the line supporting the ray has at least 1

8 |B∗
i | points of B∗

i on each side. This implies
that, for at least half of the points in each of the two remaining quarters, the line
connecting F ∗ to such a point has at least 1

8 |B∗
i | points of B∗

i on each side. Hence at
most 1

4 |Bi| points of Bi can lead to a cut that is not well-dissecting for Bi.
We conclude that, still conditioned on the choices of aj , j
= i, the event Xi = 1

has probability at most 1/4. Since this holds for every choice of the aj, j
= i, the
unconditional probability of Xi = 1 is also at most 1/4, and thus E[Xi] ≤ 1/4 as
claimed.

Hence, the expected number of sets Ai that are not well-dissected by f is

E

[
k∑

i=1

Xi

]
=

k∑
i=1

E[Xi] ≤ k/4.

By Markov’s inequality, with probability at least 1/2, at least half of the Ai’s are
well-dissected by f . We thus obtain a polynomial that is well-dissecting for at least
half of the Ai’s after an expected constant number of trials.

SEMIALGEBRAIC RANGE SEARCHING 2047

It remains to estimate the running time of each trial. The points b1, . . . , bk can
be chosen in O(n) time. Computing h involves solving a k × k linear system, which
can be done in O(k3) time using Gaussian elimination. Note that we do not actually
compute the entire sets Φ(Ai). No computation is needed for passing from h to f—we
just reinterpret the coefficients. To check which of A1, . . . , Ak are well-dissected by f ,
we evaluate f at each point of A =

⋃
i Ai. First we evaluate each of the k monomials

in M at each point of A. If we proceed incrementally, from lower degrees to higher
ones, this can be done with O(1) operations per monomial and point of A, in O(nk)
time in total. Then, in additional O(nk) time, we compute the values of f(q), for all
q ∈ A, from the values of the monomials. Putting everything together we obtain the
following lemma.

Lemma 3.2. Given point sets A1, . . . , Ak in R
d (for fixed d) with n points in

total, a polynomial f of degree O(k1/d) that is well-dissecting for at least 	k/2
 of the
Ai’s can be constructed in O(nk + k3) randomized expected time.

Constructing a partitioning polynomial. We now describe the algorithm
for computing an r-partitioning polynomial f . We essentially imitate the Guth–Katz
construction, with Lemma 3.2 replacing the polynomial ham-sandwich theorem, but
with an additional twist.

The algorithm works in phases. At the end of the jth phase, for j ≥ 1, we have
a family f1, . . . , fj of j polynomials and a family Pj of at most 2j pairwise-disjoint
subsets of P , each of size at most (7/8)jn. Similar to the Guth–Katz construction, Pj

is not necessarily a partition of P , since the points of P ∩Z(f1f2 · · · fj) do not belong
to

⋃
Pj. Initially, P0 = {P}. The algorithm stops when each set in Pj has at most

n/r points. In the jth phase, the algorithm constructs fj and Pj from f1, . . . , fj−1

and Pj−1, as follows.
At the beginning of the jth phase, let Lj = {Q ∈ Pj−1 | |Q| > (7/8)jn} be the

family of the “large” sets in Pj−1, and set κj = |Lj | ≤ (8/7)j. We also initialize the
collection Pj to Pj−1 \ Lj , the family of “small” sets in Pj−1. Then we perform at
most 	log2 κj
 dissecting steps, as follows: After s steps, we have a family g1, . . . , gs

of polynomials, the current set Pj, and a subfamily L
(s)
j ⊆ Lj of size at most κj/2

s,
consisting of the members of Lj that were not well-dissected by any of g1, . . . , gs. If

L
(s)
j
= ∅, we choose, using Lemma 3.2, a polynomial gs+1 of degree at most c(κj/2

s)1/d

(with a suitable constant c that depends only on d) that well-dissects at least half

of the members of L
(s)
j . For each Q ∈ L

(s)
j , let Q+ = {q ∈ Q | gs+1(q) > 0} and

Q− = {q ∈ Q | gs+1(q) < 0}. If Q is well-dissected, i.e., |Q+|, |Q−| ≤ 7
8 |Q|, then we

add Q+, Q− to Pj , and otherwise, we add Q to L
(s+1)
j . Note that in the former

case the points q ∈ Q satisfying gs+1(q) = 0 are “lost” and do not participate in the

subsequent dissections. By Lemma 3.2, |L(s+1)
j | ≤ |L(s)

j |/2 ≤ κj/2
s+1.

The jth phase is completed when L
(s)
j = ∅, in which case we set5 fj :=

∏s
�=1 g�.

By construction, each point set in Pj has at most (7/8)jn points, and the points of
P not belonging to any set of Pj lie in Z(f1 · · · fj). Furthermore,

deg fj ≤
∑
s≥0

c(κj/2
s)1/d = O(κ

1/d
j),

5Note that fj is not necessarily well-dissecting, because it does not control the sizes of subsets
with positive or with negative signs.

2048 P. K. AGARWAL, J. MATOUŠEK, AND M. SHARIR

where again the constant of proportionality depends only on d. Since every set in
Pj−1 is split into at most two sets before being added to Pj , |Pj | ≤ 2|Pj−1| ≤ 2j.

If Pj contains subsets with more than n/r points, we begin the (j + 1)st phase
with the current Pj ; otherwise, the algorithm stops and returns f := f1f2 · · · fj . This
completes the description of the algorithm.

Clearly, m, the number of phases of the algorithm, is at most 	log8/7 r
. Following
the same argument as in [11], and as briefly sketched in section 2, it can be shown
that all points lying in a single connected component of Rd \ Z(f) belong to a single
member of Pm, and thus each connected component contains at most n/r points of P .

Since the degree of fj is O(κ
1/d
j), κj ≤ (8/7)j, and m ≤ 	log8/7 r
, we conclude that

deg f = O

⎛
⎝ m∑

j=1

κ
1/d
j

⎞
⎠ = O

⎛
⎝ m∑

j=1

(8/7)j/d

⎞
⎠ = O(r1/d).

As for the expected running time of the algorithm, the sth step of the jth phase
takes O(nκj/2

s+(κj/2
s)3) expected time, so the jth phase takes a total of O(nκj+κ3

j)

expected time. Substituting κj ≤ (8/7)j in the above bound and summing over all j,
the overall expected running time of the algorithm is O(nr+ r3). This completes the
proof of Theorem 1.1.

Remark 1. Theorem 1.1 is employed for the preprocessing in our range-searching
algorithms in Theorems 1.2 and 1.4. In Theorem 1.2 we take r to be a large constant,
and the expected running time in Theorem 1.1 is O(n). However, in Theorem 1.4, we
require r to be a small fractional power of n, say r = n0.001. It is a challenging open
problem to improve the expected running time in Theorem 1.1 to O(n polylog(n))
when r is such a small fractional power of n. The bottleneck in the current algorithm
is the subproblem of evaluating a given d-variate polynomial f of degree D = O(r1/d)
at n given points; everything else can be performed in O(n polylog(r)+rO(1)) expected
time. Finding the signs of f at those points would actually suffice, but this probably
does not make the problem any simpler.

This problem of multievaluation of multivariate real polynomials has been consid-
ered in the literature, and there is a nontrivial improvement over the straightforward
O(nr) algorithm, due to Nüsken and Ziegler [24]. Concretely, in the bivariate case
(d = 2), their algorithm can evaluate a bivariate polynomial of degree D ≤ √

n at
n given points using O(nD0.667) arithmetic operations. It is based on fast matrix
multiplication, and even under the most optimistic possible assumption on the speed
of matrix multiplication, it cannot get below nD1/2. Although this is significantly
faster than our naive O(nr)-time algorithm, which is O(nD2) in this bivariate case, it
is still a far cry from what we are aiming at. Let us remark that in a different setting,
for polynomials over finite fields (and over certain more general finite rings), there
is a remarkable method for multievaluation by Kedlaya and Umans [15] achieving
O(((n +Dd) log q)1+ε) running time, where q is the cardinality of the field.

4. Crossing a polynomial partition with a range. In this section we define
the crossing number of a polynomial partition and describe an algorithm for computing
the cells of a polynomial partition that are crossed by a semialgebraic range, both of
which will be crucial for our range-searching data structures. We begin by recalling
a few results on arrangements of algebraic surfaces. We refer the reader to [26] for a
comprehensive review of such arrangements.

Let Σ be a finite set of algebraic surfaces in R
d. The arrangement of Σ, denoted

by A(Σ), is the partition of Rd into maximal relatively open connected subsets, called

SEMIALGEBRAIC RANGE SEARCHING 2049

cells, such that all points within each cell lie in the same subset of surfaces of Σ (and
in no other surface). If F is a set of d-variate polynomials, then with a slight abuse of
notation, we use A(F) to denote the arrangementA({Z(f) | f ∈ F}) of their zero sets.
We need the following result on arrangements, which follows from Proposition 7.33
and Theorem 16.18 in [5].

Theorem 4.1 (Basu, Pollack, and Roy [5]). Let F = {f1, . . . , fs} be a set of s real
d-variate polynomials, each of degree at most Δ. Then the arrangement A(F) in R

d

has at most O(1)d(sΔ)d cells, and it can be computed in time at most T = sd+1ΔO(d4).
Each cell is described as a semialgebraic set using at most T polynomials of degree
bounded by ΔO(d3). Moreover, the algorithm supplies an explicitly computed point in
each cell.

A key ingredient for the analysis of our range-searching data structure is the
following recent result of Barone and Basu [3], which is a refinement of a series of
previous studies; see, e.g., [4, 5]:

Theorem 4.2 (Barone and Basu [3]). Let V be a k-dimensional algebraic variety
in R

d defined by a finite set G of d-variate polynomials, each of degree at most Δ, and
let F be a set of s polynomials of degree at most D ≥ Δ. Then the number of cells of
A(F∪G) (of all dimensions) that are contained in V is bounded by O(1)dΔd−k(sD)k.

The crossing number of polynomial partitions. Let P be a set of n points
in R

d, and let f be an r-partitioning polynomial for P . Recall that the polynomial
partition Ω = Ω(f) induced by f is the partition of Rd into the zero set Z(f) and
the connected components ω1, ω2, . . . , ωt of Rd \ Z(f). As already noted, Warren’s
theorem [30] implies that t = O(r). We call ω1, . . . , ωt the cells of Ω (although they
need not be cells in the sense typical, e.g., in topology; they need not even be simply
connected). Ω also induces a partition P ∗, P1, . . . , Pt of P , where P ∗ = P ∩ Z(f)
is the exceptional part, and Pi = P ∩ ωi, for i = 1, . . . , t, are the regular parts. By
construction, |Pi| ≤ n/r for every i = 1, 2, . . . , t, but we have no control over the size
of P ∗—this will be the source of most of our technical difficulties.

Next, let γ be a range in Γd,Δ,s. We say that γ crosses a cell ωi if neither
ωi ⊆ γ nor ωi ∩ γ = ∅. The crossing number of γ is the number of cells of Ω crossed
by γ, and the crossing number of Ω (with respect to Γd,Δ,s) is the maximum of
the crossing numbers of all γ ∈ Γd,Δ,s. Similar to many previous range-searching
algorithms [6, 20, 21], the crossing number of Ω will determine the query time of our
range-searching algorithms described in sections 5 and 7.

Lemma 4.3. If Ω is a polynomial partition induced by an r-partitioning polyno-
mial of degree at most D, then the crossing number of Ω with respect to Γd,Δ,s, with
Δ ≤ D, is at most CsΔDd−1, where C is a suitable constant depending only on d.

Proof. Let γ ∈ Γd,Δ,s; then γ is a Boolean combination of up to s sets of the
form γj := {x ∈ R

d | gj(x) ≥ 0}, where g1, . . . , gs are polynomials of degree at
most Δ. If γ crosses a cell ωi, then at least one of the ranges γj also crosses ωi,
and thus it suffices to establish that the crossing number of any range γ, defined by
a single d-variate polynomial inequality g(x) ≥ 0 of degree at most Δ, is at most
CΔDd−1.

We apply Theorem 4.2 with V := Z(g), which is an algebraic variety of dimension
k ≤ d − 1, and with s = 1 and F = {f}, where f is the r-partitioning polynomial.
Then, for each cell ωi crossed by γ, ωi∩Z(g) is a nonempty union of some of the cells
in A(F ∪ {g}) = A({f, g}) that lie in V . Thus, the crossing number of γ is at most
O(1)dΔDd−1.

2050 P. K. AGARWAL, J. MATOUŠEK, AND M. SHARIR

Algorithmic issues. We need to perform the following algorithmic primitives
(for d fixed as usual) for the range-searching algorithms that we will later present:

(A1) Given an r-partitioning polynomial f of degreeD = O(r1/d), compute (a suit-
able representation of) the partition Ω and the induced partition of P into
P ∗, P1, . . . , Pt.
By computing A({f}), using Theorem 4.1, and then testing the membership
of each point p ∈ P in each cell ωi in time polynomial in r, the above operation
can be performed in O(nrc) time,6 where c = dO(1).

(A2) Given (a suitable representation of) Ω as in (A1) and a query range γ ∈ Γd,Δ,1,
i.e., a range defined by a single d-variate polynomial g of degree Δ ≤ D,
compute which of the cells of Ω are crossed by γ and which are completely
contained in γ.
We already have the arrangement A({f}), and we compute A({f, g}). For
each cell of A({f, g}) contained in Z(g), we locate its representative point in
A({f}), and this gives us the cells crossed by γ. For the remaining cells, we
want to know whether they are inside γ or outside, and for that, it suffices
to determine the sign of g at the representative points. Using Theorem 4.1,
the above task can thus be accomplished in time O(rc), with c = dO(1).

5. Constant fan-out partition tree. We are now ready to describe our first
data structure for Γd,Δ,s-range searching, which is a constant fan-out (branching de-
gree) partition tree, and which works for points in general position.

Proof of Theorem 1.2. Let P be a set of n points in R
d, and let Δ, s be

constants. We choose r as a (large) constant depending on d,Δ, s, and the prespecified
parameter ε. We assume P to be in D0-general position for some sufficiently large
constant D0 � r1/d. We construct a partition tree T of fan-out O(r) as follows. We
first construct an r-partitioning polynomial f for P using Theorem 1.1, and compute
the partition Ω of R

d induced by f , as well as the corresponding partition P =
P ∗ ∪ P1 ∪ · · · ∪ Pt of P , where t = O(r). Since r is a constant, the (A1) operation,
discussed in section 4, performs this computation in O(n) time. We choose D0 so as
to ensure that it is at least deg f , and then our assumption that P is in D0-general
position implies that the size of P ∗ = P ∩ Z(f) is bounded by D0.

We set up the root of T, where we store
(i) the partitioning polynomial f , and a suitable representation of the partition

Ω;
(ii) a list of the points of the exceptional part P ∗; and
(iii) w(Pi), the sum of the weights of the points of the regular part Pi, for each

i = 1, 2, . . . , t.
The regular parts Pi are not stored explicitly at the root. Instead, for each Pi we
recursively build a subtree representing it. The recursion terminates, at leaves of T,
as soon as we reach point sets of size smaller than a suitable constant n0. The points
of each such set are stored explicitly at the corresponding leaf of T.

Since each node of T requires only a constant amount of storage and each point of
P is stored at only one node of T, the total size of T is O(n). The preprocessing time
is O(n log n) since T has depth O(logr n) and each level is processed in O(n) time.

6Of course, this is somewhat inefficient, and it would be nice to have a fast point-location algo-
rithm for the partition Ω—this would be the second step, together with an improved construction of
an r-partitioning polynomial f (concretely, an improved multipoint evaluation procedure for f) as
discussed at the end of section 3, needed to improve the preprocessing time in Theorem 1.4.

SEMIALGEBRAIC RANGE SEARCHING 2051

To process a query range γ ∈ Γd,Δ,s, we start at the root of T and maintain a
global counter which is initially set to 0. Among the cells ω1, . . . , ωt of the partition Ω
stored at the root, we find, using the (A2) operation, those completely contained in γ,
and those crossed by γ. Actually, we compute a superset of the cells that γ crosses,
namely, the cells crossed by the zero set of at least one of the (at most s) polynomials
defining γ. For each cell ωi ⊆ γ, we add the weight w(Pi) to the global counter. We
also add to the global counter the weights of the points in P ∗ ∩ γ, which we find by
testing each point of P ∗ separately. Then we recurse in each subtree corresponding
to a cell ωi crossed by γ (in the above weaker sense). The leaves, with point sets of
size O(1), are processed by inspecting their points individually. By Lemma 4.3, the
number of cells crossed by any of the polynomials defining γ at any interior node of
T is at most CsΔDd−1 ≤ C′r1−1/d, where C′ = C′(d, s,Δ) is a constant independent
of r.

The query time Q(n) obeys the following recurrence:

Q(n) ≤
{

C′r1−1/dQ(n/r) +O(1) for n > n0,

O(n) for n ≤ n0.

It is well known (see., e.g., [20]), and easy to check, that the recurrence solves to
Q(n) = O(n1−1/d+ε), for every fixed ε > 0, with an appropriate sufficiently large
choice of r as a function of C′ and ε, and with an appropriate choice of n0. This
concludes the proof of Theorem 1.2.

Boundary-fuzzy range searching: Proof of Corollary 1.3. Now we con-
sider the case where the points of P are not necessarily in D0-general position. As
was mentioned in the introduction, we apply a general perturbation scheme of Yap
[32] to the previous range-searching algorithm.

Yap’s scheme is applicable to an algorithm whose input is a sequence of real
numbers (in our case, the dn point coordinates plus the coefficients in the polynomials
specifying the query range). It is assumed that the algorithm makes decision steps
by way of evaluating polynomials with rational coefficients taken from a finite set P,
where the input parameters are substituted for the variables. The algorithm makes a
3-way branching depending on the sign of the evaluation. The set P does not depend
on the input. The input is considered degenerate if one of the signs in the tests is 0.

Yap’s scheme provides a black box for evaluating the polynomials from P that,
whenever the actual value is 0, also supplies a nonzero sign, +1 or −1, which the
algorithm may use for the branching, instead of the zero sign. Thus, the algorithm
never “sees” any degeneracy. Yap’s method guarantees that these signs are consistent,
i.e., for every input, the branching done in this way corresponds to some infinitesimal
perturbation of the input sequence, and so does the output of the algorithm (in our
case, the answer to a range-searching query).

For us, it is important that if the degrees of the polynomials in P are bounded
by a constant, the black box also operates in time bounded by a constant (which
is apparent from the explicit specification in [32]). Thus, applying the perturbation
scheme influences the running time only by a multiplicative constant.

It can be checked that the range-searching algorithm presented above is of the
required kind, with all branching steps based on the sign of suitable polynomials in
the coordinates of the input points and in the coefficients of the polynomials in the
query range, and the degrees of these polynomials are bounded by a constant. For
producing the partitioning polynomial f , we solve systems of linear equations, and

2052 P. K. AGARWAL, J. MATOUŠEK, AND M. SHARIR

Z(f)

H = {xd = 0}

π1

π2

π3

π4

π5

γ

γπ1

Fig. 2. The zero set of the partitioning polynomial (left), and its decomposition into monotone
patches that project to the hyperplane H bijectively. Only the 1-dimensional patches are labeled.

thus the coefficients of f are given by certain determinants obtained from Cramer’s
rule. The computation of the polynomial partition and locating points in it is also
based on the signs of suitable bounded-degree polynomials, as can be checked by in-
specting the relevant algorithms, and similarly for intersecting a polynomial partition
with the query range. The key fact is that all computations in the algorithm are
of constant-bounded depth—each of the values ever computed is obtained from the
input parameters by a constant number of arithmetic operations.

We also observe that when Yap’s scheme is applied, the algorithm never finds
more than D0 points in the exceptional set P ∗ (in any of the nodes of the partition
tree). Indeed, if D0 + 1 input points lie in the zero set of a polynomial f as in the
algorithm, then a certain polynomial in the coordinates of these D0+1 points vanishes
(see, e.g., [13, Lemma 6.3]). Thus, assuming that the algorithm found D0 + 1 points
on Z(f), it could test the sign of this polynomial at such points, and the black box
would return a nonzero sign, which would contradict the consistency of Yap’s scheme.

After applying Yap’s scheme, the preprocessing cost, storage, and query time
remain asymptotically the same as in Theorem 1.2 (but with larger constants of pro-
portionality). Since the output of the algorithm corresponds to some infinitesimally
perturbed version of the input (point set and query range), we obtain a boundary-
fuzzy answer for the original point set.

6. Decomposing a surface into monotone patches. As mentioned in the
introduction, if we construct an r-partitioning polynomial f for an arbitrary point
set P , the exceptional set P ∗ = P ∩ Z(f) may be large, as is schematically indicated
in Figure 2 (left). Since P ∗ is not partitioned by f in any reasonable sense, it must
be handled differently, as described below.

Following the terminology in [12, 25], we call a direction v ∈ S
d−1 good for f if,

for every a ∈ R
d, the polynomial p(t) = f(a + vt) does not vanish identically; that

is, any line in direction v intersects Z(f) at finitely many points. As argued in [25,
pp. 304–305 and pp. 314–315], a random direction is good for f with probability 1.
By choosing a good direction and rotating the coordinate system, we assume that the
xd-direction, referred to as the vertical direction, is good for f .

In order to deal with P ∗, we partition Z(f) into finitely many pieces, called
patches, in such a way that each of the patches is monotone in the vertical direction,
meaning that every line parallel to the xd-axis intersects it at most once. This is
illustrated, in the somewhat trivial 2-dimensional setting, in Figure 2 (right): there

SEMIALGEBRAIC RANGE SEARCHING 2053

are five 1-dimensional patches π1, . . . , π5, plus four 0-dimensional patches. Then we
treat each patch π separately: We project the point set P ∗ ∩ π orthogonally to the
coordinate hyperplane H := {xd = 0}, and we preprocess the projected set, denoted
P ∗
π , for range searching with suitable ranges. These ranges are projections of ranges

of the form γ ∩ π, where γ ∈ Γd,Δ,s is one of the original ranges. In Figure 2 (right),
the patch π1 is drawn thick, a range γ is depicted as a gray disk, and the projection
γπ1 of γ ∩ π1 is shown as a thick segment in H .

The projected range γπ is typically more complicated than the original range γ
(it involves more polynomials of larger degrees), but, crucially, it is only (d − 1)-
dimensional, and (d − 1)-dimensional queries can be processed somewhat more effi-
ciently than d-dimensional ones, which makes the whole scheme work. We will discuss
this in more detail in section 7, but first we recall the notion of cylindrical algebraic
decomposition (CAD, or also Collins decomposition), which is a tool that allows us to
decompose Z(f) into monotone patches, and also to compute the projected ranges γπ.

Given a finite set F = {f1, . . . , fs} of d-variate polynomials, a cylindrical algebraic
decomposition adapted to F is a way of decomposing R

d into a finite collection of
relatively open cells, which have a simple shape (in a suitable sense), and which
refine the arrangement A(F). We refer, e.g., to [5, Chap. 5.12] for the definition and
construction of the “standard” CAD. Here we will use a simplified variant, which
can be regarded as the “first stage” of the standard CAD, and which is captured by
[5, Theorem 5.14, Algorithm 12.1]. We also refer to [25, Appendix A] for a concise
treatment, which is perhaps more accessible at first encounter.

Let F be as above. To obtain the first-stage CAD for f , one constructs a suit-
able collection E = E(F) of polynomials in the variables x1, . . . , xd−1 (denoted by
ElimXk

(F) in [5]). Roughly speaking, the zero sets of the polynomials in E, viewed
as subsets of the coordinate hyperplane H (which is identified with R

d−1), contain
the projection onto H of all intersections Z(fi) ∩ Z(fj), 1 ≤ i < j ≤ s, as well as
the projection of the loci in Z(fi) where Z(fi) has a vertical tangent hyperplane, or a
singularity of some kind. The actual construction of E is somewhat more complicated,
and we refer to the aforementioned references for more details.

Having constructed E, the first-stage CAD is obtained as the arrangementA(F∪E)
in R

d, where the polynomials in E are now considered as d-variate polynomials (in
which the variable xd is not present). In geometric terms, we erect a “vertical wall” in
R

d over each zero set within H of a (d−1)-variate polynomial from E, and the CAD is
the arrangement of these vertical walls plus the zero sets of f1, . . . , fs. The first-stage
CAD is illustrated in Figure 3, for the same (single) polynomial as in Figure 2 (left).

In our algorithm, we are interested in the cells of the CAD that are contained
in some of the sero sets Z(fi); these are going to be the monotone patches alluded
to above. We note that using the first-stage CAD for the purpose of decomposing
Z(f) into monotone patches seems somewhat wasteful. For example, the number of
patches in Figure 2 is considerably smaller than the number of patches in the CAD in
Figure 3. But the CAD is simple and well known, and (as will follow from the analysis
in section 7) possible improvements in the number of patches (e.g., using the vertical-
decomposition technique [26]) do not seem to influence our asymptotic bounds on the
performance of the resulting range-searching data structure. The following lemma
summarizes the properties of the first-stage CAD that we will need; we refer to [5,
Theorem 5.14, Algorithm 12.1] for a proof.

Lemma 6.1 (single-stage CAD). Given a set F = {f1, . . . , fs} ⊂ R[x1, . . . , xd] of
polynomials, each of degree at most D, there is a set E = E(F) of O(s2D3) polynomials
in R[x1, . . . , xd−1], each of degree O(D2), which can be computed in time s2DO(d), such

2054 P. K. AGARWAL, J. MATOUŠEK, AND M. SHARIR

H

π1
π2

π3

π21

Fig. 3. A schematic illustration of the first-stage cylindrical algebraic decomposition.

that the first-stage CAD defined by these polynomials, i.e., the arrangement A(F ∪E)
in R

d, has the following properties:
(i) (“Cylindrical” cells) For each cell σ of A(F ∪ E), there exists a unique cell

τ of the (d − 1)-dimensional arrangement A(E) in H, such that one of the
following possibilities occur:
(a) σ = {(x, ξ(x)) | x ∈ τ}, where ξ : τ → R is a continuous semialgebraic

function (that is, σ is the graph of ξ over τ).
(b) σ = {(x, t) | x ∈ τ, t ∈ (ξ1(x), ξ2(x))}, where each ξi, i = 1, 2, is either

a continuous semialgebraic real-valued function on τ , or the constant
function τ → {∞}, or the constant function τ → {−∞}, and ξ1(x) <
ξ2(x) for all x ∈ τ (that is, σ is a portion of the “cylinder” τ×R between
two consecutive graphs).

(ii) (Refinement property) If F′ ⊆ F, then E′ = E(F′) ⊆ E, and thus each cell of
A(F ∪ E) is fully contained in some cell of A(F′ ∪ E′).

Returning to the problem of decomposing the zero set of the partitioning polyno-
mial f into monotone patches, we construct the first-stage CAD for F = {f}, and the
patches are the cells of A(F ∪ E) contained in Z(f). If the xd-direction is good for f ,
then every cell of A(F ∪ E) lying in Z(f) is of type (a), and so if any cell of type (b)
lies in Z(f), we choose another random direction and construct the first-stage CAD
in that direction. Putting everything together and using Theorem 4.1 to bound the
complexity of A(F ∪ E), we obtain the following lemma.

Lemma 6.2. Let f be a d-variate polynomial of degree D, and let us assume
that the xd-direction is good for f . Then Z(f) can be decomposed, in DO(d4) time,
into DO(d) monotone patches, and each patch can be represented semialgebraically by
DO(d4) polynomials of degree DO(d3).

The first-stage CAD can also be used to compute the projection of the intersection
of a range in Γd,Δ,s with a monotone patch of f .

Lemma 6.3. Let Π be the decomposition of the zero set of a d-variate polynomial
f of degree D into monotone patches, as described in Lemma 6.2, and let γ be a
semialgebraic set in Γd,Δ,s, with Δ ≤ D. For every patch π ∈ Π, the projection of
γ ∩ π in the xd-direction can be represented as a member of Γd−1,Δ1,s1 , i.e., by a
Boolean combination of at most s1 polynomial inequalities in (d − 1) variables, each

of degree at most Δ1, where Δ1 = DO(d3) and s1 = (Ds)O(d4). The representation

can be computed in (Ds)O(d4) time.
Proof. The task of computing γπ, the projection of γ ∩ π, is similar to the op-

eration (A2) discussed in section 4. In more abstract terms, it can also be viewed

SEMIALGEBRAIC RANGE SEARCHING 2055

as a quantifier elimination task: we can represent γ ∩ π by a quantifier-free for-
mula Φ(x1, . . . , xd) (a Boolean combination of polynomial inequalities); then γπ is
represented by ∃xdΦ(x1, . . . , xd), and by eliminating ∃xd we obtain a quantifier-free
formula describing γπ. More concretely, we use a procedure based on the first-stage
CAD (Lemma 6.1) and the arrangement construction (Theorem 4.1).

By definition, γ is a Boolean combination of inequalities of the form g1 ≥ 0, . . . , gs
≥ 0, where g1, . . . , gs are d-variate polynomials, each of degree at most Δ ≤ D. We
set F̃ := {f, g1, . . . , gs}, we compute the set Ẽ = E(F̃) of (d − 1)-variate polynomials
as in Lemma 6.1, and the first-stage CAD is then computed as the d-dimensional
arrangement A(F̃ ∪ Ẽ) according to Theorem 4.1. Since by Lemma 6.1(ii), A(F̃ ∪ Ẽ)
refines A({f} ∪ E({f})) (the first-stage CAD from the preprocessing phase), each
patch π ∈ Π is decomposed into subpatches. Since the sign of each gi is constant
on each cell of A(F̃), and thus on each cell of A(F̃ ∪ Ẽ), γ ∩ π is a disjoint union of
subpatches. The projections of these subpatches into H are cells of A(Ẽ), and thus

we obtain, in time (Ds)O(d4), a representation of γπ as a member of Γd−1,Δ1,s1 by

Theorem 4.1, where Δ1 = DO(d3) and s1 = (Ds)O(d4).

7. Large fan-out partition tree: Proof of Theorem 1.4. We now describe
our second data structure for Γd,Δ,s-range searching. Compared to the first data
structure from section 5, this one works on arbitrary point sets, without the D0-
general position assumption, or, alternatively, without the fuzzy boundary constraint
on the output, and has slightly better performance bounds. The data structure is
built recursively, and this time the recursion involves both n and d.

7.1. The data structure. Let P be a set of n points in R
d, and let Δ and

s be parameters (not assumed to be constant). The data structure for Γd,Δ,s-range
searching on P is obtained by constructing a partition tree T on P recursively, as
above, except that now the fan-out of each node is larger (and nonconstant), and each
node also stores an auxiliary data structure for handling the respective exceptional
part. We need to set two parameters: n0 = n0(d,Δ, s) and r = r(d,Δ, s, n). Neither
of them is a constant in general; in particular, r is typically going to be a tiny power
of n. The specific values of these parameters will be specified later, when we analyze
the query time.

We also note that there is yet another parameter in Theorem 1.4, namely, the
arbitrarily small constant ε > 0 entering the preprocessing time bound. However,
ε enters the construction solely by the requirement that r should be chosen smaller
than nε/c, for a sufficiently large constant c. It will become apparent later in the
analysis that r ≤ nε/c can be assumed, provided that some other parameters are
taken sufficiently large; we will point this out at suitable moments.

When constructing the partition tree T on an n-point set P , we distinguish two
cases. For n ≤ n0, T consists of a single leaf storing all points of P . For n > n0, we
construct an r-partitioning polynomial f of degree D = O(r1/d), the partition Ω of Rd

induced by f , and the partition of P into the exceptional part P ∗ and regular parts
P1, . . . , Pt, where t = O(r). Set n∗ = |P ∗| and ni = |Pi|, for i = 1, . . . , t. The root
of T stores f , Ω, and the total weight w(Pi) of each regular part Pi of P , as before.
Still in the same way as before, we recursively preprocess each regular part Pi for
Γd,Δ,s-range searching (or stop if |Pi| ≤ n0), and attach the resulting data structure
to the root as a respective subtree.

Handling the exceptional part. A new feature of the second data structure is
that we also preprocess the exceptional set P ∗ into an auxiliary data structure, which

2056 P. K. AGARWAL, J. MATOUŠEK, AND M. SHARIR

is stored at the root. Here we recurse on the dimension, exploiting the fact that P ∗

lies on the algebraic variety Z(f) of dimension at most d− 1.
We choose a random direction v and rotate the coordinate system so that v

becomes the direction of the xd-axis. We construct the first-stage CAD adapted to
{f}, according to Lemma 6.1 and Theorem 4.1. We check whether all the patches are
xd-monotone, i.e., of type (a) in Lemma 6.1(i); if it is not the case, we discard the
CAD and repeat the construction, with a different random direction. This yields a
decomposition of Z(f) into a set Π of DO(d) monotone patches, and the running time

is DO(d4) with high probability.
Next, we distribute the points of P ∗ among the patches: for each patch π ∈ Π,

let P ∗
π denote the projection of P ∗ ∩ π onto the coordinate hyperplane H = {x ∈

R
d | xd = 0}. We preprocess each set P ∗

π for Γd−1,Δ1,s1 -range searching. Here

s1 = (Ds)O(d4) is the number of polynomials defining a range and Δ1 = DO(d3) is
their maximum degree; the constants hidden in the O(·) notation are the same as in
Lemma 6.3. For simplicity, we treat all patches as being (d−1)-dimensional (although
some may be of lower dimension); this does not influence the worst-case performance
analysis.

The preprocessing of the sets P ∗
π is done recursively, using an r1-partitioning

polynomial in R
d−1, for a suitable value of r1. The exceptional set at each node of the

resulting “(d − 1)-dimensional” tree is handled in a similar manner, constructing an
auxiliary data structure in d− 2 dimensions, based on a first-stage CAD, and storing
it at the corresponding node. The recursion on d bottoms out at dimension 1, where
the structure is simply a standard binary search tree over the resulting set of points
on the x1-axis. We remark that the treatment of the top level of recursion on the
dimension will be somewhat different from that of deeper levels, in terms of both the
choice of parameters and the analysis; see below for details.

This completes the description of the data structure, except for the choice of r
and n0, which will be provided later as we analyze the performance of the algorithm.

Answering a query. Let us assume that, for a given P , the data structure
for Γd,Δ,s-range searching, as described above, has been constructed, and consider a
query range γ ∈ Γd,Δ,s. The query is answered in the same way as before, by visiting
the nodes of the partition tree T in a top-down manner, except that, at each node
that we visit, we also query with γ the auxiliary data structure constructed on the
exceptional set P ∗ for that node.

Specifically, for each patch π of the corresponding collection Π, we compute wπ ,
the weight of P ∗ ∩ (γ ∩ π). If γ ∩ π = ∅, then wπ = 0, and if γ ∩ π = π, then wπ is
the total weight of P ∗ ∩ π. Otherwise, i.e., if γ crosses π, then wπ is the same as the
weight of P ∗

π ∩ γπ, where γπ is the xd-projection of γ ∩ π, because π is xd-monotone.

By Lemma 6.3, γπ ∈ Γd−1,Δ1,s1 and can be constructed in (Ds)O(d4) time. We can
find the weight of γπ∩P ∗

π by querying the auxiliary data structure for P ∗
π with γπ. We

then add wπ to the global count maintained by the query procedure. This completes
the description of the query procedure.

7.2. Performance analysis. The analysis of the storage requirement and pre-
processing time is straightforward, and will be provided later. We begin with the
more intricate analysis of the query time. For now we assume that n0 and r have
been fixed; the analysis will later specify their values.

Let Qd(n,Δ, s) denote the maximum overall query time for Γd,Δ,s-range searching
on a set of n points in R

d. For n ≤ n0 and d ≥ 1, Qd(n,Δ, s) = O(n). For d = 1

SEMIALGEBRAIC RANGE SEARCHING 2057

and n > n0, Q1(n,Δ, s) = O(Δs log n) because any range in Γ1,Δ,s is the union of at
most Δs intervals. Finally, for d > 1 and n > n0, an analysis similar to the one in
section 5 gives the following recurrence for Qd(n,Δ, s):

(7.1) Qd(n,Δ, s) ≤ CΔsr1−1/dQd(n/r,Δ, s) +
∑
π∈Π

Qd−1(nπ,Δ1, s1) + rc,

where c = dO(1), C is a constant depending on d,
∑

π nπ ≤ n, and both |Π| and Δ1s1
are bounded by (Ds)ad with D = O(r1/d) and ad = O(d4). (These are rather crude
estimates, but we prefer simplicity.) The leading term of the recurrence relies on the
crossing-number bound given in Lemma 4.3. In order to apply that lemma, we need
that r ≥ Δd, which will be ensured by the choice of r given below. The second term
corresponds to querying the auxiliary data structures for the exceptional set P ∗. The
last term covers the time spent in computing the cells of the polynomial partition
crossed by the query range γ and for computing the projections γπ for every π ∈ Π;
here we assume that the choice of r will be such that r ≥ Ds.

Ultimately, we want to derive that if Δ, s are constants, the recurrence (7.1)
implies, with a suitable choice of r and n0 at each stage,

(7.2) Qd(n,Δ, s) ≤ n1−1/d logB(d,Δ,s) n,

where B(d,Δ, s) is a constant depending on d,Δ, and s.
However, as was already mentioned, even if Δ, s are constants initially, later in the

recursion they are chosen as tiny powers of n, and this makes it hard to obtain a direct
inductive proof of (7.2). Instead, we proceed in two stages. First, in Lemma 7.1 below
we derive, without assuming Δ, s to be constants, a weaker bound for Qd(n,Δ, s), for
which the induction is easier. Then we obtain the stronger bound (7.2) for constant
values of Δ, s by using the weaker bound for the (d − 1)-dimensional queries on the
exceptional parts, i.e., for the second term in the recurrence (7.1).

A weaker bound for lower-dimensional queries.
Lemma 7.1. For every ν > 0 there exists Ad,ν such that, with a suitable choice

of r and n0,

(7.3) Qd(n,Δ, s) ≤ (Δs)Ad,νn1−1/d+ν

for all d, n,Δ, s (with Δs ≥ 2, say).
Remarks. (i) This lemma may look similar to our first result on Γd,Δ,s-range

searching, Theorem 1.2, but there are two key differences—the lemma works for arbi-
trary point sets, with no general position assumption, and Δ and s are not assumed
to be constants.

(ii) Since query time O(n) is trivial to achieve, we may assume ν < 1/d, for
otherwise, the bound (7.3) in the lemma exceeds n.

Proof. The case d = 1 is trivial because Q1(n,Δ, s) ≤ CΔs log2 n clearly im-
plies (7.3), assuming that Ad,ν ≥ 1 + log2 C and that n is sufficiently large so that
log2 n ≤ nν . We assume that (7.3) holds up to dimension d − 1 (for all ν > 0, Δ,
s, and n), and we establish it for dimension d by induction on n. We consider Ad,ν

yet unspecified but sufficiently large; from the proof below one can obtain an explicit
lower bound that Ad,ν should satisfy. We set

n0 = n0(d,Δ, s, ν) := (Δs)dAd,ν and r = (2CΔs)1/ν .

2058 P. K. AGARWAL, J. MATOUŠEK, AND M. SHARIR

This value of n0 is roughly the threshold where the bound (7.3) becomes smaller
than n. Since we assume ν < 1/d, our choice of r satisfies the assumptions r ≥ Δd

and r ≥ Ds, as needed in (7.1).
In the inductive step, for n ≤ n0,

Qd(n,Δ, s) ≤ n ≤ n
1/d
0 n1−1/d = (Δs)Ad,νn1−1/d ≤ (Δs)Ad,νn1−1/d+ν .

So we assume that n > n0 and that the bound (7.3) holds for all n′ < n. Using the
induction hypothesis, i.e., plugging (7.3) into the recurrence (7.1), we obtain

Qd(n,Δ, s) ≤ CΔsr1−1/d(Δs)Ad,ν (n/r)1−1/d+ν + |Π|(Δ1s1)
Ad−1,νn1−1/(d−1)+ν + rc.

(7.4)

By the choice of r, the first term of the right-hand side of (7.4) can be bounded by

CΔsr−ν(Δs)Ad,νn1−1/d+ν =
1

2
(Δs)Ad,νn1−1/d+ν ,

which is half of the bound we are aiming for.
Next, we bound the second term. We use the estimates Δ1s1 ≤ (Ds)ad , |Π| ≤

(Ds)ad , and Ds ≤ r. Then

|Π|(Δ1s1)
Ad−1,νn1−1/(d−1)+ν ≤ rad(Ad−1,ν+1)n1−1/(d−1)+ν

≤ rad(Ad−1,ν+1)

n1/d(d−1)
· n1−1/d+ν .(7.5)

We choose

(7.6) Ad,ν =
d− 1

ν
a′ad(Ad−1,ν + 1),

where a′ = log2(4C); i.e., we choose Ad,ν = dΘ(d)/νd. Since n ≥ n0 = (Δs)dAd,ν and
r = (2CΔs)1/ν , the fraction in (7.5) can be bounded by

rad(Ad−1,ν+1)

n1/d(d−1)
≤ (2CΔs)Ad,ν/a

′(d−1)

(Δs)Ad,ν/(d−1)
≤

(
2C

(Δs)a′−1

)Ad,ν/a
′(d−1)

≤ 1

because Δs ≥ 2.
Finally, recall that c = dO(1), so our choice of Ad,ν (again, choosing a′ sufficiently

large) ensures that rc < n1−1/d. Hence, the right-hand side in (7.4) is bounded by

1
2 (Δs)Ad,νn1−1/d+ν + 2n1−1/d+ν ≤ (Δs)Ad,νn1−1/d+ν ,

as desired. This establishes the induction step and thereby completes the proof of the
lemma.

The improved bound for the query time. Now we want to obtain the im-
proved bound (7.2), i.e., Qd(n,Δ, s) ≤ n1−1/d logB n, with B = B(d,Δ, s), assuming
that Δ, s are constants and n > 2. To this end, in the top-level (d-dimensional) par-
tition tree, we set r := nδ, where δ > 0 is a suitable small constant to be specified
later. Then we use the result of Lemma 7.1 with ν := 1

2d(d−1) for processing the

(d − 1)-dimensional queries on the sets P ∗
π . Thus, in the forthcoming proof, we do

induction only on n, while d is fixed throughout.

SEMIALGEBRAIC RANGE SEARCHING 2059

We choose n0 = n0(d,Δ, s) sufficiently large (we will specify this more precisely
later on), and we assume that n > n0 and that the desired bound (7.2) holds for all
n′ < n. In the inductive step we estimate, using the recurrence (7.1), the induction
hypothesis, and the bound in (7.3),

Qd(n,Δ, s) ≤ CΔsr1−1/d(n/r)1−1/d logB(n/r) + |Π|(Δ1s1)
Ad−1,νn1−1/(d−1)+ν + rc.

The first term simplifies to (1 − δ)BCΔsn1−1/d logB n. Thus, if we choose B
depending on δ (which is a small positive constant still to be determined) so that (1−
δ)BCΔs ≤ 1

2 , then the first term will be at most half of the target value n1−1/d logB n.
Thus, it suffices to set δ so that the remaining two terms are negligible compared to
this value.

For the rc term, any δ ≤ 1/2c will do. The second term can be bounded, as in
the proof of Lemma 7.1, by

rad(Ad−1,ν+1)n1−1/(d−1)+ν =
rνAd,ν/(a

′(d−1))

nν
· n1−1/d.

Thus, with δ ≤ a′(d − 1)/Ad,ν, the term is at most n1−1/d. Again, this establishes
the induction step and concludes the proof of the final bound for the query time. We
remark that our choice of δ requires us to choose

B ≈ 1

δ
ln(2CΔs) ≈ ln(2CΔs) · dΘ(d),

making its dependence on d superexponential.

Analysis of storage and preprocessing. Let Sd(n,Δ, s) denote the size of the
data structure on n points in R

d for Γd,Δ,s-range searching, with the settings of r and
n0 as described above. For n ≤ n0 = n0(d,Δ, s) we have Sd(n,Δ, s) = O(n). For
larger values of n, the space occupied by the root of the partition tree, not counting the
auxiliary data structure for the exceptional part P ∗, is bounded by rc, where c = dO(1).
Furthermore, since Sd(n,Δ, s) is at least linear in n, the total size of the auxiliary
data structure constructed on P ∗ is

∑
π∈Π Sd−1(nπ,Δ1, s1) ≤ Sd−1(n

∗,Δ1, s1), where
n∗ = |P ∗|. We thus obtain the following recurrence for Sd(n,Δ, s):

Sd(n,Δ, s) ≤
t∑

i=1

Sd(ni,Δ, s) + Sd−1(n
∗,Δ1, s1) +O(rc)

for n > n0 = n0(d,Δ, s), and Sd(n,Δ, s) = O(n) for n ≤ n0. Using ni ≤ n/r,
n∗ +

∑
i ni ≤ n, and rc = o(n), for both types of choices of r, the recurrence easily

leads to

Sd(n,Δ, s) = O(n),

where the constant of proportionality depends on d.
It remains to estimate the preprocessing time; here, finally, the parameter ε > 0 in

Theorem 1.4 comes into play. Let δ∗ be a constant such that r ≤ nδ∗ (at all stages of
the algorithm). As was remarked in the preceding analysis of the query time, we can
make δ∗ arbitrarily small, by adjusting various constants (and, generally speaking and
as already remarked above, the smaller δ∗, the worse constant B(d,Δ, s) we obtain
in the query time bound).

2060 P. K. AGARWAL, J. MATOUŠEK, AND M. SHARIR

Let Td(n,Δ, s, δ∗) denote the maximum preprocessing time of our data structure
for Γd,Δ,s-range searching on n points, with δ∗ > 0 a constant as above. Using the
operation (A1) of section 4, we spend O(nrc) time to compute Ω(f) and the partition
of P into the exceptional part and the regular parts, and we spend additional O(nrc)
time to compute Π and P ∗

π for every π ∈ Π, where c = dO(1). The total time spent
in constructing the secondary data structures for all patches of Π is bounded by
Td−1(n

∗,Δ1, s1, δ
∗). Hence, we obtain the recurrence

Td(n,Δ, s, δ∗) ≤
t∑

i=1

Td(ni,Δ, s, δ∗) + Td−1(n
∗,Δ1, s1, δ

∗) +O(nrc)

for n > n0, and Td(n,Δ, s, δ∗) = O(n) for n ≤ n0. Using the properties ni ≤ n/r and
n∗ +

∑
i ni ≤ n, a straightforward calculation shows that

Td(n,Δ, s, δ∗) = O(n1+cδ∗),

where the constant of proportionality depends on d. Hence, by choosing δ∗ = ε/c,
the preprocessing time is O(n1+ε). This concludes the proof of Theorem 1.4.

8. Open problems. We conclude this paper by mentioning a few open prob-
lems.

(i) A very interesting and challenging problem is, in our opinion, the fast-query
case of range searching with constant-complexity semialgebraic sets, where the goal
is to answer a query in O(log n) time using roughly nd space. There are actually
two, apparently distinct, issues. The standard approach to fast-query searching is to
parameterize the ranges in Γ by points in a space of a suitable dimension, say t; then
the n points of P correspond to n algebraic surfaces in this t-dimensional “parameter
space,” and a query is answered by locating the point corresponding to the query
range in the arrangement of these surfaces.

First, the arrangement has O(nt) combinatorial complexity, and one would ex-
pect to be able to locate points in it in polylogarithmic time with storage about nt.
However, such a method is known only up to dimension t = 4, and in higher dimen-
sion, one again gets stuck at the arrangement decomposition problem, which was the
bottleneck in the previously known solution of [2] for the low-storage variant, as was
mentioned in the introduction. It would be nice to use polynomial partitions to obtain
a better point location data structure for such arrangements, but unfortunately, so
far all of our attempts in this direction have failed.

The second issue is, whether the point location approach just sketched is actually
optimal. This question is exhibited nicely already in the simple instance of range
searching with disks in the plane. The best known solution that guarantees logarith-
mic query time uses point location in R

3 and requires storage roughly n3, but it is
conceivable that roughly quadratic storage might suffice.

(ii) Our range-searching data structure for arbitrary point sets—the one with large
fan-out—is so complex and has a rather high exponent in the polylogarithmic factor,
because we have difficulty with handling highly degenerate point sets, where many
points lie on low-degree algebraic surfaces. This issue appears even more strongly in
combinatorial applications, and in that setting it has been dealt with only in rather
specific cases (e.g., in dimension 3); see [14, 28, 33] for initial studies. It would be
nice to find a construction of suitable “multilevel polynomial partitions” that would
cater to such highly degenerate input sets, as touched upon in [14, 33].

SEMIALGEBRAIC RANGE SEARCHING 2061

(iii) Another open problem, related to the construction of polynomial partitions,
is the fast evaluation of a multivariate polynomial at many points, as briefly discussed
at the end of section 3.

Acknowledgment. We thank the anonymous referees for their useful comments
on this paper.

REFERENCES

[1] P. K. Agarwal and J. Erickson, Geometric range searching and its relatives, in Advances
in Discrete and Computational Geometry, B. Chazelle, J. E. Goodman, and R. Pollack,
eds., AMS, Providence, RI, 1998, pp. 1–56.

[2] P. K. Agarwal and J. Matoušek, On range searching with semialgebraic sets, Discrete
Comput. Geom., 11 (1994), pp 393–418.

[3] S. Barone and S. Basu, Refined bounds on the number of connected components of sign
conditions on a variety, Discrete Comput. Geom., 47 (2012), pp. 577–597.

[4] S. Basu, R. Pollack, and M.-F. Roy, On the number of cells defined by a family of poly-
nomials on a variety, Mathematika, 43 (1996), pp. 120–126.

[5] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, Algorithms
Comput. Math. 10, Springer-Verlag, Berlin, 2003.

[6] T.M. Chan, Optimal partition trees, Discrete Comput. Geom., 47 (2012), pp. 661–690.
[7] B. Chazelle, Lower bounds on the complexity of polytope range searching, J. Amer. Math.

Soc., 2 (1989), pp. 637–666.
[8] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir, A singly exponential strat-

ification scheme for real semi-algebraic varieties and its applications, Theoret. Comput.
Sci., 84 (1991), pp. 77–105. Also in Proceedings of the 16th International Colloquium on
Automata, Languages and Programming, Lecture Notes in Comput. Sci. 372, Springer,
Berlin, 1989, pp. 179–193.

[9] Gy. Elekes, H. Kaplan, and M. Sharir, On lines, joints, and incidences in three dimen-
sions, J. Combin. Theory Ser. A, 118 (2011), pp. 962–977.

[10] L. Guth and N. H. Katz, Algebraic methods in discrete analogs of the Kakeya problem, Adv.
Math., 225 (2010), pp. 2828–2839.

[11] L. Guth and N. H. Katz, On the Erdős distinct distances problem in the plane,
arXiv:1011.4105, 2010.

[12] H. Hironaka, Triangulations of algebraic sets, in Proceedings of Symposia Pure Math 29,
R. Hartshorne, ed., AMS, Providence, RI, 1975, pp. 165–185.

[13] H. Kaplan, J. Matoušek, and M. Sharir, Simple proofs of classical theorems in discrete
geometry via the Guth–Katz polynomial partitioning technique, Discrete Comput. Geom.,
48 (2012), pp. 499–517.

[14] H. Kaplan, J. Matoušek, Z. Safernová, and M. Sharir, Unit distances in three dimen-
sions, Combin. Probab. Comput., 21 (2012), pp. 597–610.

[15] K. Kedlaya and Ch. Umans, Fast modular composition in any characteristic, in Proceed-
ings of the 49th Annual IEEE Symposium in Foundations of Computer Sciences, 2008,
pp. 146–155.

[16] Ch. Knauer, H. R. Tiwari, and D. Werner, On the computational complexity of ham-
sandwich cuts, Helly sets, and related problems, in Proceedings of the 28th Annual Sym-
posium of Theoretical Aspects of Computer Science, 2011, pp. 649–660.

[17] V. Koltun, Almost tight upper bounds for vertical decompositions in four dimensions,
J. ACM, 51 (2004), pp. 699–730.

[18] K. G. Larsen, On range searching in the group model and combinatorial discrepancy, in
Proceedings of the 52nd Annual IEEE Symposium Foundation of Computer Sciences,
2011, pp. 542–549.

[19] C.-Y. Lo, J. Matoušek, and W. Steiger, Ham-sandwich cuts in R
d, in Proceedings of the

24th Annual ACM Symposium on the Theory of Computer Science, 1992, pp. 539–545.
[20] J. Matoušek, Efficient partition trees, Discrete Comput. Geom., 8 (1992), pp. 315–334.
[21] J. Matoušek, Range searching with efficient hierarchical cuttings, Discrete Comput. Geom.,

10 (1993), pp. 157–182.
[22] J. Matoušek, Geometric range searching, ACM Comput. Surveys, 26 (1994), pp. 421–461.
[23] J. Matoušek, Using the Borsuk-Ulam Theorem, in Lectures on Topological Methods in Com-

binatorics and Geometry Series, Springer-Verlag, Berlin, 2003.

2062 P. K. AGARWAL, J. MATOUŠEK, AND M. SHARIR

[24] M. Nüsken and M. Ziegler, Fast multipoint evaluation of bivariate polynomials, in Pro-
ceedings of the 12th Annual European Symposiums on Algorithms, 2004, Lecture Notes
in Comput. Sci. 3221, Springer, Berlin, pp. 544–555.

[25] J. T. Schwartz and M. Sharir, On the Piano Movers’ problem: II. General techniques
for computing topological properties of real algebraic manifolds, Adv. in Appl. Math., 4
(1983), pp. 298–351.

[26] M. Sharir and P. K. Agarwal, Davenport Schinzel Sequences and Their Geometric Appli-
cations, Cambridge University Press, Cambridge, UK, 1995.

[27] M. Sharir and H. Shaul, Semi-algebraic range reporting and emptiness searching with ap-
plications, SIAM J. Comput., 40 (2011), pp. 1045–1074.

[28] J. Solymosi and T. Tao, An incidence theorem in higher dimensions, Discrete Comput.
Geom., 48 (2012), pp. 255–280.

[29] A. H. Stone and J. W. Tukey, Generalized “sandwich” theorems, Duke Math. J., 9 (1942),
pp. 356–359.

[30] H. E. Warren, Lower bound for approximation by nonlinear manifolds, Trans. Amer. Math.
Soc., 133 (1968), pp. 167–178.

[31] A. C. Yao and F. F. Yao, A general approach to d-dimensional geometric queries, in Pro-
ceedings of the 17th Annual ACM Symposium on the Theory of Computing, pp. 163–168.

[32] C. K. Yap, A geometric consistency theorem for a symbolic perturbation scheme, J. Comput.
System Sci., 40 (1990), pp. 2–18.

[33] J. Zahl, An improved bound on the number of point-surface incidences in three dimensions,
arXiv:1104.4987, 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

